diff options
Diffstat (limited to '3772/CH8')
-rw-r--r-- | 3772/CH8/EX8.1/Ex8_1.sce | 36 | ||||
-rw-r--r-- | 3772/CH8/EX8.10/Ex8_10.sce | 33 | ||||
-rw-r--r-- | 3772/CH8/EX8.11/Ex8_11.sce | 33 | ||||
-rw-r--r-- | 3772/CH8/EX8.12/Ex8_12.sce | 26 | ||||
-rw-r--r-- | 3772/CH8/EX8.13/Ex8_13.sce | 48 | ||||
-rw-r--r-- | 3772/CH8/EX8.14/Ex8_14.sce | 45 | ||||
-rw-r--r-- | 3772/CH8/EX8.15/Ex8_15.sce | 34 | ||||
-rw-r--r-- | 3772/CH8/EX8.16/Ex8_16.sce | 48 | ||||
-rw-r--r-- | 3772/CH8/EX8.18/Ex8_18.sce | 36 | ||||
-rw-r--r-- | 3772/CH8/EX8.19/Ex8_19.sce | 34 | ||||
-rw-r--r-- | 3772/CH8/EX8.2/Ex8_2.sce | 47 | ||||
-rw-r--r-- | 3772/CH8/EX8.20/Ex8_20.sce | 32 | ||||
-rw-r--r-- | 3772/CH8/EX8.3/Ex8_3.sce | 40 | ||||
-rw-r--r-- | 3772/CH8/EX8.4/Ex8_4.sce | 35 | ||||
-rw-r--r-- | 3772/CH8/EX8.5/Ex8_5.sce | 44 | ||||
-rw-r--r-- | 3772/CH8/EX8.6/Ex8_6.sce | 40 | ||||
-rw-r--r-- | 3772/CH8/EX8.7/Ex8_7.sce | 43 | ||||
-rw-r--r-- | 3772/CH8/EX8.8/Ex8_8.sce | 45 | ||||
-rw-r--r-- | 3772/CH8/EX8.9/Ex8_9.sce | 37 |
19 files changed, 736 insertions, 0 deletions
diff --git a/3772/CH8/EX8.1/Ex8_1.sce b/3772/CH8/EX8.1/Ex8_1.sce new file mode 100644 index 000000000..45c8ab5f7 --- /dev/null +++ b/3772/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,36 @@ +// Problem 8.1,Page no.206 + +clc;clear; +close; + +k=1 //KN/m //stiffness of spring +P=45 //N //Maximum Load +sigma_s=126 //MPa //Max shear stress +L=4.5 //cm //Lenght of spring +G=42 //GPa //Modulus of rigidity + +//Calculations + +//sigma_s_max=16*P*R*(%pi*d**3)**-1 //Max shear stress + +//After substituting values in above equation and simolifying we get +//1000=42*10**9*d**4*(64*R**3*n)**-1 (//Equation 1) + +//R=0.175*10**6*%pi*d**3 //Radius of spring (Equation 2) + +//L=n*d //solid length of spring +//Thus simplifying above equation, n=L*d**-1 + +//substituting value of n and R in (equation 1) we get, + +d=(42*10**9*(1000*64*4.5*10**-2*(0.175*%pi)**3*(10**6)**3)**-1)**0.25*10**2 //cm //diameter of helical spring + +//substituting value d in (equation 2) we get, +R=0.175*10**6*%pi*(d)**3*10**-6*100 //cm //Radius of coil +D=2*R //cm //Mean diameter of coil +n=0.045*0.00306**-1 //Number of turns + + +//Result +printf("The Diameter of wire is %.3f cm",d) +printf("\n The Mean Diameter of coil is %.2f",D);printf(" cm") diff --git a/3772/CH8/EX8.10/Ex8_10.sce b/3772/CH8/EX8.10/Ex8_10.sce new file mode 100644 index 000000000..2e9e0ed21 --- /dev/null +++ b/3772/CH8/EX8.10/Ex8_10.sce @@ -0,0 +1,33 @@ +// Problem 8.10,Page no.213 + +clc;clear; +close; + +L=75 //cm //Legth of Leaf spring +P=8 //KN //Load +y_c=20 //mm //Deflection +sigma=200 //MPa //Bending stress +E=200 //GPa //modulus of Elasticity +//b=12*t + +//Calculation + +//y_c=sigma*L**2*(4*E*t)**-1 +//After substituting values and further simplifying we get +t=200*10**6*(75*10**-2)**2*(4*200*10**9*0.02)**-1*10**2 //Thickness of plate + +b=12*t //width of plate + +//Now using relation we get +//sigma=3*P*L*(2*n*b*t**2)**-1 +//After substituting values and further simplifying we get +n=3*8*10**3*0.75*(2*200*10**6*0.084*0.007**2)**-1 + +//Y_c=L**2*(8*R)**-1 +R=(L*10**-2)**2*(8*y_c*10**-3)**-1 //m //Radius of spring + +//Result +printf("The thickness of plate is %.2f",t);printf(" cm") +printf("\n The width of plate is %.2f",b);printf(" cm") +printf("\n The number of plate is %d",ceil(n)) +printf("\n The Radius of plate is %.2f m",R) diff --git a/3772/CH8/EX8.11/Ex8_11.sce b/3772/CH8/EX8.11/Ex8_11.sce new file mode 100644 index 000000000..67671afff --- /dev/null +++ b/3772/CH8/EX8.11/Ex8_11.sce @@ -0,0 +1,33 @@ +// Problem 8.11,Page no.214 + +clc;clear; +close; + +L=75 //cm //span of laminated steel spring +P=7.5 //KN //Load +y_c=5 //cm //Central Deflection +sigma=400 //MPa //Bending stress +E=200 //GPa //Modulus of Elasticity +//b=12*t + +//Calculations + +//y_c=3*P*L**3*(8*E*n*b*t**3)**-1 //Deflection +//After substituting values and further simplifying we get +//nt**4=9.887*10**-9 (Equation 1) + +//We Know sigma=3*P*L*(2*n*b*t**3)**-1 //bending stress +//Again after substituting values and further simplifying we get +//nt**3=1.757*10**-6 (Equation 2) + +//After Divviding (Equation 1) by (Equation 2) we have +t=9.887*10**-9*(1.757*10**-6)**-1*10**2 //cm + +//substituting value of t in Equation 2) we get +n=1.757*10**-6*((t*10**-2)**3)**-1 //Number of plates +R=(L*10**-2)**2*(8*y_c*10**-2)**-1 //Radius of curvature + +//Result +printf("The thickness of Plates is %.2f",t);printf(" cm") +printf("\n The Number of Plates is %d",ceil(n)) +printf("\n The Radius of Curvature of Plates is %.2f",R);printf(" m") diff --git a/3772/CH8/EX8.12/Ex8_12.sce b/3772/CH8/EX8.12/Ex8_12.sce new file mode 100644 index 000000000..0615f73a7 --- /dev/null +++ b/3772/CH8/EX8.12/Ex8_12.sce @@ -0,0 +1,26 @@ +// Problem 8.12,Page no.214 + +clc;clear; +close; + +L=1.3 //m //Length of carriage spring +b=10 //cm //width of spring +t=12 //mm //thickness of spring +sigma=150 //MPa //Bending stresses +E=200 //GPa //Modulus of Elasticity +U=120 //N*m //Strain Energy + +//Calculation + +//V=n*b*t*L //Volume of carriage spring +//U=sigma**2*(6*E)**-1*V +//After substituting values in above equation and further simplifying we get +n=120*6*200*10**9*2*((150*10**6)**2*10*10**-2*12*10**-3*1.3)**-1 + +sigma_1=(120*6*200*10**9*2*(9*0.1*0.012*1.3)**-1)**0.5*10**-6 //MPa //Actual Bending stress + +R=E*t*(2*sigma_1)**-1 //m + +//Result +printf("The number of plates is %d",ceil(n)) +printf("\n Radius of curvature is %.3f m",R) diff --git a/3772/CH8/EX8.13/Ex8_13.sce b/3772/CH8/EX8.13/Ex8_13.sce new file mode 100644 index 000000000..866448121 --- /dev/null +++ b/3772/CH8/EX8.13/Ex8_13.sce @@ -0,0 +1,48 @@ +// Problem 8.13,Page no.215 + +clc;clear; +close; + +P=200 //N //Load +h=10 //cm //Height of Load dropped +n=10 //Number of turns +b_1=5 //cm //width of plates +t=6 //mm //thickness of plates +L=75 //cm //Length of plates +E=200 //GPa //Modulus of Elasticity + +//Calculaion + +//Let P be the equivalent gradually applied load whuch would cause the same stress as is caused by the impact Load +//200(0.1+dell)=P*dell*2**-1 (Equation 1) + +//dell=3*P*L**3*(8*E*n*b*t**3)**-1 //Deflection +//After substituting values in above equation and further simplifying we get +//P=136533.33*dell + +//After substituting values of P in (equation 1) and further simplifying we get +//200(0.1+dell)=136533.33*dell**2*2**-1 + +//simplifying above equation we get +//dell**2-2.93*10**-3*dell-2.93*10**-4=0 +//The Above Equation is in the form of ax**2+bx+c=0 +a=1 +b=-2.93*10**-3 +c=-2.93*10**-4 + +//First computing value of b^2-4ac and store it in a variable say X +X=b**2-(4*a*c) +//now roots are given as x=(-b+X**0.5)/(2*a) and second root is negative sign before X + +dell_1=(-b+X**0.5)*(2*a)**-1 +dell_2=(-b-X**0.5)*(2*a)**-1 + +//Now deflection cannot be negative so consider value of dell_1 + +P=136533.33*dell_1 +sigma=3*P*L*10**-2*(2*n*b_1*10**-2*(t*10**-3)**2)**-1*10**-6 //MPa //Max instantaneous stress +R=(L*10**-2)**2*(8*dell_1)**-1 //Radius of curvature + +//Result +printf("Max instantaneous stress in plates is %.2f",sigma);printf(" MPa") +printf("\n Radius of curvature of spring is %.2f",R);printf(" m") diff --git a/3772/CH8/EX8.14/Ex8_14.sce b/3772/CH8/EX8.14/Ex8_14.sce new file mode 100644 index 000000000..db5cda509 --- /dev/null +++ b/3772/CH8/EX8.14/Ex8_14.sce @@ -0,0 +1,45 @@ +// Problem 8.14,Page no.215 + +clc;clear; +close; + +L=70 //cm //Length of Longest plate +n=10 //Number of turns +b_1=5 //cm //width of plates +P=3.5 //KN //central Load +t=6 //mm //thickness of plates +L=75 //cm //Length of plates +y_c=1.8 //cm //central deflection +sigma=190 //MPa //allowable bending stress +//b=12*t +E=200 //GPa //Modulus of Elasticity + +//Calculation +//The Above Equation is in the form of ax**2+bx+c=0 +a=1 +b=-2.93*10**-3 +c=-2.93*10**-4 + +y_c=3*P*L**3*(8*n*E*b*t**3)**-1 //Deflection (//Equation 1) +sigma=3*P*L*(2*n*b*t**2)**-1 //stress +//Dividing Equation 1 by Equation 2 we get +//y_c*sigma**-1=L**2*(4*E*t)**-1 +//After substituting values in above equation and further simplifying we get +t=190*10**6*0.7**2*(1.8*10**-2*4*200*10**9)**-1*10**3 //thickness of plate +b=12*t //Width of plates + +//sigma=3*2**-1*P*L*(n*b*t**2)**-1 //stress +//After substituting values in above equation and further simplifying we get +n=3*3.5*10**3*0.7*(2*190*10**6*0.077583*(6.465*10**-3)**2)**-1 + +//Now sigma*y**-1=E*R**-1 +//simplifying above equationwe get +R=200*10**9*6.465*10**-3*(2*190*10**6)**-1 //Radius of Curvature +a=L*10**-2*(2*n)**-1*10**3 //Overlap + +//Result +printf("size of the plate is: %.2f",b);printf(" mm") +printf("\n : %.2f",t);printf(" mm") +printf("\n Overlap of plates is %.2f",a);printf(" mm") +printf("\n Number of plates is %d",ceil(n)) +printf("\n The Radius of curvature is %.3f m",R) diff --git a/3772/CH8/EX8.15/Ex8_15.sce b/3772/CH8/EX8.15/Ex8_15.sce new file mode 100644 index 000000000..d4da33452 --- /dev/null +++ b/3772/CH8/EX8.15/Ex8_15.sce @@ -0,0 +1,34 @@ +// Problem 8.15,Page no.216 + +clc;clear; +close; + +alpha=30 //degree //helix angle +dell=2.3*10**-2 //m //Vertical displacement +W=40 //N //Axial Load +d=6*10**-3 //steel rod diameter +E=200*10**9 //Pa +G=80*10**9 //Pa + +//Calculations + +//from equation of deflection of the spring under the Load we get +//R**3*n=8.49*10**-4 + +//Let R**3*n=X +X=8.49*10**-4 //Equation 1 + +//from equation of angular rotation +//R**2*n=8.1*10**-3 + +//Let R**2*n=Y +Y=8.1*10**-3 //Equation 2 + +//After dividing equation 1 by equation 2 we get R +//Let Z=R + +Z=X*Y**-1 +R=Z*10**2 //cm //Mean Radius + +//Result +printf("Mean Radius of Open coiled spring of helix angle is %.2f",R);printf(" cm") diff --git a/3772/CH8/EX8.16/Ex8_16.sce b/3772/CH8/EX8.16/Ex8_16.sce new file mode 100644 index 000000000..791095d23 --- /dev/null +++ b/3772/CH8/EX8.16/Ex8_16.sce @@ -0,0 +1,48 @@ +// Problem 8.16,Page no.217 + +clc;clear; +close; + +n=10 //Number of coils +sigma=100 //MPa //Bending stress +sigma_s=110 //MPa //Twisting stress +//D=8*d +dell=1.8 //cm //Max extension of of wire +E=200 //GPa //Modulus of Elasticity +G=80 //GPa //Modulus od Rigidity + +//Calculation + +//M=W*R*sin_alpha=%pi*d**3*sigma_1*32**-1 //(Equation 1) //Bending moment +//As D=8*d +//then R=D*2**-1 +//Therefore, R=4*d + +//Now substituting values in equation 1 we get +//W*sin_alpha=2454369.3*d**2 (Equation 2) + +//T=W*R*cos_alpha=%pi*d**3*sigma_s //Torque (Equation 3) +//Now substituting values in equation 3 we get +//W*cos_alpha=5399612.4*d**2 (Equation 4) + +//Dividing Equation 2 by Equation 4 we get, +//tan_alpha=0.4545 +alpha=atan(0.4545)*180*%pi**-1 + +//From Equation 2 we get +//W=2454369.3*d**2*(sin24.443)**-1 +//W=5931241.1*d**2 (Equation 5) + +//dell=64*W*R**3*n*sec_alpha*(d**4)**-1*((cos_alpha)**2*G**-1+2*sin_alpha**2*E**-1) +//Now substituting values in above equation we get +//W=33140.016*d (Equation 6) + +//From Equation 5 and Equation 6 we get +//5931241.1*d**2=33140.016*d +//After simplifying above equation we get +d=33140.016*5931241.1**-1 //m //Diameter of wire +W=33140.016*d //N //MAx Permissible Load + +//Result +printf("The Max Permissible Load is %.2f",W);printf(" N") +printf("\n The Wire Diameter is %.6f m",d) diff --git a/3772/CH8/EX8.18/Ex8_18.sce b/3772/CH8/EX8.18/Ex8_18.sce new file mode 100644 index 000000000..73c4da4bb --- /dev/null +++ b/3772/CH8/EX8.18/Ex8_18.sce @@ -0,0 +1,36 @@ +// Problem 8.18,Page no.218 + +clc;clear; +close; + +//Calculation + +n=10 //number of coils +d=2*10**-2 //m //Diameter of wire +D=12*10**-2 //m //Diameter of coiled spring +R=0.06 //m //Radius of coiled spring +dell=0.5*10**-2 //Deflection +E=200*10**9 //Pa +G=80*10**9 //Pa +alpha=30 //degree + +//Calculations + +//beta=64*W*R**2*n*sinalpha*(d**4)**-1*(1*G**-1-2*E**-1)+64*T*R*n*secalpha*(d**4)**-1*(sin**2alpha*G**-1+2*cos**2alpha*E**-1)=0 +//From above equation anf simplifying we get + +//T=-6.11*10**-3*W + +//dell=64*W*R**3*n*sec(alpha)*(d**4)**-1*[(cos(alpha))**2*G**-1+2*(sin(alpha))**2*E**-1]+64*T*R**2*n*sin(alpha)*(d**4)**-1*[1*G**-1+2*E**-1] + +//After substituting Values and further simplifying we get +//1.1847*10**-5*W+1.62*10**-4*T=0.005 + +//Now substituting value of T in above equation we get +//1.1847*10**-5*W-9.8982*10**-7*W=0.005 +W=0.005*(1.1847*10**-5-9.8982*10**-7)**-1 //N +T=-6.11*10**-3*W //N*m + +//Result +printf("The axial Load is %.2f",W);printf(" N") +printf("\n Necesscary torque is %.2f",T);printf(" N*m") diff --git a/3772/CH8/EX8.19/Ex8_19.sce b/3772/CH8/EX8.19/Ex8_19.sce new file mode 100644 index 000000000..d8812b713 --- /dev/null +++ b/3772/CH8/EX8.19/Ex8_19.sce @@ -0,0 +1,34 @@ +// Problem 8.19,Page no.219 + +clc;clear; +close; + +d=6 //mm //Diameter of steel wire +n=1 //number of turns +D=6.5 //cm //Mean of diameter +G=80 //GPa //modulus of rigidity +P_1=150 //Load +p=1.5 //cm //%pitch of coil + +//Calculation + +R=D*2**-1 +//For one turn deflection is +dell=p-d*10**-1 //cm + +//dell=64*P*R**3*n*(G*d**4)**-1 +//Now, after simplifying further we get, +P=dell*10**-2*G*10**9*(d*10**-3)**4*(64*(R*10**-2)**3*n)**-1 //N //Axial Load + +dell_2=dell*8 //cm //Total Displacement //Notification has been changed +U=P*dell_2*10**-2*2**-1 //N-m //Strain Energy + +//Potential Energy given by 150N Load is +//U=150*(h+0.072) + +//After simplifying above equation we get +h=(U*P_1**-1-0.072)*10**2 //cm //Height from which 150 N load falls + +//Result +printf("Axial Load is %.2f",P);printf(" N") +printf("\n Height from which 150 N load falls is %.2f",h);printf(" cm" ) diff --git a/3772/CH8/EX8.2/Ex8_2.sce b/3772/CH8/EX8.2/Ex8_2.sce new file mode 100644 index 000000000..0bd89e308 --- /dev/null +++ b/3772/CH8/EX8.2/Ex8_2.sce @@ -0,0 +1,47 @@ +// Problem 8.2,Page no.207 + + +clc;clear; +close; + +L=15 //cm //Length of close coiled helical spring +U=50 //N*m //Strain energy +sigma_s=140 //MPa //Shear stress +D=10 //cm //Mean coil diameter +G=80 //GPa //Modulus of rigidity + +R=D*2**-1 //cm //Mean coil Radius + +//Calculations + +//Let dell be the deflection of the spring when fully compressed +// 0.15-dell=n*d (Equation 1) + +//U=(sigma_s)**2*V*(4*G)**-1 //Strain energy + +//After substituting values in above equation and simolifying we get +V=50*4*80*10**9*((140*10**6)**2)**-1 //m**3 //Volume of spring + +//But V=%pi*4**-1*d**2*2*%pi*R*n +//After substituting values in above equation and simolifying we get +//n=3.308*10**-3*(d**2)**-1 //Number of turns + +//We know, T=P*R +//Now substituting values in T and simolifying we get +//P=549.7787*10**6*d**3 //Load + +//U=P*dell*2**-1 +//After substituting values in above equation and simolifying we get +//dell=0.18189*10**-6*d**3 //Deflection + +//After substituting values in above equation and simolifying we get + +//d**3-22.0533*10**-3*d**2-1.21261*10**-6=0 + +Coeff=[1 -22.0533*10**-3 0 -1.21261*10**-6] +d=roots(Coeff) //Diameter of steel wire +n=3.308*10**-3*((d(1)**2)**-1) //no.of coils + +//Result +printf("Diameter of steel wire is %.5f m",d(1)) +printf("\n number of coils = %d",ceil(n)) diff --git a/3772/CH8/EX8.20/Ex8_20.sce b/3772/CH8/EX8.20/Ex8_20.sce new file mode 100644 index 000000000..86efd46ff --- /dev/null +++ b/3772/CH8/EX8.20/Ex8_20.sce @@ -0,0 +1,32 @@ +// Problem 8.20,Page no.219 + +clc;clear; +close; + +alpha=30 //degree +E=200*10**9 //Pa +G=80*10**9 //pa + +//Calculations + +//For alpha=30 //Degree +//dell=64*W*R**3*n*sec(alpha)*(d**4)**-1*(cos(alpha)**2*G**-1+2*sin(alpha)**2*E**-1) +//Now substituting values in above equation we get + +//dell_1=64*W*R**3*n*(d**4)**-1*1330*(10**9)**-1 (equation 1) + +//For alpha=0 //Degree +//dell=64*W*R**3*n*sec(alpha)*(d**4)**-1*(cos(alpha)**2*G**-1+2*sin(alpha)**2*E**-1) +//Now substituting values in above equation we get + +//dell_2=64*W*R**3*n*(d**4)**-1*1250*(10**9)**-1 (equation 2) + +//subtracting equation 1 and equation 2 we get +//Let dell_1-dell_2=X +//X=64*W*R**3*n*(d**4)**-1*80*(10**9) + +//Let Y=X*dell_1**-1*100 +Y=80*1330**-1*100 //% under estimation of axial extension + +//Result +printf("%% under estimation of axial extension is %.2f",Y) diff --git a/3772/CH8/EX8.3/Ex8_3.sce b/3772/CH8/EX8.3/Ex8_3.sce new file mode 100644 index 000000000..d7cd05c91 --- /dev/null +++ b/3772/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,40 @@ +// Problem 8.3,Page no.208 + +clc;clear; +close; + +k=10 //KN/m //stiffness +L=40 //cm //Length of coil when adjascent coil touch each other +G=80 //GPa //Modulus of rigidity +//dell=0.002*n //Max compression + +//Calculation + +//k=G*d**4*(8*D**3*n)**-1 //Stiffness +//After substituting values in above equation and simolifying we get +//d**4=D**3*n*10**-6 (Equation 1) + +//L=n*d, //After substituting values we get +//n=0.4*d**-1 (Equation 2) + +//Again, d*D**-1=1*10**-1 +//After solving above ratios we get,D=10*d + +//After substituting values in Equation 1 And Equation 2 we get +d=(10**3*0.4*10**-6)**0.5*100 //cm +D=10*d //cm //Mean Diameter +R=D*2**-1 //cm //Mean Radius +n=0.4*(d*10**-2)**-1 //Number of turns +dell=0.002*n*100 //Deflection + +//k=P*dell**-1 +//after solving above equation we get +P=k*10**3*dell*10**-2 //N //Load + +sigma_s_max=16*P*R*10**-2*(%pi*(d*10**-2)**3)**-1 //N/m**2 //Max shear stress + +//Result +printf("The wire diameter is %.2f",d);printf(" cm") +printf("\n The Mean diameter is %.2f",D);printf(" cm") +printf("\n Max Load applied is %.2f",P);printf(" N") +printf("\n Max shear stress is %.f N/m^2",sigma_s_max) diff --git a/3772/CH8/EX8.4/Ex8_4.sce b/3772/CH8/EX8.4/Ex8_4.sce new file mode 100644 index 000000000..239803ffd --- /dev/null +++ b/3772/CH8/EX8.4/Ex8_4.sce @@ -0,0 +1,35 @@ +// Problem 8.4,Page no.209 + +clc;clear; +close; + +G=80 //GPa //Modulus of rigidity +P=1 //KN //Load +dell=10 //cm //Deflection +sigma_s=350 //MPa //Max shear stress +rho=78000 //N/m**3 //Density of materials + +//Calculations + +U=P*1000*dell*10**-2*2**-1 //N*m //Energy stored + +//Again U=sigma_s**2*V*(4*G)**-1 +//After substituting values in above equation and further simplifying we get +V=50*4*80*10**9*((350*10**6)**2)**-1 //m**3 //Volume + +W=V*rho //N //Weight + +//Now T=P*R=%pi*d**3*sigma_s*16**-1 +//After substituting values in above equation and further simplifying +D=(10**6*16*(2*%pi*350*10**6)**-1)**0.5*10**2 //cm //Mean diameter of coil + +k=P*10**3*(dell*10**-2)**-1 //stiffness + +//Also k=D*n**-1*10**6 +//After substituting values in above equation and further simplifying +n=10**6*D*10**-2*k**-1 //number of turns + +//Result +printf("The Value of weight is %.3f N",W) +printf("\n Mean coil diameter is %.2f",D);printf(" cm") +printf("\n The number of Turns is %.d",ceil(n)) diff --git a/3772/CH8/EX8.5/Ex8_5.sce b/3772/CH8/EX8.5/Ex8_5.sce new file mode 100644 index 000000000..90ac3d864 --- /dev/null +++ b/3772/CH8/EX8.5/Ex8_5.sce @@ -0,0 +1,44 @@ +// Problem 8.5,Page no.210 + +clc;clear; +close; + +d=6 //mm //Diameter of steel wire +n=50 //number of turns +D=5 //cm //Mean Diameter +R=D*2**-1 //cm //Radius of coil +G=80 //GPa //Modulus of Rigidity +P=150 //KN //Load + +//Calculation + +//Dell=64*P*R**3*n*(G*d**4)**-1 //Deflection +//After substituting values in above equation and simplifying we get +//P=2073.6*dell //Gradually applied equivalent Load + +//loss of potential Energy of the weight=Gain of strain Energy of the spring +//150*(0.05+dell)=P*dell*2**-1 +//After substituting values in above equation we get + +//dell**2-0.1446*dell-0.00723=0 +//Above Equation is in the form of ax^2+bx+c=0 + +a=1 +b=-0.1446 +c=-0.00723 + +//First computing value of b^2-4ac and store it in a variable say X +X=b**2-(4*a*c) +//now roots are given as x=(-b+X**0.5)/(2*a) and second root is negative sign before X + + +dell_1=(-b+X**0.5)*(2*a)**-1*10**2 +dell_2=(-b-X**0.5)*(2*a)**-1*10**2 + +P=2073.6*dell_1*10**-2 //N + +sigma=16*P*R*10**-2*(%pi*(d*10**-3)**3)**-1 //N/m**2 //Max stress + +//Result +printf("The Max Extension of the Spring is %.2f",dell_1);printf(" cm") +printf("\n The Max stress is %.3e N/m^2",sigma) diff --git a/3772/CH8/EX8.6/Ex8_6.sce b/3772/CH8/EX8.6/Ex8_6.sce new file mode 100644 index 000000000..b0c9e6436 --- /dev/null +++ b/3772/CH8/EX8.6/Ex8_6.sce @@ -0,0 +1,40 @@ +// Problem 8.6,Page no.209 + +clc;clear; +close; + +W=200 //N //weight +v=4 //m/s //velocity of spring +sigma=600 //MPa //max allowable stress in spring +G=80 //GPa //Modulus of rigidity +rho=78000 //N/m**3 //density +d=8 //mm //diameter of spring +D=5 //cm //Mean Diameter of coil + + +//Calculation + +E=W*v**2*(2*9.81)**-1 //N*m //Kinetic Energy //Notification has been changed + +//U=sigma_s**2*V*(4*G)**-1 //Strain Energy stored inthe spring + +//After substituting values in above equation and simplifying we get +V=163.1*4*80*10**9*((600*10**6)**2)**-1 //Volume + +W=rho*V //N //Weight of spring + +//Now V=%pi*4**-1*d**2*%pi*D*n +//After substituting values in above equation and simplifying we get +n=0.000145*4*(%pi**2*0.008**2*0.05)**-1 //number of turns of spring + +//T=P*R=%pi*16**-1*d**3*sigma_s //Torsion +//After substituting values in above equation and simplifying we get +P=%pi*0.008**3*600*10**6*(0.025*16)**-1 //N + +//Now U=P*dell*2**-1 +//Again,After substituting values in above equation and simplifying we get +dell=163.1*2*(2412.743)**-1*10**2 //cm + +//Result +printf("The Max Deflection Produced is %.2f",dell);printf(" cm") +printf("\n Number of coil are %d",ceil(n)) diff --git a/3772/CH8/EX8.7/Ex8_7.sce b/3772/CH8/EX8.7/Ex8_7.sce new file mode 100644 index 000000000..51ccd3456 --- /dev/null +++ b/3772/CH8/EX8.7/Ex8_7.sce @@ -0,0 +1,43 @@ +// Problem 8.7,Page no.211 + +clc;clear; +close; + +n=12 //number of coils +d=3 //cm //mean diameter +k=720 //N/m //stiffness of spring +sigma_s=190 //MPa //Max shear stress +G=80 //GPa //Modulus of rigidity +D=3 //mm //Diameter of outer spring + +//Calculations +R=D*2**-1 //mm //Radius of outer spring + +//Dell_1=64*P*(R*10**-3**3*n*(G*10**9*(d*10**-3)**4)**-1 //m //Extension of first spring +//After substituting values and further simplifying we get +//Dell_1=0.0004*P //m + +//Dell_2=64*P*(R*10**-3**3*n*(G*10**9*(d_1)**4)**-1 //m //Extension of first spring +//After substituting values and further simplifying we get +//Dell_2=3.24*10**-14*P*(d_1**4)**-1 //m //where d_1 is diameter of inner spring + +//Dell=Dell_1+Dell_2 +//After substituting values and further simplifying we get +//dell=0.0004*P+3.24*10**-14*P*((d)**4)**-1 + +//But dell=P*k**-1=P*720**-1 + +//Now substituting value of dell in above equation we get +d_1=(3.24*10**-14*(1*720**-1-0.0004)**-1)**0.25 //cm //diameter of inner spring + +//Now T=P*R=%pi*d_1**3*dell_s*sigma_s*16**-1 +//simplifying above equation further +//P=%pi*d**3*sigma_s*(16*R)**-1 +//Now substituting values and further simplifying we get +P=%pi*d_1**3*sigma_s*10**6*(16*R*10**-2)**-1 //N //Limiting Load + +dell=P*k**-1*10**2 //cm //Total Elongation + +//Result +printf("Greatest Load that can be carried by composite spring is %.f N",P) +printf("\n Extension in spring is %.2f",dell);printf(" cm") diff --git a/3772/CH8/EX8.8/Ex8_8.sce b/3772/CH8/EX8.8/Ex8_8.sce new file mode 100644 index 000000000..e9f5ec01b --- /dev/null +++ b/3772/CH8/EX8.8/Ex8_8.sce @@ -0,0 +1,45 @@ +// Problem 8.8,Page no.212 + +clc;clear; +close; + +//Outer spring +n_1=10 //number of coils +D_1=3 //cm //Diameter of coil +d_1=3 //mm //diameter of wire +dell_1=2 //cm //deflection of spring + +//Inner spring +n_2=8 //number of coils + +G=80 //GPa //Modulus of rigidity + +//Calculation + +R_1=D_1*2**-1 +P_1=G*10**9*dell_1*10**-2*(d_1*10**-3)**4*(64*(R_1*10**-2)**3*n_1)**-1 //Load carried outer spring for compression of 2 cm + +P_2=100-P_1 //N //Load carried by inner spring +k_2=P_2*0.01**-1 //N/m //stiffness of inner spring + +//D_2=D_1*10**-2-d_1*10**-3-2*dell_1*10**-2-d_2 //Diameter of inner spring +//Further simplifying above equation we get +//D_2=0.023-d_2 + +//Now from stiffness equation of inner spring +//k=G*d_2**4*(8*D_2**3*n_2)**-1 +//Now substituting values and further simplifying we get +//d**4=(0.023-d)**3*312500**-1 + +//As d is small compared with 0.023,as a first appromixation +d_2_1=(0.023**3*312500**-1)**0.25 //m + +//Second Approximation +d_2_2=((0.023-d_2_1)**3*312500**-1)**0.25 //m + +//Final approximation +d_2_3=((0.023-d_2_2)**3*312500**-1)**0.25*100 //cm + +//Result +printf("Stiffness of inner spring is %.2f",k_2);printf(" N/m") +printf("\n Wire Diameter of inner spring is %.3f cm",d_2_3) diff --git a/3772/CH8/EX8.9/Ex8_9.sce b/3772/CH8/EX8.9/Ex8_9.sce new file mode 100644 index 000000000..99e641ca8 --- /dev/null +++ b/3772/CH8/EX8.9/Ex8_9.sce @@ -0,0 +1,37 @@ +// Problem 8.9,Page no.212 + +clc;clear; +close; + +L= 3 //m //Length of rod +d_1=25*10**-3 //m //Diameter of rod +n= 5 //no. of coils +sigma=70*10**6 //MPa //instantaneous stress +E=70*10**9 //Pa +G=80*10**9 //Pa +D=24*10**-2 //Spring diameter +R=d_1*2**-1 //spring radius +d=4*10**-2 //diameter of steel + +//Calculations + +dell_1=sigma*L*(E)**-1 + +//Let P be the equivalent applied Load which will produce same stress of 70 MPa +P=%pi*4**-1*(d_1)**2*E*10**-3 //KN + +//deflection of the spring is given by +dell_2=P*64*R**3*n*(G*d**4)**-1 + +//Now Loss of Potential Energy of the weight=strain energy stored in the rod and the spring +//Height measured from top of uncompressed spring +h=((P*dell_1*2**-1+P*dell_2*2**-1)*(5.5*10**3)**-1-(dell_1+dell_2))*10**2 + +//Shear stress in the spring is given by +sigma_s=16*P*R*(%pi*d**3)**-1*10**-6 //MPa + +//Result +printf("Height measured from top of uncompressed spring %.2f",h);printf(" cm") +printf("\n max shearing stress is %.2f",sigma_s);printf(" MPa") + +// Answer is wrong in the textbook. |