diff options
Diffstat (limited to '1523')
172 files changed, 3622 insertions, 0 deletions
diff --git a/1523/CH1/EX1.1/1_1.sce b/1523/CH1/EX1.1/1_1.sce new file mode 100755 index 000000000..d0eca6e1f --- /dev/null +++ b/1523/CH1/EX1.1/1_1.sce @@ -0,0 +1,14 @@ +//Basic Circuit Concepts
+//page no-1.9
+//example1.1
+disp("Current through 15Ohm resistor is given by:");
+disp("I1=30/15");
+I1=30/15
+printf("current through 15Ohm resistor = %.2f Ampere", I1)
+disp("Current through 5Ohm resistor is given by:")
+disp("I2=5+2");
+I2=5+2
+printf("current through 5ohm resistor = %.2f Ampere", I2)
+disp("R=100-30-5*I2/I1");
+R=(100-30-5*I2)/I1
+printf("R = %.2f Ohm", R);
\ No newline at end of file diff --git a/1523/CH1/EX1.12/1_12.sce b/1523/CH1/EX1.12/1_12.sce new file mode 100755 index 000000000..626be8fad --- /dev/null +++ b/1523/CH1/EX1.12/1_12.sce @@ -0,0 +1,9 @@ +//Basic Circuit Concepts
+//page no-1.17
+//example1.12
+disp("Applying KVL to the circuit :");
+disp("50 - 5*I - 1.2*I - 16 = 0")
+I=(50-16)/6.2;
+printf("I= %.2f Amp", I);
+P=50*I;
+printf("\nPower delivered 50 V source = 50 * 5.48= %.2f W", P);
\ No newline at end of file diff --git a/1523/CH1/EX1.13/1_13.sce b/1523/CH1/EX1.13/1_13.sce new file mode 100755 index 000000000..9ab46cd3d --- /dev/null +++ b/1523/CH1/EX1.13/1_13.sce @@ -0,0 +1,6 @@ +//Basic Circuit Concepts
+//page no-1.18
+//example1.13
+disp("By Current Division formula ;");
+I4=4*(2/(2+4));
+printf("I4 = 4 * (2/(2+4)) = %.2f Amp", I4);
\ No newline at end of file diff --git a/1523/CH1/EX1.14/1_14.sce b/1523/CH1/EX1.14/1_14.sce new file mode 100755 index 000000000..9bba5a96e --- /dev/null +++ b/1523/CH1/EX1.14/1_14.sce @@ -0,0 +1,9 @@ +//Basic Circuit Concepts
+//page no-1.19
+//example1.14
+disp("Applying KVL to the mesh");
+disp("15 - 50*I - 50*I - 5*I");
+I=15/105;
+printf("I=15/105 = %.2f Amp", I);
+V=15-(50*0.143);
+printf("\nVoltage at node 2 = 15 - 50*I = %.2f Volt", V);
\ No newline at end of file diff --git a/1523/CH1/EX1.15/1_15.sce b/1523/CH1/EX1.15/1_15.sce new file mode 100755 index 000000000..758ec863d --- /dev/null +++ b/1523/CH1/EX1.15/1_15.sce @@ -0,0 +1,11 @@ +//Basic Circuit Concepts
+//pg no.-1.20
+//example 1.15
+r1=3;
+r2=2.33;
+r3=6;
+v1=18;
+v2=5.985;
+mprintf("\nApplying KCL at the node, \n(Va-18)/3+(Va-5.985)/2.33+Va/6 = 0");
+Va=((v1*r2*r3)+(v2*r1*r3))/((r2*r3)+(r1*r3)+(r1*r2));
+printf("\nSolving the equation,we get, \nVa = %.2f V",Va);
diff --git a/1523/CH1/EX1.2/1_2.sce b/1523/CH1/EX1.2/1_2.sce new file mode 100755 index 000000000..6b450c818 --- /dev/null +++ b/1523/CH1/EX1.2/1_2.sce @@ -0,0 +1,20 @@ +//Basic Circuit Concepts
+//page no-1.10
+//example1.2
+disp("from the given fig:")
+disp("I2-I3=13");
+disp("-20*I1+8*I2=0");
+disp("-12*I1-16*I3=0");
+//solving these equations in the matrix form
+A=[0 1 -1;-20 8 0;-12 0 -16]
+B=[13 0 0]'
+disp("A=")
+disp(A)
+disp("B=")
+disp(B)
+X=inv(A)*B
+disp("X=")
+disp(X)
+disp("I1 = 4Ampere")
+disp("I2 = 10Ampere")
+disp("I3 = -3Ampere")
\ No newline at end of file diff --git a/1523/CH1/EX1.3/1_3.sce b/1523/CH1/EX1.3/1_3.sce new file mode 100755 index 000000000..7e3c0dae4 --- /dev/null +++ b/1523/CH1/EX1.3/1_3.sce @@ -0,0 +1,24 @@ +//Basic Circuit Concepts
+//pg no-1.11
+//example 1.3
+disp("Iaf=x")
+disp("Ife=x-30")
+disp("Ied=x+40")
+disp("Idc=x-80")
+disp("Icb=x-20")
+disp("Iba=x-80")
+disp("Applying KVL to the closed path AFEDCBA:")//Applying KVL to the path AFEDCBA
+disp("x=4.1/0.1")
+x=4.1/0.1;
+Iaf=x;
+printf("\nIaf = %.2f Ampere", Iaf);
+Ife=x-30
+printf("\nIfe = %.2f Ampere", Ife);
+Ied=x+40;
+printf("\nIed = %.2f Ampere", Ied);
+Idc=x-80;
+printf("\nIdc = %.2f Ampere", Idc);
+Icb=x-20;
+printf("\nIcb = %.2f Ampere", Icb);
+Iba=x-80;
+printf("\nIba = %.2f Ampere", Iba);
\ No newline at end of file diff --git a/1523/CH1/EX1.4/1_4.sce b/1523/CH1/EX1.4/1_4.sce new file mode 100755 index 000000000..d057a1f76 --- /dev/null +++ b/1523/CH1/EX1.4/1_4.sce @@ -0,0 +1,27 @@ +//Basic Circuit Concepts +//pg no- 1.12 +//example 1.4 +disp("Applying KVL to the closed path OBAO");//Applying KVL to the closed path OBAO +disp("3*x-3*y=2"); +disp("Applying KVL to the closed path ABCA");//Applying KVL to the closed path ABCA +disp("9*x+12*y=4"); +a=[3 -3;9 12]; +b=[2 4]' +disp("a=") +disp(a) +disp("b=") +disp(b) +X=inv(a)*b; +disp(X) +disp("x=0.5714286 Ampere"); +disp("y=-0.095238 Ampere"); +disp("Ioa=0.57A") +disp("Iob=1-0.57") +Iob=1-0.57; +printf("\nIob = %2f A", Iob); +disp("Iab = 0.095"); +Iac=0.57-0.095; +printf("\nIac = %2f A", Iac); +disp("Iab=1-0.57 + 0.095") +Iab=1-0.57 + 0.095; +printf("\nIob = %2f A", Iab)
\ No newline at end of file diff --git a/1523/CH1/EX1.5/1_5.sce b/1523/CH1/EX1.5/1_5.sce new file mode 100755 index 000000000..c7da8df56 --- /dev/null +++ b/1523/CH1/EX1.5/1_5.sce @@ -0,0 +1,14 @@ +//Basic Circuit Concepts
+//pg no-1.12
+//example 1.5
+I1=2/5;
+printf("I1=2/5= %2f Ampere", I1)
+I2=4/8;
+printf("\nI2=4/8= %2f Ampere", I2)
+printf("\nPotential difference between points x and y = Vxy = Vx-Vy")
+printf("\nWriting KVL equations for the path x to y")//Writing KVL equation from x to y
+printf("\nVs+3*I1+4-3*I2-Vy=0")
+printf("\nVs+3*(0.4) + 4- 3*(0.5) -Vy = 0")
+printf("\nVs+3*I1+4-3*I2-Vy = 0")
+printf("\nVx-Vy = -3.7")
+printf("\nVxy = -3.7V")
\ No newline at end of file diff --git a/1523/CH1/EX1.6/1_6.sce b/1523/CH1/EX1.6/1_6.sce new file mode 100755 index 000000000..5cdf3cae4 --- /dev/null +++ b/1523/CH1/EX1.6/1_6.sce @@ -0,0 +1,13 @@ +//Basic Circuit Concepts
+//pg no-1.13
+//example 1.6
+I1=20/15;
+printf("I1=2/5= %2f Ampere", I1)
+I2=15/10;
+printf("\nI2=4/8= %2f Ampere", I2)
+disp("Voltage between points A and B = VAB = VA-VB");
+disp("Writing KVL equations for the path A to B:");//Writing KVL equations for the path A to B
+disp("VA - 5*I1 - 5 - 15 + 6*I2 - VB = 0");
+disp("VA - VB = 5*1.33 + 5 + 15 + 6*1.5");
+VAB=(5*1.33)+5+15-(6*1.5);
+printf("VAB = %.2f Volt", VAB)
\ No newline at end of file diff --git a/1523/CH1/EX1.7/1_7.sce b/1523/CH1/EX1.7/1_7.sce new file mode 100755 index 000000000..270e02999 --- /dev/null +++ b/1523/CH1/EX1.7/1_7.sce @@ -0,0 +1,13 @@ +//Basic Circuit Concepts
+//page no-1.13
+//example1.7
+I1=5/2;
+printf("I1=2/5= %2f Ampere", I1)
+I2=2;
+printf("\nI2=4/8= %2f Ampere", I2)
+disp("Potential difference VAB = VA - VB");
+disp("Writing KVL equations for path A to B") //Writing KVL equations for path A to B
+disp("VA - 2*I1 + 8 - 5*I2 - VB = 0");
+disp("VA - VB = (2*2.5) - 8 5 + (5*2)");
+VAB=(2*2.5)-8+(5*2)
+printf("VAB = %.2f Volt", VAB);
\ No newline at end of file diff --git a/1523/CH1/EX1.8/1_8.sce b/1523/CH1/EX1.8/1_8.sce new file mode 100755 index 000000000..12ccbaef1 --- /dev/null +++ b/1523/CH1/EX1.8/1_8.sce @@ -0,0 +1,12 @@ +//Basic Circuit Concepts
+//page no-1.14
+//example1.8
+I1=10/8;
+printf("I1=2/5= %2f Ampere", I1)
+I2=5;
+printf("\nI2=4/8= %2f Ampere", I2)
+disp("Applying KVL to the path from A to B") //Applying KVL to the path from A to B
+disp("VA - 3*I1 - 8 + 3*I2 - VB = 0");
+disp("VA - VB = 3*1.25 + 8 - 3*5")
+VAB= (3*1.25)+8-(3*5);
+printf("VAB = %.2f Volt", VAB);
\ No newline at end of file diff --git a/1523/CH10/EX10.35/ex10_35.sce b/1523/CH10/EX10.35/ex10_35.sce new file mode 100755 index 000000000..0ac5658df --- /dev/null +++ b/1523/CH10/EX10.35/ex10_35.sce @@ -0,0 +1,10 @@ +// Network Functions : example 10.35 : (pg 10.35)
+m=(2/(sqrt(2)*sqrt(10)));
+a=90;
+x=(a-atand(3)-atand(1));
+printf("\nF(s) =(4s/s^2+2s+2) = 4s/(s+1-j)*(s+1-j)");
+printf("\n At s=j2");
+//pmag = phasor magnitudes
+printf("\n|F(j2)|=Product of pmag from all zeros to j2/Product of pmag from all poles to j2");
+printf("\n = %.3f",m);
+printf("\nf(w) = atand(2/0)-atand(3)-atand(1)= %.2f degrees",x);
\ No newline at end of file diff --git a/1523/CH10/EX10.36/ex10_36.sce b/1523/CH10/EX10.36/ex10_36.sce new file mode 100755 index 000000000..b6f694d9c --- /dev/null +++ b/1523/CH10/EX10.36/ex10_36.sce @@ -0,0 +1,11 @@ +// Network Functions : example 10.36 : (pg 10.35 & 10.36)
+m=((5*sqrt(17))/(sqrt(20)*4));
+a=90;
+w=(atand(4)+atand(4/3)-(a)-atand(4/2));
+printf("\nF(s) = (s+1)(s+3)/s(s+2))");
+printf("\nAt s=j4");
+//vmag = vector magnitudes
+printf("\nPrduct of vmag from all zeros to j4/ Product of vmag from all poles to j4");
+printf("\n =%.2f",m);
+printf("\nphi(w)= atand(4)+atand(4/3)-atand(4/0)-atand(4/2)");
+printf("\n = %.2f degrees",w);
\ No newline at end of file diff --git a/1523/CH11/EX11.16/ex11_16.sce b/1523/CH11/EX11.16/ex11_16.sce new file mode 100755 index 000000000..df51ae588 --- /dev/null +++ b/1523/CH11/EX11.16/ex11_16.sce @@ -0,0 +1,17 @@ +//Two-Port Networks : example 11.16 :(pg11.39 )
+V1s=25;
+I1s=1;
+I2s=2;
+V1o=10;
+V2o=50;
+I2o=2;
+h11=(V1s/I1s);
+h21=(I2s/I1s);
+h12=(V1o/V2o);
+h22=(I2o/V2o);
+printf("\nh11 = V1/I1 = %.f Ohm",h11);//when V2=0
+printf("\nh21= I2/I1 = %.f",h21);//when V2=0
+printf("\nh12 = V1/V2 = %.1f",h12);//when I1=0
+printf("\nh22 = I2/V2 = %.2f mho",h22);//when I1=0
+printf("\nth h-parameters are");
+disp([h11 h12;h21 h22]);
\ No newline at end of file diff --git a/1523/CH11/EX11.19/ex11_19.sce b/1523/CH11/EX11.19/ex11_19.sce new file mode 100755 index 000000000..d0e8ee47d --- /dev/null +++ b/1523/CH11/EX11.19/ex11_19.sce @@ -0,0 +1,64 @@ +//Two-Port Networks : example 11.19 :(pg11.49 & 11.50)
+Z11=20;
+Z22=30;
+Z12=10;
+Z21=10;
+dZ=((Z11*Z22)-(Z12*Z21));
+Y11=(Z22/dZ);
+Y12=(-Z12/dZ);
+Y21=(-Z21/dZ);
+Y22=(Z11/dZ);
+A=(Z11/Z21);
+B=(dZ/Z21);
+C=(1/Z21);
+D=(Z22/Z21);
+printf("\nY-parameters");
+printf("\nY11 = Z22/dZ = %.2f mho",Y11);
+printf("\nY12 = -Z12/dZ = %.2f mho",Y12);
+printf("\nY21 = -Z21/dZ = %.2f mho",Y21);
+printf("\nY22 = Z11/dZ = %.2f mho",Y22);
+printf("\n Y-parameters are:");
+disp([Y11 Y12;Y21 Y22]);//Y-parameters in matrix form
+printf("\nABCD parameters");
+printf("\nA = Z11/Z21 = %.f",A);
+printf("\nB = dZ/Z21 = %.f",B);
+printf("\nC = 1/Z21 = %.1f",C);
+printf("\nD = Z22/Z21 = %.f",D);
+printf("\n ABCD parameters are:");
+disp([A B;C D]);//ABCD parameters in matrix form
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/1523/CH11/EX11.20/ex11_20.sce b/1523/CH11/EX11.20/ex11_20.sce new file mode 100755 index 000000000..e9163fa7d --- /dev/null +++ b/1523/CH11/EX11.20/ex11_20.sce @@ -0,0 +1,42 @@ +//Two-Port Networks : example 11.20 :(pg11.50 & 11.51)
+a=0.5;
+b=-0.2;
+d=1
+printf("\nI1 =0.5V1-0.2V2 \nI2=-0.2V1+V2");
+printf("\n Y11 =I1/V1 =%.1f mho",a);//when V2 is 0 in the 1st eqn
+printf("\n Y21 =I2/V1 =%.1f mho",b);//when V2 is 0 in the 1st eqn
+printf("\n Y12 =I1/V2 =%.1f mho",b);//when V1 is 0 in the 2nd eqn
+printf("\n Y22 =I2/V2 =%.f mho",d);//when V1 is 0 in the 2nd eqn
+printf("\nY-parameters are");
+disp([a b;b d]);
+dY=((a*d)-(b*b));
+Z11=(d/dY);
+Z12=(-b/dY);
+Z21=(-b/dY);
+Z22=(a/dY);
+A=(-d/b);
+C=(-dY/b);
+D=(-a/b);
+printf("\ndY=Y11.Y22-Y12.Y21 =%.2f",dY);
+printf("\nZ11 = Y22/dY = %.3f Ohm",Z11);
+printf("\nZ12 = -Y12/dY = %.3f Ohm",Z12);
+printf("\nZ21 = -Y21/-dY = %.3f Ohm",Z21);
+printf("\nZ22 = Y11/dY = %.3f Ohm",Z22);
+printf("\nZ-parameters :");
+disp([Z11 Z12;Z21 Z22]);
+printf("\nA =-Y22/Y21 =%.f",A);
+printf("\nB = -1/Y21 =%.f",A);
+printf("\nC = -dY/Y21 =%.1f",C);
+printf("\nD = -Y11/Y21 =%.1f",D);
+printf("\nABCD parameters :");
+disp([A A;C D]);
+
+
+
+
+
+
+
+
+
+
diff --git a/1523/CH11/EX11.22/ex11_22.sce b/1523/CH11/EX11.22/ex11_22.sce new file mode 100755 index 000000000..f367a9af4 --- /dev/null +++ b/1523/CH11/EX11.22/ex11_22.sce @@ -0,0 +1,21 @@ +//Two-Port Networks : example 11.22 :(pg11.52 & 11.53)
+printf("\nApplying KVL to Mesh 1 \nV1 = I1 - I3 - - - -(i)");
+printf("\nApplying KVL to Mesh 2 \nV2 = -4I2 + 2I3 - - - -(ii)");
+printf("\nApplying KVL to Mesh 3 \nI3 = (1/5)I1 + (4/5)I2 - - - -(iii)");
+//substituting (iii) in (i) & (ii),we get
+printf("\nV1 = (4/5)I1 - (4/5)I2 \nV2 = (2/5)I1 - (12/5)I2");
+printf("\nZ-parameters:");
+a=4/5;b=-4/5;c=2/5;d=-12/5;
+disp([a b;c d]);
+dZ=(a*d)-(b*c);
+Y11=(d/dZ);
+Y12=(-b/dZ);
+Y21=(-c/dZ);
+Y22=(a/dZ);
+printf("\nY-parameters are:");
+printf("\ndZ = Z11.Z22 - Z12.Z21 = %.1f",dZ);
+printf("\nY11 = Z22/dZ = %.1f mho",Y11);
+printf("\nY12 = -Z12/dY = %.1f mho",Y12);
+printf("\nY21 = -Z21/-dY = %.1f mho",Y21);
+printf("\nY22 = Z11/dY = %.1f mho",Y22);
+disp([Y11 Y12;Y21 Y22]);
diff --git a/1523/CH11/EX11.23/ex11_23.sce b/1523/CH11/EX11.23/ex11_23.sce new file mode 100755 index 000000000..869f8efeb --- /dev/null +++ b/1523/CH11/EX11.23/ex11_23.sce @@ -0,0 +1,21 @@ +//Two-Port Networks : example 11.23 :(pg11.53 & 11.54)
+printf("\nApplying KVL to Mesh 1 \nV1 = 4I1 - 2I3 - - - -(i)");
+printf("\nApplying KVL to Mesh 2 \nV2 = 4I2 + 2I3 - - - -(ii)");
+printf("\nApplying KVL to Mesh 3 \n-2I3 = I1 + I2 - - - -(iii)");
+//substituting (iii) in (i) & (ii),we get
+printf("\nV1 = 5I1 + I2 \nV2 = -I1 + 3I2");
+printf("\nZ-parameters:");
+a=5;b=1;c=-1;d=3;
+disp([a b;c d]);
+dZ=(a*d)-(b*c);
+h11=(dZ/d);
+h12=(b/d);
+h21=(-c/d);
+h22=(1/d);
+printf("\ndZ = Z11.Z22 - Z12.Z21 = %.1f",dZ);
+printf("\nh11 = dZ/Z22 = %.1f ",h11);
+printf("\nh12 = Z12/Z22 = %.1f ",h12);
+printf("\nh21 = -Z21/Z22 = %.1f ",h21);
+printf("\nh22 = 1/Z22 = %.1f ",h22);
+printf("\nh-parameters are:");
+disp([h11 h12;h21 h22]);
\ No newline at end of file diff --git a/1523/CH11/EX11.24/ex11_24.sce b/1523/CH11/EX11.24/ex11_24.sce new file mode 100755 index 000000000..67d5be825 --- /dev/null +++ b/1523/CH11/EX11.24/ex11_24.sce @@ -0,0 +1,20 @@ +//Two-Port Networks : example 11.24 :(pg11.54 & 11.55)
+printf("\nApplying KCL to Node 3 \nV3 = V2/3 - - - -(i)");
+printf("\nI1 = 2V1 - (2/3)V2 - - - -(ii)");
+printf("\nI2 = 3V2 - (V2/3) = (8/3)V2 - - - -(iii)");
+//Comparing (iii) & (ii) ,we get
+printf("\nY-parameters:");
+a=2;b=(-2/3);c=0;d=(8/3);
+disp([a b;b d]);
+dY=((a*d)-(b*c));
+Z11=(d/dY);
+Z12=(-b/dY);
+Z21=(c/dY);
+Z22=(a/dY);
+printf("\ndY=Y11.Y22-Y12.Y21 =%.1f",dY);
+printf("\nZ11 = Y22/dY = %.1f Ohm",Z11);
+printf("\nZ12 = -Y12/dY = %.1f Ohm",Z12);
+printf("\nZ21 = -Y21/-dY = %.f Ohm",Z21);
+printf("\nZ22 = Y11/dY = %.1f Ohm",Z22);
+printf("\nZ-parameters :");
+disp([Z11 Z12;Z21 Z22]);
\ No newline at end of file diff --git a/1523/CH11/EX11.25/ex11_25.sce b/1523/CH11/EX11.25/ex11_25.sce new file mode 100755 index 000000000..19faf83a4 --- /dev/null +++ b/1523/CH11/EX11.25/ex11_25.sce @@ -0,0 +1,19 @@ +//Two-Port Networks : example 11.25 :(pg11.55 & 11.56)
+printf("\nApplying KCL to Node 1 \nI1 = (-3/2)V1 - V2- - -(i)");
+printf("\nApplying KCL to Node 2 \nI2 = 2V1 + 2V2 - - - -(ii)");
+//observing (i) & (ii)
+printf("\nY-parameters:");
+a=(-3/2);b=(-1);c=2;d=2;
+disp([a b;c d]);
+dY=((a*d)-(b*c));
+Z11=(d/dY);
+Z12=(-b/dY);
+Z21=(-c/dY);
+Z22=(a/dY);
+printf("\ndY=Y11.Y22-Y12.Y21 =%.f",dY);
+printf("\nZ11 = Y22/dY = %.f Ohm",Z11);
+printf("\nZ12 = -Y12/dY = %.f Ohm",Z12);
+printf("\nZ21 = -Y21/-dY = %.f Ohm",Z21);
+printf("\nZ22 = Y11/dY = %.1f Ohm",Z22);
+printf("\nZ-parameters :");
+disp([Z11 Z12;Z21 Z22]);
\ No newline at end of file diff --git a/1523/CH11/EX11.26/ex11_26.sce b/1523/CH11/EX11.26/ex11_26.sce new file mode 100755 index 000000000..2427e7b2a --- /dev/null +++ b/1523/CH11/EX11.26/ex11_26.sce @@ -0,0 +1,31 @@ +//Two-Port Networks : example 11.22 :(pg11.52 & 11.53)
+printf("\nApplying KVL to Mesh 1 \nV1 = 2I1 + I2 - - - -(i)");
+printf("\nApplying KVL to Mesh 2 \nV2 = 10I1 + 11I2 - - - -(ii)");
+//observing (i) & (ii)
+printf("\nV1 = (4/5)I1 - (4/5)I2 \nV2 = (2/5)I1 - (12/5)I2");
+printf("\nZ-parameters:");
+a=2;b=1;c=10;d=11;
+disp([a b;c d]);
+dZ=(a*d)-(b*c);
+Y11=(d/dZ);
+Y12=(-b/dZ);
+Y21=(-c/dZ);
+Y22=(a/dZ);
+printf("\nY-parameters are:");
+printf("\ndZ = Z11.Z22 - Z12.Z21 = %.1f",dZ);
+printf("\nY11 = Z22/dZ = %.1f mho",Y11);
+printf("\nY12 = -Z12/dY = %.1f mho",Y12);
+printf("\nY21 = -Z21/-dY = %.1f mho",Y21);
+printf("\nY22 = Z11/dY = %.1f mho",Y22);
+disp([Y11 Y12;Y21 Y22]);
+h11=(dZ/d);
+h12=(b/d);
+h21=(-c/d);
+h22=(1/d);
+printf("\ndZ = Z11.Z22 - Z12.Z21 = %.1f",dZ);
+printf("\nh11 = dZ/Z22 = %.1f Ohm ",h11);
+printf("\nh12 = Z12/Z22 = %.1f ",h12);
+printf("\nh21 = -Z21/Z22 = %.1f ",h21);
+printf("\nh22 = 1/Z22 = %.1f mho",h22);
+printf("\nh-parameters are:");
+disp([h11 h12;h21 h22]);
\ No newline at end of file diff --git a/1523/CH11/EX11.27/ex11_27.sce b/1523/CH11/EX11.27/ex11_27.sce new file mode 100755 index 000000000..d2269ae4f --- /dev/null +++ b/1523/CH11/EX11.27/ex11_27.sce @@ -0,0 +1,19 @@ +//Two-Port Networks : example 11.27 :(pg11.58)
+printf("\nApplying KCL to Node 1 \nI1 = 4V1 - 3V2- - -(i)");
+printf("\nApplying KCL to Node 2 \nI2 = -3V1 + 1.5V2 - - - -(ii)");
+//observing (i) & (ii)
+printf("\nY-parameters:");
+a=4;b=(-3);c=(-3);d=1.5;
+disp([a b;c d]);
+dY=((a*d)-(b*c));
+Z11=(d/dY);
+Z12=(-b/dY);
+Z21=(-c/dY);
+Z22=(a/dY);
+printf("\ndY=Y11.Y22-Y12.Y21 =%.f",dY);
+printf("\nZ11 = Y22/dY = %.f Ohm",Z11);
+printf("\nZ12 = -Y12/dY = %.f Ohm",Z12);
+printf("\nZ21 = -Y21/-dY = %.f Ohm",Z21);
+printf("\nZ22 = Y11/dY = %.1f Ohm",Z22);
+printf("\nZ-parameters :");
+disp([Z11 Z12;Z21 Z22]);
\ No newline at end of file diff --git a/1523/CH11/EX11.28/ex11_28.sce b/1523/CH11/EX11.28/ex11_28.sce new file mode 100755 index 000000000..837720167 --- /dev/null +++ b/1523/CH11/EX11.28/ex11_28.sce @@ -0,0 +1,19 @@ +//Two-Port Networks : example 11.28 :(pg11.58 & 11.59)
+printf("\nApplying KCL to Node 1 \nI1 = 1.5V1 - 0.5V2- - -(i)");
+printf("\nApplying KCL to Node 2 \nI2 = 4V1 - 0.5V2 - - - -(ii)");
+//observing (i) & (ii)
+printf("\nY-parameters:");
+a=1.5;b=(-0.5);c=(4);d=(-0.5);
+disp([a b;c d]);
+dY=((a*d)-(b*c));
+Z11=(d/dY);
+Z12=(-b/dY);
+Z21=(-c/dY);
+Z22=(a/dY);
+printf("\ndY=Y11.Y22-Y12.Y21 =%.f",dY);
+printf("\nZ11 = Y22/dY = %.f Ohm",Z11);
+printf("\nZ12 = -Y12/dY = %.f Ohm",Z12);
+printf("\nZ21 = -Y21/-dY = %.f Ohm",Z21);
+printf("\nZ22 = Y11/dY = %.1f Ohm",Z22);
+printf("\nZ-parameters :");
+disp([Z11 Z12;Z21 Z22]);
\ No newline at end of file diff --git a/1523/CH11/EX11.29/ex11_29.sce b/1523/CH11/EX11.29/ex11_29.sce new file mode 100755 index 000000000..1d3c44592 --- /dev/null +++ b/1523/CH11/EX11.29/ex11_29.sce @@ -0,0 +1,21 @@ +//Two-Port Networks : example 11.29 :(pg11.59 & 11.60)
+printf("\nApplying KCL to Node 1 \nI1 = 3V1 - 2V2- - -(i)");
+printf("\nApplying KCL to Node 2 \nI2 = 3V2 - V3 - - - -(ii)");
+printf("\nApplying KCL to Node 3 \nV3 = (1/3)V2 - - - -(ii)");
+//substituting (iii) in (i) & (ii),we get
+printf("\nI1 = 3V1 - (2/3)V2 \nI2 = 0V1 + (8/3)V2");
+printf("\nY-parameters:");
+a=3;b=(-2/3);c=(0);d=(8/3);
+disp([a b;c d]);
+dY=((a*d)-(b*c));
+Z11=(d/dY);
+Z12=(-b/dY);
+Z21=(c/dY);
+Z22=(a/dY);
+printf("\ndY=Y11.Y22-Y12.Y21 =%.f",dY);
+printf("\nZ11 = Y22/dY = %.1f Ohm",Z11);
+printf("\nZ12 = -Y12/dY = %.1f Ohm",Z12);
+printf("\nZ21 = -Y21/-dY = %.f Ohm",Z21);
+printf("\nZ22 = Y11/dY = %.1f Ohm",Z22);
+printf("\nZ-parameters :");
+disp([Z11 Z12;Z21 Z22]);
\ No newline at end of file diff --git a/1523/CH11/EX11.30/ex11_30.sce b/1523/CH11/EX11.30/ex11_30.sce new file mode 100755 index 000000000..6a9564d70 --- /dev/null +++ b/1523/CH11/EX11.30/ex11_30.sce @@ -0,0 +1,20 @@ +//Two-Port Networks : example 11.30 :(pg11.60 & 11.561)
+printf("\nApplying KVL to Mesh 1 \nV1 = 4I1 + (0.05)I2 - - - -(i)");
+printf("\nApplying KVL to Mesh 2 \nV2 = 2I1 - 10I2 - - - -(ii)");
+//substituting (i) in (ii),
+printf("\nV2 = -40I1 + (1.5)I2");
+printf("\nZ-parameters:");
+a=4;b=0.05;c=-40;d=1.5;
+disp([a b;c d]);
+dZ=(a*d)-(b*c);
+Y11=(d/dZ);
+Y12=(b/dZ);
+Y21=(-c/dZ);
+Y22=(a/dZ);
+printf("\nY-parameters are:");
+printf("\ndZ = Z11.Z22 - Z12.Z21 = %.1f",dZ);
+printf("\nY11 = Z22/dZ = %.1f mho",Y11);
+printf("\nY12 = -Z12/dY = %.f mho",Y12);
+printf("\nY21 = -Z21/-dY = %.1f mho",Y21);
+printf("\nY22 = Z11/dY = %.1f mho",Y22);
+disp([Y11 Y12;Y21 Y22]);
\ No newline at end of file diff --git a/1523/CH11/EX11.31/ex11_31.sce b/1523/CH11/EX11.31/ex11_31.sce new file mode 100755 index 000000000..d181cbd15 --- /dev/null +++ b/1523/CH11/EX11.31/ex11_31.sce @@ -0,0 +1,21 @@ +//Two-Port Networks : example 11.31 :(pg11.61 & 11.62)
+printf("\nApplying KVL to Mesh 1 \nV1 = 3I1 + 5I2 - - - -(i)");
+printf("\nApplying KVL to Mesh 2 \nV2 = 2I1 + 4I2 - 2I3 - - - -(ii)");
+printf("\nApplying KVL to Mesh 3 \nI3 = 2V3 - - - -(iii)");
+//substituting (iii) in (i) & (ii),we get
+printf("\n2V3 = 4I1 + 4I2 \nV2 = -6I1 + 4I2");
+printf("\nZ-parameters:");
+a=3;b=5;c=-6;d=-4;
+disp([a b;c d]);
+dZ=(a*d)-(b*c);
+Y11=(d/dZ);
+Y12=(-b/dZ);
+Y21=(-c/dZ);
+Y22=(a/dZ);
+printf("\nY-parameters are:");
+printf("\ndZ = Z11.Z22 - Z12.Z21 = %.1f",dZ);
+printf("\nY11 = Z22/dZ = %.1f mho",Y11);
+printf("\nY12 = -Z12/dY = %.1f mho",Y12);
+printf("\nY21 = -Z21/-dY = %.1f mho",Y21);
+printf("\nY22 = Z11/dY = %.1f mho",Y22);
+disp([Y11 Y12;Y21 Y22]);
\ No newline at end of file diff --git a/1523/CH12/EX12.10/ex12_10.sce b/1523/CH12/EX12.10/ex12_10.sce new file mode 100755 index 000000000..595fec234 --- /dev/null +++ b/1523/CH12/EX12.10/ex12_10.sce @@ -0,0 +1,19 @@ +// Network Synthesis : example 12.10 : (pg 12.6 & 12.7)
+s=poly(0,'s');
+p1=((s^5)+((s^3))+(s));
+p2=((5*(s^4))+3*(s^2)+1);
+[r,q]=pdiv(p1,p2);
+[r1,q1]=pdiv(p2,r);
+[r2,q2]=pdiv(r,r1);
+[r3,q3]=pdiv(r1,r2);
+[r4,q4]=pdiv(r2,r3);
+printf("\n P(s) = ((s^5)+((s^3))+(s))");
+printf("\n d/ds.P(s)= ((5*(s^4))+3*(s^2)+1)");
+printf("\nQ(s)=P(s)/d/ds.P(s)");
+// values of quotients in continued fraction expansion
+disp(q);
+disp(q1);
+disp(q2);
+disp(q3);
+disp(q4);
+printf("\nSince two quotient terms are negative, P(s) is not hurwitz");
diff --git a/1523/CH12/EX12.2/ex12_2.sce b/1523/CH12/EX12.2/ex12_2.sce new file mode 100755 index 000000000..16cc3fad6 --- /dev/null +++ b/1523/CH12/EX12.2/ex12_2.sce @@ -0,0 +1,17 @@ +// Network Synthesis : example 12.2 : (pg 12.2)
+s=poly(0,'s');
+p1=((s^4)+(5*(s)^2)+4);
+p2=((s^3)+(3*s));
+[r,q]=pdiv(p1,p2);
+[r1,q1]=pdiv(p2,r);
+[r2,q2]=pdiv(r,r1);
+[r3,q3]=pdiv(r1,r2);
+printf("\nEven part of P(s) = (s^4)+(5s^3)+4");
+printf("\nOdd part of P(s) = (s^3)+(3s)");
+printf("\nQ(s)= m(s)/n(s)");
+// values of quotients in continued fraction expansion
+disp(q);
+disp(q1);
+disp(q2);
+disp(q3);
+printf("\nSince all the quotient terms are positive, P(s) is hurwitz");
diff --git a/1523/CH12/EX12.3/ex12_3.sce b/1523/CH12/EX12.3/ex12_3.sce new file mode 100755 index 000000000..9f5d4fda0 --- /dev/null +++ b/1523/CH12/EX12.3/ex12_3.sce @@ -0,0 +1,15 @@ +// Network Synthesis : example 12.3 : (pg 12.2 & 12.3)
+s=poly(0,'s');
+p1=((s^3)+(5*(s)));
+p2=((4*s^2)+(2));
+[r,q]=pdiv(p1,p2);
+[r1,q1]=pdiv(p2,r);
+[r2,q2]=pdiv(r,r1);
+printf("\nEven part of P(s) = ((4*s^2)+(2))");
+printf("\nOdd part of P(s) = ((s^3)+(5*(s)))");
+printf("\nQ(s)= n(s)/m(s)");
+// values of quotients in continued fraction expansion
+disp(q);
+disp(q1);
+disp(q2);
+printf("\nSince all the quotient terms are positive, P(s) is hurwitz");
diff --git a/1523/CH12/EX12.4/ex12_4.sce b/1523/CH12/EX12.4/ex12_4.sce new file mode 100755 index 000000000..2730922ec --- /dev/null +++ b/1523/CH12/EX12.4/ex12_4.sce @@ -0,0 +1,17 @@ +// Network Synthesis : example 12.4 : (pg 12.3)
+s=poly(0,'s');
+p1=((s^4)+(3*(s)^2)+12);
+p2=((s^3)+(2*s));
+[r,q]=pdiv(p1,p2);
+[r1,q1]=pdiv(p2,r);
+[r2,q2]=pdiv(r,r1);
+[r3,q3]=pdiv(r1,r2);
+printf("\nEven part of P(s) = ((s^4)+(3*(s)^2)+12)");
+printf("\nOdd part of P(s) = ((s^3)+(2*s))");
+printf("\nQ(s)= m(s)/n(s)");
+// values of quotients in continued fraction expansion
+disp(q);
+disp(q1);
+disp(q2);
+disp(q3);
+printf("\nSince two quotient terms are negative, P(s) is not hurwitz");
diff --git a/1523/CH12/EX12.5/ex12_5.sce b/1523/CH12/EX12.5/ex12_5.sce new file mode 100755 index 000000000..77432af6e --- /dev/null +++ b/1523/CH12/EX12.5/ex12_5.sce @@ -0,0 +1,17 @@ +// Network Synthesis : example 12.5 : (pg 12.3 & 12.4)
+s=poly(0,'s');
+p1=((s^4)+(2*(s)^2)+2);
+p2=((s^3)+(3*s));
+[r,q]=pdiv(p1,p2);
+[r1,q1]=pdiv(p2,r);
+[r2,q2]=pdiv(r,r1);
+[r3,q3]=pdiv(r1,r2);
+printf("\nEven part of P(s) = ((s^4)+(2*(s)^2)+2)");
+printf("\nOdd part of P(s) = (s^3)+(3s)");
+printf("\nQ(s)= m(s)/n(s)");
+// values of quotients in continued fraction expansion
+disp(q);
+disp(q1);
+disp(q2);
+disp(q3);
+printf("\nSince two terms are negative, P(s) is not hurwitz");
\ No newline at end of file diff --git a/1523/CH12/EX12.6/ex12_6.sce b/1523/CH12/EX12.6/ex12_6.sce new file mode 100755 index 000000000..4622b6986 --- /dev/null +++ b/1523/CH12/EX12.6/ex12_6.sce @@ -0,0 +1,17 @@ +// Network Synthesis : example 12.6 : (pg 12.4)
+s=poly(0,'s');
+p1=((2*(s^4))+(6*(s)^2)+1);
+p2=((5*(s^3))+(3*s));
+[r,q]=pdiv(p1,p2);
+[r1,q1]=pdiv(p2,r);
+[r2,q2]=pdiv(r,r1);
+[r3,q3]=pdiv(r1,r2);
+printf("\nEven part of P(s) = ((2*s^4)+(6*(s)^2)+1)");
+printf("\nOdd part of P(s) = ((5*s^3)+(3*s))");
+printf("\nQ(s)= m(s)/n(s)");
+// values of quotients in continued fraction expansion
+disp(q);
+disp(q1);
+disp(q2);
+disp(q3);
+printf("\nSince all the quotient terms are positive, P(s) is hurwitz");
diff --git a/1523/CH12/EX12.7/ex12_7.sce b/1523/CH12/EX12.7/ex12_7.sce new file mode 100755 index 000000000..26c6d50d2 --- /dev/null +++ b/1523/CH12/EX12.7/ex12_7.sce @@ -0,0 +1,17 @@ +// Network Synthesis : example 12.7 : (pg 12.4 & 12.5)
+s=poly(0,'s');
+p1=((s^4)+(6*(s)^2)+8);
+p2=(7*(s^3)+(21*s));
+[r,q]=pdiv(p1,p2);
+[r1,q1]=pdiv(p2,r);
+[r2,q2]=pdiv(r,r1);
+[r3,q3]=pdiv(r1,r2);
+printf("\nEven part of P(s) = ((s^4)+(6*(s)^2)+8)");
+printf("\nOdd part of P(s) = (7*(s^3)+(21*s))");
+printf("\nQ(s)= m(s)/n(s)");
+// values of quotients in continued fraction expansion
+disp(q);
+disp(q1);
+disp(q2);
+disp(q3);
+printf("\nSince all the quotient terms are positive, P(s) is hurwitz");
diff --git a/1523/CH12/EX12.8/ex12_8.sce b/1523/CH12/EX12.8/ex12_8.sce new file mode 100755 index 000000000..c7b06d159 --- /dev/null +++ b/1523/CH12/EX12.8/ex12_8.sce @@ -0,0 +1,17 @@ +// Network Synthesis : example 12.8 : (pg 12.5)
+s=poly(0,'s');
+p1=((s^4)+(5*(s)^2)+10);
+p2=(5*(s^3)+(4*s));
+[r,q]=pdiv(p1,p2);
+[r1,q1]=pdiv(p2,r);
+[r2,q2]=pdiv(r,r1);
+[r3,q3]=pdiv(r1,r2);
+printf("\nEven part of P(s) = ((s^4)+(5*(s)^2)+10)");
+printf("\nOdd part of P(s) = (5*(s^3)+(4*s))");
+printf("\nQ(s)= m(s)/n(s)");
+// values of quotients in continued fraction expansion
+disp(q);
+disp(q1);
+disp(q2);
+disp(q3);
+printf("\nSince two terms are negative, P(s) is not hurwitz");
diff --git a/1523/CH12/EX12.9/ex12_9.sce b/1523/CH12/EX12.9/ex12_9.sce new file mode 100755 index 000000000..f1daea1f8 --- /dev/null +++ b/1523/CH12/EX12.9/ex12_9.sce @@ -0,0 +1,19 @@ +// Network Synthesis : example 12.9 : (pg 12.6)
+s=poly(0,'s');
+p1=((s^5)+(3*(s^3))+(2*s));
+p2=((5*(s^4))+9*(s^2)+2);
+[r,q]=pdiv(p1,p2);
+[r1,q1]=pdiv(p2,r);
+[r2,q2]=pdiv(r,r1);
+[r3,q3]=pdiv(r1,r2);
+[r4,q4]=pdiv(r2,r3);
+printf("\n P(s) = ((s^5)+(3*(s^3))+(2*s))");
+printf("\n d/ds.P(s)= ((5*(s^4))+9*(s^2)+2)");
+printf("\nQ(s)=P(s)/d/ds.P(s)");
+// values of quotients in continued fraction expansion
+disp(q);
+disp(q1);
+disp(q2);
+disp(q3);
+disp(q4);
+printf("\nSince all the quotient terms are positive, P(s) is hurwitz");
diff --git a/1523/CH2/EX2.1/2_1.sce b/1523/CH2/EX2.1/2_1.sce new file mode 100755 index 000000000..f064b9ca3 --- /dev/null +++ b/1523/CH2/EX2.1/2_1.sce @@ -0,0 +1,11 @@ +//Network Theorem-1
+//pg no.-2.4
+//example2.1
+printf("\nConverting the two delta networks formed by resistors 4.5 Ohm, 3Ohm, and 7.5Ohm into equivalent star networks");
+a=4.5;
+b=3;
+c=7.5;
+R1= (a*c)/(a+b+c);
+R2= (c*b)/(c+b+a);
+R3= (a*b)/(a+b+c);
+mprintf("\nR1=R6 = %.2f Ohm \nR2=R5 = %.1f Ohm \nR3=R4 = %.1f Ohm",R1,R2,R3);
diff --git a/1523/CH2/EX2.10/2_10.sce b/1523/CH2/EX2.10/2_10.sce new file mode 100755 index 000000000..493ef73cc --- /dev/null +++ b/1523/CH2/EX2.10/2_10.sce @@ -0,0 +1,18 @@ +//Network Theorem 1
+//page no-2.19
+//example 2.10
+disp("Applying KVL to mesh 1");
+disp("7*I1-I2=10");....//equation 1
+disp("Applying KVL to mesh 2");
+disp("-I1+6*I2-3*I3=0");....//equation 2
+disp("Applying KVL to mesh 3");
+disp("-3*I2+13*I3=-20");....//equation 3
+disp("Solving the three equations");
+A=[7 -1 0;-1 6 -3;0 -3 13];//solving the equations in matrix form
+B=[10 0 -20]'
+X=inv(A)*B;
+disp(X);
+disp("I1=1.34 A");
+disp("I1=-0.62 A");
+disp("I3=-1.68 A");
+disp("I2ohm=1.34 A");
\ No newline at end of file diff --git a/1523/CH2/EX2.11/2_11.sce b/1523/CH2/EX2.11/2_11.sce new file mode 100755 index 000000000..f95f11dcd --- /dev/null +++ b/1523/CH2/EX2.11/2_11.sce @@ -0,0 +1,18 @@ +//Network Theorem 1
+//page no-2.20
+//example 2.11
+disp("Applying KVL to mesh 1");
+disp("3*I1-I2-2*I3=8");....//equation 1
+disp("Applying KVL to mesh 2");
+disp("-I1+8*I2-3*I3=10");....//equation 2
+disp("Applying KVL to mesh 3");
+disp("-2*I1-3*I2+10*I3=12");....//equation 3
+disp("Solving the three equations");
+A=[3 -1 -2;-1 8 -3;-2 -3 10];//solving the equations in matrix form
+B=[8 10 12]'
+X=inv(A)*B;
+disp(X);
+disp("I1=6.01 A");
+disp("I1=3.27 A");
+disp("I3=3.38 A");
+disp("I5ohm=3.38 A");
\ No newline at end of file diff --git a/1523/CH2/EX2.12/2_12.sce b/1523/CH2/EX2.12/2_12.sce new file mode 100755 index 000000000..e14bcdbb7 --- /dev/null +++ b/1523/CH2/EX2.12/2_12.sce @@ -0,0 +1,18 @@ +//Network Theorem 1
+//page no-2.21
+//example 2.12
+disp("Applying KVL to mesh 1");
+disp("8*I1-I2-4*I3=4");....//equation 1
+disp("Applying KVL to mesh 2");
+disp("-I1+8*I2-5*I3=0");....//equation 2
+disp("Applying KVL to mesh 3");
+disp("-4*I1-5*I2+15*I3=0");....//equation 3
+disp("Solving the three equations");
+A=[8 -1 -4;-1 8 -5;-4 -5 15];//solving the equations in matrix form
+B=[4 0 0]'
+X=inv(A)*B;
+disp(X);
+disp("I1=0.66");
+disp("I1=0.24 A");
+disp("I3=0.26 A");
+disp("current supplied by the battery = 0.66 A");
\ No newline at end of file diff --git a/1523/CH2/EX2.13/2_13.sce b/1523/CH2/EX2.13/2_13.sce new file mode 100755 index 000000000..ebb85dff8 --- /dev/null +++ b/1523/CH2/EX2.13/2_13.sce @@ -0,0 +1,19 @@ +//Network Theorem 1
+//page no-2.22
+//example 2.13
+disp("Applying KVL to mesh 1");
+disp("V+13*I1-2*I2-5*I3=20");...//mesh equation 1
+disp("Applying KVL to mesh 2");
+disp("2*I1-6*I2+I3=0");//mesh equation 2
+disp("Applying KVL to mesh 3");
+disp("V+5*I1+I2-10*I3=0");//mesh equation 3
+disp("putting I1=0 in equation 1, 2 and 3 we get");
+disp("V-2*I2-5*I3=20");....//equation 1
+disp("-6*I2+I3=0");....//equation 2
+disp("V+I2-10*I3=0");....//equation 3
+disp("Solving the three equations");
+A=[1 -2 -5;0 -6 1;1 1 -10];//solving the equations in matrix form
+B=[20 0 0]'
+X=inv(A)*B;
+disp(X);
+disp("V=43.7 V")
\ No newline at end of file diff --git a/1523/CH2/EX2.14/2_14.sce b/1523/CH2/EX2.14/2_14.sce new file mode 100755 index 000000000..25f3a2ec0 --- /dev/null +++ b/1523/CH2/EX2.14/2_14.sce @@ -0,0 +1,16 @@ +//Network Theorem 1
+//page no-2.13
+//example2.14
+disp("Mesh 1 contains a current source of 6A.Hence, we cannot write KVL equation for Mesh 1.direction of current source and mesh current I1 are same,");
+disp("I1=6A");....//equation 1
+disp("Applying KVL to mesh 2");
+disp("18*I2-6*I3=108");....//equation 2
+disp("Applying KVL to mesh 3");
+disp("6*I2-11*I3=9");....//equation 3
+disp("Solving the three equations");
+A=[18 -6;6 -11];...//solving the equations in matrix form
+B=[108 9]'
+X=inv(A)*B;
+disp(X);
+disp("I3 = 3A");
+disp("I2ohm = 3A");
\ No newline at end of file diff --git a/1523/CH2/EX2.15/2_15.sce b/1523/CH2/EX2.15/2_15.sce new file mode 100755 index 000000000..84c56b2d4 --- /dev/null +++ b/1523/CH2/EX2.15/2_15.sce @@ -0,0 +1,18 @@ +//Network Theorem 1
+//page no-2.23
+//example2.15
+disp("from the fig,");
+disp("IA=I1");....//equation 1
+disp("IB=I2");....//equation 2
+disp("Applying Kvl to mesh 1:");
+disp("5-5*I1-10*IB-10*(I1-I2)-5*IA=0");
+disp("5-5*I1-10*I2-10*I1+10*I2-5*I1=0");
+disp("-20*I1=-5");
+I1=5/20;
+printf("I1= %.2f A", I1);....//equation 3
+disp("Applying Kvl to mesh 2:");
+disp("15*I1-15*I2=10");....//equation 4
+disp("Put I1=0.25 A in equation 4");
+disp("-6.25=15*I2");
+I2=-6.25/15;
+printf("I2= %.2f A", I2);
\ No newline at end of file diff --git a/1523/CH2/EX2.17/2_17.sce b/1523/CH2/EX2.17/2_17.sce new file mode 100755 index 000000000..1ee971fe7 --- /dev/null +++ b/1523/CH2/EX2.17/2_17.sce @@ -0,0 +1,17 @@ +//Network Theorem 1
+//page no-2.25
+//example2.17
+disp("from the fig,");
+disp("V1=-5*I1");....//equation 1
+disp("V2=2*I2");....//equation 2
+disp("Applying Kvl to mesh 1:");
+disp("20*I1+3*I2=-5");....//equation 3
+disp("Applying Kvl to mesh 2:");
+disp("11*I1-3*I2=10");...//equation 4
+disp("Solving equations 3 and 4");...//solving equations in matrix form
+A=[20 3;11 -3];
+B=[-5 10]'
+X=inv(A)*B;
+disp(X);
+disp("I1=0.161 A");
+disp("I2=-2.742 A");
\ No newline at end of file diff --git a/1523/CH2/EX2.18/2_18.sce b/1523/CH2/EX2.18/2_18.sce new file mode 100755 index 000000000..8c1bcb381 --- /dev/null +++ b/1523/CH2/EX2.18/2_18.sce @@ -0,0 +1,21 @@ +//Network Theorem-1
+//pg no.-2.25
+//example2.18
+disp("from the fig,");
+disp("Iy=I1");....//equation 1
+disp("Ix=I1-I2");....//equation 2
+disp("Applying Kvl to mesh 1:");
+disp("-10*I1+3*I2=5");....//equation 3
+disp("Applying Kvl to mesh 2:");
+disp("-I1-3*I2=10");...//equation 4
+disp("Solving equations 3 and 4");...//solving equations in matrix form
+A=[-10 3;-1 -3];
+B=[5 10]'
+X=inv(A)*B;
+disp(X);
+disp("I1=-1.364 A");
+disp("I2=-2878 A");
+x=-1.364;
+y=-2.878;
+Ix=x-y;
+mprintf("\nIy = %.3f A \nIx = %.3f A",x,Ix);
diff --git a/1523/CH2/EX2.19/2_19.sce b/1523/CH2/EX2.19/2_19.sce new file mode 100755 index 000000000..03bc8e507 --- /dev/null +++ b/1523/CH2/EX2.19/2_19.sce @@ -0,0 +1,19 @@ +//Network Theorem 1
+//page no-2.26
+//example2.19
+disp("Applying KVL to mesh 1:");
+disp("11*I1-10*I2=2");....//equation 1
+disp("Writing current equation to supermesh:")
+disp("I3-I2=4");....//equation 2
+disp("Applying KVL to outer path of supermesh:");
+disp("2*I1-3*I2-3*I3=0");....//equation 3
+disp("solving these equations we get :");...//solving equations in matrix form
+A=[11 -10 0;0 -1 1;2 -3 -3];
+B=[2 4 0]'
+X=inv(A)*B;
+disp(X);
+I1=-2.35
+I2=-2.78
+I3=1.22
+I4=I1-I2;
+printf("\ncurrent through the 10 ohm resistor = I1-I2 = %.2f A", I4);
\ No newline at end of file diff --git a/1523/CH2/EX2.2/2_2.sce b/1523/CH2/EX2.2/2_2.sce new file mode 100755 index 000000000..bf148d2b5 --- /dev/null +++ b/1523/CH2/EX2.2/2_2.sce @@ -0,0 +1,10 @@ +//Network Theorem-1
+//pg no.-2.2
+//example2.5
+//converting delta network to star network
+a=10;
+b=10;
+c=10;
+R=(a*b)/(a+b+c);
+printf("\nConverting the delta formed by three resistors of 10 Ohm into an equivalent star network");
+mprintf("\nR1=R2=R3= %.3f Ohm",R);
diff --git a/1523/CH2/EX2.20/2_20.sce b/1523/CH2/EX2.20/2_20.sce new file mode 100755 index 000000000..a56942a9c --- /dev/null +++ b/1523/CH2/EX2.20/2_20.sce @@ -0,0 +1,21 @@ +//Network Theorem 1
+//page no-2.26
+//example2.20
+disp("writing equation for supermesh,");
+disp("I1-I3=7");....//equation 1
+disp("Applying Kvl to the outer path of the supermesh:");
+disp("-I1+4*I2-4*I3 = -7");....//equation 2
+disp("Applying Kvl to mesh 2:");
+disp("I1-6*I2+3*I3 = 0");...//equation 3
+disp("Solving equations 1 ,2 and 3");...//solving equations in matrix form
+A=[1 0 -1;-1 4 -4;1 -6 3];
+B=[7 -7 0]'
+X=inv(A)*B;
+disp(X);
+disp("I1=9 A");
+disp("I2=-2.5 A");
+disp("I3=-2 A");
+x=2.5;
+y=2;
+z=x-y;
+mprintf("\nCurrent through the 3-Ohm resistor = I2-I3 =%.1f A",z);
diff --git a/1523/CH2/EX2.21/2_21.sce b/1523/CH2/EX2.21/2_21.sce new file mode 100755 index 000000000..e07d8d938 --- /dev/null +++ b/1523/CH2/EX2.21/2_21.sce @@ -0,0 +1,19 @@ +//Network Theorem 1
+//page no-2.27
+//example2.21
+disp("Applying KVL to mesh 1:");
+disp("15*I1-10*I2-5*I3=50");....//equation 1
+disp("Writing current equation to supermesh:")
+disp("I2-I3=2 A");....//equation 2
+disp("Applying KVL to outer path of supermesh:");
+disp("-15*I1+12*I2+6*I3=0");....//equation 3
+disp("solving these equations we get :");...//solving equations in matrix form
+A=[15 -10 -5;0 1 -1;-15 12 6];
+B=[50 2 0]'
+X=inv(A)*B;
+disp(X);
+I1=20
+I2=17.33
+I3=15.33
+I4=I1-I3;
+printf("\ncurrent through the 5 ohm resistor = I1-I3 = %.2f A", I4);
\ No newline at end of file diff --git a/1523/CH2/EX2.22/2_22.sce b/1523/CH2/EX2.22/2_22.sce new file mode 100755 index 000000000..a81d6be93 --- /dev/null +++ b/1523/CH2/EX2.22/2_22.sce @@ -0,0 +1,20 @@ +//Network Theorem 1
+//page no-2.28
+//example2.22
+disp("from the fig,");
+disp("I4=40");....//equation 1
+disp("\nmeshes 2 and 3 form a supermesh. current equation for supermesh,")
+disp("-I1+2*I2-I3 = 0");....//equation 2
+disp("Applying Kvl to supermesh:");
+disp("-1/5(I2-I1)-1/20*I2-1/15*I3-1/2(I3-I4)=0");....//equation 3
+disp("applying KVL to mesh 1");
+disp("-1/10*I1-1/5(I1-I2)-1/6(I1-I4)=6");...//equation 4
+disp("Solving equations 1 ,2 ,3 and 4");...//solving equations in matrix form
+A=[0 0 0 1;-1 2 -1 0;0.2 -0.25 -17/30 0.5;-7/15 0.2 0 1/6];
+B=[40 0 0 6]'
+X=inv(A)*B;
+disp(X);
+disp("I1=10 A");
+disp("I2=-20 A");
+disp("I3=30 A");
+disp("I4=40 A");
diff --git a/1523/CH2/EX2.24/2_24.sce b/1523/CH2/EX2.24/2_24.sce new file mode 100755 index 000000000..419daea11 --- /dev/null +++ b/1523/CH2/EX2.24/2_24.sce @@ -0,0 +1,14 @@ +//Network Theorem 1
+//page no-2.29
+//example2.24
+disp("Applying KCL to node 1:");
+disp("2*V1-V2 = 2");....//equation 1
+disp("Applying KCL to node 2:");
+disp("3*V2-V1 = 4");...//equation 2
+disp("Solving equations 1 and 2");...//solving equations in matrix form
+A=[2 -1;-1 3];
+B=[2 4]'
+X=inv(A)*B;
+disp(X);
+disp("V1= 2 V");
+disp("V2=-2 V");
diff --git a/1523/CH2/EX2.25/2_25.sce b/1523/CH2/EX2.25/2_25.sce new file mode 100755 index 000000000..e460c6b42 --- /dev/null +++ b/1523/CH2/EX2.25/2_25.sce @@ -0,0 +1,15 @@ +//Network Theorem 1
+//page no-2.30
+//example2.25
+disp("Applying KCL to node 1:");
+disp("8*VA-2*VB = 50");....//equation 1
+disp("Applying KCL to node 2:");
+disp("-3*VA+9*VB = 85");...//equation 2
+disp("Solving equations 1 and 2");...//solving equations in matrix form
+A=[8 -2;-3 9];
+B=[50 85]'
+X=inv(A)*B;
+disp(X);
+disp("VA= 9.39 V");
+disp("VB= 12.58 V");
+
diff --git a/1523/CH2/EX2.26/2_26.sce b/1523/CH2/EX2.26/2_26.sce new file mode 100755 index 000000000..9044ff37c --- /dev/null +++ b/1523/CH2/EX2.26/2_26.sce @@ -0,0 +1,21 @@ +//Network Theorem 1
+//page no-2.30
+//example2.26
+disp("Applying KCL to node 1:");
+disp("5*V1-2*V2 = -24");....//equation 1
+disp("Applying KCL to node 2:");
+disp("10*V1-31*V2+6*V3 = 300");...//equation 2
+disp("Applying KCL to node 3:");
+disp("-4*V2 +9*V3 = 160");...//equation 3
+disp("Solving equations 1,2 and 3");...//solving equations in matrix form
+A=[5 -2 0;10 -31 6;0 -4 9];
+B=[-24 300 160]'
+X=inv(A)*B;
+disp(X);
+disp("V1= -8.77 V");
+disp("V2= -9.92 V");
+disp("V3= 13.37 V");
+x=13.37;
+y=-9.92;
+z=(x-y)/5;
+printf("\ncurrent through the 5 ohm resistor = V3-V2/5 = %.2f A",z);
diff --git a/1523/CH2/EX2.27/2_27.sce b/1523/CH2/EX2.27/2_27.sce new file mode 100755 index 000000000..49734267d --- /dev/null +++ b/1523/CH2/EX2.27/2_27.sce @@ -0,0 +1,14 @@ +//Network Theorem 1
+//page no-2.31
+//example2.27
+disp("Applying KCL to node 1:");
+disp("50*V1-20*V2 = 2400");....//equation 1
+disp("Applying KCL to node 2:");
+disp("-10*V1+19*V2 = 240");...//equation 2
+disp("Solving equations 1 and 2");...//solving equations in matrix form
+A=[50 -20;-10 19];
+B=[2400 240]'
+X=inv(A)*B;
+disp(X);
+disp("V1= 67.2 V");
+disp("V2=-48 V");
diff --git a/1523/CH2/EX2.28/2_28.sce b/1523/CH2/EX2.28/2_28.sce new file mode 100755 index 000000000..991dcc418 --- /dev/null +++ b/1523/CH2/EX2.28/2_28.sce @@ -0,0 +1,16 @@ +//Network Theorem 1
+//page no-2.32
+//example2.28
+disp("Applying KCL to node 1:");
+disp("4*VA-2*VB = 5");....//equation 1
+disp("Applying KCL to node 2:");
+disp("-2*VA+3*VB = 4");...//equation 2
+disp("Solving equations 1 and 2");...//solving equations in matrix form
+A=[4 -2;-2 3];
+B=[5 4]'
+X=inv(A)*B;
+disp(X);
+disp("VA= 2.88 V");
+disp("VB= 3.25 V");
+
+
diff --git a/1523/CH2/EX2.29/2_29.sce b/1523/CH2/EX2.29/2_29.sce new file mode 100755 index 000000000..56c3479dd --- /dev/null +++ b/1523/CH2/EX2.29/2_29.sce @@ -0,0 +1,21 @@ +//Network Theorem 1
+//page no-2.33
+//example2.29
+disp("Applying KCL to node 1:");
+disp("4*V1-2*V2-V3 = -24");....//equation 1
+disp("Applying KCL to node 2:");
+disp("-50*V1+71*V2-20*V3 = 0");...//equation 2
+disp("Applying KCL to node 3:");
+disp("-5V1-4*V2 +10*V3 = 180");...//equation 3
+disp("Solving equations 1,2 and 3");...//solving equations in matrix form
+A=[4 -2 -1;-50 71 -20;-5 -4 10];
+B=[-24 0 180]'
+X=inv(A)*B;
+disp(X);
+disp("V1= 6.35 V");
+disp("V2= 11.76 V");
+disp("V3= 25.88 V");
+x=25.88;
+y=11.76;
+z=(x-y);
+printf("\ncurrent through the 5 ohm resistor = V3-V2/5 = %.2f A",z);
diff --git a/1523/CH2/EX2.3/2_3.sce b/1523/CH2/EX2.3/2_3.sce new file mode 100755 index 000000000..1dcc94197 --- /dev/null +++ b/1523/CH2/EX2.3/2_3.sce @@ -0,0 +1,17 @@ +//Network Theorem-1
+//pg no.-2.7
+//example2.3
+a=4;
+b=3;
+c=6;
+//star to delta conversion
+R1=c+a+((a*c)/b);
+R2=c+b+((c*b)/a);
+R3=a+b+((a*b)/c);
+x=1.35;
+y=0.9;
+RAB=(c*(x+y))/(c+x+y);
+printf("\nR1 = %.f Ohm",R1);
+printf("\nR2 = %.1f Ohm",R2);
+printf("\nR3 = %.f Ohm",R3);
+printf("\nThe network can be simplified as, \nRAB = %.2f Ohm",RAB);
diff --git a/1523/CH2/EX2.30/2_30.sce b/1523/CH2/EX2.30/2_30.sce new file mode 100755 index 000000000..ddb514a28 --- /dev/null +++ b/1523/CH2/EX2.30/2_30.sce @@ -0,0 +1,21 @@ +//Network Theorem 1
+//page no-2.34
+//example2.30
+disp("Applying KCL to node 1:");
+disp("8*V1-V2 = 50");....//equation 1
+disp("Applying KCL to node 2:");
+disp("-2*V1+11*V2 = -500");...//equation 2
+disp("Solving equations 1 and 2");...//solving equations in matrix form
+A=[8 -1;-2 17];
+B=[50 -500]'
+X=inv(A)*B;
+disp(X);
+disp("V1= 2.61 V");
+disp("V2=-29.1 V");
+x=2.61;
+y=-29.1;
+I1=-x/2;
+I2=(x-y)/10;//current through 10 Ohm resistor
+I3=(y+50)/2;//50 volts is the supply to the circuit
+mprintf("\nI1= %.2f A \nI2= %.2f A \nI3= %.2f A",I1,I2,I3);
+
diff --git a/1523/CH2/EX2.31/2_31.sce b/1523/CH2/EX2.31/2_31.sce new file mode 100755 index 000000000..60c78c318 --- /dev/null +++ b/1523/CH2/EX2.31/2_31.sce @@ -0,0 +1,22 @@ +//Network Theorem 1
+//page no-2.34
+//example2.30
+disp("Applying KCL to node a:");
+disp("0.5*Va-0.2*Vb = 34.2");....//equation 1
+disp("Applying KCL to node b:");
+disp("0.1*Va-0.4*Vb = -32.4");...//equation 2
+disp("Solving equations 1 and 2");...//solving equations in matrix form
+A=[0.5 -0.2;0.1 -0.4];
+B=[34.2 -32.4]'
+X=inv(A)*B;
+disp(X);
+disp("Va= 112 V");
+disp("Vb= 109 V");
+x=112;
+y=109;
+I1=(120-x)/0.2;
+I2=(x-y)/0.3;
+I3=(110-y)/0.1;
+mprintf("\nI1= %.f A \nI2= %.f A \nI3= %.f A",I1,I2,I3);
+
+
diff --git a/1523/CH2/EX2.32/2_32.sce b/1523/CH2/EX2.32/2_32.sce new file mode 100755 index 000000000..62499af14 --- /dev/null +++ b/1523/CH2/EX2.32/2_32.sce @@ -0,0 +1,18 @@ +//Network Theorem 1
+//page no-2.35
+//example2.35
+disp("Applying KCL to node 1:");
+disp("V1 = 50");....//equation 1
+disp("Applying KCL to node 2:");
+disp("-2*V1+17*V2 = 50");...//equation 2
+disp("Solving equations 1 and 2");...//solving equations in matrix form
+A=[1 0;-2 17];
+B=[50 50]'
+X=inv(A)*B;
+disp(X);
+disp("V1= 50 V");
+disp("V2= 8.82 V");
+x=8.82;
+y=(x/10);
+printf("\ncurrent in the 10-Ohm resistor =V2/10 =%.2f A",y);
+
diff --git a/1523/CH2/EX2.33/2_33.sce b/1523/CH2/EX2.33/2_33.sce new file mode 100755 index 000000000..2b37a77b8 --- /dev/null +++ b/1523/CH2/EX2.33/2_33.sce @@ -0,0 +1,22 @@ +//Network Theorem 1
+//page no-2.36
+//example2.33
+disp("Applying KCL to node a:");
+disp("6*Va-5*Vb = -20");....//equation 1
+disp("Applying KCL to node b:");
+disp("-10*Va+17*Vb-5*Vc = 0");...//equation 2
+disp("At node c");
+disp("Vc = 20");
+disp("Solving equations 1,2 and 3");...//solving equations in matrix form
+A=[6 -5 0;-10 17 -5;0 0 1];
+B=[-20 0 20]'
+X=inv(A)*B;
+disp(X);
+disp("Va= 3.08 V");
+disp("Vb= 7.69 V");
+x=3.08;
+y=7.69;
+z=20;
+Va = x-y;
+Vb = y-z;
+mprintf("\nV1 = Va-Vb =%.2f V \nV2 = Vb-Vc =%.2f V",Va,Vb);
diff --git a/1523/CH2/EX2.34/2_34.sce b/1523/CH2/EX2.34/2_34.sce new file mode 100755 index 000000000..ea96d7828 --- /dev/null +++ b/1523/CH2/EX2.34/2_34.sce @@ -0,0 +1,17 @@ +//Network Theorem 1
+//page no-2.37
+//example2.334
+disp("At node A:");
+disp("VA = 60");....//equation 1
+disp("Applying KCL to node B:");
+disp("-VA+3*VB-VC = 12");...//equation 2
+disp("Applying KCL to node C:");
+disp("-2*VA-5*VB+10*VC");...//equation 3
+disp("Solving equations 1,2 and 3");...//solving equations in matrix
+A=[1 0 0;-1 3 -1;-2 -5 10];
+B=[60 12 24]'
+X=inv(A)*B;
+disp(X);
+disp("VC= 31.68 V");
+disp("Voltage across the 100 Ohm resistor = 31.68 V");
+
diff --git a/1523/CH2/EX2.35/2_35.sce b/1523/CH2/EX2.35/2_35.sce new file mode 100755 index 000000000..5bd3e7c71 --- /dev/null +++ b/1523/CH2/EX2.35/2_35.sce @@ -0,0 +1,15 @@ +//Network Theorem 1
+//page no-2.38
+//example2.35
+disp("Applying KCL to node 1:");
+disp("2.5*V1-0.5*V2 = 5");....//equation 1
+disp("Applying KCL to node 2:");
+disp("V1-V2 = 0");...//equation 2
+disp("Solving equations 1 and 2");...//solving equations in matrix form
+A=[2.5 -0.5;1 -1];
+B=[5 0]'
+X=inv(A)*B;
+disp(X);
+disp("V1= 2.5 V");
+disp("V2=-2.5 V");
+
diff --git a/1523/CH2/EX2.37/2_37.sce b/1523/CH2/EX2.37/2_37.sce new file mode 100755 index 000000000..d9b77db21 --- /dev/null +++ b/1523/CH2/EX2.37/2_37.sce @@ -0,0 +1,16 @@ +//Network Theorem 1
+//page no-2.39
+//example2.37
+disp("Applying KCL to node 1:");
+disp("2*V1+17*V2 = 0");....//equation 1
+disp("Applying KCL to node 2:");
+disp("V1+6V2 = 0");...//equation 2
+disp("Solving equations 1 and 2");...//solving equations in matrix form
+A=[2 17;1 6];
+B=[0 0]'
+X=inv(A)*B;
+disp(X);
+disp("V1= 0 V");
+disp("V2= 0 V");
+
+
diff --git a/1523/CH2/EX2.38/2_38.sce b/1523/CH2/EX2.38/2_38.sce new file mode 100755 index 000000000..50b176e86 --- /dev/null +++ b/1523/CH2/EX2.38/2_38.sce @@ -0,0 +1,19 @@ +//Network Theorem 1
+//page no-2.40
+//example2.38
+disp("Applying KCL to node a:");
+disp("2*Va-0.5*Vb-0.5*Vc = 5");....//equation 1
+disp("Applying KCL to node b:");
+disp("-3/2*Va+5/6*Vb+2/3*Vc = -1");...//equation 2
+disp("Applying KCL to node c:");
+disp("1/2*Va+1/3*Vb-31/30*Vc = -1");...//equation 3
+disp("Solving equations 1,2 and 3");...//solving equations in matrix form
+A=[2 -0.5 -0.5;-3/2 5/6 2/3;0.5 1/3 -31/30 ];
+B=[5 -1 0]'
+X=inv(A)*B;
+disp(X);
+disp("Va= 4.303 V");
+disp("Vb= 3.87 V");
+disp("Vc= 3.33 V");
+
+
diff --git a/1523/CH2/EX2.39/2_39.sce b/1523/CH2/EX2.39/2_39.sce new file mode 100755 index 000000000..3bf475985 --- /dev/null +++ b/1523/CH2/EX2.39/2_39.sce @@ -0,0 +1,19 @@ +//Network Theorem 1
+//page no-2.41
+//example2.39
+disp("from the figure");
+disp("V4= 40 V");//equation 1
+disp("nodes 2 and 3 form suoernode:");
+disp("V1-2*V2+V3 = 0");....//equation 2
+disp("Applying KCL to node 1:");
+disp("7/15*V1-1/5*V2 = 2/3");...//equation 3
+disp("Applying KCL to supernode :");
+disp("-23/30*V1 +83/60*V3 = 20");...//equation 4
+disp("Solving equations 1,2,3 and 4");...//solving equations in matrix form
+A=[0 0 0 1;1 -2 1 0;7/15 -1/5 0 0;-23/30 83/60 0 0];
+B=[40 0 2/3 20]'
+X=inv(A)*B;
+disp(X);
+disp("V1= 10 V");
+disp("V2= 20 V");
+disp("V3= 30 V");
diff --git a/1523/CH2/EX2.40/2_40.sce b/1523/CH2/EX2.40/2_40.sce new file mode 100755 index 000000000..c30d8f10f --- /dev/null +++ b/1523/CH2/EX2.40/2_40.sce @@ -0,0 +1,21 @@ +//Network Theorem 1
+//page no-2.42
+//example2.40
+disp("selecting central node as reference node");
+disp("V1= -12 V");//equation 1
+disp("Applying KCL at node 1:");
+disp("-2*V1+2.5*V2-0.5V3 = 14");....//equation 2
+disp("nodes 3 and 4 form a supernode");
+disp("0.2*V1+V3-1.2*V4 = 0");...//equation 3
+disp("Applying KCL to supernode :");
+disp("0.1*V1-V2+0.5*V3+1.4*V4 = 0");...//equation 4
+disp("Solving equations 1,2,3 and 4");...//solving equations in matrix form
+A=[1 0 0 0;-2 2.5 -0.5 0;0.2 0 1 -1.2;0.1 -1 0.5 1.4];
+B=[-12 14 0 0]'
+X=inv(A)*B;
+disp(X);
+disp("V1= -12 V");
+disp("V2= -4 V");
+disp("V3= 0");
+disp("V4= -2 V");
+
diff --git a/1523/CH2/EX2.5/2_5.sce b/1523/CH2/EX2.5/2_5.sce new file mode 100755 index 000000000..dd49a3602 --- /dev/null +++ b/1523/CH2/EX2.5/2_5.sce @@ -0,0 +1,14 @@ +//Network Theorem-1
+//pg no.-2.9
+//example2.5
+//converting delta network to star network
+a=25;
+b=20;
+c=35;
+R1=(b*c)/(a+b+c);
+R2=(a*b)/(a+b+c);
+R3=(a*c)/(a+b+c);
+printf("\nConverting the delta formed by resistors 20 Ohm ,25 Ohm, 35 Ohm into an equivalent star network");
+printf("\nR1= %.2f Ohm",R1);
+printf("\nR2= %.2f Ohm",R2);
+printf("\nR3= %.2f Ohm",R3);
diff --git a/1523/CH2/EX2.8/2_8.sce b/1523/CH2/EX2.8/2_8.sce new file mode 100755 index 000000000..d9a4d9e8d --- /dev/null +++ b/1523/CH2/EX2.8/2_8.sce @@ -0,0 +1,25 @@ +//Network Theorem-1
+//pg no.-2.15
+//example2.8
+a=5;
+b=4;
+c=3;
+//Star to delta conversion
+R1=a+b+((a*b)/c);
+R2=c+b+((c*b)/a);
+R3=a+c+((a*c)/b);
+a1=6;
+b1=4;
+c1=8;
+//Satr to delta conversion
+R4=a1+b1+((a1*b1)/c1);
+R5=c1+b1+((c1*b1)/a1);
+R6=a1+c1+((a1*c1)/b1);
+x=6.17;
+y=9.78;
+RAB=(x*y)/(x+y);
+printf("\nConverting star network formed by 3 Ohm,4 Ohm ,5 Ohm into equivalent delta network ");
+mprintf("\nR1= %.2f Ohm \nR2= %.1f Ohm \nR3 = %.2f Ohm",R1,R2,R3);
+printf("\nSimilarly, converting star network formed by 6 Ohm,4 Ohm ,8 Ohm into equivalent delta network");
+mprintf("\nR4= %.f Ohm \nR5= %.2f Ohm \nR6 = %.f Ohm",R4,R5,R6);
+printf("\n Simplifying the parallel networks, we get \nRAB = %.2f Ohms",RAB);
diff --git a/1523/CH2/EX2.9/2_9.sce b/1523/CH2/EX2.9/2_9.sce new file mode 100755 index 000000000..f1b7b6c58 --- /dev/null +++ b/1523/CH2/EX2.9/2_9.sce @@ -0,0 +1,18 @@ +//Network Theorem 1
+//page no-2.18
+//example2.9
+disp("Applying KVL to mesh 1");
+disp("10*I1-3*I2-6*I3=0");....//equation 1
+disp("Applying KVL to mesh 2");
+disp("-3*I1+10*I2=-5");....//equation 2
+disp("Applying KVL to mesh 3");
+disp("-6*I1+10*I3=25");....//equation 3
+disp("Solving the three equations");
+A=[10 -3 -6;-3 10 0;-6 0 10]//solving the equations in matrix form
+B=[10 -5 25]'
+X=inv(A)*B;
+disp(X);
+disp("I1=4.27 A");
+disp("I2=0.78 A");
+disp("I3=5.06 A");
+disp("I5ohm=4.27 A");
\ No newline at end of file diff --git a/1523/CH3/EX3.1/3_1.sce b/1523/CH3/EX3.1/3_1.sce new file mode 100755 index 000000000..93413c417 --- /dev/null +++ b/1523/CH3/EX3.1/3_1.sce @@ -0,0 +1,14 @@ +//Network Theorem 2
+//pg no 3.2
+//example 3.1
+disp("When 10-V source is acting alone:");
+disp("By current-division formula :");
+I1=10*(0.87/(10+0.87));
+printf("I1=10*(0.87/(10+0.87))= %.2f A (down)", I1);
+disp("When 4 A source is acting alone:");
+disp("By current-division formula :");
+I2=2.86*(0.875/(10+0.875));
+printf("I2=2.86*(0.875/(10+0.875))= %.2f A (down)", I2);
+disp("By superposition theorem:");
+I=I1+I2;
+printf("\nI=I1+I2=0.8+0.23= %.2f A (down)", I);
diff --git a/1523/CH3/EX3.10/3_10.sce b/1523/CH3/EX3.10/3_10.sce new file mode 100755 index 000000000..4cf1672f9 --- /dev/null +++ b/1523/CH3/EX3.10/3_10.sce @@ -0,0 +1,25 @@ +//Network Theorem 2
+//pg no 3.11
+//example 3.10
+//when 17 V source is acting alone
+disp("Vx+2I1=0");//equation 1
+disp("Applying KVL to mesh,");
+disp("-5Vx-5I1=17");//equation 2
+A=[1 2;-5 -5];//solving equation in matrix form
+B=[0 17]'
+X=inv(A)*B;
+disp(X);
+disp("I1 = 3.4 A");
+//when the 1 A source is acting alone
+disp("4Vx+3I2=0");//equation 1
+disp("Applying KCL at Node x,");
+disp("Vx=-6/5");//equation 2
+A=[4 3;1 0];//solving equation in matrix form
+B=[0 -6/5]'
+X=inv(A)*B;
+disp(X);
+disp("I2 = 1.6 A");
+a=3.4;
+b=1.6;
+x=a+b;
+printf("\nBy superposition theorem, \nI = I1+I2 = %.f A ",x);
diff --git a/1523/CH3/EX3.11/3_11.sce b/1523/CH3/EX3.11/3_11.sce new file mode 100755 index 000000000..2c031f084 --- /dev/null +++ b/1523/CH3/EX3.11/3_11.sce @@ -0,0 +1,26 @@ +//Network Theorem 2
+//pg no 3.12
+//example 3.11
+//when 5 A source is acting alone
+disp("-V1+4I=0");//equation 1
+disp("Applying KCL to node 1,");
+disp("1.25V1-4I=5");//equation 2
+A=[-1 4;1.25 -4];//solving equation in matrix form
+B=[0 5]'
+X=inv(A)*B;
+disp(X);
+disp("V1 = 20 V");
+//when the 20 V source is acting alone
+disp("from the figure,");
+disp("V2-3I=0");//equation 1
+disp("Applying KVL to the mesh,");
+disp("I=-20");//equation 2
+A=[1 -3;0 1];//solving equation in matrix form
+B=[0 -20]'
+X=inv(A)*B;
+disp(X);
+disp("V2 = -60 V");
+a=20;
+b=-60;
+x=a+b;
+mprintf("\nBy superposition theorem, \n V = V1+V2 = %.f V ",x);
diff --git a/1523/CH3/EX3.12/3_12.sce b/1523/CH3/EX3.12/3_12.sce new file mode 100755 index 000000000..49b99eac4 --- /dev/null +++ b/1523/CH3/EX3.12/3_12.sce @@ -0,0 +1,26 @@ +//Network Theorem 2
+//pg no 3.13
+//example 3.12
+//when 18 V source is acting alone
+disp("Vx+I1=0");//equation 1
+disp("Applying KVL to mesh,");
+disp("3Vx-6I1=-18");//equation 2
+A=[1 1;3 -6];//solving equation in matrix form
+B=[0 -18]'
+X=inv(A)*B;
+disp(X);
+disp("I1 = 2 A");
+//when the 3 A source is acting alone
+disp("from the figure,");
+disp("Vx=2 V");//equation 1
+disp("Applying KCL at node 1,");
+disp("3Vx-6I2=0");//equation 2
+A=[1 0;3 -6];//solving equation in matrix form
+B=[2 0]'
+X=inv(A)*B;
+disp(X);
+disp("I2 =1 V");
+a=2;
+b=1;
+x=a+b;
+mprintf("\nBy superposition theorem, \n I = I1+I2 = %.f A ",x);
diff --git a/1523/CH3/EX3.13/3_13.sce b/1523/CH3/EX3.13/3_13.sce new file mode 100755 index 000000000..6b4634355 --- /dev/null +++ b/1523/CH3/EX3.13/3_13.sce @@ -0,0 +1,24 @@ +//Network Theorem 2
+//pg no 3.14
+//example 3.13
+//when 120 V source is acting alone
+disp("Applying KVL to mesh,");
+disp("Iy1=5.45 A");
+//when the 12 A source is acting alone
+disp("from the figure,");
+disp("V1+4Iy2=0");//equation 1
+disp("Applying KCL at node 1,");
+disp("-V1/8 +9/4Iy2=-12");//equation 2
+A=[1 4;-1/8 9/4];//solving equation in matrix form
+B=[0 -12]'
+X=inv(A)*B;
+disp(X);
+disp("Iy2 =-4.36 A");
+//when 40 V source is acting alone
+disp("Applying KVL to mesh,");
+disp("Iy3=-1.82 A");
+a=5.45;
+b=-4.36;
+c=-1.82;
+x=a+b+c;
+mprintf("\nBy superposition theorem, \n I = Iy1+Iy2+Iy3 = %.2f A ",x);
diff --git a/1523/CH3/EX3.14/3_14.sce b/1523/CH3/EX3.14/3_14.sce new file mode 100755 index 000000000..8657d3fdd --- /dev/null +++ b/1523/CH3/EX3.14/3_14.sce @@ -0,0 +1,37 @@ +//Network Theorem 2
+//pg no 3.15
+//example 3.14
+//when 18 V source is acting alone
+disp("Vx1-31=0");//equation 1
+disp("Applying KVL to mesh,");
+disp("-3Vx1-9I=-18");//equation 2
+A=[1 -3;-3 -9];//solving equation in matrix form
+B=[0 -18]'
+X=inv(A)*B;
+disp(X);
+disp("Vx1 = 3 V");
+//when the 5 A source is acting alone
+disp("from the figure,");
+disp("V1+Vx2=0");//equation 1
+disp("Applying KCL at node 1,");
+disp("1/2V1-1/2Vx2=5");//equation 2
+A=[1 1;1/2 -1/2];//solving equation in matrix form
+B=[0 5]'
+X=inv(A)*B;
+disp(X);
+disp("Vx2= -5 V");
+//when the 36 V source is acting alone
+disp("from the figure,");
+disp("Vx3+3I=0");//equation 1
+disp("Applying KVL to the mesh,");
+disp("3Vx3-9I=-36");//equation 2
+A=[1 3;3 -9];//solving equation in matrix form
+B=[0 -36]'
+X=inv(A)*B;
+disp(X);
+disp("Vx3= -6 V");
+a=3;
+b=-5;
+c=-6;
+x=a+b+c;
+mprintf("\nBy superposition theorem, \n Vx = Vx1+Vx2+Vx3 = %.f V ",x);
diff --git a/1523/CH3/EX3.15/3_15.sce b/1523/CH3/EX3.15/3_15.sce new file mode 100755 index 000000000..b7e0a4b6f --- /dev/null +++ b/1523/CH3/EX3.15/3_15.sce @@ -0,0 +1,21 @@ +//Network Theorem 2 +//pg no 3.16 +//example 3.15 +a=10; +b=2; +c=(5*a)-(20*b); +x=20; +y=30; +z=5; +r=z+((x*y)/(x+y)); +i=c/(r+c); +//Calculation of Vth(Thevenin's voltage) +disp("removing the 10 ohm resistor from the circuit"); +printf("\nFor mesh 1, \nI1 = %.f A",a); +printf("\nApplying KVL to mesh 2,, \nI2 = %.f A",b); +printf("\nWriting Vth equation, \n Vth = %.f V",c); +//Calculation of Rth(Thevenin's Resistance) +disp("replacing the current source of 10 A with an open circuit and voltage source of 100 V with a short circuit,"); +printf("\nRth = %.f Ohm",r); +//Calculation of IL(load current) +printf("\nIL = %.2f A",i);
\ No newline at end of file diff --git a/1523/CH3/EX3.16/3_16.sce b/1523/CH3/EX3.16/3_16.sce new file mode 100755 index 000000000..fe8d011f7 --- /dev/null +++ b/1523/CH3/EX3.16/3_16.sce @@ -0,0 +1,24 @@ +//Network Theorem 2
+//pg no 3.17
+//example 3.16
+a=30;
+b=20;
+c=50;
+d=5;
+e=24;
+v=220;
+x=(v/(a+c));
+y=(v/(b+d));
+z=(20*y)-(30*x);
+r=((a*c)/(a+c))+((b*d)/(b+d));
+i=z/(r+e);
+//Calculation the Vth (Thevenin's voltage)
+disp("removing the 24 Ohm resistor from the network");
+printf("\nI1 = %.2f A",x);
+printf("\nI2 = %.1f A",y);
+printf("\nWriting Vth equation, \n Vth = %.1f V",z);
+//Calculation of Rth (Thevenin's resistance)
+disp("replacing the 220 V source with short circuit");
+printf("\nRth = %.2f Ohm",r);
+//Calculation of IL (load current)
+printf("\nIL = %.f A",i);
\ No newline at end of file diff --git a/1523/CH3/EX3.17/3_17.sce b/1523/CH3/EX3.17/3_17.sce new file mode 100755 index 000000000..1febbb4e4 --- /dev/null +++ b/1523/CH3/EX3.17/3_17.sce @@ -0,0 +1,35 @@ +//Network Theorem 2
+//pg no 3.18
+//example 3.17
+disp("removing the 3 Ohm resistor from the network");
+disp("Applying KVL to mesh 1");
+disp("11*I1-9*I2=50");....//equation 1
+disp("Applying KVL to mesh 2");
+disp("-9*I1+18*I2=0");....//equation 2
+A=[11 -9;-9 18];//solving the equations in matrix form
+B=[50 0]'
+X=inv(A)*B;
+disp(X);
+disp("I1=7.69 A");
+disp("I2=3.85 A");
+//Calculation of Vth (Thevenin's voltage)
+a=7.69;
+b=3.85;
+v=-((5*b)+(8*(b-a)));//the B terminal is positive w.r.t A
+printf("\nWriting Vth equation, \n Vth = %.1f V",v);
+//Calculation of Rth (Thevenin's resistance)
+x=4;
+y=2;
+z=5;
+//delta into star network
+r1=((x*y)/(x+y+z));
+r2=((x*z)/(x+y+z));
+r3=((z*y)/(x+y+z));
+mprintf("\nR1 = %.2f Ohm \nR2 = %.2f Ohm \nR3 = %.2f Ohm",r1,r2,r3);
+m=1.73;
+n=8.91;
+r=(r2+(m*n)/(m+n));
+printf("\nRth = %.2f Ohm",r);
+//Claculation of IL (Load Current)
+i=v/(r+3);
+printf("\nIL = %.2f A",i);
\ No newline at end of file diff --git a/1523/CH3/EX3.18/3_18.sce b/1523/CH3/EX3.18/3_18.sce new file mode 100755 index 000000000..301b6e9d4 --- /dev/null +++ b/1523/CH3/EX3.18/3_18.sce @@ -0,0 +1,35 @@ +//Network Theorem 2
+//pg no 3.21
+//example 3.18
+disp("removing the 20 Ohm resistor from the network");
+disp("Applying KVL to mesh 1");
+disp("30*I1-15*I2=-75");....//equation 1
+disp("Applying KVL to mesh 2");
+disp("-15*I1+20*I2=20");....//equation 2
+A=[30 -15;-15 20];//solving the equations in matrix form
+B=[-75 20]'
+X=inv(A)*B;
+disp(X);
+disp("I1=-3.2 A");
+disp("I2=-1.4 A");
+//Calculation of Vth (Thevenin's voltage)
+a=-3.2;
+b=-1.4;
+v=45;
+v1=45-10*(a-b);
+printf("\nWriting Vth equation, \n Vth = %.f V",v1);
+//Calculation of Rth (Thevenin's resistance)
+x=10;
+y=5;
+z=5;
+//delta into star network
+r1=((x*y)/(x+y+z));
+r2=((x*z)/(x+y+z));
+r3=((z*y)/(x+y+z));
+mprintf("\nR1 = %.1f Ohm \nR2 = %.1f Ohm \nR3 = %.1f Ohm",r1,r2,r3);
+m=16.25;
+r=((m*r1)/(m+r1))+r1;
+printf("\nRth = %.2f Ohm",r);
+//Claculation of IL (Load Current)
+i=v1/(r+20);
+printf("\nIL = %.2f A",i);
\ No newline at end of file diff --git a/1523/CH3/EX3.19/3_19.sce b/1523/CH3/EX3.19/3_19.sce new file mode 100755 index 000000000..ceff1ab64 --- /dev/null +++ b/1523/CH3/EX3.19/3_19.sce @@ -0,0 +1,26 @@ +//Network Theorem 2
+//pg no 3.22
+//example 3.19
+disp("removing the 3 Ohm resistor from the network");
+disp("Applying KVL to mesh 1");
+disp("I1=6");....//equation 1
+disp("Applying KVL to mesh 2");
+disp("-12*I1+18*I2=42");....//equation 2
+A=[1 0;-12 18];//solving the equations in matrix form
+B=[6 42]'
+X=inv(A)*B;
+disp(X);
+disp("I2= 6.33 A");
+//Calculation of Vth (Thevenin's voltage)
+a=6.33;
+v=6*a;
+printf("\nWriting Vth equation, \n Vth = %.f V",v);
+//Calculation of Rth (Thevenin's resistance)
+disp("replacing the voltage source with short circuit and current source by open circuit");
+x=6;
+y=12;
+r=(x*y)/(x+y);
+printf("\nRth = %.f Ohm",r);
+//Calculation of IL (load current)
+i=v/(r+3);
+printf("\nIL = %.2f A",i);
\ No newline at end of file diff --git a/1523/CH3/EX3.2/3_2.sce b/1523/CH3/EX3.2/3_2.sce new file mode 100755 index 000000000..747466c21 --- /dev/null +++ b/1523/CH3/EX3.2/3_2.sce @@ -0,0 +1,18 @@ +//Network Theorem 2
+//pg no 3.4
+//example 3.2
+disp("When 4-A source is acting alone:");
+disp("By current-division formula :");
+I1=3.33*(3.53/(6+3.53));
+printf("I1=3.33*(3.53/(6+3.53)) = %.2f A (down)", I1);
+disp("When 10-V source is acting alone:");
+disp("By current-division formula :");
+I2=0.833*(3.53/(6+3.53));
+printf("I2=0.833*(3.53/(6+3.53))= %.2f A (up)", I2);
+disp("When 3-A source is acting alone:");
+disp("By current-division formula :");
+I3=3*(3.53/(6+3.53));
+printf("I3=3*(3.53/(6+3.53))= %.2f A (down)", I3);
+disp("By superposition theorem:");
+I=I1-I2+I3;
+printf("\nI=I1-I2+I3=1.23-0.31+1.11= %.2f A (down)", I);
\ No newline at end of file diff --git a/1523/CH3/EX3.20/3_20.sce b/1523/CH3/EX3.20/3_20.sce new file mode 100755 index 000000000..3b8a09044 --- /dev/null +++ b/1523/CH3/EX3.20/3_20.sce @@ -0,0 +1,18 @@ +//Network Theorem 2
+//pg no 3.23
+//example 3.20
+disp("removing the 30 Ohm resistor from the network");
+disp("Applying KVL to supermesh ");
+disp("-I1+I2=13");....//equation 1
+disp("15*I1+100*I2=150");....//equation 2
+//Calculation of Vth (Thevenin's voltage)
+a=3;
+v=(40*a)-50;
+printf("\nWriting Vth equation, \n Vth = %.f V",v);
+//Calculation of Rth (Thevenin's resistance)
+disp("replacing the voltage source with short circuit and current source by open circuit");
+r=(75*40)/(75+40);
+printf("\nRth = %.2f Ohm",r);
+//Calculation of IL (load current)
+i=v/(r+30);
+printf("\nIL = %.2f A",i);
\ No newline at end of file diff --git a/1523/CH3/EX3.21/3_21.sce b/1523/CH3/EX3.21/3_21.sce new file mode 100755 index 000000000..cc684bd42 --- /dev/null +++ b/1523/CH3/EX3.21/3_21.sce @@ -0,0 +1,14 @@ +//Network Theorem 2
+//pg no 3.25
+//example 3.21
+//Calculation of Vth
+v=100;
+r=20;
+x=v/r;
+disp("Removing the 20 Ohm resistor from the network");
+printf("\nVth = %.f V ",v);
+//calculation of Rth
+disp("replacing the voltage source with short circuit and current source by open circuit");
+disp("Rth = 0");
+//calculation of IL
+printf("\nIL = %.f A",x);
diff --git a/1523/CH3/EX3.22/3_22.sce b/1523/CH3/EX3.22/3_22.sce new file mode 100755 index 000000000..a62e3ed13 --- /dev/null +++ b/1523/CH3/EX3.22/3_22.sce @@ -0,0 +1,32 @@ +//Network Theorem 2
+//pg no 3.25
+//example 3.22
+disp("removing the 10 Ohm resistor from the network");
+disp("Applying KVL to mesh 1");
+disp("4*I1-I2=-25");....//equation 1
+disp("Applying KVL to mesh 2");
+disp("-I1+4*I2=10");....//equation 2
+A=[4 -1;-1 4];//solving the equations in matrix form
+B=[-25 10]'
+X=inv(A)*B;
+disp(X);
+disp("I1=-6 A");
+disp("I2=1 A");
+//Calculation of Vth (Thevenin's voltage)
+a=-6;
+b=1;
+v=-((2*a)+(2*b));//the terminal B is positive w.r.t A
+printf("\nWriting Vth equation, \n Vth = %.f V",v);
+//Calculation of Rth (Thevenin's resistance)
+x=2;
+y=2;
+z=1;
+//star into delta network
+r1=x+y+((x*y)/z);
+r2=x+z+((x*z)/y);
+r3=z+y+((z*y)/x);
+mprintf("\nR1 = %.f Ohm \nR2 = %.f Ohm \nR3 = %.f Ohm",r1,r2,r3);
+//Claculation of IL (Load Current)
+r=1.33;
+i=v/(r+v);
+printf("\nIL = %.2f A",i);
\ No newline at end of file diff --git a/1523/CH3/EX3.23/3_23.sce b/1523/CH3/EX3.23/3_23.sce new file mode 100755 index 000000000..591a41472 --- /dev/null +++ b/1523/CH3/EX3.23/3_23.sce @@ -0,0 +1,19 @@ +//Network Theorem 2
+//pg no 3.28
+//example 3.23
+disp("removing the 1 Ohm resistor from the network");
+disp("writing current equation for meshes 1 & 2 ");
+disp("I1= -3 A");....//equation 1
+disp("I2=1 A");....//equation 2
+//Calculation of Vth (Thevenin's voltage)
+a=-3;
+b=1;
+r=2;
+v=4-2*(a-b);
+printf("\nWriting Vth equation, \n Vth = %.f V",v);
+//Calculation of Rth (Thevenin's resistance)
+disp("replacing the voltage source with short circuit and current source by open circuit");
+disp("Rth = 2 Ohm");
+//Calculation of IL (load current)
+i=v/(r+1);
+printf("\nIL = %.f A",i);
\ No newline at end of file diff --git a/1523/CH3/EX3.24/3_24.sce b/1523/CH3/EX3.24/3_24.sce new file mode 100755 index 000000000..f62b50ff9 --- /dev/null +++ b/1523/CH3/EX3.24/3_24.sce @@ -0,0 +1,32 @@ +//Network Theorem 1
+//page no-3.29
+//example3.24
+//calculation of Isc (short-circuit current)
+disp("Applying KVL to mesh 1:");
+disp("I1=2");....//equation 1
+disp("Writing current equation to supermesh:");//meshes 2 & 3 will form a supermesh
+disp("I3-I2=4");....//equation 2
+disp("Applying KVL to supermesh:");
+disp("-5I2-15I3=0");....//equation 3
+disp("solving these equations we get :");...//solving equations in matrix form
+A=[1 0 0;0 -1 1;0 -5 -15];
+B=[2 4 0]'
+X=inv(A)*B;
+disp(X);
+disp("I1 = 2 A");
+disp("I2 = -3 A");
+disp("I3 = 1 A");
+a=2;
+b=-3;
+x=a-b;
+printf("\nIsc = %.f A",x);
+//calculation of Rn (norton's resistance)
+disp("replacing the voltage source with short circuit and current source by open circuit");
+c=1;
+m=15;
+y=(c*(m+x))/(c+m+x);
+printf("\nRn = %.2f Ohm",y);
+//calculation of IL (load current)
+z=10;
+i=x*(y/(z+y));
+printf("\nIL = %.2f A",i);
\ No newline at end of file diff --git a/1523/CH3/EX3.25/3_25.sce b/1523/CH3/EX3.25/3_25.sce new file mode 100755 index 000000000..c5df4e8e7 --- /dev/null +++ b/1523/CH3/EX3.25/3_25.sce @@ -0,0 +1,27 @@ +//Network Theorem 1
+//page no-3.30
+//example3.25
+//calculation of Isc (short-circuit current)
+disp("Applying KVL to mesh 1:");
+disp("7*I1-2*I2=20");....//equation 1
+disp("Applying KVL to mesh 2,");
+disp("-2*I1+10*I2=-12");....//equation 2
+disp("solving these equations we get :");...//solving equations in matrix form
+A=[7 -2;-2 10];
+B=[20 -12]'
+X=inv(A)*B;
+disp(X);
+disp("I2 = -0.67 A");
+a=-0.67;
+printf("\nIsc = I2 = %.2f A",a);
+//calculation of Rn (norton's resistance)
+disp("replacing the voltage source with short circuit ");
+b=5;
+c=2;
+d=8;
+y=((b*c)/(b+c))+d;
+printf("\nRn = %.2f Ohm",y);
+//calculation of IL (load current)
+z=10;
+i=-a*(y/(10+y));
+printf("\nIL = %.2f A",i);
\ No newline at end of file diff --git a/1523/CH3/EX3.26/3_26.sce b/1523/CH3/EX3.26/3_26.sce new file mode 100755 index 000000000..4422d2c20 --- /dev/null +++ b/1523/CH3/EX3.26/3_26.sce @@ -0,0 +1,30 @@ +//Network Theorem 1
+//page no-3.31
+//example3.26
+//calculation of Isc (short-circuit current)
+disp("Applying KVL to mesh 1:");
+disp("7*I1-I2=10");....//equation 1
+disp("Applying KVL to mesh 2:");
+disp("-I1+6*I2-3*I3=0");....//equation 2
+disp("Applying KVL to mesh 3:");
+disp("3*I2-3*I3=20");....//equation 3
+disp("solving these equations we get :");...//solving equations in matrix form
+A=[7 -1 0;-1 6 -3;0 3 -3];
+B=[10 0 20]'
+X=inv(A)*B;
+disp(X);
+disp("I1 = -13.17 A");
+a=13.17;
+printf("\nIsc = -%.2f A",a);
+//calculation of Rn (norton's resistance)
+disp("replacing the voltage source with short circuit ");
+c=1;
+b=6;
+x=(c*b)/(c+b);
+y=x+2;
+z=(y*3)/(y+3);
+printf("\nRn = %.2f Ohm",z);
+//calculation of IL (load current)
+n=10;
+i=a*(z/(z+n));
+printf("\nIL = %.2f A",i);
\ No newline at end of file diff --git a/1523/CH3/EX3.27/3_27.sce b/1523/CH3/EX3.27/3_27.sce new file mode 100755 index 000000000..3f6b9e68d --- /dev/null +++ b/1523/CH3/EX3.27/3_27.sce @@ -0,0 +1,30 @@ +//Network Theorem 1
+//page no-3.32
+//example3.27
+//calculation of Isc (short-circuit current)
+disp("Applying KVL to mesh 1:");
+disp("20*I1-20*I2=10");....//equation 1
+disp("Applying KVL to mesh 2:");
+disp("-20*I1+60*I2-20*I3=40");....//equation 2
+disp("Applying KVL to mesh 3:");
+disp("-20*I2+50*I3=-100");....//equation 3
+disp("solving these equations we get :");...//solving equations in matrix form
+A=[20 -20 0;-20 60 -20;0 -20 50];
+B=[10 40 -100]'
+X=inv(A)*B;
+disp(X);
+disp("I1 = 0.81A");
+a=0.81;
+printf("\nIsc = -%.2f A",a);
+//calculation of Rn (norton's resistance)
+disp("replacing the voltage source with short circuit ");
+c=20;
+b=30;
+x=(c*b)/(c+b);
+y=x+c;
+z=(y*c)/(y+c);
+printf("\nRn = %.1f Ohm",z);
+//calculation of IL (load current)
+n=10;
+i=a*(z/(z+n));
+printf("\nIL = %.2f A",i);
\ No newline at end of file diff --git a/1523/CH3/EX3.28/3_28.sce b/1523/CH3/EX3.28/3_28.sce new file mode 100755 index 000000000..d57b63253 --- /dev/null +++ b/1523/CH3/EX3.28/3_28.sce @@ -0,0 +1,26 @@ +//Network Theorem 1
+//page no-3.33
+//example3.28
+//calculation of Isc (short-circuit current)
+disp("Applying KVL to mesh 1:");
+disp("90*I1-60*I2=120");....//equation 1
+disp("Applying KVL to mesh 2:");
+disp("-60*I1+100*I2-30*I3=40");....//equation 2
+disp("Applying KVL to mesh 3:");
+disp("30*I2-30*I3=-10");....//equation 3
+disp("solving these equations we get :");...//solving equations in matrix form
+A=[90 -60 0;-60 100 -30;0 30 -30];
+B=[120 40 -10]'
+X=inv(A)*B;
+disp(X);
+disp("I3 = 4.67A");
+a=4.67;
+printf("\nIsc = %.2f A",a);
+//calculation of Rn (norton's resistance)
+disp("replacing the voltage source with short circuit ");
+c=30;
+b=60;
+x=(c*b)/(c+b);
+y=x+10;
+z=(y*c)/(y+c);
+printf("\nRn = %.f Ohm",z);
diff --git a/1523/CH3/EX3.29/3_29.sce b/1523/CH3/EX3.29/3_29.sce new file mode 100755 index 000000000..9f58c6d12 --- /dev/null +++ b/1523/CH3/EX3.29/3_29.sce @@ -0,0 +1,27 @@ +//Network Theorem 1
+//page no-3.34
+//example3.29
+//calculation of Isc (short-circuit current)
+disp("Writing current equation for supermesh :");
+disp("I2-I1=2");....//equation 1
+disp("Applying KVL to supermesh ,");
+disp("12*I1= 55");....//equation 2
+disp("solving these equations we get :");...//solving equations in matrix form
+A=[-1 1;12 0];
+B=[2 55]'
+X=inv(A)*B;
+disp(X);
+disp("I1 = 4.58 A");
+disp("I2 = 6.58 A");
+a=6.58;
+printf("\nIsc = I2 = %.2f A",a);
+//calculation of Rn (norton's resistance)
+disp("replacing the voltage source with short circuit and current source with open circuit ");
+b=12;
+c=4;
+y=((b*c)/(b+c));
+printf("\nRn = %.f Ohm",y);
+//calculation of IL (load current)
+z=8;
+i=a*(y/(z+y));
+printf("\nIL = %.2f A",i);
\ No newline at end of file diff --git a/1523/CH3/EX3.3/3_3.sce b/1523/CH3/EX3.3/3_3.sce new file mode 100755 index 000000000..d697b4749 --- /dev/null +++ b/1523/CH3/EX3.3/3_3.sce @@ -0,0 +1,18 @@ +//Network Theorem 2
+//pg no 3.5
+//example 3.3
+disp("When 4-A source is acting alone:");
+disp("By current-division formula :");
+I1=4/(2+1);
+printf("I1=4/(2+1) = %.2f A (down)", I1);
+disp("When 3-A source is acting alone:");
+disp("By current-division formula :");
+I2=3*(2/(2+1));
+printf("I2=3*(2/(2+1)) = %.2f A (down)", I2);
+disp("When 1-A source is acting alone:");
+disp("By current-division formula :");
+I3=1*(2/(2+1));
+printf("I3=1*(2/(2+1)) = %.2f A (down)", I3);
+disp("By superposition theorem:");
+I=I1+I2+I3;
+printf("\nI=I1+I2+I3=1.33+2+0.66= %.2f A (down)", I);
\ No newline at end of file diff --git a/1523/CH3/EX3.30/3_30.sce b/1523/CH3/EX3.30/3_30.sce new file mode 100755 index 000000000..cd8090d4b --- /dev/null +++ b/1523/CH3/EX3.30/3_30.sce @@ -0,0 +1,30 @@ +//Network Theorem 1
+//page no-3.35
+//example3.30
+//calculation of Isc (short-circuit current)
+disp("Applying KVL to mesh 1:");
+disp("5*I1-2*I2=-2");....//equation 1
+disp("Applying KVL to mesh 2:");
+disp("4*I2-2*I3=-1");....//equation 2
+disp("Applying KVL to mesh 3:");
+disp("-2*I1-2*I2+4*I3=0");....//equation 3
+disp("solving these equations we get :");...//solving equations in matrix form
+A=[5 -2 0;0 4 -2 ;-2 -2 4];
+B=[-2 -1 0]'
+X=inv(A)*B;
+disp(X);
+disp("I1 = -0.64A");
+disp("I2 = -0.55A");
+disp("I3 = -0.59A");
+a=-0.64;
+b=-0.55;
+c=-0.59;
+printf("\nIsc = I3 = %.2f A",a);
+//calculation of Rn (norton's resistance)
+disp("replacing the voltage source with short circuit ");
+z=2.2;
+printf("\nRn = %.1f Ohm",z);
+//calculation of IL (load current)
+n=1;
+i=-c*(z/(z+n));
+printf("\nIL = %.2f A",i);
diff --git a/1523/CH3/EX3.31/3_31.sce b/1523/CH3/EX3.31/3_31.sce new file mode 100755 index 000000000..dc5a762db --- /dev/null +++ b/1523/CH3/EX3.31/3_31.sce @@ -0,0 +1,23 @@ +//Network Theorem 1
+//page no-3.39
+//example3.31
+//calculation of Vth (Thevenin's voltage)
+a=0.25;
+v=(10*a)+(8*a);
+disp("Writing Vth equation,");
+printf("\nVth = %.f V",v);
+//calculation of Isc (short-circuit current)
+disp("Applying KVL to mesh 1:");
+disp("4*I1-2*I2 = 1");....//equation 1
+disp("Applying KVL to mesh 2:");
+disp("-18*I1-11*I2=0");....//equation 2
+A=[4 -2;18 -11];
+B=[1 0]'
+X=inv(A)*B;
+disp(X);
+disp("I2 = 2.25 A");
+a=2.25;
+printf("\nIsc = I2 = %.2f A",a);
+//Calculation of Rth
+x=v/a;
+printf("\nRth = %.f Ohm",x);
\ No newline at end of file diff --git a/1523/CH3/EX3.33/3_33.sce b/1523/CH3/EX3.33/3_33.sce new file mode 100755 index 000000000..9dd4b74ad --- /dev/null +++ b/1523/CH3/EX3.33/3_33.sce @@ -0,0 +1,23 @@ +//Network Theorem 1
+//page no-3.39
+//example3.33
+//calculation of Vth (Thevenin's voltage)
+a=0.25;
+v=(10*a)+(8*a);
+disp("Writing Vth equation,");
+printf("\nVth = %.f V",v);
+//calculation of Isc (short-circuit current)
+disp("Applying KVL to mesh 1:");
+disp("4*I1-2*I2 = 1");....//equation 1
+disp("Applying KVL to mesh 2:");
+disp("-18*I1-11*I2=0");....//equation 2
+A=[4 -2;18 -11];
+B=[1 0]'
+X=inv(A)*B;
+disp(X);
+disp("I2 = 2.25 A");
+a=2.25;
+printf("\nIsc = I2 = %.2f A",a);
+//Calculation of Rth
+x=v/a;
+printf("\nRth = %.f Ohm",x);
\ No newline at end of file diff --git a/1523/CH3/EX3.4/3_4.sce b/1523/CH3/EX3.4/3_4.sce new file mode 100755 index 000000000..1d6d17d78 --- /dev/null +++ b/1523/CH3/EX3.4/3_4.sce @@ -0,0 +1,17 @@ +//Network Theorem 2
+//pg no 3.
+//example 3.4
+disp("When 6-V source is acting alone:");
+VAB1=6;
+printf("VAB1 = %.2f V", VAB1);
+disp("When 10-V source is acting alone:");
+disp("Since the resistor of 5 ohm is shorted,the voltage across it is zero")
+VAB2=10;
+printf("VAB2= %.2f V", VAB2);
+disp("When 5-A source is acting alone:");
+disp("Due to short circuit in both the parts");
+VAB3=0;
+printf("VAB3 = %.2f V", VAB3);
+disp("By superposition theorem:");
+VAB=VAB1+VAB2+VAB3;
+printf("\nVAB=VAB=VAB1+VAB2+VAB3= %.2f V", VAB);
\ No newline at end of file diff --git a/1523/CH3/EX3.41/3_41.sce b/1523/CH3/EX3.41/3_41.sce new file mode 100755 index 000000000..418b14a14 --- /dev/null +++ b/1523/CH3/EX3.41/3_41.sce @@ -0,0 +1,28 @@ +//Network Theorem 1
+//page no-3.47
+//example3.41
+//calculation of Vth
+disp("Removing the variable resistor RL from the network:");
+disp("I2-I1=4");....//equation 1
+disp("Applying KVL at the outerpath:");
+disp("-6*I1-5*I2=2");....//equation 2
+A=[-1 1;-6 -5];
+B=[4 2]'
+X=inv(A)*B;
+disp(X);
+disp("I1 = -2 A");
+disp("I2 = 2 A");
+disp("Writing Vth equation,");
+a=-2;
+v=8-a;
+printf("\nVth = %.f V",v);
+//calculation of Rth
+disp("replacing the voltage source with short circuit and current source by an open circuit ");
+x=(v*1)/(v+1);
+printf("\nRth = %.2f Ohm",x);
+//calculation of RL
+disp("For maximum power transfer");
+printf("\nRth = RL =%.2f Ohm",x);
+//calculation of Pmax
+m=(v^2)/(4*x);
+printf("\nPmax = %.2f W",m);
\ No newline at end of file diff --git a/1523/CH3/EX3.42/3_42.sce b/1523/CH3/EX3.42/3_42.sce new file mode 100755 index 000000000..8c23b241d --- /dev/null +++ b/1523/CH3/EX3.42/3_42.sce @@ -0,0 +1,29 @@ +//Network Theorem 1
+//page no-3.48
+//example3.42
+//calculation of Vth
+disp("Removing the variable resistor RL from the network:");
+disp("I1=50");....//equation 1
+disp("Applying KVL to mesh 2:");
+disp("5*I1-10*I2=0");....//equation 2
+A=[1 0;5 -10];
+B=[50 0]'
+X=inv(A)*B;
+disp(X);
+disp("I2 = 25 A");
+disp("Writing Vth equation,");
+a=25;
+v=3*a;
+printf("\nVth = %.f V",v);
+//calculation of Rth
+disp("replacing the current source of 50 A by an open circuit ");
+x=7;
+y=3;
+m=(x*y)/(x+y);
+printf("\nRth = %.1f Ohm",m);
+//calculation of RL
+disp("For maximum power transfer");
+printf("\nRth = RL =%.1f Ohm",m);
+//calculation of Pmax
+n=(v^2)/(4*m);
+printf("\nPmax = %.2f W",n);
\ No newline at end of file diff --git a/1523/CH3/EX3.43/3_43.sce b/1523/CH3/EX3.43/3_43.sce new file mode 100755 index 000000000..327b0ecc7 --- /dev/null +++ b/1523/CH3/EX3.43/3_43.sce @@ -0,0 +1,31 @@ +//Network Theorem 1
+//page no-3.49
+//example3.43
+//calculation of Vth
+disp("Removing the variable resistor RL from the network:");
+disp("Writing the current equation for the supermesh");
+disp("I2-I1=6");....//equation 1
+disp("Applying KVL to the supermesh :");
+disp("5*I1+2*I2=10");....//equation 2
+A=[-1 1;5 1];
+B=[6 10]'
+X=inv(A)*B;
+disp(X);
+disp("I1 = -0.29 A");
+disp("I2 = 5.71 A");
+disp("Writing Vth equation,");
+a=5.71;
+v=2*a;
+printf("\nVth = %.f V",v);
+//calculation of Rth
+disp("replacing the current source of 50 A by an open circuit ");
+x=5;
+y=2;
+m=((x*y)/(x+y))+3+4;
+printf("\nRth = %.2f Ohm",m);
+//calculation of RL
+disp("For maximum power transfer");
+printf("\nRth = RL =%.2f Ohm",m);
+//calculation of Pmax
+n=(v^2)/(4*m);
+printf("\nPmax = %.2f W",n);
\ No newline at end of file diff --git a/1523/CH3/EX3.44/3_44.sce b/1523/CH3/EX3.44/3_44.sce new file mode 100755 index 000000000..a4983d2d1 --- /dev/null +++ b/1523/CH3/EX3.44/3_44.sce @@ -0,0 +1,30 @@ +//Network Theorem 1
+//page no-3.50
+//example3.44
+//calculation of Vth
+disp("Removing the variable resistor RL from the network:");
+disp("Applying KVL to mesh 1");
+disp("15*I1-5*I2=120");....//equation 1
+disp("Applying KVL to the mesh 2:");
+disp("I2=-6");....//equation 2
+A=[15 -5;0 1];
+B=[120 -6]'
+X=inv(A)*B;
+disp(X);
+disp("I1 = 6 A");
+disp("Writing Vth equation,");
+a=6;
+v=120-(10*a);
+printf("\nVth = %.f V",v);
+//calculation of Rth
+disp("replacing the current source of 50 A by an open circuit ");
+x=10;
+y=5;
+m=((x*y)/(x+y));
+printf("\nRth = %.2f Ohm",m);
+//calculation of RL
+disp("For maximum power transfer");
+printf("\nRth = RL =%.2f Ohm",m);
+//calculation of Pmax
+n=(v^2)/(4*m);
+printf("\nPmax = %.2f W",n);
\ No newline at end of file diff --git a/1523/CH3/EX3.45/3_45.sce b/1523/CH3/EX3.45/3_45.sce new file mode 100755 index 000000000..3a545932d --- /dev/null +++ b/1523/CH3/EX3.45/3_45.sce @@ -0,0 +1,29 @@ +//Network Theorem 1
+//page no-3.51
+//example3.45
+//calculation of Vth
+disp("Removing the variable resistor RL from the network:");
+disp("I1=3 A");....//equation 1
+disp("Applying KVL to the mesh 2:");
+disp("-25*I1+41*I2=0");....//equation 2
+A=[1 0;-25 41];
+B=[3 0]'
+X=inv(A)*B;
+disp(X);
+disp("I2 = 1.83 A");
+disp("Writing Vth equation,");
+a=1.83;
+v=-20+(10*a)+(6*a);
+printf("\nVth = %.2f V",v);
+//calculation of Rth
+disp("replacing the current source of 50 A by an open circuit ");
+x=25;
+y=16;
+m=((x*y)/(x+y));
+printf("\nRth = %.2f Ohm",m);
+//calculation of RL
+disp("For maximum power transfer");
+printf("\nRth = RL =%.2f Ohm",m);
+//calculation of Pmax
+n=(v^2)/(4*m);
+printf("\nPmax = %.2f W",n);
\ No newline at end of file diff --git a/1523/CH3/EX3.46/3_46.sce b/1523/CH3/EX3.46/3_46.sce new file mode 100755 index 000000000..f12975189 --- /dev/null +++ b/1523/CH3/EX3.46/3_46.sce @@ -0,0 +1,27 @@ +//Network Theorem 1
+//page no-3.52
+//example3.46
+//calculation of Vth
+disp("Removing the variable resistor RL from the network:");
+disp("I2-I1=2");....//equation 1
+disp("I2=-3 A");....//equation 2
+A=[-1 1;0 1];
+B=[2 -3]'
+X=inv(A)*B;
+disp(X);
+disp("I1 = -5 A");
+disp("Writing Vth equation,");
+a=-5;
+b=-3;
+v=8-(2*a)-b-6;
+printf("\nVth = %.f V",v);
+//calculation of Rth
+disp("replacing the voltage source with short circuit and current source by an open circuit ");
+m=5;
+printf("\nRth = %.f Ohm",m);
+//calculation of RL
+disp("For maximum power transfer");
+printf("\nRth = RL =%.f Ohm",m);
+//calculation of Pmax
+n=(v^2)/(4*m);
+printf("\nPmax = %.2f W",n);
\ No newline at end of file diff --git a/1523/CH3/EX3.47/3_47.sce b/1523/CH3/EX3.47/3_47.sce new file mode 100755 index 000000000..3a7be3142 --- /dev/null +++ b/1523/CH3/EX3.47/3_47.sce @@ -0,0 +1,24 @@ +//Network Theorem 1
+//page no-3.52
+//example3.46
+//calculation of Vth
+disp("Removing the variable resistor RL from the network:");
+disp("By star-delta transformation");
+a=5;
+b=20;
+c=9;
+v=100;
+i=v/(a+a+b+c+c);
+disp("Writing Vth equation,");
+vth=v-(14*i);
+printf("\nVth = %.2f V",vth);
+//calculation of Rth
+disp("replacing the voltage source with short circuit ");
+m=23.92;
+printf("\nRth = %.2f Ohm",m);
+//calculation of RL
+disp("For maximum power transfer");
+printf("\nRth = RL =%.2f Ohm",m);
+//calculation of Pmax
+n=(vth^2)/(4*m);
+printf("\nPmax = %.2f W",n);
\ No newline at end of file diff --git a/1523/CH3/EX3.48/3_48.sce b/1523/CH3/EX3.48/3_48.sce new file mode 100755 index 000000000..80ad5152e --- /dev/null +++ b/1523/CH3/EX3.48/3_48.sce @@ -0,0 +1,31 @@ +//Network Theorem 1
+//page no-3.55
+//example3.48
+//calculation of Vth
+disp("Removing the variable resistor RL from the network:");
+disp("Applying KVL to the mesh 1:");
+disp("35*I1-30*I2=60");....//equation 1
+disp("Applying KVL to the mesh 2:");
+disp("I2=2");....//equation 2
+A=[35 -30;0 1];
+B=[60 2]'
+X=inv(A)*B;
+disp(X);
+disp("I1 = 3.43 A");
+disp("Writing Vth equation,");
+a=3.43;
+b=2;
+v=20*(a-b)+20;
+printf("\nVth = %.2f V",v);
+//calculation of Rth
+disp("replacing the voltage source with short circuit and current source by an open circuit ");
+x=15;
+y=20;
+m=((x*y)/(x+y));
+printf("\nRth = %.2f Ohm",m);
+//calculation of RL
+disp("For maximum power transfer");
+printf("\nRth = RL =%.2f Ohm",m);
+//calculation of Pmax
+n=(v^2)/(4*m);
+printf("\nPmax = %.1f W",n);
\ No newline at end of file diff --git a/1523/CH3/EX3.49/3_49.sce b/1523/CH3/EX3.49/3_49.sce new file mode 100755 index 000000000..fdd097c7d --- /dev/null +++ b/1523/CH3/EX3.49/3_49.sce @@ -0,0 +1,29 @@ +//Network Theorem 1
+//page no-3.56
+//example3.49
+//calculation of Vth
+disp("Removing the variable resistor RL from the network:");
+x=100;
+a=10;
+b=20;
+c=30;
+d=40;
+i1=x/(a+c);
+i2=x/(b+d);
+printf("\nI1 = %.1f A",i1);
+printf("\ni2 = %.2f A",i2);
+disp("Writing Vth equation,");
+x=2.5;
+y=1.66;
+v=(20*y)-(10*x);
+printf("\nVth = %.1f V",v);
+//calculation of Rth
+disp("replacing the voltage source of 100V with short circuit ");
+m=((a*c)/(a+c))+((b*d)/(b+d));
+printf("\nRth = %.2f Ohm",m);
+//calculation of RL
+disp("For maximum power transfer");
+printf("\nRth = RL =%.2f Ohm",m);
+//calculation of Pmax
+n=(v^2)/(4*m);
+printf("\nPmax = %.2f W",n);
\ No newline at end of file diff --git a/1523/CH3/EX3.5/3_5.sce b/1523/CH3/EX3.5/3_5.sce new file mode 100755 index 000000000..0af65cc58 --- /dev/null +++ b/1523/CH3/EX3.5/3_5.sce @@ -0,0 +1,20 @@ +//Network Theorem 2
+//pg no 3.7
+//example 3.5
+disp("When 5-A source is acting alone:");
+disp("By current-division formula :");
+I1=5*(2/(2+4));
+printf("I1=5*(2/(2+4)) = %.2f A (down)", I1);
+disp("When 2-A source is acting alone:");
+disp("By current-division formula :");
+I2=2*(2/(2+4));
+printf("I2=2*(2/(2+4)) = %.2f A (down)", I2);
+disp("When 6-V source is acting alone:");
+disp("Applying KVL to the mesh");
+disp("-2*I3-6-4*I3=0");
+disp("I3=-1");
+I3=-1;
+printf("I3=-1 A= %.2f A (down)", I3);
+disp("By superposition theorem:");
+I=I1+I2+I3;
+printf("\nI=I1+I2+I3=1.67+0.67-1= %.2f A (down)", I);
\ No newline at end of file diff --git a/1523/CH3/EX3.50/3_50.sce b/1523/CH3/EX3.50/3_50.sce new file mode 100755 index 000000000..7fb12db50 --- /dev/null +++ b/1523/CH3/EX3.50/3_50.sce @@ -0,0 +1,34 @@ +//Network Theorem 1
+//page no-3.57
+//example3.50
+//calculation of Vth
+disp("Removing the variable resistor RL from the network:");
+disp("Applying KVL to the mesh 1:");
+disp("9*I1-3*I2=72");....//equation 1
+disp("Applying KVL to the mesh 2:");
+disp("-3*I1+9*I2=0");....//equation 2
+A=[9 -3;-3 9];
+B=[72 0]'
+X=inv(A)*B;
+disp(X);
+disp("I1 = 9 A");
+disp("I2 = 3 A");
+disp("Writing Vth equation,");
+a=9;
+b=3;
+v=(6*a)+(2*b);
+printf("\nVth = %.f V",v);
+//calculation of Rth
+disp("replacing the voltage source with short circuit and current source by an open circuit ");
+x=6;
+y=2;
+z=4;
+m=((x*b)/(x+b))+2;
+l=((m*z)/(m+z));
+printf("\nRth = %.f Ohm",l);
+//calculation of RL
+disp("For maximum power transfer");
+printf("\nRth = RL =%.f Ohm",l);
+//calculation of Pmax
+n=(v^2)/(4*l);
+printf("\nPmax = %.f W",n);
\ No newline at end of file diff --git a/1523/CH3/EX3.51/3_51.sce b/1523/CH3/EX3.51/3_51.sce new file mode 100755 index 000000000..199856031 --- /dev/null +++ b/1523/CH3/EX3.51/3_51.sce @@ -0,0 +1,28 @@ +//Network Theorem 1
+//page no-3.58
+//example3.51
+//Calculation of Vth
+disp("from the figure");
+disp("Vth=4*I");
+disp("Applying KVL to the mesh");
+disp("0.5*Vth-8*I=-12");
+A=[1 -4;0.5 -8];
+B=[0 -12]'
+X=inv(A)*B;
+disp(X);
+disp("Vth=8 V");
+//Calculation of Isc
+v=8;
+i=12/4;
+printf("\nIsc = %.f A",i);
+//Calculation of Rth
+r=v/i;
+printf("\nRth = Vth/Isc = %.3f Ohm",r);
+//calculation of RL
+disp("For maximum power transfer");
+printf("\nRth = RL =%.3f Ohm",r);
+//calculation of Pmax
+x=v/(2*r);
+printf("\nIL = %.1f A",x);
+n=(x^2)*r;
+printf("\nPmax = %.f W",n);
\ No newline at end of file diff --git a/1523/CH3/EX3.6/3_6.sce b/1523/CH3/EX3.6/3_6.sce new file mode 100755 index 000000000..2f87e015a --- /dev/null +++ b/1523/CH3/EX3.6/3_6.sce @@ -0,0 +1,9 @@ +//Network Theorem 2
+//pg no 3.8
+//example 3.6
+a=15/38;
+b=10/38;
+x=a+b;
+mprintf("\nApplying KCL at node 1, \nI1 = %.3f",a);//When the 15 V source is acting alone
+mprintf("\nApplying KCL at node 1, \nI1 = %.3f",b);//When the 10 V source is acting alone
+mprintf("\nBy superposition theorem, \nI = I1+I2 = %.3f A",x);
\ No newline at end of file diff --git a/1523/CH3/EX3.7/3_7.sce b/1523/CH3/EX3.7/3_7.sce new file mode 100755 index 000000000..8e22e67fa --- /dev/null +++ b/1523/CH3/EX3.7/3_7.sce @@ -0,0 +1,9 @@ +//Network Theorem 2
+//pg no 3.8
+//example 3.7
+a=3;
+b=2;
+x=a+b;
+mprintf("\napplying KCL at node 1, \nIx1 = %.f A",a);//when the 30 V source is acting alone
+mprintf("\napplying KCL at the mesh, \nIx2 = %.f A",b);//when the 20 V source is acting alone
+mprintf("\nBy superposition theorem, Ix = Ix1+Ix2 = %.f A",x);
\ No newline at end of file diff --git a/1523/CH3/EX3.8/3_8.sce b/1523/CH3/EX3.8/3_8.sce new file mode 100755 index 000000000..abf0a54b1 --- /dev/null +++ b/1523/CH3/EX3.8/3_8.sce @@ -0,0 +1,25 @@ +//Network Theorem 2
+//pg no 3.10
+//example 3.8
+//when 5 V source is acting alone
+disp("Vx+10I1=5");//equation 1
+disp("Applying KVL to mesh,");
+disp("4Vx+12I1=5");//equation 2
+A=[1 10;4 12];//solving equation in matrix form
+B=[5 5]'
+X=inv(A)*B;
+disp(X);
+disp("I1 = 0.535 A");
+//when the 2 A source is acting alone
+disp("Vx+10I2=0");//equation 1
+disp("Applying KCL at Node x,");
+disp("Vx=-10/7");//equation 2
+A=[1 10;1 0];//solving equation in matrix form
+B=[0 -10/7]'
+X=inv(A)*B;
+disp(X);
+disp("I2 = 0.1428 A");
+a=0.535;
+b=0.1428;
+x=a+b;
+printf("\nBy superposition theorem, \nI = I1+I2 = %.3f A ",x);
diff --git a/1523/CH3/EX3.9/3_9.sce b/1523/CH3/EX3.9/3_9.sce new file mode 100755 index 000000000..412740ccb --- /dev/null +++ b/1523/CH3/EX3.9/3_9.sce @@ -0,0 +1,25 @@ +//Network Theorem 2
+//pg no 3.10
+//example 3.9
+//when 100 V source is acting alone
+disp("Vx-5I1=0");//equation 1
+disp("Applying KVL to mesh,");
+disp("10Vx-15I1=-100");//equation 2
+A=[1 -5;10 -15];//solving equation in matrix form
+B=[0 -100]'
+X=inv(A)*B;
+disp(X);//negative because of opposite direction
+disp("I1 = 2.857 A");
+//when the 10 A source is acting alone
+disp("9Vx+10I2=0");//equation 1
+disp("Applying KCL at Node 1,");
+disp("Vx=-100/7");//equation 2
+A=[9 10;1 0];//solving equation in matrix form
+B=[0 -100/7]'
+X=inv(A)*B;
+disp(X);
+disp("I2 = 12.857 A");
+a=2.857;
+b=12.857;
+x=a+b;
+printf("\nBy superposition theorem, \nI = I1+I2 = %.3f A ",x);
diff --git a/1523/CH4/EX4.1/ex4_1.sce b/1523/CH4/EX4.1/ex4_1.sce new file mode 100755 index 000000000..60047fe15 --- /dev/null +++ b/1523/CH4/EX4.1/ex4_1.sce @@ -0,0 +1,11 @@ +//AC Circuits:example 4.1:(pg4.4)
+i=15;
+t=3.375*10^-3;
+f=40;
+pi=3.14;
+Im=(i/sin(2*pi*f*t));
+disp("i=15 Amp");
+disp("t=3.375 ms");
+disp("f=40 Hz");
+disp("i=Im*sin(2*pi*f*t)");
+printf("Im=%.fAmp",Im);
\ No newline at end of file diff --git a/1523/CH4/EX4.14/ex4_14.sce b/1523/CH4/EX4.14/ex4_14.sce new file mode 100755 index 000000000..99ec7040d --- /dev/null +++ b/1523/CH4/EX4.14/ex4_14.sce @@ -0,0 +1,13 @@ +//AC Circuits: example 4.14 :(pg 4.11)
+v1=0;
+v2=40;
+v3=60;
+v4=80;
+v5=100;
+t=8;
+Vavg=((v1+v2+v3+v4+v5+v4+v3+v2)/t);
+Vrms=sqrt((v1^2+v2^2+v3^2+v4^2+v5^2+v4^2+v3^2+v2^2)/t);
+disp("Vavg=((0+40+60+80+100+80+60+40)/8)");
+printf("\nVavg=%.1f V",Vavg);
+disp("Vrms=sqrt((0+(40)^2+(60)^2+(80)^2+(100)^2+(80)^2+(60)^2+(40)^2)/8)");
+printf("\nVrms=%.2f V",Vrms);
\ No newline at end of file diff --git a/1523/CH4/EX4.15/ex4_15.sce b/1523/CH4/EX4.15/ex4_15.sce new file mode 100755 index 000000000..82e36138f --- /dev/null +++ b/1523/CH4/EX4.15/ex4_15.sce @@ -0,0 +1,11 @@ +//AC Circuits : example 4.15 :pg(4.11 & 4.12)
+v1=0;
+v2=10;
+v3=20;
+t=3;
+Vavg=((v1+v2+v3)/t);
+Vrms=(sqrt((v1^2+v2^2+v3^2)/t));
+disp("Vavg=((0+10+20)/3)");
+printf("Vavg=%.f V",Vavg);
+disp("Vrms=(((0)^2+(10)^2+(20)^2)/3)");
+printf("Vrms=%.1f V",Vrms);
\ No newline at end of file diff --git a/1523/CH4/EX4.2/ex4_2.sce b/1523/CH4/EX4.2/ex4_2.sce new file mode 100755 index 000000000..c7b748db1 --- /dev/null +++ b/1523/CH4/EX4.2/ex4_2.sce @@ -0,0 +1,16 @@ +//AC Circuits:example 4.2:(pg4.4)
+f=50;
+Im=100;
+i1=86.6;
+t=(1/600);
+pi=3.14;
+disp("f=50 c/s");
+disp("Im=100 A");
+// part(a)
+disp("i=Im*sin(2*pi*f*t)");
+i=Im*sin(2*pi*f*t);
+printf("i=%.f A",i);
+// part (b)
+disp("i=Im*sin(2*pi*f*t1)");
+t1=(asind(i1/Im)/(2*pi*f));
+printf("t1=%.e second",t1);
\ No newline at end of file diff --git a/1523/CH4/EX4.3/ex4_3.sce b/1523/CH4/EX4.3/ex4_3.sce new file mode 100755 index 000000000..608237fe8 --- /dev/null +++ b/1523/CH4/EX4.3/ex4_3.sce @@ -0,0 +1,23 @@ +//AC Circuits:example 4.3:(pg4.5)
+f=50;
+I=20;
+t1=0.0025;
+t2=0.0125;
+I1=14.14;
+pi=3.14;
+disp("f=50 c/s");
+disp("I=20 A");
+mprintf("Im=I*sqrt(2)");
+Im=(sqrt(2)*I);
+printf("\nIm=%.2f A",Im);
+mprintf("\nEquation of current, \ni=Im*sin(2*pi*f*t)");
+disp("=28.28sin(2*pi*f*t)=28.28sin(100*pi*t)");
+disp("(a)At t=0.0025 seconds");
+i=(Im*sin(2*pi*f*t1));
+printf("i=%.f A",i); //when t=0.0025seconds
+disp("(b)At t=0.0125 seconds");
+i=(Im*sin(2*pi*f*t2));
+printf("i=%.f A",i); //when t=0.0125seconds
+disp("(c) i=28.28sin(100*pi*t) ");
+t=(asind(I1/Im)/(2*pi*f));
+printf("t=%.e second",t);// when I=14.14A
\ No newline at end of file diff --git a/1523/CH4/EX4.33/ex4_33.sce b/1523/CH4/EX4.33/ex4_33.sce new file mode 100755 index 000000000..6b76d6219 --- /dev/null +++ b/1523/CH4/EX4.33/ex4_33.sce @@ -0,0 +1,14 @@ +//AC Circuits : example 4.33 :pg(4.27)
+Vm=177;
+Im=14.14;
+phi=30;
+V=(Vm/sqrt(2));
+I=(Im/sqrt(2));
+pf=cosd(30);
+P=(V*I*pf);
+disp("v(t)=177sin(314t+10)");// value of 10 is in degrees
+disp("i(t)=14.14sin(314t-20)");//value of 20 is in degrees
+mprintf("\nCurrent i(t) lags behind voltage v(t) by 30degrees");
+disp("phi=30degrees");
+printf("Power factor pf=cos(30)=%.3f (lagging)",pf);
+printf("\nPower consumed P=V*I*cos(phi)=%.1f W",P);
\ No newline at end of file diff --git a/1523/CH4/EX4.4/ex4_4.sce b/1523/CH4/EX4.4/ex4_4.sce new file mode 100755 index 000000000..8ec4a9ba5 --- /dev/null +++ b/1523/CH4/EX4.4/ex4_4.sce @@ -0,0 +1,15 @@ +//AC Circuits : example 4.4 :pg(4.5)
+pi=3.14;
+Vm=200;
+disp("v=200sin314t");
+disp("v=Vmsin(2*pi*f*t)");
+disp("(2*pi*f)=314");
+f=(314/(2*pi));
+printf("f=%.f Hz",f);
+Vavg=((2*Vm)/pi);
+Vrms=(Vm/sqrt(2));
+mprintf('\nFor a sinusoidal waveform, \nVavg=(2*Vm/pi) \nVrms=(Vm/sqrt(2))');
+kf=(Vrms/Vavg);
+kc=(Vm/Vrms);
+mprintf('\nform fator=%.2f',kf);
+mprintf('\ncrest factor=%.2f',kc);
diff --git a/1523/CH4/EX4.42/ex4_42.sce b/1523/CH4/EX4.42/ex4_42.sce new file mode 100755 index 000000000..ab5f0079b --- /dev/null +++ b/1523/CH4/EX4.42/ex4_42.sce @@ -0,0 +1,23 @@ +//AC Circuits : example 4.42 :pg(4.32 & 4.33)
+PR=1000;
+VR=200;
+Pcoil=250;
+Vcoil=300;
+R=((VR^2)/PR);
+I=(VR/R);
+r=((Pcoil/(I^2)));
+Zcoil=(Vcoil/I);
+XL=sqrt((Zcoil^2)-(r^2));
+RT=(R+r);
+ZT=sqrt((RT^2)+(XL^2));
+V=(ZT*I);
+printf("\nPR=1000 W \nVR=200 V \nPcoil=250 W \nVcoil=300 V \nPR=(VR^2/R)");
+printf("\nR=%.f Ohms",R);
+printf("\nVR=R*I \nI=%.f A",I);
+disp("Pcoil=(I^2)*r");
+printf("\nResistance of coil r=%.f Ohm",r);
+printf("\nImpedance of coil Zcoil=(Vcoil/I)=%.f Ohms",Zcoil);
+printf("\nReactance of coil XL=sqrt((Zcoil^2)-(r^2)) =%.1f Ohms",XL);
+printf("\nCombined resistance RT=R+r=%.f Ohms",RT);
+printf("\nCombined impedance ZT=sqrt(((R+r)^2)+(XL^2)) =%.1f Ohms",ZT);
+printf("\nSupply voltage V=ZT*I=%.1f V",V);
\ No newline at end of file diff --git a/1523/CH4/EX4.47/ex4_47.sce b/1523/CH4/EX4.47/ex4_47.sce new file mode 100755 index 000000000..338882b11 --- /dev/null +++ b/1523/CH4/EX4.47/ex4_47.sce @@ -0,0 +1,21 @@ +//AC Circuits : example 4.47 :pg(4.47)
+f1=60;
+V=200;
+P=600;
+I=5;
+f=50;
+Z=V/I;
+r=(P/(I^2));
+XL=sqrt((Z^2)-(r^2));
+L=(XL/(2*%pi*f));
+XL1=(2*%pi*f1*L);
+Z1=sqrt((r^2)+(XL1^2));
+I=(V/Z1);
+printf("\nI=5 A \nV=200 V \nP=600 W \nFor f=50 Hz,");
+printf("\nZ=V/I =%.f Ohms",Z);
+printf("\nP=((I^2)*r) \nr=%.f Ohms",r);
+printf("\nXL=sqrt((Z^2)-(r^2)) \nXL=%.f Ohms",XL);
+printf("\nXL=(2*pi*f*L)\nL=%.4f H",L);
+printf("\nFor f=60 Hz \nXL=%.1f Ohm",XL1);
+printf("\nr=24 Ohms \nZ=sqrt((r^2)+(XL^2))=%.2f Ohms",Z1);
+printf("\nI=V/Z=%.3f A",I);
\ No newline at end of file diff --git a/1523/CH4/EX4.48/ex4_48.sce b/1523/CH4/EX4.48/ex4_48.sce new file mode 100755 index 000000000..ecce8fd1b --- /dev/null +++ b/1523/CH4/EX4.48/ex4_48.sce @@ -0,0 +1,28 @@ +//AC Circuits : example 4.48 :(pg 4.37)
+f=50;
+pi=3.14;
+Vdc=12;
+Idc=2.5;
+Vac=230;
+Iac=2;
+Pac=50;
+R=(Vdc/Idc);
+Z=(Vac/Iac);
+Pi=(Pac-((Iac^2)*R));
+RT=(Pac/(Iac^2));
+XL=sqrt((Z^2)-(RT^2));
+L=(XL/(2*pi*f));
+pf=(RT/Z);
+i=(Pi/(Iac^2));
+printf("\nFor dc V=12 V, I=2.5 A \nFor ac V=230 V, I=2 A, P=50 W");
+printf("\nIn an iron-cored coil,there are two types of losses \n(i)Losses in core known as core or iron loss \n(ii)Losses in winding known as copper loss");
+printf("\nP=(I^2)*R+Pi \nP/(I^2)=R+((Pi)/(I^2)) \nRT=R+(Pi/(I^2)) \nwhere R is the resistance of the coil and (Pi/I^2) is the resistance which is equivalent to the effect of iron loss");
+printf("\nFor dc supply, f=0 \nXL=0");
+printf("\nR=%.1f Ohm",R);
+printf("\nFor ac supply \nZ=%.f Ohms",Z);
+printf("\nIron loss Pi=P-I^2*R=%.1f W",Pi);
+printf("\nRT=(P/I^2)=%.1f Ohm",RT);
+printf("\nXL=sqrt((Z^2)-(RT^2))=%.1f Ohm",XL);
+printf("\nXL=2*pi*L \nInductance L=%.3f H",L);
+printf("\nPower factor =RT/Z=%.3f (lagging)",pf);
+printf("\nThe series resistance equivalent to the effect of iron loss= Pi/(I^2)=%.1f Ohms",i);
\ No newline at end of file diff --git a/1523/CH4/EX4.49/ex4_49.sce b/1523/CH4/EX4.49/ex4_49.sce new file mode 100755 index 000000000..d7062eff1 --- /dev/null +++ b/1523/CH4/EX4.49/ex4_49.sce @@ -0,0 +1,27 @@ +//AC Circuits : example 4.49 :(pg 4.37 & 4.38)
+f=50;
+I1=4;
+pf1=0.5;
+V1=200;
+I2=5;
+pf2=0.8;
+V2=40;
+Z1=(V2/I2);
+R=(Z1*pf2);
+XL1=sqrt((Z1^2)-(R^2));
+L1=(XL1/(2*%pi*f));
+Z2=(V1/I1);
+RT=(Z2*pf1);
+XL2=sqrt((Z2^2)-(RT^2));
+L2=(XL2/(2*%pi*f));
+Pi=(V1*I1*pf1-(I1^2)*R);
+printf("\nWith iron core I=4 A pf=0.5, V=200 V \nWithout iron core I=5 A pf=0.8, V=40 V \nWhen the iron-core is removed,");
+printf("\nZ=V/I=%.f Ohms",Z1);
+printf("\npf=R/Z \nR=%.1f Ohms",R);
+printf("\nXL=sqrt((Z^2)-(RT^2))=%.1f Ohms",XL1);
+printf("\nXL=(2*pi*f*L) \nInductance L=%.4f H",L1);
+printf("\nWith iron core, \nZ=%.f Ohms",Z2);
+printf("\npf=RT/Z \nRT=%.f Ohm",RT);
+printf("\nXL=sqrt((Z^2)-(RT^2))=%.2f Ohm",XL2);
+printf("\nXL=(2*pi*f*L) \nInductance L=%.4f H",L2);
+printf("\nIron loss Pi=P=(I^2)*R \n=VIcos(phi)-I^2*R \n=%.1f W",Pi);
diff --git a/1523/CH4/EX4.5/ex4_5.sce b/1523/CH4/EX4.5/ex4_5.sce new file mode 100755 index 000000000..ac8a2dce3 --- /dev/null +++ b/1523/CH4/EX4.5/ex4_5.sce @@ -0,0 +1,13 @@ +//AC Circuits : example 4.5 :(pg 4.6)
+kf=1.2;
+kp=1.5;
+Vavg=10;
+disp("kf=1.2");
+disp("kp=1.5");
+disp("Vavg=10");
+disp("form factor kf=(Vrms/Vavg)");
+Vrms=(kf*Vavg);
+printf("\nVrms=%.f V",Vrms);
+disp("peak factor kp=(Vm/Vrms)");
+Vm=(kp*Vrms);
+printf("\nVm=%.f V",Vm);
\ No newline at end of file diff --git a/1523/CH4/EX4.51/ex4_51.sce b/1523/CH4/EX4.51/ex4_51.sce new file mode 100755 index 000000000..f162b8429 --- /dev/null +++ b/1523/CH4/EX4.51/ex4_51.sce @@ -0,0 +1,16 @@ +//AC Circuits : example 4.51 :(pg 4.40 & 4.41)
+P=2000;
+pf=0.5;
+V=230;
+S=(P/pf);
+phi=acosd(pf);
+I=(P/(V*pf));
+Q=(V*I*sind(phi));
+disp("P=2000 W");
+disp("pf=0.5 (leading)");
+disp("V=230 V");
+disp("P=V*I*cos(phi)");
+printf("\nI=%.2f A",I);
+printf("\nS=V*I=P/cos(phi)=%.f VA",S);
+printf("\nphi=%.f degrees",phi);
+printf("\nQ=V*I*sin(phi)=%.f VAR",Q);
\ No newline at end of file diff --git a/1523/CH4/EX4.52/ex4_52.sce b/1523/CH4/EX4.52/ex4_52.sce new file mode 100755 index 000000000..ace129893 --- /dev/null +++ b/1523/CH4/EX4.52/ex4_52.sce @@ -0,0 +1,23 @@ +//AC Circuits : example 4.52 :(pg 4.41)
+V=240;
+VR=100;
+P=300;
+f=50;
+R=((VR^2)/P);
+I=sqrt(P/R);
+Z=V/I;
+XC=sqrt((Z^2)-(R^2));
+C=(1/(2*%pi*f*XC));
+VC=sqrt((V^2)-(VR^2));
+VCmax=(VC*sqrt(2));
+Qmax=(C*VCmax);
+Emax=((1/2)*C*(VCmax^2));
+printf("\nV=240 V \nVR=100 V \nP=300 W \nf=50 Hz");
+printf("\nP=(VR^2)/R \nR=((VR^2)/P)=%.2f Ohm",R);
+printf("\nP=(I^2)*R \nI=sqrt((P/R)) \nI=%.f A",I);
+printf("\nZ=V/I=%.f Ohm",Z);
+printf("\nXC=sqrt((Z^2)-(R^2))=%.2f Ohm",XC);
+printf("\nXC=1/2*pi*f*C \nC=%.2e F",C);
+printf("\nVoltage across capacitor VC=sqrt((V^2)-(VR^2))=%.2f V",VC);
+printf("\nMaximum value of max charge \nVC=%.2f V \nQmax=C*VCmax=%.4f C",VCmax,Qmax);
+printf("\nMax stored energy Emax=((1/2)*C*(VCmax^2)) \n=%.2f J", Emax);
diff --git a/1523/CH4/EX4.53/ex4_53.sce b/1523/CH4/EX4.53/ex4_53.sce new file mode 100755 index 000000000..aea4ec0b6 --- /dev/null +++ b/1523/CH4/EX4.53/ex4_53.sce @@ -0,0 +1,9 @@ +//AC Circuits : example 4.53 :(pg 4.42)
+C=35*10^-6;
+f=50;
+XC=(1/(2*%pi*f*C));
+R=sqrt(3*(XC^2));
+R^2=(3*(XC^2));
+printf("\nC=35*10^-6 F \nf=50 Hz \nVC=1/2.V \nXC=1/(2*pi*f*C)=%.3f Ohm",XC);
+printf("\nVC=1/2.V \nXC.I=1/2.Z.I \nXC=1/2.Z \nZ=2.XC \nZ=sqrt((R^2)+(XC^2)) \n(2XC)^2=(R^2)+(XC^2) \n3XC^2=R^2");
+mprintf("\nR^2=3*XC^2=%.2f Ohm \nR=%.1f Ohm",R^2,R);
diff --git a/1523/CH4/EX4.54/ex4_54.sce b/1523/CH4/EX4.54/ex4_54.sce new file mode 100755 index 000000000..fe403ab95 --- /dev/null +++ b/1523/CH4/EX4.54/ex4_54.sce @@ -0,0 +1,14 @@ +//AC Circuits : example 4.54 :(pg 4.42)
+V=125;
+I=2.2;
+P=96.8;
+f=50;
+Z=V/I;
+R=(P/(I^2));
+Xc=sqrt((Z^2)-(R^2));
+C=(1/(2*%pi*f*Xc));
+printf("\nV=125 V \nP=96.8 W \nI=2.2 A \nf=50 Hz");
+printf("\nZ=V/I=%.2f A",Z);
+printf("\nP=(I^2)*R \nR=%.f Ohm",R);
+printf("\nXc=sqrt((Z^2)-(R^2))=%.2f Ohm",Xc);
+printf("\nXc=1/(2*pi*f*C) \n C=%.2e F",C);
\ No newline at end of file diff --git a/1523/CH4/EX4.57/ex4_57.sce b/1523/CH4/EX4.57/ex4_57.sce new file mode 100755 index 000000000..884942a10 --- /dev/null +++ b/1523/CH4/EX4.57/ex4_57.sce @@ -0,0 +1,18 @@ +//AC Circuits :example 4.57 :(pg 4.46)
+j=%i;
+f=50;
+L=0.22;
+R1=3;
+Z=3.8+j*6.4;
+XL=2*%pi*f*L;
+R2=3.8;
+R=R2-R1;
+X=6.4;
+XC=XL-X;
+C=(1/(2*%pi*f*XC));
+printf("\nZ=(3.8+j*6.4) Ohm");
+printf("\nXL=2*pi*f*L=%.2f Ohm",XL);
+printf("\nZ=(3+j69.12+R-jXC) \n=(3+R)+j(69.12-XC)");
+printf("\n3+R=3.8 \nR=%.1f Ohm",R);
+printf("\nXC=%.2f Ohm",XC);
+printf("\nXC=1/2.pi.f.C \nC=%.e F",C);
\ No newline at end of file diff --git a/1523/CH4/EX4.58/ex4_58.sce b/1523/CH4/EX4.58/ex4_58.sce new file mode 100755 index 000000000..7fb6a1605 --- /dev/null +++ b/1523/CH4/EX4.58/ex4_58.sce @@ -0,0 +1,15 @@ +//AC Circuits : example 4.58 :(pg 4.46)
+R=20;
+phi=45;
+Z=R/cosd(phi);
+XC=sqrt((Z^2)-(R^2));
+XL=(2*XC);
+w=1000;
+L=(XL/w);
+C=(1/(w*XC));
+printf("\nvL=300sin(1000t) \nR=20 Ohm \nphi=45 \nVL(max)=2Vcc(max) \nsqrt(2)*VL=2*sqrt(2)*VC \nI*XL=2*I*XC \nXL=2*XC \ncos(phi)=R/Z");
+printf("\nZ=%.2f Ohm",Z);
+printf("\nZ=sqrt((R^2)+(XL-XC)^2) \nXC=%.f Ohm",XC); //for series R-L-C ckt
+printf("\nXL=2*XC =%.f Ohm",XL);
+printf("\nXL=w*L \nL=%.2f H",L);
+printf("\nXC=1/w*C \nC=%.e F",C);
diff --git a/1523/CH4/EX4.59/ex4_59.sce b/1523/CH4/EX4.59/ex4_59.sce new file mode 100755 index 000000000..b16078277 --- /dev/null +++ b/1523/CH4/EX4.59/ex4_59.sce @@ -0,0 +1,15 @@ +//AC Circuits : example 4.59 :(pg 4.47)
+pf=0.5;
+C=79.59*10^-6;
+f=50;
+XC=(1/(2*%pi*f*C));
+R=pf*XC;
+Zcoil=XC;
+XL=sqrt((Zcoil^2)-(R^2));
+L=(XL/(2*%pi*f));
+printf("\npf=0.5 \nC=79.57uF \nf=50 Hz \nVcoil=VC ");
+printf("\nXC=1/2*pi*f*C =%.f Ohm",XC);
+printf("\nVcoil=VC \nZcoil=XC=%.f Ohm",XC);
+printf("\npf of coil=cos(phi)=R/Zcoil \nResistance of coil R=%.f Ohm",R);
+printf("\nXL=sqrt((Zcoil^2)-(R^2))=%.2f Ohm",XL);
+printf("\nXL=2*pi*f*L \nInductance of coil=%.2f H",L);
\ No newline at end of file diff --git a/1523/CH4/EX4.60/ex4_60.sce b/1523/CH4/EX4.60/ex4_60.sce new file mode 100755 index 000000000..698fff72a --- /dev/null +++ b/1523/CH4/EX4.60/ex4_60.sce @@ -0,0 +1,23 @@ +//AC Circuits : example 4.60 :(pg 4.48)
+f=50;
+V=250;
+R=5;
+L=9.55;
+Vcoil=300;
+XL=2*%pi*f*L;
+Zcoil=(sqrt((R^2)+(XL^2)));
+I=Vcoil/Zcoil;
+Z=V/I;
+XC1=Zcoil-Z;
+XC2=Zcoil+Z;
+C1=(1/(2*%pi*f*XC1));
+C2=(1/(2*%pi*f*XC2));
+printf("\nV=250 V \nR=5 Ohm \nL=9.55 H \nVcoil=300 V");
+printf("\nXL=2*pi*f*L =%.f Ohm",XL);
+printf("\nZcoil=sqrt(R^2)+(XL^2) =%.f Ohm",Zcoil);
+printf("\nI=Vcoil/Zcoil =%.1f A",I);
+printf("\nZ=V/I =%.f Ohm",Z);//total impedance
+printf("\nZ=sqrt((R^2)+(XL-XC)^2) \nXC=%.f Ohm",XC1);//when XL>XC
+printf("\nC=1/2*pi*f*XC =%.e F",C1);
+printf("\nZ=sqrt((R^2)+(XC-XL)^2) \nXC=%.f Ohm",XC2);//when XC>XL
+printf("\nC=%.e F",C2);
diff --git a/1523/CH4/EX4.79/ex4_79.sce b/1523/CH4/EX4.79/ex4_79.sce new file mode 100755 index 000000000..0ad640f32 --- /dev/null +++ b/1523/CH4/EX4.79/ex4_79.sce @@ -0,0 +1,13 @@ +//AC Circuits : example 4.79 :(pg 4.64)
+R=10;
+L=0.01;
+C=100*10^-6;
+f0=(1/(2*%pi*sqrt(L*C)));
+BW=(R/(2*%pi*L));
+f1=f0-(BW/2);
+f2=f0+(BW/2);
+printf("\nR=10 Ohm \nL=0.01H \nC=100uF");
+printf("\nf0=1/2*pi*sqrt(L*C)=%.2f Hz",f0);//resonant frequency
+printf("\nBW=R/2*pi*L =%.2f Hz",BW); //bandwidth
+printf("\nf1=f0-BW/2 \n=%.2f Hz",f1); //lower frequency
+printf("\nf2=f0+BW/2 =%.2f Hz",f2); //higher frequency
\ No newline at end of file diff --git a/1523/CH4/EX4.80/ex4_80.sce b/1523/CH4/EX4.80/ex4_80.sce new file mode 100755 index 000000000..40b97226f --- /dev/null +++ b/1523/CH4/EX4.80/ex4_80.sce @@ -0,0 +1,33 @@ +//AC Circuits : example 4.80 :(pg 4.65)
+R=10;
+L=0.2;
+C=40*10^-6;
+V=100;
+f0=(1/(2*%pi*sqrt(L*C)));
+I0=(V/R);
+P0=((I0^2)*R);
+pf=1;
+Vr=(R*I0);
+Vl=((2*%pi*f0*L)*I0);
+Vc=((1/(2*%pi*f0*C))*I0);
+Q=((1/R)*sqrt(L/C));
+f1=(f0-(R/(4*%pi*L)));
+f2=(f0+(R/(4*%pi*L)));
+printf("\nR=10 Ohm \nL=0.2 H \nC=40uF \nV=100 V");
+printf("\n(i) f0= 1/2*pi*sqrt(LC) =%.1f Hz",f0); //resonant frequency
+printf("\n(ii) I0= V/R =%.f A",I0); //current
+printf("\n(iii) P0=(I0^2)*R =%.f W",P0);//power
+printf("\n(iv) pf=1");//power factor
+printf("\n(v) Rv = R.I =%.f V",Vr);//voltage across resistor
+printf("\n Lv = XL.I =%.1f V",Vl);//voltage across inductor
+printf("\n Cv = XC.I =%.1f V",Vc); //voltage across capacitor
+printf("\n(vi) Q =1/R*sqrt(L/C)=%.2f",Q);//Quality factor
+printf("\n(vii)f1 = f0-R/4.pi.L = %.2f Hz",f1); //half power points
+printf("\nf2=f0+R/4.pi.L = %.1f Hz",f2);
+// x initialisation
+x=[-1:0.1:2*%pi];
+//simple plot
+plot(sin(x))
+
+
+
diff --git a/1523/CH4/EX4.81/ex4_81.sce b/1523/CH4/EX4.81/ex4_81.sce new file mode 100755 index 000000000..09d77fa2e --- /dev/null +++ b/1523/CH4/EX4.81/ex4_81.sce @@ -0,0 +1,16 @@ +//AC Circuits : example 4.81 :(pg 4.66)
+V=200;
+Vc=5000;
+I0=20;
+C=4*10^-6;
+R=V/I0;
+Xco=Vc/I0;
+f0=(1/(2*%pi*Xco*C));
+L=(Xco/(2*%pi*f0));
+printf("\nV=200 V \nI0= 20 A \nVc=5000 V \nC=4uF");
+printf("\nR=V/I0 =%.f Ohm",R);//resistance
+printf("\nXco=Vco/Io =%.f Ohm",Xco);
+printf("\nXco=1/2*pi*f0*C \nf0=1/2*pi*Xco*C =%.2f Hz",f0);
+printf("\nat resonance Xco=Xlo \nXlo=%.f Ohm",Xco);
+printf("\nXlo=2*pi*f0*L \nL=%.2f H",L);
+
diff --git a/1523/CH4/EX4.82/ex4_82.sce b/1523/CH4/EX4.82/ex4_82.sce new file mode 100755 index 000000000..f72590f7a --- /dev/null +++ b/1523/CH4/EX4.82/ex4_82.sce @@ -0,0 +1,17 @@ +//AC Circuits : example 4.82 :(pg 4.66)
+V=230;
+f0=50;
+I0=2;
+Vco=500;
+R=V/I0;
+Xco=Vco/I0;
+C=(1/(2*%pi*f0*Xco));
+L=(Xco/(2*%pi*f0));
+printf("\nV = 230 V \nf0 = 50 Hz \nI0 = 2A \nVco = 500 V");
+printf("\nR=V/I0 =%.f Ohm",R);
+printf("\nXco=Vco/I0 =%.f Ohm",Xco);
+printf("\nXco=1/2.pi.f0.C \nC= %.e F",C);//capacitance
+printf("\nXco=Xlo \nXlo=%.f Ohm",Xco);//at resonance
+printf("\nXlo=2.pi.f0.L \nL=%.3f H",L);//inductance
+
+
diff --git a/1523/CH4/EX4.83/ex4_83.sce b/1523/CH4/EX4.83/ex4_83.sce new file mode 100755 index 000000000..31e08a90c --- /dev/null +++ b/1523/CH4/EX4.83/ex4_83.sce @@ -0,0 +1,12 @@ +//AC Circuits : example 4.82 :(pg 4.66)
+R=2;
+L=0.01;
+V=200;
+f0=50;
+C=(1/(4*(%pi)^2*L*(f0^2)));
+I0=V/R;
+Vco=I0*(1/(2*%pi*f0*C));
+printf("\nR= 2 Ohm \nL= 0.01 H \nV=200 V \nf0=50 Hz \nf0=1/(2.pi.sqrt(LC)");
+printf("\nC = %.e F",C);//capacitance
+printf("\nI0= V/R =%.f A",I0);//current
+printf("\nVco=I0.Xco \n=%.2f V",Vco); //voltage across capacitor
diff --git a/1523/CH4/EX4.84/ex4_84.sce b/1523/CH4/EX4.84/ex4_84.sce new file mode 100755 index 000000000..69b22536e --- /dev/null +++ b/1523/CH4/EX4.84/ex4_84.sce @@ -0,0 +1,22 @@ +//AC Circuits : example 4.84 :(pg 4.67)
+BW=400;
+Vco=500;
+R=100;
+Vm=10;
+V=(Vm/sqrt(2));
+I0=V/R;
+L=R/BW;
+Q0=Vco/V;
+C=(L/(Q0*R)^2);
+f0=(1/(2*%pi*sqrt(L*C)));
+f1=(f0-(R/(4*%pi*L)));//lower cut-off frequency
+f2=(f0+(R/(4*%pi*L)));//upper cut-off frequency
+printf("\nv(t)=10sinwt \nVco=5000V \nBW=400rad/s \nR=100 Ohm");
+printf("\nV=%.2f V",V);
+printf("\nI0=V/R=%.4f A",I0);
+printf("\nBW=R/L \nL=%.2f H",L);
+printf("\nQ0=Vco/V =%.2f",Q0);
+printf("\nQ0=1/R*sqrt(L/C) \nC=%.e F",C);
+printf("\nf0=1/2.pi.sqrt(LC)=%.2f Hz",f0);
+printf("\nf1=f0-R/4.pi.L =%.2f Hz",f1);//lower cut-off frequency
+printf("\nf2=f0+R/4.pi.L =%.2f Hz",f2); //upper cut-off frequency
\ No newline at end of file diff --git a/1523/CH4/EX4.85/ex4_85.sce b/1523/CH4/EX4.85/ex4_85.sce new file mode 100755 index 000000000..84d78bf92 --- /dev/null +++ b/1523/CH4/EX4.85/ex4_85.sce @@ -0,0 +1,17 @@ +//AC Circuits : example 4.85 :(pg 4.68)
+R=500;
+f1=100;
+f2=10*10^3;
+BW=f2-f1;
+f0=((f1+f2)/2);
+L=(R/(2*%pi*BW));
+XL0=(2*%pi*f0*L);
+C=(1/(2*%pi*f0*XL0));
+Q0=((1/R)*(sqrt(L/C)));
+printf("\nR= 500 Ohm \nf1 = 100 Hz \nf2=10kHz \nBW= f2-f1 =%.f Hz",BW);
+printf("\nf1=f0-BW/2 ------(i) \nf2=f0+BW/2 ------(ii) \nf1+f2 =2f0 \nf0=(f1+f2)/2 =%.f Hz",f0);
+printf("\nBW=R/2.pi.f0.L \nL=%.6f H",L);
+printf("\nXL0=2.pi.f0.L =%.2f Ohm",XL0);
+printf("\nXL0=XC0 =%.2f Ohm",XL0);//at resonance
+printf("\nXC0 =1/2.pi.f0.C \nC=%.e F",C);
+printf("\nQ0=(1/R*sqrt(L/C)) =%.4f",Q0);
diff --git a/1523/CH4/EX4.87/ex4_87.sce b/1523/CH4/EX4.87/ex4_87.sce new file mode 100755 index 000000000..576e1deee --- /dev/null +++ b/1523/CH4/EX4.87/ex4_87.sce @@ -0,0 +1,21 @@ +//AC Circuits : example 4.87 :(pg 4.69 & 4.70) +f0=10^6; +C1=500*10^-12; +C2=600*10^-12; +C=500*10^-12; +x=((2*%pi*f0)^2); +L=(1/(x*C)); +XL=(2*%pi*f0*L); +y=2*%pi*f0*C2; +XC=(1/y); +R=sqrt(((XL-XC)^2)/3); +x=sqrt(L/C); +Q0=((1/R)*x); +printf("\nf0= 1MHz \nC1=500pF \nC2=600pF \nC=500pF");//At resonance +printf("\nf0=1/2.pi.sqrt(LC)\nL=%.12f H",L); +printf("\nXL=2.pi.f0.L =%.2f Ohm",XL); +printf("\nXC=1/2.pi.f0.C \nXC=%.2f Ohm",XC); +printf("\nI=1/2.I0 \nV/Z=1/2.V/R \nZ=2R"); +printf("\nsqrt((R^2)-(XL-XC)^2)=2R \nR=%.2f Ohm",R);//Resistance of Inductor +printf("\nQ0=1/R.sqrt(L/C) \n=%.f",Q0); + diff --git a/1523/CH4/EX4.88/ex4_88.sce b/1523/CH4/EX4.88/ex4_88.sce new file mode 100755 index 000000000..6ed579734 --- /dev/null +++ b/1523/CH4/EX4.88/ex4_88.sce @@ -0,0 +1,12 @@ +//AC Circuits : example 4.88 :(pg 4.72)
+R=20;
+C=100*10^-6;
+L=0.2;
+DR=(L/(C*R));
+x=(1/(L*C));
+y=((R/L)^2);
+f0=((1/(2*%pi))*sqrt(x-y));
+DR=(L/(C*R));
+printf("\nR=20 Ohm \nL=0.2 H \nC=100uF");
+printf("\nf0=1/2.pi.sqrt(1/LC-R^2/L^2) \n=%.2f Hz",f0);
+printf("\n dynamic resistance =L/CR \n= %.f Ohm",DR);
\ No newline at end of file diff --git a/1523/CH4/EX4.89/ex4_89.sce b/1523/CH4/EX4.89/ex4_89.sce new file mode 100755 index 000000000..503513ec3 --- /dev/null +++ b/1523/CH4/EX4.89/ex4_89.sce @@ -0,0 +1,20 @@ +//AC Circuits : example 4.89 :(pg 4.72 & 4.73)
+R=20;
+L=200*10^-6;
+f=10^6;
+V=230;
+Rs=8000;
+XL=2*%pi*f*L;
+x=((2*%pi*f)^2);
+y=((R/L)^2);
+C=(1/((x+y)*L));
+Q=((2*%pi*f*L)/R);
+Z=(L/(C*R));
+ZT=(Rs+Z);
+IT=(V/ZT);
+printf("\nR=20 Ohm \nL=200uH \nf=10^6 \nV=230 V \nRs=8000 Ohm \nXL=2.pi.f.L =%.1f Ohm",XL);
+printf("\nf0=1/2.pi.sqrt(1/LC-R^2/L^2) \nC=%.e F",C);
+printf("\nQ0=2.pi.f.L/R =%.2f",Q);//quality factor
+printf("\nZ=L/CR \n=%.f Ohm",Z);//dynamic impedance
+printf("\nZt=%.f Ohm",ZT);//total equivalent Z at resonance
+printf("\nIt=%.e A",IT);//total ckt current
\ No newline at end of file diff --git a/1523/CH5/EX5.1/5_1.sce b/1523/CH5/EX5.1/5_1.sce new file mode 100755 index 000000000..472175bad --- /dev/null +++ b/1523/CH5/EX5.1/5_1.sce @@ -0,0 +1,37 @@ +//Steady-State AC Analysis
+//page no - 5.1
+//example 5.1
+// A = p2z(R,Theta) - Convert from polar to complex form.
+// R is a matrix containing the magnitudes
+// Theta is a matrix containing the phase angles (in degrees).
+function [A] = p2z(R,Theta)
+ if argn(2) <> 2 then
+ error("incorrect number of arguments.");
+ end
+ if ~and(size(R) == size(Theta)) then
+ error("arguments must be of the same dimension.");
+ end
+ A = R.*exp(%i*%pi*Theta/180.);
+endfunction
+
+A=p2z(100,45);//converting from polar to rectangular
+disp(A);
+disp("Applying KVL to Mesh 1 we get :");
+disp("(3+j14)I1-j10I2=70.710678+j70.710678");//Equation 1
+disp("Applying KVL to Mesh 2 we get :");
+disp("I1=0")//equation 2
+disp("putting equation 2 in equation 1:")//putting equation 2 in equation 1
+disp("I2=(70.710678+j70.710678)/-j10");
+I2=A/10*%i;
+disp(I2);
+function [r,th]=rect2pol(x,y)
+//rectangle to polar coordinate conversion
+//based on "Scilab from a Matlab User's Point of View", Eike Rietsch,
+2002
+ r=sqrt(x^2+y^2);
+ th = atan(y,x)*180/%pi;
+endfunction
+[r,th]=rect2pol(- 7.0710678,7.0710678)//converting back to polar form
+disp(r);
+disp(th);
+disp("I2= mag - 10 ang - 135 A");
diff --git a/1523/CH5/EX5.11/5_11.sce b/1523/CH5/EX5.11/5_11.sce new file mode 100755 index 000000000..70b20db3e --- /dev/null +++ b/1523/CH5/EX5.11/5_11.sce @@ -0,0 +1,32 @@ +//Steady-State AC Analysis
+//page no - 5.10
+//example 5.11
+disp("when mag-50 ang-0 source is acting alone :");
+function [A] = p2z(R,Theta)
+ if argn(2) <> 2 then
+ error("incorrect number of arguments.");
+ end
+ if ~and(size(R) == size(Theta)) then
+ error("arguments must be of the same dimension.");
+ end
+ A = R.*exp(%i*%pi*Theta/180.);
+endfunction
+A=p2z(50,0); //converting polar to rec
+disp(A);
+disp("when mag-4 ang-0 source is acting alone :");
+Vab2=0;
+disp("By Super-position theorem :")
+disp("Vab=Vab1+Vab2");
+Vab=A+Vab2;
+printf("Vab = %.f", Vab);
+function [r,th]=rect2pol(x,y)
+//rectangle to polar coordinate conversion
+//based on "Scilab from a Matlab User's Point of View", Eike Rietsch,
+2002
+ r=sqrt(x^2+y^2);
+ th = atan(y,x)*180/%pi;
+endfunction
+[r,th]=rect2pol(50,0) //converting back to polar form
+disp(r);
+disp(th);
+disp("Vab= mag-50 ang-0 V")
diff --git a/1523/CH5/EX5.2/5_2.sce b/1523/CH5/EX5.2/5_2.sce new file mode 100755 index 000000000..2a60d2f65 --- /dev/null +++ b/1523/CH5/EX5.2/5_2.sce @@ -0,0 +1,31 @@ +//Steady-State AC Analysis
+//page no - 5.1
+//example 5.1
+// A = p2z(R,Theta) - Convert from polar to complex form.
+// R is a matrix containing the magnitudes
+// Theta is a matrix containing the phase angles (in degrees).
+function [A] = p2z(R,Theta)
+ if argn(2) <> 2 then
+ error("incorrect number of arguments.");
+ end
+ if ~and(size(R) == size(Theta)) then
+ error("arguments must be of the same dimension.");
+ end
+ A = R.*exp(%i*%pi*Theta/180.);
+endfunction
+A=p2z(10,30);
+disp(A); //converting to rectangular form
+M=[8-2*%i, -3, 0; -3, 8+5*%i, -5; 0, -5 7-2*%i];
+N=[A, 0, 0]'
+O=inv(M);
+X=O*N;
+disp(X);
+function [r,th]=rect2pol(x,y)
+//rectangle to polar coordinate conversion
+//based on "Scilab from a Matlab User's Point of View", Eike Rietsch,
+2002
+ r=sqrt(x^2+y^2);
+ th = atan(y,x)*180/%pi;
+endfunction
+[r,th]=rect2pol(1.3340761,- 0.5209699)//converting back to polar form
+
diff --git a/1523/CH6/EX6.10/ex6_10.sce b/1523/CH6/EX6.10/ex6_10.sce new file mode 100755 index 000000000..01015e15d --- /dev/null +++ b/1523/CH6/EX6.10/ex6_10.sce @@ -0,0 +1,22 @@ +// Three-Phase Circuits :example 6.10 :(pg 6.16)
+P=1500*10^3;
+pf=0.85;
+VL=2.2*10^3;
+phi=acosd(pf);
+IL=P/(sqrt(3)*VL*pf);
+Iph=IL/sqrt(3);
+AC=Iph*pf;
+RC=Iph*sind(phi);
+IAC=IL*pf;
+IRC=IL*sind(phi);
+printf("\nP=1500kW \npf=0.85 (lagging) \nVL=2.2kV");
+//For Delta-connected load
+printf("\nP=sqrt(3)*VL*IL*cos(phi) \nIL=%.2f A",IL);
+printf("\nIph=IL/sqrt(3)= %.2f A",Iph);
+//AC=Active Component
+printf("\nAC=Iph*cos(phi) =%.2f A",AC); //in each phase of load
+//RC=Reactive Component
+printf("\nRC=Iph*sin(phi) =%.2f A",RC); //in each phase of load
+//For star-connected source
+printf("\nIAC =%.2f A",IAC); // current of AC in each phase of source
+printf("\nIRC =%.2f A",IRC); // current of RC in each phase of source
\ No newline at end of file diff --git a/1523/CH6/EX6.11/ex6_11.sce b/1523/CH6/EX6.11/ex6_11.sce new file mode 100755 index 000000000..c89d33095 --- /dev/null +++ b/1523/CH6/EX6.11/ex6_11.sce @@ -0,0 +1,20 @@ +// Three-Phase Circuits :example 6.11 :(pg 6.16)
+VL=208;
+P=1800;
+IL=10;
+Vph=VL/sqrt(3);
+Zph=(Vph/IL);
+pf=P/(sqrt(3)*VL*IL);
+phi=acosd(pf);
+Rph=Zph*pf;
+Xph=Zph*sind(phi);
+printf("\nVL=208 V \nP=1800 W \nIL= 10 A");
+//For a Wye-connected load,
+printf("\nVph = VL/sqrt(3) =%.2f V",Vph);
+printf("\nIph = IL =%.f A",IL);
+printf("\nZph=Vph/Iph =%.2f Ohm",Zph);
+printf("\nP=sqrt(3)*VL*IL*cos(phi)");
+printf("\ncos(phi)=%.1f degrees",pf);
+printf("\nphi=%.f degrees",phi);
+printf("\nRph=Zph*cos(phi) =%.2f Ohm",Rph);
+printf("\nXph=Zph*sin(phi) =%.2f Ohm",Xph);
\ No newline at end of file diff --git a/1523/CH6/EX6.12/ex6_12.sce b/1523/CH6/EX6.12/ex6_12.sce new file mode 100755 index 000000000..33e0bbfb2 --- /dev/null +++ b/1523/CH6/EX6.12/ex6_12.sce @@ -0,0 +1,27 @@ +// Three-Phase Circuits :example 6.12 :(pg 6.17)
+P=100*10^3;
+IL=80;
+VL=1100;
+f=50;
+Vph=(VL/sqrt(3));
+Iph=IL;
+Zph=(Vph/Iph);
+pf=(P/(sqrt(3)*VL*IL));
+phi=acosd(pf);
+Rph=Zph*pf;
+Xph=Zph*sind(phi);
+C=(1/(2*%pi*f*Xph));
+printf("\nP=100kW \nIL=80 A \nVL=1100 V \nf=50 Hz");
+//For a star-connected load
+printf("\nVph =V/sqrt(3) =%.2f",Vph);
+printf("\nIph=IL =%.f A",Iph);
+printf("\nZph=(Vph/Iph)= %.2f Ohm",Zph);
+printf("\nP=sqrt(3)*VL*IL*cos(phi)");
+printf("\ncos(phi)=%.3f (leading)",pf);
+printf("\nphi=%.f degrees",phi);
+printf("\nRph=Zph*cos(phi) =%.2f Ohm",Rph);
+printf("\nXph =Zph*sin(phi) =%.f Ohm",Xph);
+// as current is leading,reactance will be capacitive in nature
+printf("\nXC=(1/2*pi*C)");
+printf("\nC=%.e F",C);
+
diff --git a/1523/CH6/EX6.13/ex6_13.sce b/1523/CH6/EX6.13/ex6_13.sce new file mode 100755 index 000000000..d93661ae1 --- /dev/null +++ b/1523/CH6/EX6.13/ex6_13.sce @@ -0,0 +1,19 @@ +// Three-Phase Circuits :example 6.13 :(pg 6.17 & 6.18)
+VL=400;
+IL=34.65;
+P=14.4*10^3;
+Iph=(IL/sqrt(3));
+Zph=(VL/Iph);
+pf=(P/(sqrt(3)*VL*IL));
+phi=acosd(pf);
+Rph=(Zph*pf);
+Xph=(Zph*sind(phi));
+printf("\nVL=400 V \nIL=34.65 A \nP=14.4kW");
+//For a Delta-connected load
+printf("\nVL=Vph=%.f V",VL);
+printf("\nIph=IL/sqrt(3)=%.f A",Iph);
+printf("\nZph=Vph/Iph =%.f Ohm",Zph);
+printf("\ncos(phi)=P/sqrt(3).VL.IL =%.1f",pf);
+printf("\nphi=%.2f degrees",phi);
+printf("\nRph=Zph.cos(phi) =%.f Ohm",Rph);
+printf("\nXph=Zph.sin(phi)=%.f Ohm",Xph);
diff --git a/1523/CH6/EX6.14/ex6_14.sce b/1523/CH6/EX6.14/ex6_14.sce new file mode 100755 index 000000000..a010a787c --- /dev/null +++ b/1523/CH6/EX6.14/ex6_14.sce @@ -0,0 +1,20 @@ +// Three-Phase Circuits :example 6.14 :(pg 6.18)
+P=10.44*10^3;
+VL=200;
+pf=0.5;
+x=acosd(pf);
+IL=(P/(sqrt(3)*VL*pf));
+Iph=(IL/sqrt(3));
+Zph=(VL/Iph);
+Rph=(Zph*pf);
+Xph=(Zph*sind(x));
+Q=(sqrt(3)*VL*IL*sind(x));
+printf("\nP=10.44kW \nVL=200 V \npf=0.5(leading)");
+// For a delta-connected load,
+printf("\nVL=Vph=%.f V",VL);
+printf("\nP=qrt(3)*VL*IL*cos(phi) \nIL=%.2f A",IL);
+printf("\nIph=IL/sqrt(3) =%.1f A",Iph);
+printf("\nZph=Vph/Iph =%.2f Ohm",Zph);
+printf("\nRph =Zph.cos(phi)=%.3f Ohm",Rph);
+printf("\nXph=Zph.sin(phi)=%.2f Ohm",Xph);
+printf("\nQ=sqrt(3)*VL*IL*sin(phi) = %.2f VAR",Q);
\ No newline at end of file diff --git a/1523/CH6/EX6.17/ex6_17.sce b/1523/CH6/EX6.17/ex6_17.sce new file mode 100755 index 000000000..bdaa7e26f --- /dev/null +++ b/1523/CH6/EX6.17/ex6_17.sce @@ -0,0 +1,20 @@ +// Three-Phase Circuits :example 6.17 :(pg 6.20)
+Po=200*10^3;
+f=50;
+VL=440;
+N=0.91;
+pf=0.86;
+phi=acosd(pf);
+Pi=(Po/N);
+IL=(Pi/(sqrt(3)*VL*pf));
+Iph=(IL/sqrt(3));
+AC=(Iph*pf);
+RC=(Iph*sind(phi));
+printf("\nPo=200 kW \nf=50Hz \nVL= 440 V \nN=0.91 \npf=0.86");
+//For a delta connected load (induction motor)
+printf("\nVph =VL =%.f V",VL);
+printf("\nN=(Po/Pi)");//efficiency
+printf("\nPi=%.f W",Pi);//Input power
+printf("\nPi=sqrt(3)*VL*IL*cos(phi) \nIL=%.1f A",IL);
+printf("\nAC = (Iph*cos(phi))=%.1f A",AC);//Active component of phase current
+printf("\nRC=(Iph*sin(phi)) =%.1f A",RC);//Reactive component of phase current
\ No newline at end of file diff --git a/1523/CH6/EX6.18/ex6_18.sce b/1523/CH6/EX6.18/ex6_18.sce new file mode 100755 index 000000000..d9b581141 --- /dev/null +++ b/1523/CH6/EX6.18/ex6_18.sce @@ -0,0 +1,26 @@ +// Three-Phase Circuits :example 6.18 :(pg 6.20)
+VL=400;
+Po=112*10^3;
+pf=0.86;
+phi=(acosd(pf));
+N=0.88; //Efficiency
+Pi=(Po/N);
+IL=(Pi/(sqrt(3)*VL*pf));
+Iph=(IL/sqrt(3));
+AC=(Iph*pf);
+RC=(Iph*sind(phi));
+Aac=(IL*pf);
+Arc=(IL*sind(phi));
+printf("\nVL=400 V \nPo=112kW \npf=0.86 \nN=0.88");
+//For a mesh-connected load (induction motor)
+printf("\nVph=VL=%.f V",VL);
+printf("\nN=Po/Pi \nPi=%.2f W",Pi);//Input power
+printf("\nPi=sqrt(3)*VL*IL*cos(phi) \nIL=%.1f A",IL);
+printf("\nIph=IL/sqrt(3) =%.2f A",Iph);
+//current in star-connected load=line current drawn by motor
+printf("\nIA=%.1f A",IL);//current in alternate phase
+printf("\nAC=Iph*cos(phi) =%.2f A",AC);//active component in each phase of motor
+printf("\nRC=Iph*sin(phi) =%.2f A",RC);//Reactive component in each phase of motor
+printf("\nAac=%.1f A",Aac);//active component in each alternate phase
+printf("\nArc=%.2f A",Arc);//reactive component in each alternate phase
+
diff --git a/1523/CH6/EX6.19/ex6_19.sce b/1523/CH6/EX6.19/ex6_19.sce new file mode 100755 index 000000000..db1489ef9 --- /dev/null +++ b/1523/CH6/EX6.19/ex6_19.sce @@ -0,0 +1,30 @@ +// Three-Phase Circuits :example 6.19 :(pg 6.21 & 6.22)
+VL=400;
+IL=5;
+Vph=(VL/sqrt(3));
+Zph=(Vph/IL);
+Iph=(IL/sqrt(3));
+Vph1=(Iph*Zph);
+printf("\nVl=400 V \nIL=5 A");
+//For a star-connected load
+printf("\nVph=VL/sqrt(3) =%.2f V",Vph);
+printf("\nIph=IL=%.f A",IL);
+printf("\nZph=Rph=Vph/Iph =%.2f Ohm",Zph);
+//For a delta connected load
+printf("\nIL=5 A \nRph=%.2f Ohm",Zph);
+printf("\nIph=IL/sqrt(3)=%.2f A",Iph);
+printf("\nVph=Iph*Rph \n=%.2f V",Vph1);
+//Voltage needed is 1/3 of the star value
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/1523/CH6/EX6.20/ex6_20.sce b/1523/CH6/EX6.20/ex6_20.sce new file mode 100755 index 000000000..e98ae7dbf --- /dev/null +++ b/1523/CH6/EX6.20/ex6_20.sce @@ -0,0 +1,32 @@ +// Three-Phase Circuits :example 6.20 :(pg 6.22 & 6.23)
+VL=400;
+Zph=100;
+Vph=(VL/sqrt(3));
+Iph=(Vph/Zph);
+pf=1;
+P=(sqrt(3)*VL*Iph*pf);
+Iph1=(VL/Zph);
+IL1=(sqrt(3)*Iph1);
+P1=(sqrt(3)*VL*IL1*pf);
+I1=(VL/200);
+Pa=(VL*I1);
+I2=(VL/100);
+Pb=(VL*I1*I2);
+printf("\nVL=400 V \nZph = 100 Ohm");
+//For a star connected load
+printf("\nVph=VL/sqrt(3) =%.2f V",Vph);
+printf("\nIph = VL/Zph =%.2f A",Iph);
+printf("\nIL=Iph =%.2f A",Iph);
+printf("\ncos(phi)=1 \nP=sqrt(3).VL.IL.cos(phi) =%.2f W",P);
+//For a delta connected load
+printf("\nVph=VL=%.f V",VL);
+printf("\nIph=Vph/Zph =%.f A",Iph1);
+printf("\nIL=sqrt(3)*Iph =%.2f A",IL1);
+printf("\nP=sqrt(3)*VL*IL*cos(phi) =%.2f W",P1);
+//When resistors are open circuited
+//(i)Star connection
+printf("\nI= %.f A",I1);//Current in lines
+printf("\nP=%.f W",Pa);//Power taken from mains
+//(ii)Delta connection
+printf("\nI=%.f A",I2);//Current in each phase
+printf("\nP=%.f W",Pb);//Power taken from mains
\ No newline at end of file diff --git a/1523/CH6/EX6.27/ex6_27.sce b/1523/CH6/EX6.27/ex6_27.sce new file mode 100755 index 000000000..ec5b6f116 --- /dev/null +++ b/1523/CH6/EX6.27/ex6_27.sce @@ -0,0 +1,21 @@ +// Three-Phase Circuits :example 6.27 :(pg 6.30 & 6.31)
+W1=2000;
+W2=500;
+W3=-500;
+x=(sqrt(3)*((W1-W2)/(W1+W2)));
+phi=atand(x);
+pf=cosd(phi);
+y=(sqrt(3)*((W1-W3)/(W1+W3)));
+phi1=atand(y);
+pf1=cosd(phi1);
+printf("\nW1 = 2000W \nW2 = 500 W");
+//(i) When both readings are same
+printf("\nWhen W1 &W2 are same \nW1 = 2000W \nW2 = 500 W");
+printf("\ntan(phi)= sqrt(3).(W1-W2/W1+W2) =%.3f ",x);
+printf("\nphi=%.3f degrees",phi);
+printf("\npf=cos(phi)=%.3f ",pf);//Power factor
+//(ii) When the latter reading is obtained after reversing the connection to the current coil of 1 instrument
+printf("\nWhen W2 is reversed \nW1= 2000 W \nW2= -500 W");
+printf("\ntan(phi)= sqrt(3).(W1-W2/W1+W2) =%.3f ",y);
+printf("\nphi=%.2f degrees",phi1);
+printf("\npf=cos(phi)=%.2f ",pf1);//Power factor
\ No newline at end of file diff --git a/1523/CH6/EX6.28/ex6_28.sce b/1523/CH6/EX6.28/ex6_28.sce new file mode 100755 index 000000000..2e70ac0b6 --- /dev/null +++ b/1523/CH6/EX6.28/ex6_28.sce @@ -0,0 +1,14 @@ +// Three-Phase Circuits :example 6.28 :(pg 6.31)
+W1=5*10^3;
+W2=-(0.5*10^3);
+P=(W1+W2);
+x=(sqrt(3)*((W1-W2)/(W1+W2)));
+phi=atand(x);
+pf=cosd(phi);
+printf("\nW1=5kW \W2=0.5kW");
+// When the latter readings are obtained after the reversal of the current coil terminals of the wattmeter
+printf("\nWhen W2 is reversed \nW1=5kW \nW2=-0.5kW");
+printf("\nP=W1+W2 = %.1f W",P);//Power
+printf("\ntan(phi)=sqrt(3)*(W1-W2/W1+W2) =%.2f",x);
+printf("\nphi= %.2f degrees ",phi);
+printf("\npf=cos(phi) =%.2f",pf);//Power factor
diff --git a/1523/CH6/EX6.29/ex6_29.sce b/1523/CH6/EX6.29/ex6_29.sce new file mode 100755 index 000000000..1faeb1481 --- /dev/null +++ b/1523/CH6/EX6.29/ex6_29.sce @@ -0,0 +1,17 @@ +// Three-Phase Circuits :example 6.29 :(pg 6.31)
+S=10*10^3;
+pf=0.342;
+x=(S/sqrt(3));
+phi=acosd(pf);
+W1=x*cosd(30+phi);
+W2=x*cosd(30-phi);
+printf("\nS=10kVA \npf=0.342 \nS=sqrt(3)*VL*IL");
+printf("\nVL*IL=%.f VA",x);
+printf("\ncos(phi)=%.3f",pf);
+printf("\nphi=%.f degrees",phi);
+//(i)when power factor is leading
+printf("\npf leading \nW1=VL.IL.cos(30+phi)= %.f W",W1);
+printf("\n \nW2=VL.IL.cos(30-phi)= %.f W",W2);
+//(i)when power factor is lagging
+printf("\npf lagging \nW1=VL.IL.cos(30-phi)= %.f W",W2);
+printf("\n \nW2=VL.IL.cos(30+phi)= %.f W",W1);
\ No newline at end of file diff --git a/1523/CH6/EX6.30/ex6_30.sce b/1523/CH6/EX6.30/ex6_30.sce new file mode 100755 index 000000000..6c711a675 --- /dev/null +++ b/1523/CH6/EX6.30/ex6_30.sce @@ -0,0 +1,16 @@ +// Three-Phase Circuits :example 6.30 :(pg 6.31 & 6.32)
+VL=2000;
+N=0.9;//efficiency
+W1=300*10^3;
+W2=100*10^3;
+P=W1+W2;
+x=(sqrt(3)*((W1-W2)/(W1+W2)));
+phi=atand(x);
+pf=cosd(phi);
+IL=(P/(sqrt(3)*VL*pf));
+printf("\nVL=2000 V \nN=0.9 \nW1=300kW \nW2=100kW");
+printf("\nP=W1+W2 =%.f W",P);//Input Power
+printf("\ntan(phi)=(sqrt(3)*(W1-W2/W1+W2)) =%.3f",x);
+printf("\nphi=%.2f degrees ",phi);
+printf("\ncos(phi)=%.2f",pf);//Power factor
+printf("\nP=sqrt(3)*VL*IL*cos(phi) \nIL=%.2f A",IL);
diff --git a/1523/CH6/EX6.31/ex6_31.sce b/1523/CH6/EX6.31/ex6_31.sce new file mode 100755 index 000000000..b4a80b0b6 --- /dev/null +++ b/1523/CH6/EX6.31/ex6_31.sce @@ -0,0 +1,15 @@ +// Three-Phase Circuits :example 6.31 :(pg 6.32)
+VL=220;
+Po=11.2*10^3;
+N=0.88;//efficiency
+IL=38;
+Pi=(Po/N);
+x=(Pi/(sqrt(3)*VL*IL));
+phi=acosd(x);
+W1=(VL*IL*cosd(30-phi));
+W2=(VL*IL*cosd(30+phi));
+printf("\nVL=220 V \nPo=11.2kW \nN=0.88 \nIL=38A \N=(Po/Pi)= %.2f W",Pi);
+printf("\nPi=sqrt(3)*VL*IL*cos(phi) \ncos(phi)=%.2f lagging",x);
+printf("\nphi=%.2f degrees",phi);
+printf("\nW1 =VL*IL*cos(30-phi) =%.2f W",W1);
+printf("\nW2 =VL*IL*cos(30+phi) =%.2f W",W2);
\ No newline at end of file diff --git a/1523/CH6/EX6.8/ex6_8.sce b/1523/CH6/EX6.8/ex6_8.sce new file mode 100755 index 000000000..d89df955b --- /dev/null +++ b/1523/CH6/EX6.8/ex6_8.sce @@ -0,0 +1,13 @@ +// Three-Phase Circuits :example 6.8 :(pg 6.14)
+VL=440;
+P=50*10^3;
+IL=90;
+Iph=IL/sqrt(3);
+pf=(P/(sqrt(3)*VL*IL));
+S=sqrt(3)*VL*IL;
+printf("\nVL=440 V \nP=50kW \nIL=90 A");
+printf("\nVL=Vph=%.f V",VL);//For delta-connected load
+printf("\nIph=IL/sqrt(3)=%.2f A",Iph);
+printf("\nP=sqrt(3)*VL*IL*cos(phi)");
+printf("\ncos(phi)=%.2f (lagging)",pf);
+printf("\nS=sqrt(3)*VL*IL =%.2f VA",S);
\ No newline at end of file diff --git a/1523/CH6/EX6.9/ex6_9.sce b/1523/CH6/EX6.9/ex6_9.sce new file mode 100755 index 000000000..6356bf859 --- /dev/null +++ b/1523/CH6/EX6.9/ex6_9.sce @@ -0,0 +1,38 @@ +// Three-Phase Circuits :example 6.9 :(pg 6.15)
+IL=15;
+P=11*10^3;
+S=15*10^3;
+VL=S/(sqrt(3)*IL);
+Vph=VL/sqrt(3);
+x=P/S;
+phi=acosd(P/S);
+Q=sqrt(3)*VL*IL*sind(phi);
+Iph=IL;
+Zph=Vph/Iph;
+R=Zph*cosd(phi);
+XL=Zph*sind(phi);
+Vph1=VL;
+Iph1=(Vph1/Zph);
+IL1=sqrt(3)*Iph1;
+P1=sqrt(3)*VL*IL1*cosd(phi);
+Q1=sqrt(3)*VL*IL1*sind(phi);
+printf("\nIL=15 A \nP=11kW \nS=15kVA ");
+//For a star-connected load
+printf("\nS=sqrt(3)*VL*IL \nVL=%.2f V",Vph);
+printf("\ncos(phi)=P/S =%.3f",x);
+printf("\nphi=%.2f degrees",phi);
+printf("\nQ=sqrt(3).VL.IL.sin(phi) = %.1f VAR",Q);
+printf("\nIph=IL = %.f A",IL);
+printf("\nZph=Vph/Iph = %.2f Ohm",Zph);
+printf("\nR= Zph*cos(phi) =%.2f Ohm",R);
+printf("\nXL=Zph*sin(phi)= %.2f Ohm",XL);
+//If these coils are connected in Delta
+printf("\nCph =VL =%.2f V",VL);
+printf("\nZph= %.2f Ohm",Zph);
+printf("\nIph=Vph/Zph =%.2f A ",Iph1);
+printf("\nIL=sqrt(3)*Iph =%.f A",IL1);
+printf("\nP=sqrt(3)*VL*IL*cos(phi) =%.2f W",P1);
+printf("\nQ=sqrt(3)*VL*IL*sin(phi) =%.2f VAR",Q1);
+
+
+
diff --git a/1523/CH7/EX7.11/ex7_11.sce b/1523/CH7/EX7.11/ex7_11.sce new file mode 100755 index 000000000..b7d0be835 --- /dev/null +++ b/1523/CH7/EX7.11/ex7_11.sce @@ -0,0 +1,17 @@ +// Graph Theory : example 7.11 :(pg 7.21 & 7.22)
+printf("\nAa=");
+disp(Aa=[0 -1 1 0 0;0 0 -1 -1 -1;-1 0 0 0 1;1 1 0 1 0]);//Complete incidence matrix
+A=[0 -1 1 0 0;0 0 -1 -1 -1;-1 0 0 0 1];//Reduced incidence matrix
+printf("\nNumber of possible trees = |A*A^T|");//A^T=A'=transpose of A
+x=(A*A');
+disp(x);
+det(x);
+printf("\n|A*A^T|=%.f",det(x));//No. of possible trees
+//Tieset Matrix B
+printf("\ntwigs={3,4,5} \nlinks={1,2} \ntieset 1={1,4,5} \ntieset 2={2,3,4}");
+printf("\nB=");
+disp(B=[1 0 0 -1 1;0 1 1 -1 0]);
+//f-cutset Matrix Q
+printf("\nf-cutset 3={3,2} \nf-cutset 4={4,2,1} \nf-cutset 5={5,1}");
+printf("\nQ=");
+disp(Q=[0 -1 1 0 0;1 1 0 1 0;-1 0 0 0 1]);
\ No newline at end of file diff --git a/1523/CH7/EX7.14/ex7_14.sce b/1523/CH7/EX7.14/ex7_14.sce new file mode 100755 index 000000000..f975e9f83 --- /dev/null +++ b/1523/CH7/EX7.14/ex7_14.sce @@ -0,0 +1,34 @@ +//Graph Theory : example 7.14 :(pg 7.37 & 7.38)
+//Tieset Matrix B
+printf("\ntieset1={1,4,5} \ntieset2={2,4,6} \ntieset={3,5,6} \nB=");
+B=[1 0 0 1 1 0;0 1 0 -1 0 -1;0 0 1 0 -1 1];
+disp(B);
+printf("\nThe KVL equation in matrix form \nB.Zb.(B^T).Il = B.Vs-B.Zb.Is");
+printf("\nB.Zb.(B^T).Il = B.Vs \nZb=");//Is=0
+Zb=diag([1,1,1,2,2,2]);
+disp(Zb);
+printf("\n(B^T)=");
+disp(B');
+Vs=[2;0;0;0;0;0];
+printf("\nVs=");
+disp(Vs);
+printf("\nB.Zb=");
+x=(B*Zb);
+disp(x);
+printf("\nB.Zb.(B^T)=");
+y=(x*B');
+disp(y);
+printf("\nB.Vs=");
+z=(B*Vs);
+disp(z);
+printf("\nLoad currents:");
+M=[5 -2 -2;-2 5 -2;-2 -2 5];
+H=inv(M);
+N=[2;0;0];
+X=H*N;
+disp(X);
+printf("\nIl1=0.857 A \nIl2=0.571 A \nIl3=0.571 A");
+printf("\nBranch currents:");
+P=(B')*X;
+disp(P);//Currents in amperes
+
diff --git a/1523/CH7/EX7.15/ex7_15.sce b/1523/CH7/EX7.15/ex7_15.sce new file mode 100755 index 000000000..aadb4469b --- /dev/null +++ b/1523/CH7/EX7.15/ex7_15.sce @@ -0,0 +1,30 @@ +//Graph Theory : example 7.15 :(pg 7.38 & 7.39)
+//Tieset Matrix B
+printf("\ntieset1={1,4,6} \ntieset2={2,5,6} \ntieset={3,5,4} \nB=");
+B=[1 0 0 1 0 1;0 1 0 0 1 -1;0 0 1 -1 -1 0];
+disp(B);
+printf("\nThe KVL equation in matrix form \nB.Zb.(B^T).Il = B.Vs-B.Zb.Is");
+printf("\nB.Zb.(B^T).Il = B.Vs \nZb=");//Is=0
+Zb=diag([6,4,3,4,6,2]);
+disp(Zb);
+printf("\n(B^T)=");
+disp(B');
+Vs=[12;-6;-8;0;0;0];
+printf("\nVs=");
+disp(Vs);
+printf("\nB.Zb=");
+x=(B*Zb);
+disp(x);
+printf("\nB.Zb.(B^T)=");
+y=(x*B');
+disp(y);
+printf("\nB.Vs=");
+z=(B*Vs);
+disp(z);
+printf("\nLoad currents:");
+M=[12 -2 -4;-2 12 -6;-4 -6 12];
+H=inv(M);
+N=[12;-6;-8];
+X=H*N;
+disp(X);
+printf("\nIl1=0.55 A \nIl2=-0.866 A \nIl3=-0.916 A");
diff --git a/1523/CH7/EX7.19/ex7_19.sce b/1523/CH7/EX7.19/ex7_19.sce new file mode 100755 index 000000000..584719d1f --- /dev/null +++ b/1523/CH7/EX7.19/ex7_19.sce @@ -0,0 +1,31 @@ +//Graph Theory : example 7.15 :(pg 7.34 & 7.35)
+Q=[1 -1 0 0;0 -1 1 1];
+printf("\nQ=");
+disp(Q);
+printf("\nThe KCL equation in matrix form is given by");
+printf("\nQ.Yb.(Q^T).Vl=Q.Is-Q.Yb.Vs");
+printf("\nQ.Yb.(Q^T).Vl=Q.Is");//Vs=0
+Yb=diag([5,5,5,10]);
+Is=[-10;0;0;0];
+printf("\nYb=");
+disp(Yb);
+printf("\n(Q^T)=");
+disp(Q');
+printf("\nIs=");
+disp(Is);//current entering into nodes is taken as negative
+x=(Q*Yb);
+printf("\nQ.Yb=");
+disp(x);
+y=(x*Q');
+printf("\nQ.Yb.(Q^T)=");
+disp(y);
+z=(Q*Is);
+printf("\nQ.Is=");
+disp(z);
+printf("\nLoad voltages:");
+M=[10 5;5 20];
+P=inv(M);
+N=[-10;0];
+X=(P*N);
+disp(X);
+printf("\nvl1=-1.14 V \nvl2=0.28 V");
diff --git a/1523/CH7/EX7.20/ex7_20.sce b/1523/CH7/EX7.20/ex7_20.sce new file mode 100755 index 000000000..77aac3a7d --- /dev/null +++ b/1523/CH7/EX7.20/ex7_20.sce @@ -0,0 +1,47 @@ +//Graph Theory : example 7.20 :(pg 7.35 & 7.36)
+printf("\nf-cutset1={1,4,5,6} \nf-cutset2={2,4,5} \nf-cutset3={3,4,6}");
+Q=[1 0 0 -1 -1 1;0 1 0 -1 -1 0;0 0 1 -1 0 1];
+printf("\nQ=");
+disp(Q);
+printf("\nThe KCL equation in matrix form is given by");
+printf("\nQ.Yb.(Q^T).Vl=Q.Is-Q.Yb.Vs");
+printf("\nQ.Yb.(Q^T).Vl=Q.Is");//Is=0
+Yb=diag([0.2,0.2,0.2,0.1,0.5,0.1]);
+Vs=[910;0;0;0;0;0];
+Is=[0;0;0;0;0;0];
+printf("\nYb=");
+disp(Yb);
+printf("\nVs=");
+disp(Vs);
+printf("\nIs=");
+disp(Is);
+x=(Q*Yb);
+printf("\nQ.Yb=");
+disp(x);
+y=(x*Q');
+printf("\nQ.Yb.(Q^T)=");
+disp(y);
+z=(x*Vs);
+printf("\nQ.Yb.Vs=");
+disp(z);
+printf("\nQ.Is=");
+u=(Q*Is);
+disp(Q*Is);
+v=(u-z);
+printf("\nQ.Is-Q.Yb.Vs=");
+disp(v);
+printf("\nLoad voltages:");
+M=[0.9 0.6 0.2;0.6 0.8 0.1;0.2 0.1 0.3];
+P=inv(M);
+N=[-182;0;0];
+X=(P*N);
+disp(X);
+printf("\nvl1=-460 V \nvl2=320 V \nvl3=200 V");
+
+
+
+
+
+
+
+
diff --git a/1523/CH7/EX7.21/ex7_21.sce b/1523/CH7/EX7.21/ex7_21.sce new file mode 100755 index 000000000..9bc2ee822 --- /dev/null +++ b/1523/CH7/EX7.21/ex7_21.sce @@ -0,0 +1,44 @@ +//Graph Theory : example 7.22 :(pg 7.38 & 7.39)
+printf("\ntwigs={1,2} \nf-cutset1={1,4} \nf-cutset2={2,3}");
+Q=[1 0 0 -1;0 1 -1 0];
+printf("\nQ=");
+disp(Q);
+printf("\nThe KCL equation in matrix form is given by");
+printf("\nQ.Yb.(Q^T).Vl=Q.Is-Q.Yb.Vs");
+Yb=diag([0.25,0.5,0.25,0.5]);
+Vs=[1;1;0;0];
+Is=[0;0;0.5;-0.5];
+printf("\nYb=");
+disp(Yb);
+printf("\n(Q^T)=");
+disp(Q');
+printf("\nVs=");
+disp(Vs);
+printf("\nIs=");
+disp(Is);
+x=(Q*Yb);
+printf("\nQ.Yb=");
+disp(x);
+y=(x*Q');
+printf("\nQ.Yb.(Q^T)=");
+disp(y);
+printf("\nQ.Is=");
+u=(Q*Is);
+disp(Q*Is);
+z=(x*Vs);
+printf("\nQ.Yb.Vs=");
+disp(z);
+v=(u-z);
+printf("\nQ.Is-Q.Yb.Vs=");
+disp(v);
+printf("\nLoad voltages:");
+M=[0.75 0;0 0.75];
+P=inv(M);
+N=[0.25;-1];
+X=(P*N);
+disp(X);
+printf("\nvl1=0.33 V \nvl2=-1.33 V");
+vl2=-1.33;
+v=1+vl2;
+printf("\nV=%.2f",v);
+
diff --git a/1523/CH7/EX7.7/ex7_7.sce b/1523/CH7/EX7.7/ex7_7.sce new file mode 100755 index 000000000..a2bc49482 --- /dev/null +++ b/1523/CH7/EX7.7/ex7_7.sce @@ -0,0 +1,16 @@ +// Graph Theory : example 7.7 : (pg 7.18 & 7.19)
+//Complete incidence matrix Aa
+printf("\nAa=");
+disp(Aa=[1 0 0 -1 1 0 0 0;-1 1 0 0 0 1 0 0;0 -1 1 0 0 0 1 0;0 0 -1 1 0 0 0 1;0 0 0 0 -1 -1 -1 -1]);
+//eliminating last row from Aa
+printf("\nA=");
+disp(A=[1 0 0 -1 1 0 0 0;-1 1 0 0 0 1 0 0;0 -1 1 0 0 0 1 0;0 0 -1 1 0 0 0 1]);
+//Tieset matrix B
+printf("\ntwigs={1,3,5,7} \nlinks={2,4,6,8} \ntieset 2={2,7,5,1} \ntieset 4={4,5,7,3} \ntieset 6={6,5,1} \ntieset 8={8,7,3}");
+// forward direction = 1, reverse direction = -1
+printf("\nB=");
+disp(B=[1 1 0 0 -1 0 1 1;0 0 1 1 1 0 -1 0;1 0 0 0 -1 1 0 0;0 0 1 0 0 0 -1 1]);
+// f-cutset matrix Q
+printf("\nf-cutset 1={1,6,2} \nf-cutset 3={3,4,8} \nf-cutset 5={5,4,6,2} \nf-cutset 7={7,2,8,4}");
+printf("\nQ=");
+disp(Q=[1 -1 0 0 0 -1 0 0;0 0 1 -1 0 0 0 -1;0 1 0 -1 1 1 0 0;0 -1 0 1 0 0 1 1]);
\ No newline at end of file diff --git a/1523/CH7/EX7.8/ex7_8.sce b/1523/CH7/EX7.8/ex7_8.sce new file mode 100755 index 000000000..fafd8cb12 --- /dev/null +++ b/1523/CH7/EX7.8/ex7_8.sce @@ -0,0 +1,13 @@ +// Graph Theory : example 7.8 :(pg 7.19 & 7.20)
+//Complete Incidence Matrix Aa
+printf("\nAa=");
+disp(Aa=[1 0 -1 1;-1 1 0 0;0 -1 1 -1]);
+// Reduced Incidence matrix A (by eliminating last row from Aa)
+A=[1 0 -1 1;-1 1 0 0];
+printf("\nA=");
+disp(A=[1 0 -1 1;-1 1 0 0]);
+printf("\nNumber of possible trees=|A*A^T|");//A^T=A'= transpose of A
+x=(A*A');
+disp(x);
+printf("\n|A*A^T|=");//determinant of A
+disp(det(x));
diff --git a/1523/CH8/EX8.13/8_13.sce b/1523/CH8/EX8.13/8_13.sce new file mode 100755 index 000000000..414e27672 --- /dev/null +++ b/1523/CH8/EX8.13/8_13.sce @@ -0,0 +1,21 @@ +//Transient analysis
+//pg no - 8.17
+//example no - 8.13
+a=((10*30)/(10+30));
+d=5/a;
+b=0;
+c=5*(20/30);
+printf("iL(0-) = %.2f A", d);
+printf("\nvb(0-) = %.f", b);
+printf("\nva(0-) = %.2f V", c);
+disp("Applying Kcl equations at t=0+");
+disp("((va(0+)-5)/10)+(va(0+)/10)+(va(0+)-vb(0+))/20 = 0"); //equation 1
+disp("((vb(0+)-va(0+))/20)+((vb(0+)-5)/10)+(2/3) = 0"); //equation 2
+//solving 1 and 2
+M=[0.25, -0.05; -0.05, 0.15];
+N=[0.5, -0.167]';
+O=inv(M);
+X=O*N;
+disp(X);
+disp("va(0+)= 1.9 A");
+disp("vb(0+)= -0.477 A");
diff --git a/1523/CH8/EX8.14/8_14.sce b/1523/CH8/EX8.14/8_14.sce new file mode 100755 index 000000000..d9922fa5a --- /dev/null +++ b/1523/CH8/EX8.14/8_14.sce @@ -0,0 +1,10 @@ +//Transient analysis
+//pg no - 8.17
+//example no - 8.13
+disp("va(0+) = 5V");
+disp("vb(0+) = 5V");
+disp("vb(0+) = 5V");
+disp("Writing KCL Equation at t=0+");
+disp("0.25*va(0+) = 0.75");
+x=(0.75)/(0.25);
+printf("va(0+) = %.f V", x);
|