summaryrefslogtreecommitdiff
path: root/1523/CH6/EX6.12/ex6_12.sce
diff options
context:
space:
mode:
Diffstat (limited to '1523/CH6/EX6.12/ex6_12.sce')
-rwxr-xr-x1523/CH6/EX6.12/ex6_12.sce27
1 files changed, 27 insertions, 0 deletions
diff --git a/1523/CH6/EX6.12/ex6_12.sce b/1523/CH6/EX6.12/ex6_12.sce
new file mode 100755
index 000000000..33e0bbfb2
--- /dev/null
+++ b/1523/CH6/EX6.12/ex6_12.sce
@@ -0,0 +1,27 @@
+// Three-Phase Circuits :example 6.12 :(pg 6.17)
+P=100*10^3;
+IL=80;
+VL=1100;
+f=50;
+Vph=(VL/sqrt(3));
+Iph=IL;
+Zph=(Vph/Iph);
+pf=(P/(sqrt(3)*VL*IL));
+phi=acosd(pf);
+Rph=Zph*pf;
+Xph=Zph*sind(phi);
+C=(1/(2*%pi*f*Xph));
+printf("\nP=100kW \nIL=80 A \nVL=1100 V \nf=50 Hz");
+//For a star-connected load
+printf("\nVph =V/sqrt(3) =%.2f",Vph);
+printf("\nIph=IL =%.f A",Iph);
+printf("\nZph=(Vph/Iph)= %.2f Ohm",Zph);
+printf("\nP=sqrt(3)*VL*IL*cos(phi)");
+printf("\ncos(phi)=%.3f (leading)",pf);
+printf("\nphi=%.f degrees",phi);
+printf("\nRph=Zph*cos(phi) =%.2f Ohm",Rph);
+printf("\nXph =Zph*sin(phi) =%.f Ohm",Xph);
+// as current is leading,reactance will be capacitive in nature
+printf("\nXC=(1/2*pi*C)");
+printf("\nC=%.e F",C);
+