summaryrefslogtreecommitdiff
path: root/1847/CH2
diff options
context:
space:
mode:
Diffstat (limited to '1847/CH2')
-rwxr-xr-x1847/CH2/EX2.1/Ch02Ex1.sce11
-rwxr-xr-x1847/CH2/EX2.10/Ch02Ex10.sce11
-rwxr-xr-x1847/CH2/EX2.11/Ch02Ex11.sce15
-rwxr-xr-x1847/CH2/EX2.12/Ch02Ex12.sce13
-rwxr-xr-x1847/CH2/EX2.13/Ch02Ex13.sce12
-rwxr-xr-x1847/CH2/EX2.14/Ch02Ex14.sce13
-rwxr-xr-x1847/CH2/EX2.15/Ch02Ex15.sce13
-rwxr-xr-x1847/CH2/EX2.16/Ch02Ex16.sce15
-rwxr-xr-x1847/CH2/EX2.17/Ch02Ex17.sce16
-rwxr-xr-x1847/CH2/EX2.18/Ch02Ex18.sce16
-rwxr-xr-x1847/CH2/EX2.19/Ch02Ex19.sce13
-rwxr-xr-x1847/CH2/EX2.2/Ch02Ex2.sce10
-rwxr-xr-x1847/CH2/EX2.20/Ch02Ex20.sce17
-rwxr-xr-x1847/CH2/EX2.21/Ch02Ex21.sce11
-rwxr-xr-x1847/CH2/EX2.22/Ch02Ex22.sce12
-rwxr-xr-x1847/CH2/EX2.23/Ch02Ex23.sce12
-rwxr-xr-x1847/CH2/EX2.24/Ch02Ex24.sce12
-rwxr-xr-x1847/CH2/EX2.25/Ch02Ex25.sce10
-rwxr-xr-x1847/CH2/EX2.26/Ch02Ex26.sce12
-rwxr-xr-x1847/CH2/EX2.27/Ch02Ex27.sce12
-rwxr-xr-x1847/CH2/EX2.28/Ch02Ex28.sce14
-rwxr-xr-x1847/CH2/EX2.29/Ch02Ex29.sce12
-rwxr-xr-x1847/CH2/EX2.3/Ch02Ex3.sce15
-rwxr-xr-x1847/CH2/EX2.30/Ch02Ex30.sce13
-rwxr-xr-x1847/CH2/EX2.31/Ch02Ex31.sce19
-rwxr-xr-x1847/CH2/EX2.32/Ch02Ex32.sce13
-rwxr-xr-x1847/CH2/EX2.33/Ch02Ex33.sce14
-rwxr-xr-x1847/CH2/EX2.34/Ch02Ex34.sce19
-rwxr-xr-x1847/CH2/EX2.35/Ch02Ex35.sce16
-rwxr-xr-x1847/CH2/EX2.36/Ch02Ex36.sce20
-rwxr-xr-x1847/CH2/EX2.37/Ch02Ex37.sce14
-rwxr-xr-x1847/CH2/EX2.38/Ch02Ex38.sce19
-rwxr-xr-x1847/CH2/EX2.39/Ch02Ex39.sce19
-rwxr-xr-x1847/CH2/EX2.4/Ch02Ex4.sce11
-rwxr-xr-x1847/CH2/EX2.40/Ch02Ex40.sce14
-rwxr-xr-x1847/CH2/EX2.41/Ch02Ex41.sce16
-rwxr-xr-x1847/CH2/EX2.42/Ch02Ex42.sce22
-rwxr-xr-x1847/CH2/EX2.43/Ch02Ex43.sce18
-rwxr-xr-x1847/CH2/EX2.44/Ch02Ex44.sce16
-rwxr-xr-x1847/CH2/EX2.46/Ch02Ex46.sce16
-rwxr-xr-x1847/CH2/EX2.47/Ch02Ex47.sce14
-rwxr-xr-x1847/CH2/EX2.48/Ch02Ex48.sce12
-rwxr-xr-x1847/CH2/EX2.49/Ch02Ex49.sce11
-rwxr-xr-x1847/CH2/EX2.5/Ch02Ex5.sce15
-rwxr-xr-x1847/CH2/EX2.50/Ch02Ex50.sce11
-rwxr-xr-x1847/CH2/EX2.51/Ch02Ex51.sce13
-rwxr-xr-x1847/CH2/EX2.52/Ch02Ex52.sce14
-rwxr-xr-x1847/CH2/EX2.53/Ch02Ex53.sce12
-rwxr-xr-x1847/CH2/EX2.54/Ch02Ex54.sce12
-rwxr-xr-x1847/CH2/EX2.55/Ch02Ex55.sce14
-rwxr-xr-x1847/CH2/EX2.56/Ch02Ex56.sce15
-rwxr-xr-x1847/CH2/EX2.57/Ch02Ex57.sce14
-rwxr-xr-x1847/CH2/EX2.58/Ch02Ex58.sce16
-rwxr-xr-x1847/CH2/EX2.59/Ch02Ex59.sce14
-rwxr-xr-x1847/CH2/EX2.6/Ch02Ex6.sce13
-rwxr-xr-x1847/CH2/EX2.60/Ch02Ex60.sce12
-rwxr-xr-x1847/CH2/EX2.61/Ch02Ex61.sce14
-rwxr-xr-x1847/CH2/EX2.62/Ch02Ex62.sce13
-rwxr-xr-x1847/CH2/EX2.63/Ch02Ex63.sce14
-rwxr-xr-x1847/CH2/EX2.64/Ch02Ex64.sce16
-rwxr-xr-x1847/CH2/EX2.65/Ch02Ex65.sce13
-rwxr-xr-x1847/CH2/EX2.67/Ch02Ex67.sce10
-rwxr-xr-x1847/CH2/EX2.68/Ch02Ex68.sce16
-rwxr-xr-x1847/CH2/EX2.69/Ch02Ex69.sce12
-rwxr-xr-x1847/CH2/EX2.7/Ch02Ex7.sce15
-rwxr-xr-x1847/CH2/EX2.70/Ch02Ex70.sce12
-rwxr-xr-x1847/CH2/EX2.71/Ch02Ex71.sce11
-rwxr-xr-x1847/CH2/EX2.72/Ch02Ex72.sce12
-rwxr-xr-x1847/CH2/EX2.73/Ch02Ex73.sce12
-rwxr-xr-x1847/CH2/EX2.8/Ch02Ex8.sce15
-rwxr-xr-x1847/CH2/EX2.9/Ch02Ex9.sce12
71 files changed, 985 insertions, 0 deletions
diff --git a/1847/CH2/EX2.1/Ch02Ex1.sce b/1847/CH2/EX2.1/Ch02Ex1.sce
new file mode 100755
index 000000000..31c3c090b
--- /dev/null
+++ b/1847/CH2/EX2.1/Ch02Ex1.sce
@@ -0,0 +1,11 @@
+// Scilab Code Ex2.1:: Page-2.9 (2009)
+clc; clear;
+lambda = 5893e-008; // Wavelength of light used, m
+D = 200; // Distance of the source from the screen, m
+b = 0.2; // Fringe separation, cm
+d = lambda*D/b; // Separation between the slits, cm
+
+printf("\nThe separation between the slits = %3.1e cm", d);
+
+// Result
+// The separation between the slits = 5.9e-002 cm
diff --git a/1847/CH2/EX2.10/Ch02Ex10.sce b/1847/CH2/EX2.10/Ch02Ex10.sce
new file mode 100755
index 000000000..979c40c19
--- /dev/null
+++ b/1847/CH2/EX2.10/Ch02Ex10.sce
@@ -0,0 +1,11 @@
+// Scilab Code Ex2.10:: Page-2.12 (2009)
+clc; clear;
+D = 100; // Distance between slits and the screen, cm
+d = 0.08; // Separation between the slits, cm
+b = 2.121/25; // Fringe width of the interfernce pattern due to biprism, cm
+lambda = b*d/D; // Wavelength of light in a biprism experiment, cm
+
+printf("\nThe wavelength of light in a biprism experiment = %5.0f angstrom", lambda/1e-008);
+
+// Result
+// The wavelength of light in a biprism experiment = 6787 angstrom
diff --git a/1847/CH2/EX2.11/Ch02Ex11.sce b/1847/CH2/EX2.11/Ch02Ex11.sce
new file mode 100755
index 000000000..04ad332e5
--- /dev/null
+++ b/1847/CH2/EX2.11/Ch02Ex11.sce
@@ -0,0 +1,15 @@
+// Scilab Code Ex2.11:: Page-2.13 (2009)
+clc; clear;
+alpha = %pi/180; // Acute angle of biprism, radian
+mu = 1.5; // Refractive index of biprism
+lambda = 5900e-008; // Wavelength of light used, cm
+y1 = 10; // Distance of biprism from the source, cm
+y2 = 100; // Distance of biprism from the screen, cm
+D = y1 + y2; // Distance between slits and the screen, cm
+d = 2*(mu-1)*alpha*y1; // Separation between the slits, cm
+b = lambda*D/d; // Fringe width of the interfernce pattern due to biprism, cm
+
+printf("\nThe fringe width at a distance of %d cm from biprism = %4.2e cm", y2, b);
+
+// Result
+// The fringe width at a distance of 100 cm from biprism = 3.72e-02 cm
diff --git a/1847/CH2/EX2.12/Ch02Ex12.sce b/1847/CH2/EX2.12/Ch02Ex12.sce
new file mode 100755
index 000000000..ca474091e
--- /dev/null
+++ b/1847/CH2/EX2.12/Ch02Ex12.sce
@@ -0,0 +1,13 @@
+// Scilab Code Ex2.12:: Page-2.13 (2009)
+clc; clear;
+lambda = 5893e-008; // Wavelength of light used, cm
+y1 = 10; // Distance of biprism from the source, cm
+y2 = 100; // Distance of biprism from the screen, cm
+D = y1 + y2; // Distance between slits and the screen, cm
+b = 3.5e-02; // Fringe width of the interfernce pattern due to biprism, cm
+d = lambda*D/b; // Distance between coherent sources, cm
+
+printf("\nThe distance between coherent sources = %5.3f cm", d);
+
+// Result
+// The distance between coherent sources = 0.185 cm
diff --git a/1847/CH2/EX2.13/Ch02Ex13.sce b/1847/CH2/EX2.13/Ch02Ex13.sce
new file mode 100755
index 000000000..70ceb318d
--- /dev/null
+++ b/1847/CH2/EX2.13/Ch02Ex13.sce
@@ -0,0 +1,12 @@
+// Scilab Code Ex2.13:: Page-2.13 (2009)
+clc; clear;
+b = 0.125; // Fringe width of the interfernce pattern due to biprism, cm
+d = 1; // For simplicity assume distance between sources to be unity, cm
+d_prime = 3/4*d; // New distance between sources, cm
+// As b is proportional to 1/d, so
+b_prime = b*d/d_prime; // New fringe width of the interfernce pattern due to biprism, cm
+
+printf("\nThe new value of fringe width due to reduced slit separation = %5.3f cm", b_prime);
+
+// Result
+// The new value of fringe width due to reduced slit separation = 0.167 cm
diff --git a/1847/CH2/EX2.14/Ch02Ex14.sce b/1847/CH2/EX2.14/Ch02Ex14.sce
new file mode 100755
index 000000000..fc17dbd5f
--- /dev/null
+++ b/1847/CH2/EX2.14/Ch02Ex14.sce
@@ -0,0 +1,13 @@
+// Scilab Code Ex2.14:: Page-2.13 (2009)
+clc; clear;
+b = 0.187; // Fringe width of the interfernce pattern due to biprism, cm
+y1 = 1; // For simplicity assume distance between slit and biprism to be unity, cm
+y1_prime = 1.25*y1; // New distance between slit and biprism, cm
+// As d is directly proportional to y1 and b is directly proportional to d, so
+// b is inversely proportional to y1
+b_prime = b*y1/y1_prime; // New fringe width of the interfernce pattern due to biprism, cm
+
+printf("\nThe new value of fringe width due to increased slit-biprism separation = %5.3f cm", b_prime);
+
+// Result
+// The new value of fringe width due to increased slit-biprism separation = 0.150 cm
diff --git a/1847/CH2/EX2.15/Ch02Ex15.sce b/1847/CH2/EX2.15/Ch02Ex15.sce
new file mode 100755
index 000000000..2b62b3419
--- /dev/null
+++ b/1847/CH2/EX2.15/Ch02Ex15.sce
@@ -0,0 +1,13 @@
+// Scilab Code Ex2.15:: Page-2.14 (2009)
+clc; clear;
+d1 = 5e-01; // First distance between images of the slit, cm
+d2 = 2.25e-01; // Second distance between images of the slit, cm
+lambda = 5896e-008; // Wavelength of the light used, cm
+D = 120; // Distance between screen and the slits, cm
+d = sqrt(d1*d2); // Geometric mean of distance between the two slits, cm
+b = lambda*D/d; // Distance between interference bands, cm
+
+printf("\nThe distance between interference bands = %5.3e cm", b);
+
+// Result
+// The distance between interference bands = 2.109e-02 cm
diff --git a/1847/CH2/EX2.16/Ch02Ex16.sce b/1847/CH2/EX2.16/Ch02Ex16.sce
new file mode 100755
index 000000000..d28280f18
--- /dev/null
+++ b/1847/CH2/EX2.16/Ch02Ex16.sce
@@ -0,0 +1,15 @@
+// Scilab Code Ex2.16:: Page-2.14 (2009)
+clc; clear;
+mu = 1.5; // Refractive index of biprism
+lambda = 5500e-008; // Wavelength of light used, cm
+y1 = 25; // Distance of biprism from the source, cm
+y2 = 150; // Distance of biprism from the screen, cm
+D = y1 + y2; // Distance between slits and the screen, cm
+b = 0.05; // Fringe width of the interfernce pattern due to biprism, cm
+// As d = 2*(mu-1)*alpha*y1, solving for alpha
+alpha = lambda*D/(b*2*(mu-1)*y1) // Angle of vertex of the biprism, radian
+
+printf("\nThe angle of vertex of the biprism = %6.4f rad", alpha);
+
+// Result
+// The angle of vertex of the biprism = 0.0077 rad
diff --git a/1847/CH2/EX2.17/Ch02Ex17.sce b/1847/CH2/EX2.17/Ch02Ex17.sce
new file mode 100755
index 000000000..c42bc889a
--- /dev/null
+++ b/1847/CH2/EX2.17/Ch02Ex17.sce
@@ -0,0 +1,16 @@
+// Scilab Code Ex2.17:: Page-2.15 (2009)
+clc; clear;
+theta = 178; // Vertex angle of biprism, degrees
+alpha = (180-theta)/2*%pi/180; // Acute angle of biprism, radian
+mu = 1.5; // Refractive index of biprism
+y1 = 20; // Distance of biprism from the source, cm
+y2 = 125; // Distance of biprism from the screen, cm
+D = y1 + y2; // Distance between slits and the screen, cm
+d = 2*(mu-1)*alpha*y1; // Separation between the slits, cm
+b = 0.025; // Fringe width of the interfernce pattern due to biprism, cm
+lambda = b*d/D; // Wavelength of light used, cm
+
+printf("\nThe wavelength of light used to illuminate slits = %4d angstrom", lambda/1e-08);
+
+// Result
+// The wavelength of light used to illuminate slits = 6018 angstrom
diff --git a/1847/CH2/EX2.18/Ch02Ex18.sce b/1847/CH2/EX2.18/Ch02Ex18.sce
new file mode 100755
index 000000000..0d4c4f517
--- /dev/null
+++ b/1847/CH2/EX2.18/Ch02Ex18.sce
@@ -0,0 +1,16 @@
+// Scilab Code Ex2.18:: Page-2.15 (2009)
+clc; clear;
+mu = 1.5; // Refractive index of biprism
+lambda = 6600e-008; // Wavelength of light used, cm
+y1 = 40; // Distance of biprism from the source, cm
+y2 = 175; // Distance of biprism from the screen, cm
+D = y1 + y2; // Distance between slits and the screen, cm
+b = 0.04; // Fringe width of the interfernce pattern due to biprism, cm
+// As d = 2*(mu-1)*alpha*y1, solving for alpha
+alpha = lambda*D/(b*2*(mu-1)*y1) // Acute angle of the biprism, radian
+theta = (%pi-2*alpha); // Vertex angle of the biprism, radian
+
+printf("\nThe vertex angle of the biprism = %6.2f degrees", theta*180/%pi);
+
+// Result
+// The vertex angle of the biprism = 178.98 degrees
diff --git a/1847/CH2/EX2.19/Ch02Ex19.sce b/1847/CH2/EX2.19/Ch02Ex19.sce
new file mode 100755
index 000000000..41032271f
--- /dev/null
+++ b/1847/CH2/EX2.19/Ch02Ex19.sce
@@ -0,0 +1,13 @@
+// Scilab Code Ex2.19: : Page-2.16 (2009)
+clc; clear;
+lambda1 = 7000e-008; // Original wavelength of light, cm
+lambda2 = 5000e-008; // New wavelength of light, cm
+n1 = 10; // Order of the fringes with original wavelength
+// As x = n*lambda*D/d, so n*lambda = constant
+// n1*lambda1 = n2*lambda2, solving for n2
+n2 = n1*lambda1/lambda2; // Order of visible fringe for changed wavelength of light
+
+printf("\nThe order of visible fringe for changed wavelength of light = %2d", ceil(n2));
+
+// Result
+// The order of visible fringe for changed wavelength of light = 14
diff --git a/1847/CH2/EX2.2/Ch02Ex2.sce b/1847/CH2/EX2.2/Ch02Ex2.sce
new file mode 100755
index 000000000..d6285d78c
--- /dev/null
+++ b/1847/CH2/EX2.2/Ch02Ex2.sce
@@ -0,0 +1,10 @@
+// Scilab Code Ex2.2:: Page-2.10 (2009)
+clc; clear;
+d = 0.2; // Separation between the slits, cm
+D = 100; // Distance of the source from the screen, m
+b = 0.35e-01; // Fringe separation, cm
+lambda = b*d/D; // Wavelength of light used, m
+printf("\nThe wavelength of the light = %3.1e cm", lambda);
+
+// Result
+// The wavelength of the light = 7.0e-005 cm
diff --git a/1847/CH2/EX2.20/Ch02Ex20.sce b/1847/CH2/EX2.20/Ch02Ex20.sce
new file mode 100755
index 000000000..0d6cba1c8
--- /dev/null
+++ b/1847/CH2/EX2.20/Ch02Ex20.sce
@@ -0,0 +1,17 @@
+// Scilab Code Ex1.20:: Page-2.16 (2009)
+clc; clear;
+y1 = 40; // Distance between biprism from the slit, cm
+D = 160; // Distance between slit and the screen, cm
+mu = 1.52; // Refractive index of material of the prism
+lambda = 5893e-008; // Wavelength of light used, cm
+b = 0.01; // Fringe width, cm
+// As b = lambda*D/d, solving for d
+d = lambda*D/b; // Distance between virtual sources, cm
+// But d = 2*y1*(mu-1)*alpha, solving for alpha
+alpha = d/(2*y1*(mu-1))*180/%pi; // Angle of biprism, degrees
+theta = 180-2*alpha; // Angle of vertex of biprism, degrees
+
+printf("\nThe angle of vertex of biprism = %5.1f degree", theta);
+
+// Result
+// The angle of vertex of biprism = 177.4 degree
diff --git a/1847/CH2/EX2.21/Ch02Ex21.sce b/1847/CH2/EX2.21/Ch02Ex21.sce
new file mode 100755
index 000000000..e9893c0e7
--- /dev/null
+++ b/1847/CH2/EX2.21/Ch02Ex21.sce
@@ -0,0 +1,11 @@
+// Scilab Code Ex2.21: : Page-2.16 (2009)
+clc; clear;
+lambda = 6000e-008; // Wavelength of light used, cm
+D = 100; // Distance between slits and the screen, cm
+b = 0.05; // Fringe width of the interfernce pattern due to biprism, cm
+d = lambda*D/b; // Distance between coherent sources, cm
+
+printf("\nThe distance between coherent sources = %3.1f mm", d/1e-01);
+
+// Result
+// The distance between coherent sources = 1.2 mm
diff --git a/1847/CH2/EX2.22/Ch02Ex22.sce b/1847/CH2/EX2.22/Ch02Ex22.sce
new file mode 100755
index 000000000..2d8e2e5a8
--- /dev/null
+++ b/1847/CH2/EX2.22/Ch02Ex22.sce
@@ -0,0 +1,12 @@
+// Scilab Code Ex2.22:: Page-2.19 (2009)
+clc; clear;
+t = 3.2e-04; // Thickness of the glass sheet, cm
+lambda = 5500e-008; // Wavelength of light used, cm
+n = 5; // Order of interference fringes
+// As path difference (mu - 1)*t = n*lambda
+mu = n*lambda/t + 1; // Refractive indexof the glass sheet
+
+printf("\nThe refractive index of the glass sheet= %4.2f", mu);
+
+// Result
+// The refractive indexof the glass sheet= 1.86
diff --git a/1847/CH2/EX2.23/Ch02Ex23.sce b/1847/CH2/EX2.23/Ch02Ex23.sce
new file mode 100755
index 000000000..c993f377c
--- /dev/null
+++ b/1847/CH2/EX2.23/Ch02Ex23.sce
@@ -0,0 +1,12 @@
+// Scilab Code Ex2.23:: Page-2.19 (2009)
+clc; clear;
+t = 2.1e-03; // Thickness of the glass sheet, cm
+lambda = 5400e-008; // Wavelength of light used, cm
+n = 11; // Order of interference fringes
+// As path difference, (mu - 1)*t = n*lambda
+mu = n*lambda/t + 1; // Refractive index of the glass sheet
+
+printf("\nThe refractive index of the glass sheet = %4.2f", mu);
+
+// Result
+// The refractive index of the glass sheet= 1.28
diff --git a/1847/CH2/EX2.24/Ch02Ex24.sce b/1847/CH2/EX2.24/Ch02Ex24.sce
new file mode 100755
index 000000000..a87928fb4
--- /dev/null
+++ b/1847/CH2/EX2.24/Ch02Ex24.sce
@@ -0,0 +1,12 @@
+// Scilab Code Ex2.24:: Page-2.19 (2009)
+clc; clear;
+t = 9.21e-05; // Thickness of the mica sheet, cm
+mu = 1.5; // Refractive index of material of sheet
+n = 1; // Order of interference fringes
+// As path difference, (mu - 1)*t = n*lambda, solving for lambda
+lambda = (mu - 1)*t/n; // Wavelength of light used, cm
+
+printf("\nThe wavelength of light used = %5.3e cm", lambda);
+
+// Result
+// The wavelength of light used = 4.605e-005 cm
diff --git a/1847/CH2/EX2.25/Ch02Ex25.sce b/1847/CH2/EX2.25/Ch02Ex25.sce
new file mode 100755
index 000000000..42eb8f303
--- /dev/null
+++ b/1847/CH2/EX2.25/Ch02Ex25.sce
@@ -0,0 +1,10 @@
+// Scilab Code Ex2.25:: Page-2.19 (2009)
+clc; clear;
+lambda = 5890e-008; // Wavelength of light used, cm
+mu = 1.5; // Refractive index of material sheet
+// As shift = 9*lambda*D/d = D/d*(mu - 1)*t, solving for t
+t = 9*lambda/(mu - 1); // Thickness of the glass sheet, cm
+printf("\nThe thickness of the glass sheet = %4.2e cm", t);
+
+// Result
+// The thickness of the glass sheet = 1.06e-003 cm
diff --git a/1847/CH2/EX2.26/Ch02Ex26.sce b/1847/CH2/EX2.26/Ch02Ex26.sce
new file mode 100755
index 000000000..fa9bdac11
--- /dev/null
+++ b/1847/CH2/EX2.26/Ch02Ex26.sce
@@ -0,0 +1,12 @@
+// Scilab Code Ex2.26:: Page-2.20 (2009)
+clc; clear;
+lambda = 5400e-008; // Wavelength of light used, cm
+mu = 1.7; // Refractive index of material sheet convering the first slit
+mu_prime = 1.5; // Refractive index of material sheet convering the seecond slit
+// As shift, S = D/d*(mu - mu_prime)*t = b/lambda*(mu - mu_prime)*t, solving for t
+t = 8*lambda/(mu-mu_prime) // Thickness of the glass sheet, cm
+
+printf("\nThe thickness of the glass sheet = %4.2e cm", t);
+
+// Result
+// The thickness of the glass sheet = 2.16e-003 cm
diff --git a/1847/CH2/EX2.27/Ch02Ex27.sce b/1847/CH2/EX2.27/Ch02Ex27.sce
new file mode 100755
index 000000000..17f3e7297
--- /dev/null
+++ b/1847/CH2/EX2.27/Ch02Ex27.sce
@@ -0,0 +1,12 @@
+// Scilab Code Ex2.27:: Page-2.20 (2009)
+clc; clear;
+t = 21.5e-05; // Thickness of the glass sheet, cm
+lambda = 5890e-008; // Wavelength of light used, cm
+n = 1; // Order of interference fringes
+// As path difference, (mu - 1)*t = n*lambda
+mu = n*lambda/t + 1; // Refractive indexof the glass sheet
+
+printf("\nThe refractive index of the glass sheet = %5.3f", mu);
+
+// Result
+// The refractive index of the glass sheet = 1.274
diff --git a/1847/CH2/EX2.28/Ch02Ex28.sce b/1847/CH2/EX2.28/Ch02Ex28.sce
new file mode 100755
index 000000000..279ee352b
--- /dev/null
+++ b/1847/CH2/EX2.28/Ch02Ex28.sce
@@ -0,0 +1,14 @@
+// Scilab Code Ex2.28:: Page-2.20 (2009)
+clc; clear;
+D = 1; // For simplicity assume distance between source and slits to be unity, unit
+d = 1; // For simplicity assume slit separation to be unity, unit
+t = 2.964e-06; // Thickness of the mica sheet, cm
+mu = 1.5; // Refractive index of material of shee
+L = poly(0, 'L');
+// As b = b_prime or 2.25*D*L/d = D/d*(mu-1)*t, or we may write
+L = roots(2.25*D*L/d-D/d*(mu-1)*t); // Wavelength of the light used, m
+
+printf("\nThe wavelength of the light used = %4.0f angstrom", L/1e-010);
+
+// Result
+// The wavelength of the light used = 6587 angstrom
diff --git a/1847/CH2/EX2.29/Ch02Ex29.sce b/1847/CH2/EX2.29/Ch02Ex29.sce
new file mode 100755
index 000000000..bfbf2fcaf
--- /dev/null
+++ b/1847/CH2/EX2.29/Ch02Ex29.sce
@@ -0,0 +1,12 @@
+// Scilab Code Ex2.29:: Page-2.21 (2009)
+clc; clear;
+lambda = 5890e-008; // Wavelength of light used, cm
+n = 5; // Order of interference fringes
+mu = 1.5; // Refractive index of the mica sheet
+// As path difference, (mu - 1)*t = n*lambda, solving for t
+t = n*lambda/(mu-1); // Thickness of the mica sheet, cm
+
+printf("\nThe thickness of the mica sheet = %4.2e cm", t);
+
+// Result
+// The thickness of the mica sheet = 5.89e-004 cm
diff --git a/1847/CH2/EX2.3/Ch02Ex3.sce b/1847/CH2/EX2.3/Ch02Ex3.sce
new file mode 100755
index 000000000..e8223f504
--- /dev/null
+++ b/1847/CH2/EX2.3/Ch02Ex3.sce
@@ -0,0 +1,15 @@
+// Scilab Code Ex2.3:: Page-2.10 (2009)
+clc; clear;
+I2 = 1; // For simplicity assume intensity from slit 2 to be unity, W/sq-m
+I1 = I2*25; // Intensity from slit 1, W/sq-m
+I_ratio = I1/I2; // Intensity ratio
+a_ratio = sqrt(I_ratio); // Amplitude ratio
+a2 = 1; // For simplicity assume amplitude from slit 2 to be unity, m
+a1 = a_ratio*a2; // Amplitude from slit 1, m
+I_max = (a1 + a2)^2; // Maximum intensity of wave during interference, W/sq-m
+I_min = (a1 - a2)^2; // Minimum intensity of wave during interference, W/sq-m
+cf = 4; // Common factor
+printf("\nThe ratio of maximum intentisy to minimum intensity of interference fringes = %d/%d", I_max/cf, I_min/cf);
+
+// Result
+// The ratio of maximum intentisy to minimum intensity of interference fringes = 9/4
diff --git a/1847/CH2/EX2.30/Ch02Ex30.sce b/1847/CH2/EX2.30/Ch02Ex30.sce
new file mode 100755
index 000000000..407c2d44b
--- /dev/null
+++ b/1847/CH2/EX2.30/Ch02Ex30.sce
@@ -0,0 +1,13 @@
+// Scilab Code Ex2.30:: Page-2.21 (2009)
+clc; clear;
+b = 1; // For simplicity assume fringe width to be unity, cm
+S = 30*b; // Fringe shift, cm
+lambda = 6600e-008; // Wavelength of light used, cm
+t = 4.9e-003; // Thickness of the film, cm
+// As S = b/lambda*(mu-1)*t, solving for mu
+mu = S*lambda/t + 1; // Refractive index of material from shifting fringe pattern
+
+printf("\nThe refractive index of material from shifting fringe pattern = %3.1f", mu);
+
+// Result
+// The refractive index of material from shifting fringe pattern = 1.4
diff --git a/1847/CH2/EX2.31/Ch02Ex31.sce b/1847/CH2/EX2.31/Ch02Ex31.sce
new file mode 100755
index 000000000..04dfa56a7
--- /dev/null
+++ b/1847/CH2/EX2.31/Ch02Ex31.sce
@@ -0,0 +1,19 @@
+// Scilab Code Ex2.31:: Page-2.22 (2009)
+clc; clear;
+mu1 = 1.55; // Refractive index of mica
+mu2 = 1.52; // Refractive index of glass
+t = 0.75e-003; // Thickness of the sheets, m
+d = 0.25e-02; // Separation between the slits, m
+lambda = 5896e-010; // Wavelength of light used, m
+D = 1.5; // Distance between the source ans the slits, m
+// Fringe width
+b = lambda*D/d; // Fringe width, m
+// Optical path difference
+delta_x = (mu1-1)*t-(mu2-1)*t; // Optical path change, m
+
+printf("\nThe fringe width = %3.1e m", b);
+printf("\nThe optical path change = %5.3e m", delta_x);
+
+// Result
+// The fringe width = 3.5e-004 m
+// The optical path change = 2.250e-005 m
diff --git a/1847/CH2/EX2.32/Ch02Ex32.sce b/1847/CH2/EX2.32/Ch02Ex32.sce
new file mode 100755
index 000000000..64d1d897d
--- /dev/null
+++ b/1847/CH2/EX2.32/Ch02Ex32.sce
@@ -0,0 +1,13 @@
+// Scilab Code Ex2.32:: Page-2.22 (2009)
+clc; clear;
+b = 1; // For simplicity assume fringe width to be unity, cm
+S = 3*b; // Fringe shift, cm
+lambda = 5890e-008; // Wavelength of light used, cm
+mu = 1.6; // Refractive index of the mica sheet
+// As S = b/lambda*(mu-1)*t, solving for t
+t = S*lambda/(mu-1); // Thickness of the mica sheet, cm
+
+printf("\nThe thickness of the mica sheet = %3.1e m", t/1e+02);
+
+// Result
+// The thickness of the mica sheet = 2.9e-006 m
diff --git a/1847/CH2/EX2.33/Ch02Ex33.sce b/1847/CH2/EX2.33/Ch02Ex33.sce
new file mode 100755
index 000000000..98b8df2c0
--- /dev/null
+++ b/1847/CH2/EX2.33/Ch02Ex33.sce
@@ -0,0 +1,14 @@
+// Scilab Code Ex2.33: : Page-2.26 (2009)
+clc; clear;
+mu = 1.5; // Refractive index of glass
+lambda = 5100e-008; // Wavelength of light used, cm
+i = 30; // Angle of incidence, degrees
+n = 1; // Order of interference fringes
+// From Snell's law, mu = sind(i)/sind(r), solving for r
+r = asind(sind(i)/mu); // Angle of refraction, degrees
+// For a dark fringe in reflection, 2*mu*t*cosd(r) = n*lambda, solving for t
+t = n*lambda/(2*mu*cosd(r)); // Smallest thickness of glass plate for a fringe of minimum intensity, cm
+printf("\nThe smallest thickness of glass plate for a fringe of minimum intensity = %4.2e cm", t);
+
+// Result
+// The smallest thickness of glass plate for a fringe of minimum intensity = 1.80e-005 cm
diff --git a/1847/CH2/EX2.34/Ch02Ex34.sce b/1847/CH2/EX2.34/Ch02Ex34.sce
new file mode 100755
index 000000000..866613108
--- /dev/null
+++ b/1847/CH2/EX2.34/Ch02Ex34.sce
@@ -0,0 +1,19 @@
+// Scilab Code Ex2.34:: Page-2.26 (2009)
+clc; clear;
+t = 3.1e-05; // Thickness of the soap film, cm
+mu = 1.33; // Refractive index of the soap film
+r = 0; // Angle of refraction of the light ray on the soap film, degrees
+// For bright fringe in reflected pattern,
+// 2*mu*t*cosd(r) = (2*n+1)*lambda/2
+lambda = zeros(3);
+for n = 1:1:3
+ lambda(n) = 4*mu*t*cosd(r)/(2*(n-1)+1); // Wavelengths for n = 1, 2 and 3
+ if lambda(n) > 4000e-008 & lambda(n) < 7500e-008 then
+ lambda_reflected = lambda(n);
+ end
+end
+
+printf("\nThe wavelength reflected strongly from the soap film = %5.3e cm", lambda_reflected);
+
+// Result
+// The wavelength reflected strongly from the soap film = 5.497e-05 cm
diff --git a/1847/CH2/EX2.35/Ch02Ex35.sce b/1847/CH2/EX2.35/Ch02Ex35.sce
new file mode 100755
index 000000000..d59ffd166
--- /dev/null
+++ b/1847/CH2/EX2.35/Ch02Ex35.sce
@@ -0,0 +1,16 @@
+// Scilab Code Ex2.35:: Page-2.27 (2009)
+clc; clear;
+t = 3.8e-05; // Thickness of the transparent film, cm
+mu = 1.5; // Refractive index of the transparent film
+i = 45; // Angle of incidence of the light ray on the transparent film, degrees
+lambda = 5700e-008; // Wavelength of light, cm
+// As mu = sind(i)/sind(r), solving for r
+r = asind(sind(i)/mu);
+// For dark fringe in reflected pattern,
+// 2*mu*t*cosd(r) = 2*n*lambda, solving for n
+n = 2*mu*t*cosd(r)/lambda; // Order of interference of dark band
+
+printf("\nThe order of interference of dark band = %d", ceil(n));
+
+// Result
+// The order of interference of dark band = 2velength reflected strongly from the soap film = 5.497e-05 cm
diff --git a/1847/CH2/EX2.36/Ch02Ex36.sce b/1847/CH2/EX2.36/Ch02Ex36.sce
new file mode 100755
index 000000000..66f0c63de
--- /dev/null
+++ b/1847/CH2/EX2.36/Ch02Ex36.sce
@@ -0,0 +1,20 @@
+// Scilab Code Ex2.36:: Page-2.27 (2009)
+clc; clear;
+t = 4.5e-05; // Thickness of the soap film, cm
+mu = 1.33; // Refractive index of the soap film
+i = 45; // Angle of incidence of the light ray on the soap film, degrees
+// As mu = sind(i)/sind(r), solving for r
+r = asind(sind(i)/mu);
+// For dark fringe in reflected pattern,
+// 2*mu*t*cosd(r) = n*lambda, solving for lambda for different n's
+lambda = zeros(4);
+for n = 1:1:4
+ lambda(n) = 2*mu*t*cosd(r)/n; // Wavelengths for n = 1, 2, 3 and 4
+ if lambda(n) > 4000e-008 & lambda(n) < 7500e-008 then
+ lambda_absent = lambda(n);
+ end
+end
+printf("\nThe absent wavelength of reflected light in the visible spectrum = %4.2e", lambda_absent);
+
+// Result
+// The absent wavelength of reflected light in the visible spectrum = 5.07e-05
diff --git a/1847/CH2/EX2.37/Ch02Ex37.sce b/1847/CH2/EX2.37/Ch02Ex37.sce
new file mode 100755
index 000000000..f1c8d2073
--- /dev/null
+++ b/1847/CH2/EX2.37/Ch02Ex37.sce
@@ -0,0 +1,14 @@
+// Scilab Code Ex2.37:: Page-2.28 (2009)
+clc; clear;
+mu = 1.6; // Refractive index of the mica plate
+r = 60; // Angle of refraction of the light ray on the mica plate, degrees
+lambda = 5500e-008; // Wavelength of light used, cm
+n = 1; // Order of interference for minimum thickness
+// For dark fringe in reflected pattern,
+// 2*mu*t*cosd(r) = 2*n*lambda, solving for t
+t = n*lambda/(2*mu*cosd(r)); // Minimum thickness of the plate that will appear dark in the reflection pattern
+
+printf("\nThe minimum thickness of the plate that will appear dark in the reflection pattern = %4.2e cm", t);
+
+// Result
+// The minimum thickness of the plate that will appear dark in the reflection pattern = 3.44e-05 cm
diff --git a/1847/CH2/EX2.38/Ch02Ex38.sce b/1847/CH2/EX2.38/Ch02Ex38.sce
new file mode 100755
index 000000000..de9e9af8b
--- /dev/null
+++ b/1847/CH2/EX2.38/Ch02Ex38.sce
@@ -0,0 +1,19 @@
+// Scilab Code Ex2.38:: Page-2.28 (2009)
+clc; clear;
+mu = 1.33; // Refractive index of the thin soap film
+lambda1 = 5500e-008; // Wavelength of the first dark fringe, cm
+lambda2 = 5400e-008; // Wavelength of the consecutive dark fringe, cm
+i = 30; // Angle of incidence of the light ray on the soap film, degrees
+// For overlapping fringes,
+// n*lambda1 = (n+1)*lambda2, solving for n
+n = lambda2/(lambda1-lambda2); // Order of interference fringes
+// As mu = sind(i)/sind(r), solving for r
+r = asind(sind(i)/mu);
+// For dark fringe in reflected pattern,
+// 2*mu*t*cosd(r) = 2*n*lambda1, solving for t
+t = n*lambda1/(2*mu*cosd(r)); // Thickness of the thin soap film
+
+printf("\nThe thickness of the thin soap film = %5.3e cm", t);
+
+// Result
+// The thickness of the thin soap film = 1.205e-03 cm
diff --git a/1847/CH2/EX2.39/Ch02Ex39.sce b/1847/CH2/EX2.39/Ch02Ex39.sce
new file mode 100755
index 000000000..f74275481
--- /dev/null
+++ b/1847/CH2/EX2.39/Ch02Ex39.sce
@@ -0,0 +1,19 @@
+// Scilab Code Ex2.39:: Page-2.29 (2009)
+clc; clear;
+t = 0.75e-06; // Thickness of the glass plate, m
+mu = 1.5; // Refractive index of the glass plate
+lambda1 = 4000e-010; // First wavelength of visible range, cm
+lambda2 = 7000e-010; // Last wavelength of visible range, cm
+r = 0; // Angle of refraction for normal incidence, degrees
+n = zeros(2);
+// For bright fringe in reflected pattern,
+// 2*mu*t*cosd(r) = (2*n+1)*lambda/2, solving for n
+// For lambda1
+n(1) = (4*mu*t*cosd(r)/lambda1-1)/2;
+// For lambda2
+n(2) = (4*mu*t*cosd(r)/lambda2-1)/2;
+
+printf("\nFor n = %d and n = %d the light is strongly reflected.", n(1), ceil(n(2)));
+
+// Result
+// For n = 5 and n = 3 the light is strongly reflected.
diff --git a/1847/CH2/EX2.4/Ch02Ex4.sce b/1847/CH2/EX2.4/Ch02Ex4.sce
new file mode 100755
index 000000000..84a8ee7bc
--- /dev/null
+++ b/1847/CH2/EX2.4/Ch02Ex4.sce
@@ -0,0 +1,11 @@
+// Scilab Code Ex2.4:: Page-2.10 (2009)
+clc; clear;
+d = 0.02; // Separation between the slits, cm
+D = 100; // Distance of the source from the screen, m
+n = 6; // No. of bright fringe from the centre
+x = 1.22; // Position of 6th bright fringe, cm
+lambda = x*d/(n*D); // Wavelength of light used, m
+printf("\nThe wavelength of the light from coherent sources = %5.3e cm", lambda);
+
+// Result
+// The wavelength of the light from coherent sources = 4.067e-005 cm
diff --git a/1847/CH2/EX2.40/Ch02Ex40.sce b/1847/CH2/EX2.40/Ch02Ex40.sce
new file mode 100755
index 000000000..cb48be48d
--- /dev/null
+++ b/1847/CH2/EX2.40/Ch02Ex40.sce
@@ -0,0 +1,14 @@
+// Scilab Code Ex2.40:: Page-2.30 (2009)
+clc; clear;
+mu = 1.45; // Refractive index of the film
+lambda = 5500e-010; // First wavelength of visible range, cm
+r = 0; // Angle of refraction for normal incidence, degrees
+n = 0; // Order of interference is zero for minimum thickness
+// For bright fringe in reflected pattern,
+// 2*mu*t*cosd(r) = (2*n+1)*lambda/2, solving for t
+t = (2*n+1)*lambda/(4*mu*cosd(r)); // Minimum thickness of the film for which light is strongly reflected
+
+printf("\nThe minimum thickness of the film for which light is strongly reflected = %4.2e cm", t);
+
+// Result
+// The minimum thickness of the film for which light is strongly reflected = 9.48e-08 cm
diff --git a/1847/CH2/EX2.41/Ch02Ex41.sce b/1847/CH2/EX2.41/Ch02Ex41.sce
new file mode 100755
index 000000000..103eb888e
--- /dev/null
+++ b/1847/CH2/EX2.41/Ch02Ex41.sce
@@ -0,0 +1,16 @@
+// Scilab Code Ex2.41:: Page-2.30 (2009)
+clc; clear;
+mu = 5/4; // Refractive index of the film
+lambda = 5890e-010; // Wavelength of visible light, cm
+i = 45; // Angle of incidence, degrees
+n = 1; // Order of interference is unity for minimum thickness in dark reflected pattern
+// As mu = sind(i)/sind(r), solving for r
+r = asind(sind(i)/mu);
+// For dark fringe in reflected pattern,
+// 2*mu*t*cosd(r) = n*lambda, solving for t
+t = n*lambda/(2*mu*cosd(r)); // Thickness of the soap film for dark fringe in reflected pattern
+
+printf("\nThe thickness of the soap film for dark fringe in reflected pattern = %5.3e cm", t);
+
+// Result
+// The thickness of the soap film for dark fringe in reflected pattern = 2.857e-07 cm
diff --git a/1847/CH2/EX2.42/Ch02Ex42.sce b/1847/CH2/EX2.42/Ch02Ex42.sce
new file mode 100755
index 000000000..e7c18c502
--- /dev/null
+++ b/1847/CH2/EX2.42/Ch02Ex42.sce
@@ -0,0 +1,22 @@
+// Scilab Code Ex2.42:: Page-2.30 (2009)
+clc; clear;
+mu = 1.5; // Refractive index of the plate
+t = 0.5e-006; // Thickness of the plate, m
+r = 0; // Angle of refraction for normal incidence, degrees
+// For bright fringe in reflected pattern,
+// 2*mu*t*cosd(r) = (2*n+1)*lambda/2, solving for lambda for different n's
+lambda = zeros(4);
+for n = 0:1:3
+ lambda(n+1) = 4*mu*t*cosd(r)/(2*n+1); // Wavelengths for n = 0, 1, 2 and 3
+ lambda_strong = lambda(n+1);
+ if lambda(n+1) >= 4000e-010 & lambda(n+1) <= 7500e-010 then
+ if lambda_strong > lambda(n+1) then // Search for the stronger wavelength
+ lambda_strong = lambda(n+1);
+ end
+ end
+end
+
+printf("\nFor n = %d, %4.0f angstrom will be reflected strongly", n, lambda_strong/1e-010);
+
+// Result
+// For n = 3, 4286 angstrom will be reflected strongly
diff --git a/1847/CH2/EX2.43/Ch02Ex43.sce b/1847/CH2/EX2.43/Ch02Ex43.sce
new file mode 100755
index 000000000..877b3d976
--- /dev/null
+++ b/1847/CH2/EX2.43/Ch02Ex43.sce
@@ -0,0 +1,18 @@
+// Scilab Code Ex2.43:: Page-2.31(2009)
+clc; clear;
+mu = 1.33; // Refractive index of the film
+i = asind(0.8); // Angle of refraction for normal incidence, degrees
+// As mu = sind(i)/sind(r), solving for r
+r = asind(sind(i)/mu);
+lambda1 = 6100e-010; // First wavelength of dark band, m
+lambda2 = 6000e-010; // Second wavelength of dark band, m
+// For consecutive overlapping wavelenghts
+// n*lambda1 = (n+1)*lambda2, solving for n
+n = lambda2/(lambda1-lambda2);
+// For dark fringe in reflected pattern,
+// 2*mu*t*cosd(r) = n*lambda1, solving for t
+t = n*lambda1/(2*mu*cosd(r)); // Thickness of the film with incident white light. m
+printf("\nThickness of the film with incident white light = %3.1e m", t);
+
+// Result
+// Thickness of the film with incident white light = 1.7e-05 m
diff --git a/1847/CH2/EX2.44/Ch02Ex44.sce b/1847/CH2/EX2.44/Ch02Ex44.sce
new file mode 100755
index 000000000..05bf42f91
--- /dev/null
+++ b/1847/CH2/EX2.44/Ch02Ex44.sce
@@ -0,0 +1,16 @@
+// Scilab Code Ex2.44:: Page-2.31(2009)
+clc; clear;
+mu = 1.5; // Refractive index of the film
+i = 45; // Angle of incidence, degrees
+// As mu = sind(i)/sind(r), solving for r
+r = asind(sind(i)/mu);
+lambda = 5500e-010; // Wavelength of parallel beam of light, m
+n = 15; // Order of dark band
+// For dark fringe in reflected pattern,
+// 2*mu*t*cosd(r) = n*lambda, solving for t
+t = n*lambda/(2*mu*cosd(r)); // Thickness of the film with incident parallel beam of light. m
+
+printf("\nThe thickness of the film with paralle beam of yellow light = %4.2e m", t);
+
+// Result
+// The thickness of the film with paralle beam of yellow light = 3.12e-06 m
diff --git a/1847/CH2/EX2.46/Ch02Ex46.sce b/1847/CH2/EX2.46/Ch02Ex46.sce
new file mode 100755
index 000000000..120a2d8ca
--- /dev/null
+++ b/1847/CH2/EX2.46/Ch02Ex46.sce
@@ -0,0 +1,16 @@
+// Scilab Code Ex2.46:: Page-2.33(2009)
+clc; clear;
+V = 0.58e-006; // Volume of oil, metre cube
+A = 2.5; // Area of water surface, metre square
+t = V/A; // Thickness of film, m
+r = 0; // Angle of refraction for normal incidence, degrees
+n = 1; // Order of interference for minimum thickness
+lambda = 4700e-010; // Wavelength of light used, m
+// For dark fringe in reflected pattern,
+// 2*mu*t*cosd(r) = n*lambda, solving for mu
+mu = n*lambda/(2*t*cosd(r)); // Refractive index of oil
+
+printf("\nThe refractive index of oil = %5.3f", mu);
+
+// Result
+// The refractive index of oil = 1.013
diff --git a/1847/CH2/EX2.47/Ch02Ex47.sce b/1847/CH2/EX2.47/Ch02Ex47.sce
new file mode 100755
index 000000000..c78aa5126
--- /dev/null
+++ b/1847/CH2/EX2.47/Ch02Ex47.sce
@@ -0,0 +1,14 @@
+// Scilab Code Ex2.47:: Page-2.33(2009)
+clc; clear;
+mu = 1.46; // Refractive index of the soap film
+lambda = 6000e-010; // Wavelength of light used, m
+r = 0; // Angle of refraction for normal incidence, degrees
+n = 0; // Order of interference for minimum thickness
+// For bright fringe in reflected pattern,
+// 2*mu*t*cosd(r) = (2*n+1)*lambda/2, solving for mu
+t = (2*n+1)*lambda/(4*mu*cosd(r)); // Thickness of soap film, m
+
+printf("\nThe thickness of soap film = %5.3e m", t);
+
+// Result
+// The thickness of soap film = 1.027e-07 m
diff --git a/1847/CH2/EX2.48/Ch02Ex48.sce b/1847/CH2/EX2.48/Ch02Ex48.sce
new file mode 100755
index 000000000..8c87bc5e6
--- /dev/null
+++ b/1847/CH2/EX2.48/Ch02Ex48.sce
@@ -0,0 +1,12 @@
+// Scilab Code Ex2.48: : Page-2.35(2009)
+clc; clear;
+mu = 1.4; // Refractive index of the film
+alpha = 1.07e-004; // Acute angle of the wedge, radian
+b = 0.2; // Fringe width, cm
+// As b = lambda/(2*mu*alpha), solving for lambda
+lambda = 2*mu*alpha*b; // Wavelength of light falling on wedge shaped film, m
+
+printf("\nThe wavelength of light falling on wedge shaped film = %4d ansgtrom", lambda/1e-008);
+
+// Result
+// The wavelength of light falling on wedge shaped film = 5991 ansgtrom
diff --git a/1847/CH2/EX2.49/Ch02Ex49.sce b/1847/CH2/EX2.49/Ch02Ex49.sce
new file mode 100755
index 000000000..9c266f6b4
--- /dev/null
+++ b/1847/CH2/EX2.49/Ch02Ex49.sce
@@ -0,0 +1,11 @@
+// Scilab Code Ex2.49:: Page-2.35(2009)
+clc; clear;
+mu = 1.4; // Refractive index of the film
+lambda = 5500e-008; // Wavelength of the light, cm
+// As alpha = (delta_t)/x and x = 10*b; b = lambda/(2*mu*alpha), solving for dt
+delta_t = 10*lambda/(2*mu); // Difference between the thicknesses of the films, cm
+
+printf("\nDifference between the thicknesses of the films = %4.2e cm", delta_t);
+
+// Result
+// Difference between the thicknesses of the films = 1.96e-04 cm
diff --git a/1847/CH2/EX2.5/Ch02Ex5.sce b/1847/CH2/EX2.5/Ch02Ex5.sce
new file mode 100755
index 000000000..8528af407
--- /dev/null
+++ b/1847/CH2/EX2.5/Ch02Ex5.sce
@@ -0,0 +1,15 @@
+// Scilab Code Ex2.5:: Page-2.10 (2009)
+clc; clear;
+lambda1 = 5890e-008; // Wavelength of D1 line of sodium, cm
+lambda2 = 5896e-008; // Wavelength of D2 line of sodium, cm
+D = 120; // Distance between source and the screen, cm
+d = 0.025; // Separation between the slits, cm
+n = 4; // Order of dark fringe
+x1 = (2*n+1)*lambda1*D/(2*d); // Position of 4th dark fringe due to D1 line, cm
+x2 = (2*n+1)*lambda2*D/(2*d); // Position of 4th dark fringe due to D2 line, cm
+delta_x = x2-x1; // Fringe separation, cm
+
+printf("\nThe separation between fourth order dark fringes = %4.2e cm", x2-x1);
+
+// Result
+// The separation between fourth order dark fringes = 1.30e-03 cm
diff --git a/1847/CH2/EX2.50/Ch02Ex50.sce b/1847/CH2/EX2.50/Ch02Ex50.sce
new file mode 100755
index 000000000..74a0c166a
--- /dev/null
+++ b/1847/CH2/EX2.50/Ch02Ex50.sce
@@ -0,0 +1,11 @@
+// Scilab Code Ex2.50:: Page-2.36(2009)
+clc; clear;
+mu = 1.6; // Refractive index of the film
+lambda = 5500e-008; // Wavelength of the light, cm
+b = 0.1; // Fringe width, cm
+// As b = lambda/(2*mu*alpha), solving for alpha
+alpha = lambda/(2*mu*b); // Angle of thin wedge shaped film, radian
+printf("\nAngle of thin wedge shaped film = %3.1e radian", alpha);
+
+// Result
+// Angle of thin wedge shaped film = 1.7e-04 radian
diff --git a/1847/CH2/EX2.51/Ch02Ex51.sce b/1847/CH2/EX2.51/Ch02Ex51.sce
new file mode 100755
index 000000000..baa510ab2
--- /dev/null
+++ b/1847/CH2/EX2.51/Ch02Ex51.sce
@@ -0,0 +1,13 @@
+// Scilab Code Ex2.51:: Page-2.36(2009)
+clc; clear;
+mu = 1.5; // Refractive index of the film
+b = 0.20; // Fringe width, cm
+theta = 25/(60*60)*%pi/180; // Angle of the wedge, radian
+// As b = lambda/(2*mu*theta), solving for lambda
+lambda = 2*mu*b*theta; // Wavelength of light used to illuminate a wedge shaped film, cm
+
+printf("\nThe wavelength of light used to illuminate a wedge shaped film = %4d angstrom", lambda/1e-008);
+
+// Result
+// The wavelength of light used to illuminate a wedge shaped film = 7272 angstrom
+// The answer is given wrong in the textbook
diff --git a/1847/CH2/EX2.52/Ch02Ex52.sce b/1847/CH2/EX2.52/Ch02Ex52.sce
new file mode 100755
index 000000000..b624d0b68
--- /dev/null
+++ b/1847/CH2/EX2.52/Ch02Ex52.sce
@@ -0,0 +1,14 @@
+// Scilab Code Ex2.52:: Page-2.36(2009)
+clc; clear;
+lambda = 5893e-010; // Wavelength of light used, m
+mu = 1; // Refractive index of the glass
+b = 1; // Assume fringe width to be unity, cm
+// As b = l/20, solving for l
+l = b*20; // Length of the film, m
+// As b = lambda/(2*mu*theta) and theta = t/l, solving for t
+t = lambda*l/(2*mu); // Thickness of the wire separating two glass surfaces, m
+
+printf("\nThe thickness of the wire separating two glass surfaces = %4.2e m", t);
+
+// Result
+// The thickness of the wire separating two glass surfaces = 5.89e-06 m
diff --git a/1847/CH2/EX2.53/Ch02Ex53.sce b/1847/CH2/EX2.53/Ch02Ex53.sce
new file mode 100755
index 000000000..5cd4bd562
--- /dev/null
+++ b/1847/CH2/EX2.53/Ch02Ex53.sce
@@ -0,0 +1,12 @@
+// Scilab Code Ex2.53:: Page-2.37(2009)
+clc; clear;
+mu = 1; // Refractive index of the air film
+b = 1.5/25; // Fringe width, cm
+lambda = 5893e-008; // Wavelength of light used to illuminate a wedge shaped film, cm
+// As b = lambda/(2*mu*theta), solving for theta
+theta = lambda/(2*mu*b); // Angle of the wedge, radian
+
+printf("\nThe angle of the wedge shaped air film = %5.3f degrees", theta*180/%pi);
+
+// Result
+// The angle of the wedge shaped air film = 0.028 degrees
diff --git a/1847/CH2/EX2.54/Ch02Ex54.sce b/1847/CH2/EX2.54/Ch02Ex54.sce
new file mode 100755
index 000000000..9125e8dae
--- /dev/null
+++ b/1847/CH2/EX2.54/Ch02Ex54.sce
@@ -0,0 +1,12 @@
+// Scilab Code Ex2.54:: Page-2.37(2009)
+clc; clear;
+mu = 1.45; // Refractive index of the film
+b = 1/10; // Fringe width, cm
+lambda = 6600e-008; // Wavelength of light used to illuminate a wedge shaped film, cm
+// As b = lambda/(2*mu*theta), solving for theta
+theta = lambda/(2*mu*b); // Angle of the wedge, radian
+
+printf("\nThe acute angle of the wedge shaped film = %6.4f degrees", theta*180/%pi);
+
+// Result
+// The acute angle of the wedge shaped film = 0.0130 degrees
diff --git a/1847/CH2/EX2.55/Ch02Ex55.sce b/1847/CH2/EX2.55/Ch02Ex55.sce
new file mode 100755
index 000000000..4569279ff
--- /dev/null
+++ b/1847/CH2/EX2.55/Ch02Ex55.sce
@@ -0,0 +1,14 @@
+// Scilab Code Ex2.55:: Page-2.46(2009)
+clc; clear;
+lambda1 = 6000e-008; // First visible wavelength, cm
+lambda2 = 4500e-008; // Second visible wavelength, cm
+R = 100; // Radius of curvature of the lens, cm
+// As diameter of nth dark ring due to lambda1 is
+// D_n^2 = 4*n*R*lambda1 and D_nplus1^ = 4*(n+1)*R*lambda2, so that D_n^2 = D_nplus1^2 gives
+n = lambda2/(lambda1-lambda2); // Order of interference for dark fringes
+D_n = sqrt(4*n*R*lambda1); // Diameter of nth dark ring due to lambda1
+
+printf("\nThe diameter of nth dark ring due to wavelength of %4d angstrom = %4.2f cm", lambda1/1e-008, D_n);
+
+// Result
+// The diameter of nth dark ring due to wavelength of 6000 angstrom = 0.27 cm
diff --git a/1847/CH2/EX2.56/Ch02Ex56.sce b/1847/CH2/EX2.56/Ch02Ex56.sce
new file mode 100755
index 000000000..8dd15704d
--- /dev/null
+++ b/1847/CH2/EX2.56/Ch02Ex56.sce
@@ -0,0 +1,15 @@
+// Scilab Code Ex2.56:: Page-2.46(2009)
+clc; clear;
+R = 1; // For simplicity assume radius of curvature of the lens to be unity, cm
+D_n = 0.251; // Diameter of 3rd dark ring, cm
+D_nplusp = 0.548; // Diameter of 9th dark ring, cm
+n = 3; // Order of 3rd Newton ring
+p = 9 - n; // Order of 6th Newton ring from 3rd ring
+// As D_nplusp^2 - D_n^2 = 4*p*R*lambda, solving for lambda
+lambda = (D_nplusp^2 - D_n^2)/(4*p*R); // Wavelength of light used
+D_15 = sqrt(D_n^2+4*(15-n)*lambda*R); // Diameter of 15th dark ring, cm
+
+printf("\nThe diameter of 15th dark ring = %5.3f cm", D_15);
+
+// Result
+// The diameter of 15th dark ring = 0.733 cm
diff --git a/1847/CH2/EX2.57/Ch02Ex57.sce b/1847/CH2/EX2.57/Ch02Ex57.sce
new file mode 100755
index 000000000..cf857619e
--- /dev/null
+++ b/1847/CH2/EX2.57/Ch02Ex57.sce
@@ -0,0 +1,14 @@
+// Scilab Code Ex2.57: : Page-2.47(2009)
+clc; clear;
+R = 1; // For simplicity assume radius of curvature of the lens to be unity, cm
+n = 30; // Order of 3rd Newton ring
+D_30 = 1; // Assume diameter of thirtieth ring to be unity, cm
+// As D_30^2 = 4*n*R*lambda, solving for lambda
+lambda = D_30^2/(4*n*R); // Wavelength of light used, cm
+D_n = 3*D_30; // Diameter of nth dark ring having thrice the diameter of the thirtieth ring, cm
+n = D_n^2/(4*R*lambda); // Order of a dark ring having thrice the diameter of the thirtieth ring
+
+printf("\nThe order of the dark ring having thrice the diameter of the thirtieth ring = %3d", n);
+
+// Result
+// The order of the dark ring having thrice the diameter of the thirtieth ring = 270
diff --git a/1847/CH2/EX2.58/Ch02Ex58.sce b/1847/CH2/EX2.58/Ch02Ex58.sce
new file mode 100755
index 000000000..5f0e8608f
--- /dev/null
+++ b/1847/CH2/EX2.58/Ch02Ex58.sce
@@ -0,0 +1,16 @@
+// Scilab Code Ex2.58:: Page-2.47(2009)
+clc; clear;
+n = 15; // Order of 15rd Newton ring
+D_15 = 0.75; // Diameter of fifteenth dark ring, cm
+lambda = 5890e-008; // Wavelength of light used, cm
+// As D_15^2 = 4*15*R*lambda, solving for R
+R = D_15^2/(4*15*lambda); // Radius of curvature of lens, cm
+// For dark ring, 2*t = n*lambda, solving for t
+t = n*lambda/2; // Thickness of air film, cm
+
+printf("\nThe radius of curvature of lens = %5.1f cm", R);
+printf("\nThe thickness of air film = %3.1e cm", t);
+
+// Result
+// The radius of curvature of lens = 159.2 cm
+// The thickness of air film = 4.4e-004 cm
diff --git a/1847/CH2/EX2.59/Ch02Ex59.sce b/1847/CH2/EX2.59/Ch02Ex59.sce
new file mode 100755
index 000000000..b851b122c
--- /dev/null
+++ b/1847/CH2/EX2.59/Ch02Ex59.sce
@@ -0,0 +1,14 @@
+// Scilab Code Ex2.59:: Page-2.47(2009)
+clc; clear;
+D_15 = 1.62; // Diameter of 15th dark ring with air film, cm
+D_15_prime = 1.47; // Diameter of 15th dark ring with liquid, cm
+R = 1; // For simplicity assume radius of curvature to be unity, cm
+n = 15; // Order of 15rd Newton ring
+// As for ring with air film, D_15^2 = 4*15*R*lambda, solving for lambda
+lambda = D_15^2/(4*15*R); // Wavelength of light used, cm
+// As for ring with liquid, D_15_prime^2 = 4*15*R*lambda/mu, solving for mu
+mu = 4*15*R*lambda/D_15_prime^2; // Refractive index of the liquid
+printf("\nThe refractive index of the liquid = %4.2f", mu)
+
+// Result
+// The refractive index of the liquid = 1.21
diff --git a/1847/CH2/EX2.6/Ch02Ex6.sce b/1847/CH2/EX2.6/Ch02Ex6.sce
new file mode 100755
index 000000000..67b144ed8
--- /dev/null
+++ b/1847/CH2/EX2.6/Ch02Ex6.sce
@@ -0,0 +1,13 @@
+// Scilab Code Ex2.6:: Page-2.11 (2009)
+clc; clear;
+lambda = 5500e-008; // Wavelength of light used, cm
+Y1 = 10; // Distance of biprism from the source, cm
+Y2 = 90; // Distance of biprism from the screen, cm
+D = Y1 + Y2; // Distance between slits and the screen, cm
+b = 8.526e-02; // Fringe width, cm
+d = lambda*D/b; // Separation between the slits, cm
+
+printf("\nThe distance between two coherent sources = %4.2e cm", d);
+
+// Result
+// The distance between two coherent sources = 6.45e-02 cm
diff --git a/1847/CH2/EX2.60/Ch02Ex60.sce b/1847/CH2/EX2.60/Ch02Ex60.sce
new file mode 100755
index 000000000..d6472b481
--- /dev/null
+++ b/1847/CH2/EX2.60/Ch02Ex60.sce
@@ -0,0 +1,12 @@
+// Scilab Code Ex2.60:: Page-2.48(2009)
+clc; clear;
+D_10 = 0.48; // Diameter of 10th dark ring with air film, cm
+D_3 = 0.291; // Diameter of 3rd dark ring with air film, cm
+p = 7; // Order of the 10th ring next to the 3rd ring
+R = 90; // Radius of curvature of the lens, cm
+lambda = (D_10^2-D_3^2)/(4*p*R); // Wavelength of light used in Newton rings experiment
+
+printf("\nThe wavelength of light used in Newton rings experiment = %4d angstrom", lambda/1e-008);
+
+// Result
+// The wavelength of light used in Newton rings experiment = 5782 angstrom
diff --git a/1847/CH2/EX2.61/Ch02Ex61.sce b/1847/CH2/EX2.61/Ch02Ex61.sce
new file mode 100755
index 000000000..2c35a0cb2
--- /dev/null
+++ b/1847/CH2/EX2.61/Ch02Ex61.sce
@@ -0,0 +1,14 @@
+// Scilab Code Ex2.61:: Page-2.48(2009)
+clc; clear;
+R1 = 200; // Radius of curvature of the convex surface, cm
+R2 = 250; // Radius of curvature of the concave surface, cm
+lambda = 5500e-008; // Wavelength of light used, cm
+n = 15; // Order of interfernce Newton ring
+// As r_n^2*(1/R1-1/R2) = (2*n-1)*lambda/2, solving for r_n
+r_n = sqrt((2*n-1)*lambda/(2*(1/R1-1/R2))); // Radius of nth ring, cm
+D_15 = 2*r_n; // Daimeter of 15th bright ring, cm
+
+printf("\nThe daimeter of 15th bright ring = %4.2f cm", D_15);
+
+// Result
+// The daimeter of 15th bright ring = 1.79 cm
diff --git a/1847/CH2/EX2.62/Ch02Ex62.sce b/1847/CH2/EX2.62/Ch02Ex62.sce
new file mode 100755
index 000000000..98ebd9c27
--- /dev/null
+++ b/1847/CH2/EX2.62/Ch02Ex62.sce
@@ -0,0 +1,13 @@
+// Scilab Code Ex2.62:: Page-2.49(2009)
+clc; clear;
+R = 80; // Radius of curvature of the convex surface, cm
+D5 = 0.192; // Diameter of 5th dark ring, cm
+D25 = 0.555; // Diameter of 25th dark ring, cm
+n = 5; // Order of interfernce Newton ring
+P = 25 - n;
+lambda = (D25^2 - D5^2)/(4*P*R); // Wavelength of light used, cm
+printf("\nThe wavelength of light used = %5.3e cm", lambda);
+
+// Result
+// The wavelength of light used = 4.237e-005 cm
+// The expression for lambda is given wrong in the textbook but solved correctly
diff --git a/1847/CH2/EX2.63/Ch02Ex63.sce b/1847/CH2/EX2.63/Ch02Ex63.sce
new file mode 100755
index 000000000..03b413bf6
--- /dev/null
+++ b/1847/CH2/EX2.63/Ch02Ex63.sce
@@ -0,0 +1,14 @@
+// Scilab Code Ex2.63:: Page-2.49(2009)
+clc; clear;
+R1 = 4; // Radius of curvature of the convex surface, m
+R2 = 5; // Radius of curvature of the concave surface, m
+lambda = 6600e-010; // Wavelength of light used, cm
+n = 15; // Order of Newton ring
+// As D_n^2*(1/R1-1/R2) = 4*n*lambda, solving for D_n
+D_15 = sqrt(4*n*lambda/(1/R1-1/R2)); // Diameter of 15th dark ring, cm
+
+printf("\nThe diameter of %dth dark ring = %4.2e m", n, D_15);
+
+// Result
+// The diameter of 15th dark ring = 2.81e-002 m
+// The answer is given wrong in the textbook (the square root is not solved)
diff --git a/1847/CH2/EX2.64/Ch02Ex64.sce b/1847/CH2/EX2.64/Ch02Ex64.sce
new file mode 100755
index 000000000..ec9ea0b47
--- /dev/null
+++ b/1847/CH2/EX2.64/Ch02Ex64.sce
@@ -0,0 +1,16 @@
+// Scilab Code Ex2.64:: Page-2.49(2009)
+clc; clear;
+lambda1 = 6000e-008; // First visible wavelength, cm
+lambda2 = 4500e-008; // Second visible wavelength, cm
+R = 120; // Radius of curvature of the lens, cm
+// As diameter of nth dark ring due to lambda1 is
+// D_n^2 = 4*n*R*lambda1 and D_nplus1^ = 4*(n+1)*R*lambda2, so that D_n^2 = D_nplus1^2 gives
+n = lambda2/(lambda1-lambda2); // Order of interference for dark fringes
+printf("\nThe value of n = %d", n);
+n = 15; // Order of interference fringe
+D_n = sqrt(4*n*R*lambda1); // Diameter of nth dark ring due to lambda1
+printf("\nThe diameter of 15th dark ring due to wavelength of %4d angstrom = %4.2f cm", lambda1/1e-008, D_n);
+
+// Result
+// The value of n = 3
+// The diameter of 15th dark ring due to wavelength of 6000 angstrom = 0.66 cm
diff --git a/1847/CH2/EX2.65/Ch02Ex65.sce b/1847/CH2/EX2.65/Ch02Ex65.sce
new file mode 100755
index 000000000..216e00327
--- /dev/null
+++ b/1847/CH2/EX2.65/Ch02Ex65.sce
@@ -0,0 +1,13 @@
+// Scilab Code Ex2.65:: Page-2.49(2009)
+clc; clear;
+lambda = 5896e-008; // Wavelength of light used, cm
+R = 100; // Radius of curvature of the lens, cm
+D10 = 0.4; // Diametre of 10th dark ring, cm
+n = 10; // Order of Newton ring
+// As for a dark ring, 2*mu*t = n*lambda and 2*t = (D10/2)^2/R, solving for mu
+mu = 4*n*lambda*R/D10^2; // Refractive index of the liquid filled into container
+
+printf("\nThe refractive index of the liquid filled into container = %4.2f", mu);
+
+// Result
+// The refractive index of the liquid filled into container = 1.47
diff --git a/1847/CH2/EX2.67/Ch02Ex67.sce b/1847/CH2/EX2.67/Ch02Ex67.sce
new file mode 100755
index 000000000..04546946b
--- /dev/null
+++ b/1847/CH2/EX2.67/Ch02Ex67.sce
@@ -0,0 +1,10 @@
+// Scilab Code Ex2.67:: Page-2.50(2009)
+clc; clear;
+Dn = 1.8; // Diameter of 15th dark ring, cm
+Dn_prime = 1.67; // Diameter of 15th dark ring with liquid, cm
+mu = (Dn/Dn_prime)^2; // Refractive index of the liquid
+
+printf("\nThe refractive index of the liquid = %4.2f", mu);
+
+// Result
+// The refractive index of the liquid = 1.16
diff --git a/1847/CH2/EX2.68/Ch02Ex68.sce b/1847/CH2/EX2.68/Ch02Ex68.sce
new file mode 100755
index 000000000..17f5740fe
--- /dev/null
+++ b/1847/CH2/EX2.68/Ch02Ex68.sce
@@ -0,0 +1,16 @@
+// Scilab Code Ex2.68:: Page-2.51(2009)
+clc; clear;
+R = 1; // For simplicity assume radius of curvature to be unity, cm
+D8 = 0.45; // Diameter of 8th dark ring, cm
+D15 = 0.81; // Diameter of 15th dark ring, cm
+n = 8; // Order of 8th Newton ring
+p = 7; // Order of 7th Newton ring after 8th ring
+lambda = (D15^2-D8^2)/(4*p*R); // Wavelength of light used, cm
+// As D18^2-D15^2 = 4*p*lambda*R
+p = 3; // For 18th and 15th rings
+D18 = sqrt(D15^2+4*p*lambda*R); // Diameter of 18th ring, cm
+
+printf("\nThe diameter of 18th dark ring = %6.4f cm", D18);
+
+// Result
+// The diameter of 18th dark ring = 0.9222 cm
diff --git a/1847/CH2/EX2.69/Ch02Ex69.sce b/1847/CH2/EX2.69/Ch02Ex69.sce
new file mode 100755
index 000000000..52fe7d113
--- /dev/null
+++ b/1847/CH2/EX2.69/Ch02Ex69.sce
@@ -0,0 +1,12 @@
+// Scilab Code Ex2.69:: Page-2.51(2009)
+clc; clear;
+R = 100; // Radius of curvature of plano-convex lens, cm
+D15 = 0.590; // Diameter of 15th dark ring, cm
+D5 = 0.336; // Diameter of 5th dark ring, cm
+p = 10; // Order of 10th Newton ring after 5th ring
+lambda = (D15^2-D5^2)/(4*p*R); // Wavelength of light used, cm
+
+printf("\nThe wavelength of light used = %4.0f ansgtrom", lambda/1e-008);
+
+// Result
+// The wavelength of light used = 5880 ansgtrom
diff --git a/1847/CH2/EX2.7/Ch02Ex7.sce b/1847/CH2/EX2.7/Ch02Ex7.sce
new file mode 100755
index 000000000..9a8b84c26
--- /dev/null
+++ b/1847/CH2/EX2.7/Ch02Ex7.sce
@@ -0,0 +1,15 @@
+// Scilab Code Ex2.7:: Page-2.11 (2009)
+clc; clear;
+alpha = %pi/180; // Acute angle of biprism, radian
+mu = 1.5; // Refractive index of biprism
+lambda = 5500e-008; // Wavelength of light used, cm
+y1 = 5; // Distance of biprism from the source, cm
+y2 = 75; // Distance of biprism from the screen, cm
+D = y1 + y2; // Distance between slits and the screen, cm
+d = 2*(mu-1)*alpha*y1; // Separation between the slits, cm
+b = lambda*D/d; // Fringe width of the interfernce pattern due to biprism, cm
+
+printf("\nThe fringe width of the interfernce pattern due to biprism = %4.2e cm", b);
+
+// Result
+// The fringe width of the interfernce pattern due to biprism = 5.04e-02 cm
diff --git a/1847/CH2/EX2.70/Ch02Ex70.sce b/1847/CH2/EX2.70/Ch02Ex70.sce
new file mode 100755
index 000000000..2ad10e75b
--- /dev/null
+++ b/1847/CH2/EX2.70/Ch02Ex70.sce
@@ -0,0 +1,12 @@
+// Scilab Code Ex2.70:: Page-2.57(2009)
+clc; clear;
+N = 250; // Number of fringes crossing the field of view
+delta_x = 0.0595e-01; // Displacement in movable mirror, cm
+// As N*lambda/2 = delta_x, solving for lambda
+lambda = 2*delta_x/N; // Wavelength of light used, cm
+
+printf("\nThe wavelength of monochromatic light used = %4.0f ansgtrom", lambda/1e-008);
+
+// Result
+// The wavelength of monochromatic light used = 4760 ansgtrom
+// Answer is given wrong in the textbook
diff --git a/1847/CH2/EX2.71/Ch02Ex71.sce b/1847/CH2/EX2.71/Ch02Ex71.sce
new file mode 100755
index 000000000..c84427e61
--- /dev/null
+++ b/1847/CH2/EX2.71/Ch02Ex71.sce
@@ -0,0 +1,11 @@
+// Scilab Code Ex2.71:: Page-2.58(2009)
+clc; clear;
+delta_x = 0.02559e-01; // Displacement in movable mirror, cm
+lambda = 5890e-008; // Wavelength of light used, cm
+// As N*lambda/2 = delta_x, solving for N
+N = 2*delta_x/lambda; // Number of fringes crossing the field of view
+
+printf("\nThe number of fringes that passes across the cross wire of telescope = %2d", ceil(N));
+
+// Result
+// The number of fringes that passes across the cross wire of telescope = 87
diff --git a/1847/CH2/EX2.72/Ch02Ex72.sce b/1847/CH2/EX2.72/Ch02Ex72.sce
new file mode 100755
index 000000000..0aa30aa44
--- /dev/null
+++ b/1847/CH2/EX2.72/Ch02Ex72.sce
@@ -0,0 +1,12 @@
+// Scilab Code Ex2.72:: Page-2.58(2009)
+clc; clear;
+lambda1 = 5890e-008; // Wavelength corresponding to the D1 line, cm
+lambda2 = 5896e-008; // Wavelength corresponding to the D2 line, cm
+delta_lambda = lambda2 - lambda1; // Difference in the wavelengths, cm
+// As delta_lambda = lambda1*lambda2/(2*x), solving for x
+x = lambda1*lambda2/(2*(lambda2-lambda1)); // Distance between two successive positions of movable mirror
+
+printf("\nThe distance between two successive positions of movable mirror = %3.1e cm", x);
+
+// Result
+// The distance between two successive positions of movable mirror = 2.9e-002
diff --git a/1847/CH2/EX2.73/Ch02Ex73.sce b/1847/CH2/EX2.73/Ch02Ex73.sce
new file mode 100755
index 000000000..5a4a6554d
--- /dev/null
+++ b/1847/CH2/EX2.73/Ch02Ex73.sce
@@ -0,0 +1,12 @@
+// Scilab Code Ex2.73:: Page-2.58(2009)
+clc; clear;
+N = 550; // Number of fringes crossing the field of view
+lambda = 5500e-008; // Wavelength of light used, cm
+mu = 1.5; // Refractive index of the glass slab
+// As 2*(mu-1)*t = N*lambda, solving for t
+t = N*lambda/(2*(mu-1)); // Thickness of the transparent glass film
+
+printf("\nThe distance between two successive positions of movable mirror = %3.1e cm", t);
+
+// Result
+// The distance between two successive positions of movable mirror = 3.0e-002 cm
diff --git a/1847/CH2/EX2.8/Ch02Ex8.sce b/1847/CH2/EX2.8/Ch02Ex8.sce
new file mode 100755
index 000000000..e9197dc4d
--- /dev/null
+++ b/1847/CH2/EX2.8/Ch02Ex8.sce
@@ -0,0 +1,15 @@
+// Scilab Code Ex2.8:: Page-2.11 (2009)
+clc; clear;
+mu = 1.5; // Refractive index of biprism
+lambda = 5500e-008; // Wavelength of light used, cm
+y1 = 5; // Distance of biprism from the source, cm
+y2 = 95; // Distance of biprism from the screen, cm
+D = y1 + y2; // Distance between slits and the screen, cm
+b = 0.025; // Fringe width of the interfernce pattern due to biprism, cm
+// As d = 2*(mu-1)*alpha*y1, solving for alpha
+alpha = lambda*D/(b*2*(mu-1)*y1) // Angle of vertex of the biprism, radian
+
+printf("\nThe angle of vertex of the biprism = %3.1e rad", alpha);
+
+// Result
+// The angle of vertex of the biprism = 4.4e-02 rad
diff --git a/1847/CH2/EX2.9/Ch02Ex9.sce b/1847/CH2/EX2.9/Ch02Ex9.sce
new file mode 100755
index 000000000..b444e31fa
--- /dev/null
+++ b/1847/CH2/EX2.9/Ch02Ex9.sce
@@ -0,0 +1,12 @@
+// Scilab Code Ex2.9:: Page-2.12 (2009)
+clc; clear;
+n1 = 69; // Number of interference fringes obtained with yellow wavelength
+lambda1 = 5893e-008; // Wavelength of yellow light used, cm
+lambda2 = 5461e-008; // Wavelength of green light used, cm
+// As n*lambda = l*d/D = constant, therefore
+n2 = n1*lambda1/lambda2; // Number of interference fringes for green wavelength
+
+printf("\nThe number of interference fringes for changed wavelength = %2d", ceil(n2));
+
+// Result
+// The number of interference fringes for changed wavelength = 75