summaryrefslogtreecommitdiff
path: root/1445/CH8
diff options
context:
space:
mode:
Diffstat (limited to '1445/CH8')
-rw-r--r--1445/CH8/EX8.1/ch8_ex_1.sce22
-rw-r--r--1445/CH8/EX8.10/ch8_ex_10.sce55
-rw-r--r--1445/CH8/EX8.11/ch8_ex_11.sce25
-rw-r--r--1445/CH8/EX8.12/ch8_ex_12.sce28
-rw-r--r--1445/CH8/EX8.13/ch8_ex_13.sce30
-rw-r--r--1445/CH8/EX8.14/ch8_ex_14.sce33
-rw-r--r--1445/CH8/EX8.15/ch8_ex_15.sce30
-rw-r--r--1445/CH8/EX8.16/ch8_ex_16.sce45
-rw-r--r--1445/CH8/EX8.17/ch8_ex_17.sce44
-rw-r--r--1445/CH8/EX8.18/ch8_ex_18.sce28
-rw-r--r--1445/CH8/EX8.19/ch8_ex_19.sce32
-rw-r--r--1445/CH8/EX8.2/ch8_ex_2.sce29
-rw-r--r--1445/CH8/EX8.20/ch8_ex_20.sce34
-rw-r--r--1445/CH8/EX8.21/ch8_ex_21.sce36
-rw-r--r--1445/CH8/EX8.22/ch8_ex_22.sce46
-rw-r--r--1445/CH8/EX8.23/ch8_ex_23.sce25
-rw-r--r--1445/CH8/EX8.24/ch8_ex_24.sce28
-rw-r--r--1445/CH8/EX8.25/ch8_ex_25.sce44
-rw-r--r--1445/CH8/EX8.27/ch8_ex_27.sce27
-rw-r--r--1445/CH8/EX8.28/ch8_ex_28.sce24
-rw-r--r--1445/CH8/EX8.29/ch8_ex_29.sce21
-rw-r--r--1445/CH8/EX8.3/ch8_ex_3.sce38
-rw-r--r--1445/CH8/EX8.30/ch8_ex_30.sce20
-rw-r--r--1445/CH8/EX8.31/ch8_ex_31.sce26
-rw-r--r--1445/CH8/EX8.32/ch8_ex_32.sce66
-rw-r--r--1445/CH8/EX8.33/ch8_ex_33.sce30
-rw-r--r--1445/CH8/EX8.34/ch8_ex_34.sce30
-rw-r--r--1445/CH8/EX8.35/ch8_ex_35.sce30
-rw-r--r--1445/CH8/EX8.36/ch8_ex_36.sce37
-rw-r--r--1445/CH8/EX8.37/ch8_ex_37.sce43
-rw-r--r--1445/CH8/EX8.38/ch8_ex_38.sce30
-rw-r--r--1445/CH8/EX8.4/ch8_ex_4.sce34
-rw-r--r--1445/CH8/EX8.5/ch8_ex_5.sce40
-rw-r--r--1445/CH8/EX8.6/ch8_ex_6.sce52
-rw-r--r--1445/CH8/EX8.7/ch8_ex_7.sce32
-rw-r--r--1445/CH8/EX8.8/ch8_ex_8.sce44
-rw-r--r--1445/CH8/EX8.9/ch8_ex_9.sce29
37 files changed, 1267 insertions, 0 deletions
diff --git a/1445/CH8/EX8.1/ch8_ex_1.sce b/1445/CH8/EX8.1/ch8_ex_1.sce
new file mode 100644
index 000000000..b02f8d679
--- /dev/null
+++ b/1445/CH8/EX8.1/ch8_ex_1.sce
@@ -0,0 +1,22 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 1
+
+disp("CHAPTER 8");
+disp("EXAMPLE 1");
+
+//VARIABLE INITIALIZATION
+v_t=250; //terminal voltage in Volts
+I_l=500; //load current in Amperes
+r_a=0.04; //armature resistance in Ohms
+r_f=50; //shunt field resistance in Ohms
+
+//SOLUTION
+I_f=v_t/r_f;
+I_a=I_l+I_f;
+E_a=v_t+(I_a*r_a); //here E_a=emf of generator
+disp(sprintf("The generated emf is %f V",E_a));
+
+//END
+
+
+
diff --git a/1445/CH8/EX8.10/ch8_ex_10.sce b/1445/CH8/EX8.10/ch8_ex_10.sce
new file mode 100644
index 000000000..8ecea55db
--- /dev/null
+++ b/1445/CH8/EX8.10/ch8_ex_10.sce
@@ -0,0 +1,55 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 10
+
+disp("CHAPTER 8");
+disp("EXAMPLE 10");
+
+//VARIABLE INITIALIZATION
+P=6; //number of poles
+I=80; //current per conductor in Amperes
+Z=400; //tottal number of conductors
+phi=0.020; //flux per pole in Wb
+N=1800; //in rpm
+
+//SOLUTION
+
+//soluion (a): for wave connected
+disp("(a) For Wave connected");
+
+//(i)
+A=2; //A=number of parallel paths
+I_a=I*A;
+disp(sprintf("(i) The total current is %f A",I_a));
+
+//(ii)
+E_a=(phi*Z*N*P)/(60*A);
+disp(sprintf("(ii) The emf is %f V",E_a));
+
+//(iii)
+p=E_a*I_a;
+disp(sprintf("(iii) The power developed in armature is %f kW",p/1000));
+w=(2*%pi*N)/60;
+T_e=p/w;
+disp(sprintf("The electromagnetic torque is %f N-m",T_e));
+
+
+//soluion (b): for lap connected
+disp("(b) For Lap connected");
+
+//(i)
+A=P;
+I_a=I*A;
+disp(sprintf("(i) The total current is %f A",I_a));
+
+//(ii)
+E_a=(phi*Z*N*P)/(60*A);
+disp(sprintf("(ii) The emf is %f V",E_a));
+
+//(iii)
+p=E_a*I_a;
+disp(sprintf("(iii) The power developed in armature is %f kW",p/1000));
+w=(2*%pi*N)/60;
+T_e=p/w;
+disp(sprintf("The electromagnetic torque is %f N-m",T_e));
+
+//END
diff --git a/1445/CH8/EX8.11/ch8_ex_11.sce b/1445/CH8/EX8.11/ch8_ex_11.sce
new file mode 100644
index 000000000..9a2478738
--- /dev/null
+++ b/1445/CH8/EX8.11/ch8_ex_11.sce
@@ -0,0 +1,25 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 11
+
+disp("CHAPTER 8");
+disp("EXAMPLE 11");
+
+//VARIABLE INITIALIZATION
+p_o=20*1000; //output in W
+v_t=250; //in Volts
+r_a=0.05; //aramture resistance in Ohms
+r_se=0.025; //series resistance in Ohms
+r_sh=100; //shunt resistance in Ohms
+
+//SOLUTION
+I_t=p_o/v_t;
+v_se=I_t*r_se; //for series winding
+v_sh=v_t+v_se; //for shunt winding
+I_sh=v_sh/r_sh;
+I_a=I_sh+I_t;
+E_a=v_t+(I_a*r_a)+v_se;
+disp(sprintf("The total emf generated is %f V",E_a));
+
+//END
+
+
diff --git a/1445/CH8/EX8.12/ch8_ex_12.sce b/1445/CH8/EX8.12/ch8_ex_12.sce
new file mode 100644
index 000000000..96cd57019
--- /dev/null
+++ b/1445/CH8/EX8.12/ch8_ex_12.sce
@@ -0,0 +1,28 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 12
+
+disp("CHAPTER 8");
+disp("EXAMPLE 12");
+
+//VARIABLE INITIALIZATION
+P=4; //number of poles
+N=750; //in rpm
+r_a=0.4; //in Ohms
+r_f=200; //in Ohms
+Z=720;
+phi=2.895*(10^6)*(10^(-8)); //in Wb (1 line=10^(-8) Wb)
+r_l=10; //load resistance in Ohms
+A=2; //for wave winding
+
+//SOLUTION
+E_a=(phi*Z*N*P)/(60*A);
+disp(sprintf("The induced emf is %f V",E_a));
+// E_a=v+(I_a*r_a) but I_a=I_l+I_f and I_l=v/r_l, I_f=v/r_f =>I_a=(v/r_l) + (v/r_f)
+// =>E_a=v+(((v/r_l) + (v/r_f))*r_a)
+// taking v common, the following equation is obtained
+v=E_a/(1+(r_a/r_f)+(r_a/r_l));
+disp(sprintf("The terminal voltage of the machine is %f V",v));
+
+//The answer is slightly different due to the precision of floating point numbers
+
+//END
diff --git a/1445/CH8/EX8.13/ch8_ex_13.sce b/1445/CH8/EX8.13/ch8_ex_13.sce
new file mode 100644
index 000000000..a9f1555de
--- /dev/null
+++ b/1445/CH8/EX8.13/ch8_ex_13.sce
@@ -0,0 +1,30 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 13
+
+disp("CHAPTER 8");
+disp("EXAMPLE 13");
+
+//VARIABLE INITIALIZATION
+P=4; //number of poles
+v_t=220; //in Volts
+I_l=42; //load current in Amperes
+r_a=0.1; //in Ohms
+r_f=110; //in Ohms
+drop=1; //contact drop per brush
+//SOLUTION
+
+//solution (i)
+A=P; //for lap winding
+I_f=v_t/r_f; //I_f is same as I_sh
+I_a=I_l+I_f;
+I_c=I_a/A; //conductor current
+disp(sprintf("The current in each conductor of the armature is %d A",I_c));
+
+//solution (ii)
+v_a=I_a*r_a; //armature voltage drop
+v_b=2*drop; //brush drop
+emf=v_t+v_a+v_b;
+disp(sprintf("The total emf generated is %f V",emf));
+
+//END
+
diff --git a/1445/CH8/EX8.14/ch8_ex_14.sce b/1445/CH8/EX8.14/ch8_ex_14.sce
new file mode 100644
index 000000000..2dedf26ce
--- /dev/null
+++ b/1445/CH8/EX8.14/ch8_ex_14.sce
@@ -0,0 +1,33 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 14
+
+disp("CHAPTER 8");
+disp("EXAMPLE 14");
+
+//VARIABLE INITIALIZATION
+v_t=220; //in Volts
+I_l=196; //in Amperes
+s_loss=720; //stray loss in Watts
+r_f=55; //shunt field ressitance in Ohms
+eff=88/100; //efficiency
+
+//SOLUTION
+p_o=v_t*I_l;
+p_i=p_o/eff; //electrical input
+tot_loss=p_i-p_o;
+I_f=v_t/r_f;
+I_a=I_l+I_f;
+cu_loss=v_t*I_f; //shunt field copper loss
+c_loss=cu_loss+s_loss; //constant loss
+arm_loss=tot_loss-c_loss; //armature copper loss
+r_a=arm_loss/(I_a^2);
+disp(sprintf("The armature resistance is %f Ω",r_a));
+
+//for maximum efficiency, armature loss = constant loss =>(I_a^2)*r_a=c_loss
+I_a=sqrt(c_loss/r_a);
+disp(sprintf("The load current corresponding to maximum efficiency is %f A",I_a));
+
+//END
+
+
+
diff --git a/1445/CH8/EX8.15/ch8_ex_15.sce b/1445/CH8/EX8.15/ch8_ex_15.sce
new file mode 100644
index 000000000..e7909058b
--- /dev/null
+++ b/1445/CH8/EX8.15/ch8_ex_15.sce
@@ -0,0 +1,30 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 15
+
+disp("CHAPTER 8");
+disp("EXAMPLE 15");
+
+//VARIABLE INITIALIZATION
+v_t=230; //in Volts
+I_a1=3.33; //in Amperes
+N1=1000; //in rpm
+r_a=0.3; //armature resistance in Ohms
+r_f=160; //field resistance in Ohms
+I_l=40; //in Amperes
+phi1=1; //in Wb (phi=1 is an assumption)
+phi2=(1-(4/100)); //in Wb (phi2=0.96 of phi1)
+
+//SOLUTION
+
+//At no load
+E_a1=v_t-(I_a1*r_a);
+I_f=v_t/r_f;
+
+//At full load
+I_a2=I_l-I_f;
+E_a2=v_t-(I_a2*r_a);
+N2=(E_a2/E_a1)*(phi1/phi2)*N1;
+N2=round(N2); //to round off the value
+disp(sprintf("The full load speed is %d rpm",N2));
+
+//END
diff --git a/1445/CH8/EX8.16/ch8_ex_16.sce b/1445/CH8/EX8.16/ch8_ex_16.sce
new file mode 100644
index 000000000..ef76b6ef8
--- /dev/null
+++ b/1445/CH8/EX8.16/ch8_ex_16.sce
@@ -0,0 +1,45 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 16
+
+disp("CHAPTER 8");
+disp("EXAMPLE 16");
+
+//VARIABLE INITIALIZATION
+v_t=250; //in Volts
+P=4; //number of poles
+Z=500; //number of conductors
+r_a=0.25; //in Ohms
+r_f=125; //in Ohms
+phi=0.02; //in Wb
+I_l=14; //in Amperes
+A=2;
+rot_loss=300; //rotational loss in Watts
+
+//SOLUTION
+
+//solution (i)
+I_f=v_t/r_f;
+I_a=I_l-I_f;
+E_a=v_t-(I_a*r_a);
+N=(E_a*A*60)/(phi*Z*P);
+N=round(N); //to round off the value of N
+disp(sprintf("(i) The speed is %d rpm",N));
+p_e=E_a*I_a;
+w=(2*%pi*N)/60;
+T1=p_e/w;
+disp(sprintf("The internal torque developed is %f N-m",T1));
+
+//solution (ii)
+p_o=p_e-rot_loss;
+disp(sprintf("(ii)The shaft power is %f W",p_o));
+T2=p_o/w;
+disp(sprintf("The shaft torque is %f N-m",T2));
+p_i=v_t*I_l;
+eff=(p_o/p_i)*100;
+disp(sprintf("The efficiency is %f %%",eff));
+
+//END
+
+
+
+
diff --git a/1445/CH8/EX8.17/ch8_ex_17.sce b/1445/CH8/EX8.17/ch8_ex_17.sce
new file mode 100644
index 000000000..d2c9b4413
--- /dev/null
+++ b/1445/CH8/EX8.17/ch8_ex_17.sce
@@ -0,0 +1,44 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 17
+
+disp("CHAPTER 8");
+disp("EXAMPLE 17");
+
+//VARIABLE INITIALIZATION
+v_t=200; //in Volts
+I_l=22; //in Amperes
+N1=1000; //in rpm
+r_a=0.1; //in Ohms
+r_f=100; //in Ohms
+N2=800; //in rpm
+
+//SOLUTION
+
+//solution (i)
+I_f=v_t/r_f;
+I_a1=I_l-I_f;
+E_a1=v_t-(I_a1*r_a);
+//on rearranging the equation E_a2:E_a1=N2:N1, where E_a2=v_t-I_a1*(r_a+r_s) and E_a1=v_t-(I_a1*r_a), we get,
+r_s1=((v_t - ((N2*E_a1)/N1))/I_a1)-r_a;
+disp(sprintf("(i) When the load torque is independent of speed, the additional resistance is %f Ω",r_s1));
+
+//solution (ii)
+I_a2=(N2/N1)*I_a1;
+//on rearranging the equation E_a2:E_a1=N2:N1, where E_a2=v_t-I_a2*(r_a+r_s) and E_a1=v_t-(I_a1*r_a), we get,
+r_s2=((v_t - ((N2*E_a1)/N1))/I_a2)-r_a;
+disp(sprintf("(ii)When the load torque is proportional to speed, the additional resistance is %f Ω",r_s2));
+
+//solution (iii)
+I_a2=(N2^2/N1^2)*I_a1;
+//on rearranging the equation E_a2:E_a1=N2:N1, where E_a2=v_t-I_a2*(r_a+r_s) and E_a1=v_t-(I_a1*r_a), we get,
+r_s3=((v_t - ((N2*E_a1)/N1))/I_a2)-r_a;
+disp(sprintf("(iii)When the load torque varies as the square of speed, the additional resistance is %f Ω",r_s3));
+
+//solution (iv)
+I_a2=(N2^3/N1^3)*I_a1;
+//on rearranging the equation E_a2:E_a1=N2:N1, where E_a2=v_t-I_a2*(r_a+r_s) and E_a1=v_t-(I_a1*r_a), we get,
+r_s4=((v_t - ((N2*E_a1)/N1))/I_a2)-r_a;
+disp(sprintf("(iv)When the load torque varies as the cube of speed, the additional resistance is %f Ω",r_s4));
+
+//END
+
diff --git a/1445/CH8/EX8.18/ch8_ex_18.sce b/1445/CH8/EX8.18/ch8_ex_18.sce
new file mode 100644
index 000000000..ba0966842
--- /dev/null
+++ b/1445/CH8/EX8.18/ch8_ex_18.sce
@@ -0,0 +1,28 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 18
+
+disp("CHAPTER 8");
+disp("EXAMPLE 18");
+
+//VARIABLE INITIALIZATION
+v_t=460; //in Volts
+p_o=10*736; //in Watts (1 metric H.P=735.5 W)
+ratio=85/100; //as given in the question
+eff=84/100;
+I_f=1.1; //in Amperes
+r_a=0.2; //in Ohms
+
+//SOLUTION
+p_i=p_o/eff;
+I_l=p_i/v_t;
+I_a=I_l-I_f;
+E1=v_t-(I_a*r_a);
+E2=E1*ratio; //E2:E1=N2:N1=ratio
+v=v_t-E2; //voltage drop across r_a and r_s (r_s is the series resistance to be inserted)
+r_s=(v/I_a)-r_a;
+disp(sprintf("The resistance required is %f Ω",r_s));
+
+//The answer is different because ratio equals 85/100 and not 75/100
+
+//END
+
diff --git a/1445/CH8/EX8.19/ch8_ex_19.sce b/1445/CH8/EX8.19/ch8_ex_19.sce
new file mode 100644
index 000000000..66ce6423f
--- /dev/null
+++ b/1445/CH8/EX8.19/ch8_ex_19.sce
@@ -0,0 +1,32 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 19
+
+disp("CHAPTER 8");
+disp("EXAMPLE 19");
+
+//VARIABLE INITIALIZATION
+v_t=250; //in Volts
+r_a=0.5; //in Ohms
+r_f=250; //in Ohms
+N1=600; //in rpm
+I=21; //in Amperes
+r_s=250; //in Ohms
+
+//SOLUTION
+I_f1=v_t/r_f;
+I_f2=v_t/(r_f+r_s);
+I_a1=I-I_f1;
+// T is directly proportional to (Φ*I_a)
+// I_f is directly proportional to Φ
+// => I_f1*I_a1=I_f2*I_a2, therefore,
+I_a2=(I_f1*I_a1)/I_f2;
+E_b1=v_t-(I_a1*r_a);
+E_b2=v_t-(I_a2*r_a);
+// E_b is directly proportional to (Φ*N)
+// (Φ*N) is directly proportinal to (I_f*N)
+// =>E_b1:E_b2=(I_f1:I_f2)*(N1:N2)
+N2=(I_f1/I_f2)*(E_b2/E_b1)*N1;
+N2=round(N2); //to round off the value
+disp(sprintf("The new speed of the motor is %d rpm",N2));
+
+//END
diff --git a/1445/CH8/EX8.2/ch8_ex_2.sce b/1445/CH8/EX8.2/ch8_ex_2.sce
new file mode 100644
index 000000000..c1c419419
--- /dev/null
+++ b/1445/CH8/EX8.2/ch8_ex_2.sce
@@ -0,0 +1,29 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 2
+
+disp("CHAPTER 8");
+disp("EXAMPLE 2");
+
+//VARIABLE INITIALZATION
+v_t=230; //terminal voltage in Volts
+r_a=0.5; //armature resistance in Ohms
+r_f=115; //shunt field resistance in Ohms
+I_l=40; //line current in Amperes
+
+//SOLUTION
+
+//for generator
+I_f=v_t/r_f;
+I_a=I_l+I_f;
+E_a=v_t+(I_a*r_a); //here E_a=emf of generator
+
+//for motor
+I_f=v_t/r_f;
+I_a=I_l-I_f;
+E_b=v_t-(I_a*r_a); //here E_b=emf of motor
+
+ratio=E_a/E_b; //E_a:E_b=(k_a*flux*N_g):(k_a*flux*N_m) =>E_a:E_b=N_g:N_m (as flux is constant)
+disp(sprintf("The ratio of speed as a generator to the speed as a motor i.e. N_g:N_m is %f",ratio));
+
+//END
+
diff --git a/1445/CH8/EX8.20/ch8_ex_20.sce b/1445/CH8/EX8.20/ch8_ex_20.sce
new file mode 100644
index 000000000..54ce57258
--- /dev/null
+++ b/1445/CH8/EX8.20/ch8_ex_20.sce
@@ -0,0 +1,34 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 20
+
+disp("CHAPTER 8");
+disp("EXAMPLE 20");
+
+//VARIABLE INITIALIZATION
+v_t=250; //in Volts
+I_a1=20; //in Amperes
+N1=1000; //in rpm
+r_a=0.5; //in Ohms
+drop=1; //brush contact drop in Volts
+ratio=1.5; //N2:N1=1.5
+phi1=1; //it is an assumption
+
+//SOLUTION
+E_1=v_t-(I_a1*r_a)-(2*drop);
+//solving the quadratic equation directly,
+a=1;
+b=-496;
+c=14280;
+D=b^2-(4*a*c);
+x1=(-b+sqrt(D))/(2*a);
+x2=(-b-sqrt(D))/(2*a);
+if(x1<40)
+I_a2=x1;
+else if(x2<40)
+I_a2=x2;
+end;
+phi2=(I_a1/I_a2)*phi1;
+phi=(1-phi2)*100;
+disp(sprintf("The flux to be reduced is %f %% of the main flux",phi));
+
+//END
diff --git a/1445/CH8/EX8.21/ch8_ex_21.sce b/1445/CH8/EX8.21/ch8_ex_21.sce
new file mode 100644
index 000000000..81ba71e3b
--- /dev/null
+++ b/1445/CH8/EX8.21/ch8_ex_21.sce
@@ -0,0 +1,36 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 21
+
+disp("CHAPTER 8");
+disp("EXAMPLE 21");
+
+//VARIABLE INITIALIZATION
+p_o=10*1000; //in Watts
+P=6; //number of poles
+E_g=200; //in Volts
+N=1500; //in rpm
+A=P; //since the armature is lap connected
+B=0.9; //flux density in Tesla
+l=0.25; //length of armature in m
+dia=0.2; //diameter of armature in m
+
+//SOLUTION
+
+//solution (a)
+area=2*%pi*(dia/2)*l;
+phi=B*area;
+disp(sprintf("(a) The flux per pole is %f Wb",phi));
+
+//solution (b)
+Z=(60*E_g)/(phi*N);
+disp(sprintf("(b) The total number of active conductors is %d",Z));
+
+//solution (c)
+I_a=50;
+p=E_g*I_a;
+w=(2*%pi*N)/60;
+T=p/w;
+disp(sprintf("(c) The torque developed when armature current is 50 A is %f N-m",T));
+
+//END
+
diff --git a/1445/CH8/EX8.22/ch8_ex_22.sce b/1445/CH8/EX8.22/ch8_ex_22.sce
new file mode 100644
index 000000000..6864da4e0
--- /dev/null
+++ b/1445/CH8/EX8.22/ch8_ex_22.sce
@@ -0,0 +1,46 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 22
+
+disp("CHAPTER 8");
+disp("EXAMPLE 22");
+
+//VARIABLE INITIALIZATION
+N1=600; //in rpm
+v=230; //in Volts
+I_l1=50; //line current in Amperes
+r_a=0.4; //armature resistance in Ohms
+r_f=104.5; //field resistance in Ohms
+drop=2; //brush drop in Volts
+
+//SOLUTION
+
+//solution (i)
+I_l2=5;
+I_a1=I_l1-(v/r_f);
+E_b1=v-(I_a1*r_a)-drop;
+I_a2=I_l2-(v/r_f);
+E_b2=v-(I_a2*r_a)-drop;
+N2=(E_b2/E_b1)*N1;
+N2=round(N2);
+disp(sprintf("(i) The speed at no load is %d rpm",N2));
+
+//solution (ii)
+I_l2=50;
+N2=500;
+E_b2=(N2/N1)*E_b1;
+dif=v-drop; //difference
+I_a2=I_l2-(v/r_f);
+r_se=((dif-E_b2)/I_a2)-r_a;
+disp(sprintf("(ii) The additional resistance is %f Ω",r_se));
+
+//solution (iii)
+phi1=1; //it is an assumption
+I_a3=30;
+N2=750;
+E_b3=v-(I_a3*r_a)-drop;
+phi2=(E_b3/E_b1)*(N1/N2)*phi1;
+red=((1-phi2)*100*phi1)/phi1;
+disp(sprintf("(iii) The percentage reduction of flux per pole is %f %%",red));
+
+//END
+
diff --git a/1445/CH8/EX8.23/ch8_ex_23.sce b/1445/CH8/EX8.23/ch8_ex_23.sce
new file mode 100644
index 000000000..55b53553d
--- /dev/null
+++ b/1445/CH8/EX8.23/ch8_ex_23.sce
@@ -0,0 +1,25 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 23
+
+disp("CHAPTER 8");
+disp("EXAMPLE 23");
+
+//VARIABLE INITIALIZATION
+v=230; //in Volts
+r_a=0.4; //in Ohms
+r_f1=115; //in Ohms
+I_a=20; //in Amperes
+N1=800; //in rpm
+N2=1000; //in rpm
+
+//SOLUTION
+I_f1=v/r_f1; //redundant step
+E_b1=v-(I_a*r_a);
+//rearranging the equation, we get,
+r_f2=((E_b1*N2)/((v*N1)-(N1*I_a*r_a)))*r_f1;
+r_f2_dash=r_f2-r_f1;
+disp(sprintf("The external resistance is %f Ω",r_f2_dash));
+
+//The answer is slightly different due to the precision of floating point numbers
+
+//END
diff --git a/1445/CH8/EX8.24/ch8_ex_24.sce b/1445/CH8/EX8.24/ch8_ex_24.sce
new file mode 100644
index 000000000..e330f4a03
--- /dev/null
+++ b/1445/CH8/EX8.24/ch8_ex_24.sce
@@ -0,0 +1,28 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 24
+
+disp("CHAPTER 8");
+disp("EXAMPLE 24");
+
+//This example is same as example 19
+
+//VARIABLE INITIALIZATION
+v=250; //in Volts
+r_a=0.5; //in Ohms
+r_f=250; //in Ohms
+N1=600; //in rpm
+I_l=21; //in Amperes
+r=250; //in Ohms
+
+//SOLUTION
+I_f1=v/r_f;
+I_a1=I_l-I_f1;
+I_a2=2*I_a1;
+E_b1=v-(I_a1*r_a);
+E_b2=v-(I_a2*r_a);
+ratio=(r+r_f)/r_f;
+N2=(ratio*N1*E_b2)/E_b1;
+N2=round(N2);
+disp(sprintf("The new speed is %d rpm",N2));
+
+//END
diff --git a/1445/CH8/EX8.25/ch8_ex_25.sce b/1445/CH8/EX8.25/ch8_ex_25.sce
new file mode 100644
index 000000000..8ab814ab4
--- /dev/null
+++ b/1445/CH8/EX8.25/ch8_ex_25.sce
@@ -0,0 +1,44 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 25
+
+disp("CHAPTER 8");
+disp("EXAMPLE 25");
+
+
+//VARIABLE INITIALIZATION
+slot=24; //number of slots
+P=2; //number of poles
+N=18; //number of turns per coil
+B=1; //in Webers
+l=20/100; //effective length in meters
+rad=10/100; //radius in meters
+w=183.2; //angular velocity in rad/s
+
+//SOLUTION
+A=2;
+Z=slot*P*N; //total number of conductors
+ar1=(2*%pi*rad*l)/P;
+ar2=ar1*0.8; //since the magnetic poles 80% of the armature periphery
+phi=B*ar2; //effective flux per pole
+
+//solution (a)
+E_a=(P*Z*phi*w)/(2*%pi*A);
+disp(sprintf("(a) The induced emf is %f V",E_a));
+
+//solution (b)
+coil=slot/P; //number of coils in each path
+E_coil=E_a/coil;
+disp(sprintf("(b) The induced emf per coil is %f V",E_coil));
+
+//solution (c)
+E_turn=E_coil/N;
+disp(sprintf("(c) The induced emf per turn is %f V",E_turn));
+
+//solution (d)
+E_cond=E_turn/A;
+disp(sprintf("(d) The induced emf per conductor is %f V",E_cond));
+
+//The answers are slightly different due to the precision of floating point numbers
+
+//END
+
diff --git a/1445/CH8/EX8.27/ch8_ex_27.sce b/1445/CH8/EX8.27/ch8_ex_27.sce
new file mode 100644
index 000000000..1c74876c6
--- /dev/null
+++ b/1445/CH8/EX8.27/ch8_ex_27.sce
@@ -0,0 +1,27 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 27
+
+disp("CHAPTER 8");
+disp("EXAMPLE 27");
+
+
+//VARIABLE INITIALIZATION
+v_t=200; //in volts
+r_a=0.06; //in Ohms
+r_se=0.04; //in Ohms
+p_i=20*1000; //in Watts
+
+//SOLUTION
+
+//solution (a)
+I_a=p_i/v_t;
+E_b=v_t-I_a*(r_a+r_se);
+disp(sprintf("(a) The counter emf of the motor is %d V",E_b));
+
+//solution (b)
+p_a=E_b*I_a;
+p_a=p_a/1000; //from W to kW
+disp(sprintf("(b) The power developed in the armature is %d kW",p_a));
+
+//END
+
diff --git a/1445/CH8/EX8.28/ch8_ex_28.sce b/1445/CH8/EX8.28/ch8_ex_28.sce
new file mode 100644
index 000000000..318634584
--- /dev/null
+++ b/1445/CH8/EX8.28/ch8_ex_28.sce
@@ -0,0 +1,24 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 28
+
+disp("CHAPTER 8");
+disp("EXAMPLE 28");
+
+//VARIABLE INITIALIZATION
+E_a=120; //in Volts
+r_se=0.03; //in Ohms
+r_a=0.02; //in Ohms
+v1=240; //in Volts
+r=0.25; //in Ohms
+I=300; //in Amperes
+
+//SOLUTION
+v=I*(r_se+r_a+r);
+disp(sprintf("The voltage drop across the three resistances is %d V",v));
+v_t=v1+E_a-v;
+disp(sprintf("The voltage between far end and the bus bar is %d V",v_t));
+disp(sprintf("The net increase of %d V may be beyond the desired limit",v_t-v1));
+disp("Hence, a field diverter resistance may be necessary to regulate the far-end terminal voltage");
+
+//END
+
diff --git a/1445/CH8/EX8.29/ch8_ex_29.sce b/1445/CH8/EX8.29/ch8_ex_29.sce
new file mode 100644
index 000000000..ee4e53e7d
--- /dev/null
+++ b/1445/CH8/EX8.29/ch8_ex_29.sce
@@ -0,0 +1,21 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 29
+
+disp("CHAPTER 8");
+disp("EXAMPLE 29");
+
+//VARIABLE INITIALIZATION
+r_a=1; //in Ohms
+N1=800; //in rpm
+v_t=200; //in Volts
+I_a=15; //in Amperes
+r_s=5; //series resistance in Ohms
+
+//SOLUTION
+E_b1=v_t-(I_a*r_a);
+E_b2=v_t-I_a*(r_a+r_s);
+N2=(E_b2/E_b1)*N1;
+N2=round(N2); //to round off the value
+disp(sprintf("The speed attained after connecting the series resistance is %d rpm",N2));
+
+//END
diff --git a/1445/CH8/EX8.3/ch8_ex_3.sce b/1445/CH8/EX8.3/ch8_ex_3.sce
new file mode 100644
index 000000000..198d7214a
--- /dev/null
+++ b/1445/CH8/EX8.3/ch8_ex_3.sce
@@ -0,0 +1,38 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 3
+
+disp("CHAPTER 8");
+disp("EXAMPLE 3");
+
+//VARIABLE INITIALIZATION
+p_o=10*1000; //output of generator in Watts
+v_t=250; //terminal voltage in Volts
+N=1000; //speed in rpm
+r_a=0.15; //armature resistance in Ohms
+I_f=1.64; //field current in Amperes
+rot_loss=540; //rotational loss in Watts
+
+//SOLUTION
+
+//solution (i)
+I_l=p_o/v_t;
+I_a=I_l+I_f;
+E_a=v_t+(I_a*r_a);
+disp(sprintf("(i) The armature induced emf is %f V",E_a));
+
+//solution (ii)
+w=(2*%pi*N)/60; //in radian/sec
+T_e=(E_a*I_a)/w;
+disp(sprintf("(ii) The torque developed is %f N-m",T_e));
+
+//solution (iii)
+arm_loss=(I_a^2)*r_a; //armature loss
+fld_loss=v_t*I_f; //field loss
+tot_loss=rot_loss+arm_loss+fld_loss;
+p_i=p_o+tot_loss;
+eff=(p_o/p_i)*100;
+disp(sprintf("(iii) The efficiency is %f %%",eff));
+
+//END
+
+
diff --git a/1445/CH8/EX8.30/ch8_ex_30.sce b/1445/CH8/EX8.30/ch8_ex_30.sce
new file mode 100644
index 000000000..3c80b3dd7
--- /dev/null
+++ b/1445/CH8/EX8.30/ch8_ex_30.sce
@@ -0,0 +1,20 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 30
+
+disp("CHAPTER 8");
+disp("EXAMPLE 30");
+
+//VARIABLE INITIALIZATION
+p=5*735.5; //in Watts (1 metric H.P.=735.5 W)
+N=1000; //in rpm
+I=30; //in Amperes
+I_s=45; //starting current in Amperes
+
+//SOLUTION
+T=(p*60)/(2*%pi*1000);
+T_s=(T*(I_s^2))/(I^2);
+disp(sprintf("The starting torque is %f N-m",T_s));
+
+//The answer is slightly different due to precision of floating point numbers
+
+//END
diff --git a/1445/CH8/EX8.31/ch8_ex_31.sce b/1445/CH8/EX8.31/ch8_ex_31.sce
new file mode 100644
index 000000000..0fc0fecfb
--- /dev/null
+++ b/1445/CH8/EX8.31/ch8_ex_31.sce
@@ -0,0 +1,26 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 31
+
+disp("CHAPTER 8");
+disp("EXAMPLE 31");
+
+//VARIABLE INITIALIZATION
+r_a=0.1; //combined resistance of armature & field resistance in Ohms
+v_t=230; //in Volts
+I_a1=100; //in Amperes
+N1=1000; //in rpm
+I_a2=200; //in Amperes
+ratio=1.2; //ratio of Φ2:Φ1=1.2
+
+//SOLUTION
+E_b1=v_t-(I_a1*r_a); //numerator of LHS according to the book
+E_b2=v_t-(I_a2*r_a); //denominator of LHS according to the book
+N2=(E_b2/E_b1)*(1/ratio)*N1;
+N2=round(N2); //to round off the value
+disp(sprintf("The new speed of the armature is %d rpm",N2));
+
+//END
+
+
+
+
diff --git a/1445/CH8/EX8.32/ch8_ex_32.sce b/1445/CH8/EX8.32/ch8_ex_32.sce
new file mode 100644
index 000000000..e072ece81
--- /dev/null
+++ b/1445/CH8/EX8.32/ch8_ex_32.sce
@@ -0,0 +1,66 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 32
+
+disp("CHAPTER 8");
+disp("EXAMPLE 32");
+
+//VARIABLE INITIALIZATION
+v_t=250; //in Volts
+I=20; //in Amperes
+N1=1000; //in rpm
+P=4; //number of poles
+r_p=0.05; //resistance of field coil on each pole in Ohms
+r_a=0.2; //in Ohms
+
+//SOLUTION
+
+r_se=P*r_p;
+r_m=r_a+r_se; //resistance of motor
+E_b1=v_t-(I*r_m);
+T1=I^2;
+
+//solution (a)
+//solving the quadratic equation directly,
+r=10; //in Ohms
+a=1.02;
+b=-25;
+c=-400;
+D=b^2-(4*a*c);
+x1=(-b+sqrt(D))/(2*a);
+x2=(-b-sqrt(D))/(2*a);
+//to extract the positive root out of the two
+if (x1>0 & x2<0)
+I1=x1;
+else (x1<0 & x2>0)
+I1=x2;
+end;
+I_a=((10.2*I1)-v_t)/r;
+E_b2=v_t-(I_a*r_a);
+N2=((E_b2/E_b1)*I*N1)/I1;
+N2=round(N2); //to round off the value
+disp(sprintf("(a) The speed with 10 Ω resistance in parallel with the armature is %d rpm",N2));
+
+//solution (b)
+//solving the quadratic equation directly,
+a=5/7;
+b=0;
+c=-400;
+D=b^2-(4*a*c);
+y1=(-b+sqrt(D))/(2*a);
+y2=(-b-sqrt(D))/(2*a);
+//to extract the positive root out of the two
+if (y1>0 & y2<0)
+I2=y1;
+else (y1<0 & y2>0)
+I2=y2;
+end;
+E_b3=v_t-(I2*r_a);
+N3=((E_b3/E_b1)*I*N1)/(I2*a);
+N3=round(N3); //to round off the value
+disp(sprintf("(b) The speed with 0.5 Ω resistance in parallel with series field is %d rpm",N3));
+
+//The answers are slightly different due to the precision of floating point numbers
+
+//END
+
+
diff --git a/1445/CH8/EX8.33/ch8_ex_33.sce b/1445/CH8/EX8.33/ch8_ex_33.sce
new file mode 100644
index 000000000..28ccd4097
--- /dev/null
+++ b/1445/CH8/EX8.33/ch8_ex_33.sce
@@ -0,0 +1,30 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 33
+
+disp("CHAPTER 8");
+disp("EXAMPLE 33");
+
+//VARIABLE INITIALIZATION
+v_t=230; //in Volts
+N1=1500; //in rpm
+I_a1=20; //in Amperes
+r_a=0.3; //armature resistance in Ohms
+r_se=0.2; //series field resistance in Ohms
+
+//SOLUTION
+
+//solution (a)
+E_b=0; //at starting
+nr1=v_t-I_a1*(r_a+r_se); //value of numerator
+r_ext=nr1/I_a1;
+disp(sprintf("(a) At starting, the resistance that must be added is %f Ω",r_ext));
+
+//solution (b)
+I_a2=I_a1;
+N2=1000;
+ratio=N2/N1;
+nr2=v_t-I_a2*(r_a+r_se);
+r_ext=((ratio*nr1)-nr2)/(-I_a2);
+disp(sprintf("(b) At 1000 rpm, the resistance that must be added is %f Ω",r_ext));
+
+//END
diff --git a/1445/CH8/EX8.34/ch8_ex_34.sce b/1445/CH8/EX8.34/ch8_ex_34.sce
new file mode 100644
index 000000000..4695c56c7
--- /dev/null
+++ b/1445/CH8/EX8.34/ch8_ex_34.sce
@@ -0,0 +1,30 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 34
+
+disp("CHAPTER 8");
+disp("EXAMPLE 34");
+
+//VARIABLE INITIALIZATION
+r_a=0.06; //armature resistance in Ohms
+r_se=0.04; //series resistance in Ohms
+r_sh=25; //shunt resistance in Ohms
+v_t=110; //in Volts
+I_l=100; //in Amperes
+
+//SOLUTION
+
+//solution (a)
+I_sh=v_t/r_sh;
+I_a=I_sh+I_l;
+E_g=v_t+I_a*(r_a+r_se);
+disp("(a) When the machine is connected as long shunt compound generator-");
+disp(sprintf("The armature current is %f A and the total emf is %f V",I_a,E_g));
+
+//solution (b)
+I_sh=(v_t/r_sh)+(I_l*r_se/r_sh);
+I_a=I_sh+I_l;
+E_g=v_t+(I_a*r_a)+(I_l*r_se);
+disp("(b) When the machine is connected as short shunt compound generator-");
+disp(sprintf("The armature current is %f A and the total emf is %f V",I_a,E_g));
+
+//END
diff --git a/1445/CH8/EX8.35/ch8_ex_35.sce b/1445/CH8/EX8.35/ch8_ex_35.sce
new file mode 100644
index 000000000..e387ab83e
--- /dev/null
+++ b/1445/CH8/EX8.35/ch8_ex_35.sce
@@ -0,0 +1,30 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 35
+
+disp("CHAPTER 8");
+disp("EXAMPLE 35");
+
+//VARIABLE INITIALIZATION
+r_a=0.06; //armature resistance in Ohms
+r_se=0.04; //series resistance in Ohms
+r_sh=25; //shunt resistance in Ohms
+v_t=110; //in Volts
+I_l=100; //in Amperes
+
+//SOLUTION
+
+//solution (a)
+I_sh=v_t/r_sh;
+I_a=I_l-I_sh;
+E_g=v_t-I_a*(r_a+r_se);
+disp("(a) When the machine is connected as long shunt compound generator-");
+disp(sprintf("The armature current is %f A and the total emf is %f V",I_a,E_g));
+
+//solution (b)
+I_sh=(v_t/r_sh)-(I_l*r_se/r_sh);
+I_a=I_l-I_sh;
+E_g=v_t-(I_a*r_a)-(I_l*r_se);
+disp("(b) When the machine is connected as short shunt compound generator-");
+disp(sprintf("The armature current is %f A and the total emf is %f V",I_a,E_g));
+
+//END
diff --git a/1445/CH8/EX8.36/ch8_ex_36.sce b/1445/CH8/EX8.36/ch8_ex_36.sce
new file mode 100644
index 000000000..9ed702c6f
--- /dev/null
+++ b/1445/CH8/EX8.36/ch8_ex_36.sce
@@ -0,0 +1,37 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 36
+
+disp("CHAPTER 8");
+disp("EXAMPLE 36");
+
+//VARIABLE INITIALIZATION
+v_t=250; //in Volts
+I_l=150; //in Amperes
+loss1=1200; //core loss at full load in Watts
+loss2=800; //mechanical loss in Watts
+r_b=0.08; //brush resistance in Ohms
+r_sh=62.5; //shunt field resistance in Ohms
+r_se=0.03; //series field resistance in Ohms
+r_ip=0.02; //interpole resistance in Ohms
+
+//SOLUTION
+
+//solution (a)
+p_o=v_t*I_l;
+I_sh=v_t/r_sh;
+I_a=I_l+I_sh;
+r_tot=r_b+r_se+r_ip;
+arm_loss=(I_a^2)*r_tot; //armature circuit copper loss
+cu_loss=v_t*I_sh; //shunt field copper loss
+c_loss=cu_loss+loss1+loss2; //constant loss
+disp(sprintf("(a) The constant loss is %f W",c_loss));
+
+//solution (b)
+tot_loss=arm_loss+c_loss; //total loss
+p_i=p_o+tot_loss;
+eff=(p_o/p_i)*100;
+disp(sprintf("(b) The full load efficiency is %f %%",eff));
+
+//END
+
+
diff --git a/1445/CH8/EX8.37/ch8_ex_37.sce b/1445/CH8/EX8.37/ch8_ex_37.sce
new file mode 100644
index 000000000..3cea8b20c
--- /dev/null
+++ b/1445/CH8/EX8.37/ch8_ex_37.sce
@@ -0,0 +1,43 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 37
+
+disp("CHAPTER 8");
+disp("EXAMPLE 37");
+
+//VARIABLE INITIALIZATION
+p_o=50*1000; //in Watts
+v_t=250; //in Volts
+loss1=5000; //total core loss in Watts
+loss2=2000; //total core loss in Watts (when speed is reduced to half)
+speed=125/100;
+
+//SOLUTION
+
+//solution (a)
+
+//W_h=A*N, where W_h=hysteresis loss, A=constant and N=speed
+//W_e=B*(N^2), where W_e=eddy current loss, B=constant and N=speed
+//W_h+(W_e^2)=loss1 =>W_h+W_e=5000
+//(W_h/2)+(W_e/4)=loss2 =>(0.5*W_h)+(0.25*W_e)=2000 (when speed reduces to half)
+//So, we get two equations
+//W_h+W_e=5000.......................eq(i)
+//(0.5*W_h)+(0.25*W_e)=2000..........eq(ii)
+//solving the equations by matrix method
+A=[1 1;0.5 0.25];
+b=[5000;2000];
+x=inv(A)*b;
+W_h1=x(1,:); //to access the 1st row of 2X1 matrix
+W_e1=x(2,:); //to access the 2nd row of 2X1 matrix
+disp("Solution (a)");
+disp(sprintf("The hysteresis loss at full speed is %d W",W_h1));
+disp(sprintf("The eddy current loss at full speed is %d W",W_e1));
+
+//solution (b)
+W_h2=speed*W_h1;
+W_e2=(speed^2)*W_e1;
+disp("Solution (b)");
+disp(sprintf("The hysteresis loss at 125%% of the full speed is %d W",W_h2));
+disp(sprintf("The eddy current loss at 125%% of the full speed is %d W",W_e2));
+
+//END
+
diff --git a/1445/CH8/EX8.38/ch8_ex_38.sce b/1445/CH8/EX8.38/ch8_ex_38.sce
new file mode 100644
index 000000000..96d7543dc
--- /dev/null
+++ b/1445/CH8/EX8.38/ch8_ex_38.sce
@@ -0,0 +1,30 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 38
+
+disp("CHAPTER 8");
+disp("EXAMPLE 38");
+
+//VARIABLE INITIALIZATION
+v_t=215; //in Volts
+r_a=0.4; //in Ohms
+p=5*1000; //in Watts
+N_g=1000; //speed as generator in rpm
+ratio=1.1; //according to the solution, Φ_b:Φ_a=1.1
+
+//SOLUTION
+
+//As generator
+I_ag=p/v_t;
+E_a=v_t+(I_ag*r_a);
+
+//As motor
+I_am=p/v_t;
+E_b=v_t-(I_am*r_a);
+N_m=(1/ratio)*N_g*(E_b/E_a);
+N_m=round(N_m); //to round off the value
+disp(sprintf("The speed of the machine as motor is %d rpm",N_m));
+
+//END
+
+
+
diff --git a/1445/CH8/EX8.4/ch8_ex_4.sce b/1445/CH8/EX8.4/ch8_ex_4.sce
new file mode 100644
index 000000000..74fed07cb
--- /dev/null
+++ b/1445/CH8/EX8.4/ch8_ex_4.sce
@@ -0,0 +1,34 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 4
+
+disp("CHAPTER 8");
+disp("EXAMPLE 4");
+
+//VARIABLE INITIALIZATION
+v_t=240; //in Volts
+I_l=200; //full load current in Amperes
+r_f=60; //shunt field resisatnce in Ohms
+eff=90; //percentage full load efficiency
+s_loss=800; //stray(iron + friction) loss in Watts
+
+//SOLUTION
+
+//solution (a)
+p_o=v_t*I_l; //output
+eff=eff/100;
+p_i=p_o/eff;
+tot_loss=p_i-p_o; //since input=output+loss
+I_f=v_t/r_f;
+I_a=I_l+I_f;
+cu_loss=(I_f^2)*r_f; //copper loss
+c_loss=cu_loss+s_loss; //constant loss
+arm_loss=tot_loss-c_loss; //armature loss ((I_a^2)*r_a)
+r_a=arm_loss/(I_a^2);
+disp(sprintf("(a) The armature resisatnce is %f Ω",r_a));
+
+//solution (b)
+//for maximum efficiency, armature loss = constant loss =>(I_a^2)*r_a=c_loss
+I_a=sqrt(c_loss/r_a);
+disp(sprintf("(b) The load current corresponding to maximum efficiency is %f A",I_a));
+
+//END
diff --git a/1445/CH8/EX8.5/ch8_ex_5.sce b/1445/CH8/EX8.5/ch8_ex_5.sce
new file mode 100644
index 000000000..3cfbaaa8a
--- /dev/null
+++ b/1445/CH8/EX8.5/ch8_ex_5.sce
@@ -0,0 +1,40 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 5
+
+disp("CHAPTER 8");
+disp("EXAMPLE 5");
+
+//VARIABLE INITIALIZATION
+v_t=200; //in Volts
+I_l=50; //in Amperes
+r_a=0.1; //armature resistance in Ohms
+r_f=100; //field resistance in Ohms
+s_loss=500; //core and iron loss in Watts
+
+//SOLUTION
+
+//solution (a)
+I_f=v_t/r_f; //I_sh is same as I_f and r_sh is same as r_f
+I_a=I_f+I_l;
+E_a=v_t+(I_a*r_a);
+disp(sprintf("(a) The induced emf is %f V",E_a));
+
+//solution (b)
+arm_loss=(I_a^2)*r_a; //armature copper loss
+sh_loss=(I_f^2)*r_f; //shunt field copper loss
+tot_loss=arm_loss+sh_loss+s_loss;
+p_o=v_t*I_l; //output power
+p_i=p_o+tot_loss; //input power
+bhp=p_i/735.5; //1 metric horsepower= 735.498W
+disp(sprintf("(b) The Break Horse Power(B.H.P.) of the prime mover is %f H.P.(metric)",bhp));
+
+//solution (c)
+c_eff=(p_o/p_i)*100;
+p_EE=E_a*I_a; //electrical power
+m_eff=(p_EE/p_i)*100;
+e_eff=(p_o/p_EE)*100;
+disp(sprintf("(c) The commercial efficiency is %f %%, the mechanical efficiency is %f %% and the electrical efficiency is %f %%",c_eff,m_eff,e_eff));
+
+//END
+
+
diff --git a/1445/CH8/EX8.6/ch8_ex_6.sce b/1445/CH8/EX8.6/ch8_ex_6.sce
new file mode 100644
index 000000000..31e4aebbb
--- /dev/null
+++ b/1445/CH8/EX8.6/ch8_ex_6.sce
@@ -0,0 +1,52 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 6
+
+disp("CHAPTER 8");
+disp("EXAMPLE 6");
+
+//VARIABLE INITIALIZATION
+p_o=20*746; //output power from H.P. to Watts (1 H.P.=745.699 or 746 W)
+v_t=230; //in Volts
+N=1150; //speed in rpm
+P=4; //number of poles
+Z=882; //number of armature conductors
+r_a=0.188; //armature resistance in Ohms
+I_a=73; //armature current in Amperes
+I_f=1.6; //field current in Amperes
+
+//SOLUTION
+
+//solution (i)
+E_b=v_t-(I_a*r_a);
+w=(2*%pi*N)/60; //in radian/sec
+T_e=(E_b*I_a)/w;
+disp(sprintf("(i) The electromagnetic torque is %f N-m",T_e));
+
+//solution (ii)
+A=P; //since it is lap winding, so A=P and A=number of parallel paths
+phi=(E_b*60*A)/(P*N*Z);
+disp(sprintf("(ii) The flux per pole is %f Wb",phi));
+
+//solution (iii)
+p_rotor=E_b*I_a; //power developed on rotor
+p_rot=p_rotor-p_o; //p_shaft=p_out
+disp(sprintf("(iii) The rotational power is %f W",p_rot));
+
+//solution (iv)
+tot_loss=p_rot+((I_a^2)*r_a)+(v_t*I_f);
+p_i=p_o+tot_loss;
+eff=(p_o/p_i)*100;
+disp(sprintf("(iv) The efficiency is %f %%",eff));
+
+//solution (v)
+T=p_o/w;
+disp(sprintf("(v) The shaft torque is %f N-m",T));
+
+//The answers are slightly different due to the precision of floating point numbers
+
+//END
+
+
+
+
+
diff --git a/1445/CH8/EX8.7/ch8_ex_7.sce b/1445/CH8/EX8.7/ch8_ex_7.sce
new file mode 100644
index 000000000..510984fa8
--- /dev/null
+++ b/1445/CH8/EX8.7/ch8_ex_7.sce
@@ -0,0 +1,32 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 7
+
+disp("CHAPTER 8");
+disp("EXAMPLE 7");
+
+//VARIABLE INITIALIZATION
+p_o=20*746; //output power from H.P. to Watts (1 H.P.=745.699 or 746 W)
+v_t=230; //in Volts
+N1=1150; //speed in rpm
+P=4; //number of poles
+Z=882; //number of armature conductors
+r_a=0.188; //armature resistance in Ohms
+I_a1=73; //armature current in Amperes
+I_f=1.6; //field current in Amperes
+ratio=0.8; //phi2:phi1=0.8 (here phi=flux)
+
+//SOLUTION
+
+E_b1=v_t-(I_a1*r_a);
+I_a2=I_a1/ratio; //(phi2*I_a2)=(phi1*I_a1)
+E_b2=v_t-(I_a2*r_a);
+N2=(E_b2/E_b1)*(1/ratio)*N1; //N2:N1=(E_b2/E_b1)*(phi1/phi2)
+N2=round(N2); //to round off the value of N2 (before rounding off N2=1414.695516 rpm)
+disp(sprintf("The new operating speed is %d rpm",N2));
+
+//The answer is slightly different due to the precision of floating point numbers
+
+//END
+
+
+
diff --git a/1445/CH8/EX8.8/ch8_ex_8.sce b/1445/CH8/EX8.8/ch8_ex_8.sce
new file mode 100644
index 000000000..8370c62fb
--- /dev/null
+++ b/1445/CH8/EX8.8/ch8_ex_8.sce
@@ -0,0 +1,44 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 8
+
+disp("CHAPTER 8");
+disp("EXAMPLE 8");
+
+//VARIABLE INITIALIZATION
+v_t=250; //in Volts
+r_a=0.1; //armature resistance in Ohms
+r_f=125; //field resistance in Ohms
+p_o=20*1000; //output power in Watts
+N_g=1000; //speed as generator in rpm
+
+//SOLUTION
+
+//machine as a generator
+I_l=p_o/v_t;
+I_f=v_t/r_f; //I_f is same as I_sh
+I_ag=I_l+I_f;
+E_a=v_t+(I_ag*r_a); //induced emf = E_a = E_g
+
+//machine as a motor
+I_l=p_o/v_t;
+I_f=v_t/r_f;
+I_am=I_l-I_f;
+E_b=v_t-(I_am*r_a); //back emf = E_b = E_m
+
+//solution (a)
+N_m=(N_g*E_b)/E_a;
+N_m=round(N_m); //to round off the value of N_m
+disp(sprintf("(a) The speed of the same machine as a motor is %d rpm",N_m));
+
+//solution (b)
+
+//(i)
+p1=(E_a*I_ag)/1000; //to express the answer in kW
+disp(sprintf("(b) (i) The internal power developed as generator is %f kW",p1));
+
+//(ii)
+p2=(E_b*I_am)/1000;
+disp(sprintf("(b) (ii) The internal power developed as motor is %f kW",p2));
+
+//END
+
diff --git a/1445/CH8/EX8.9/ch8_ex_9.sce b/1445/CH8/EX8.9/ch8_ex_9.sce
new file mode 100644
index 000000000..464608dc5
--- /dev/null
+++ b/1445/CH8/EX8.9/ch8_ex_9.sce
@@ -0,0 +1,29 @@
+//CHAPTER 8- DIRECT CURRENT MACHINES
+//Example 9
+
+disp("CHAPTER 8");
+disp("EXAMPLE 9");
+
+//VARIABLE INITIALIZATION
+P=4; //number of poles
+v_t=230; //in Volts
+I_l=52; //in Amperes
+Z=600; //tottal number of conductors
+r_f=115; //in Ohms
+d=30/100; //airgap diameter from cm to m
+l=20/100; //effective length of pole
+B=4100/10000; //flux density from Gauss to Wb/m^2
+
+//SOLUTION
+I_f=v_t/r_f; //I_f is same as I_sh
+I_a=I_l-I_f;
+ar=(%pi*d*l)/P; //area of pole
+phi=ar*B; //phi = flux
+A=P;
+T=(phi*Z*I_a)/(2*%pi*A);
+disp(sprintf("The torque developed in the motor is %f N-m",T));
+
+//The answer is different as 'A' has not been included in the denominator(in the book)
+
+//END
+