diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /534/CH12 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '534/CH12')
-rw-r--r-- | 534/CH12/EX12.1/12_1_Plate_surface.sce | 34 | ||||
-rw-r--r-- | 534/CH12/EX12.10/12_10_Metallic_Sphere.sce | 26 | ||||
-rw-r--r-- | 534/CH12/EX12.11/12_11_Solar_Collector.sce | 28 | ||||
-rw-r--r-- | 534/CH12/EX12.2/12_2_Spectral_Distribution.sce | 19 | ||||
-rw-r--r-- | 534/CH12/EX12.3/12_3_Blackbody_Radiation.sce | 34 | ||||
-rw-r--r-- | 534/CH12/EX12.4/12_4_Blackbody_Angular_Radiation.sce | 26 | ||||
-rw-r--r-- | 534/CH12/EX12.5/12_5_Diffuse_emitter.sce | 45 | ||||
-rw-r--r-- | 534/CH12/EX12.6/12_6_Metallic_surface.sce | 32 | ||||
-rw-r--r-- | 534/CH12/EX12.7/12_7_Opaque_surface.sce | 29 | ||||
-rw-r--r-- | 534/CH12/EX12.8/12_8_Glass_Cover.sce | 20 | ||||
-rw-r--r-- | 534/CH12/EX12.9/12_9_Brick_Wall.sce | 35 |
11 files changed, 328 insertions, 0 deletions
diff --git a/534/CH12/EX12.1/12_1_Plate_surface.sce b/534/CH12/EX12.1/12_1_Plate_surface.sce new file mode 100644 index 000000000..953567f5f --- /dev/null +++ b/534/CH12/EX12.1/12_1_Plate_surface.sce @@ -0,0 +1,34 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 12.1 Page 731 \n')// Example 12.1
+
+// a) Intensity of emission in each of the three directions
+// b) Solid angles subtended by the three surfaces
+// c) Rate at which radiation is intercepted by the three surfaces
+
+A1 = .001 ;//[m^2] Area of emitter
+In = 7000 ;//[W/m^2.Sr] Intensity of radiation in normal direction
+A2 = .001 ;//[m^2] Area of other intercepting plates
+A3 = A2 ;//[m^2] Area of other intercepting plates
+A4 = A2 ;//[m^2] Area of other intercepting plates
+r = .5 ;//[m] Distance of each plate from emitter
+theta1 = 60 ;//[deg] Angle between surface 1 normal & direction of radiation to surface 2
+theta2 = 30 ;//[deg] Angle between surface 2 normal & direction of radiation to surface 1
+theta3 = 45 ;//[deg] Angle between surface 1 normal & direction of radiation to surface 4
+
+//From equation 12.2
+w31 = A3/r^2;
+w41 = w31;
+w21 = A2*cos(theta2*0.0174532925)/r^2;
+
+
+//From equation 12.6
+q12 = In*A1*cos(theta1*0.0174532925)*w21;
+q13 = In*A1*cos(0)*w31;
+q14 = In*A1*cos(theta3*0.0174532925)*w41;
+
+printf("\n (a) As Intensity of emitted radiation is independent of direction, for each of the three directions I = %i W/m^2.sr \n\n (b) By the Three Surfaces\n Solid angles subtended Rate at which radiation is intercepted \n w4-1 = %.2e sr q1-4 = %.1e W \n w3-1 = %.2e sr q1-3 = %.1e W\n w2-1 = %.2e sr q1-2 = %.1e W ",In,w41,q14,w31,q13,w21,q12);
+//END
+
+
+
diff --git a/534/CH12/EX12.10/12_10_Metallic_Sphere.sce b/534/CH12/EX12.10/12_10_Metallic_Sphere.sce new file mode 100644 index 000000000..101f8e4a5 --- /dev/null +++ b/534/CH12/EX12.10/12_10_Metallic_Sphere.sce @@ -0,0 +1,26 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 12.10 Page 768 \n')// Example 12.10
+
+// Total hemispherical absorptivity and emissivity of sphere for initial condition
+// values of absoprtivity and emissivity after sphere has been in furnace a long time
+
+Ts = 300; //[K] temperature of surface
+Tf = 1200; //[K] Temperature of Furnace
+stfncnstt = 5.67*10^-8; //[W/m^2.K^4] Stefan-Boltzmann constant
+// From the given graph of absorptivities
+a1 = .8; //between wavelength 0 micro-m- 5 micro-m
+a2 = .1; //greater than wavelength 5 micro-m
+
+//From Table 12.1
+//For wl1 = 5 micro-m and T = 1200 K, At wl1*T = 6000 micro-m.K
+F0wl1 = 0.738;
+//From equation 12.44
+a = a1*F0wl1 + a2*(1-F0wl1);
+//From Table 12.1
+//For wl1 = 5 micro-m and T = 300 K, At wl1*T = 1500 micro-m.K
+F0wl1s = 0.014;
+//From equation 12.36
+e = a1*F0wl1s + a2*(1-F0wl1s);
+
+printf('\n For Initial Condition \n Total hemispherical absorptivity = %.2f Emissivity of sphere = %.2f \n\n Beacuase the spectral characteristics of the coating and the furnace temeprature remain fixed, there is no change in the value of absorptivity with increasing time. \n Hence, After a sufficiently long time, Ts = Tf = %i K and emissivity equals absorptivity e = a = %.2f',a,e,Tf,a);
\ No newline at end of file diff --git a/534/CH12/EX12.11/12_11_Solar_Collector.sce b/534/CH12/EX12.11/12_11_Solar_Collector.sce new file mode 100644 index 000000000..645ac0b7b --- /dev/null +++ b/534/CH12/EX12.11/12_11_Solar_Collector.sce @@ -0,0 +1,28 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 12.11 Page 774 \n')// Example 12.11
+
+// Useful heat removal rate per unit area
+// Efficiency of the collector
+
+Ts = 120+273; //[K] temperature of surface
+Gs = 750; //[W/m^2] Solar irradiation
+Tsky = -10+273; //[K] Temperature of Sky
+Tsurr = 30+273; //[K] Temperature os surrounding Air
+e = .1 ;// emissivity
+as = .95 ;// Absorptivity of Surface
+asky = e ;// Absorptivity of Sky
+stfncnstt = 5.67*10^-8; //[W/m^2.K^4] Stefan-Boltzmann constant
+h = 0.22*(Ts - Tsurr)^.3334 ;//[W/m^2.K] Convective Heat transfer Coeff
+//From equation 12.67
+Gsky = stfncnstt*Tsky^4; //[W/m^2] Irradiadtion from sky
+qconv = h*(Ts-Tsurr); //[W/m^2] Convective Heat transfer
+E = e*stfncnstt*Ts^4; //[W/m^2] Irradiadtion from Surface
+
+//From energy Balance
+q = as*Gs + asky*Gsky - qconv - E;
+
+//Collector efficiency
+eff = q/Gs;
+
+printf('\n Useful heat removal rate per unit area by Energy Conservation = %i W/m^2 \n Collector efficiency defined as the fraction of solar irradiation extracted as useful energy is %.2f',q,eff);
\ No newline at end of file diff --git a/534/CH12/EX12.2/12_2_Spectral_Distribution.sce b/534/CH12/EX12.2/12_2_Spectral_Distribution.sce new file mode 100644 index 000000000..c39690689 --- /dev/null +++ b/534/CH12/EX12.2/12_2_Spectral_Distribution.sce @@ -0,0 +1,19 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 12.2 Page 734\n')// Example 12.2
+
+// Total Irradiation
+x=[0 5 20 25];
+y=[0 1000 1000 0];
+clf();
+plot2d(x,y,style=5,rect=[0,0,30,1100]);
+xtitle("Spectral Distribution", "wavelength (micro-m)", "G (W/m^2.micro-m)");
+
+//By Equation 12.4
+G = 1000*(5-0)/2+1000*(20-5)+1000*(25-20)/2;
+
+printf("\n G = %i W/m^2",G);
+//END
+
+
+
diff --git a/534/CH12/EX12.3/12_3_Blackbody_Radiation.sce b/534/CH12/EX12.3/12_3_Blackbody_Radiation.sce new file mode 100644 index 000000000..7c8c97943 --- /dev/null +++ b/534/CH12/EX12.3/12_3_Blackbody_Radiation.sce @@ -0,0 +1,34 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 12.3 Page 741 \n')// Example 12.3
+
+// Spectral Emissive Power of a small aperture on the enclosure
+// wavelengths below which and above which 10% of the radiation is concentrated
+// Spectral emissive power and wavelength associated with maximum emission
+// Irradiation on a small object inside the enclosure
+
+T = 2000 ;//[K] temperature of surface
+stfncnstt = 5.67*10^-8 ;//[W/m^2.K^4] Stefan-Boltzmann constant
+E = stfncnstt*T^4; //[W/m^2]
+
+//From Table 12.1
+constt1 = 2195 ; //[micro-m.K]
+wl1 = constt1/T;
+//From Table 12.1
+constt2 = 9382 ; //[micro-m.K]
+wl2 = constt2/T;
+
+//From Weins Law, wlmax*T = consttmax = 2898 micro-m.K
+consttmax = 2898 ;//micro-m.K
+wlmax = consttmax/T;
+//from Table 12.1 at wlmax = 1.45 micro-m.K and T = 2000 K
+I = .722*10^-4*stfncnstt*T^5;
+Eb = %pi*I;
+
+G = E; //[W/m^2] Irradiation of any small object inside the enclosure is equal to emission from blackbody at enclosure temperature
+
+printf("\n (a) Spectral Emissive Power of a small aperture on the enclosure = %.2e W/m^2.Sr for each of the three directions \n (b) Wavelength below which 10percent of the radiation is concentrated = %.1f micro-m \n Wavelength above which 10percent of the radiation is concentrated = %.2f micro-m \n (c) Spectral emissive power and wavelength associated with maximum emission is %.2e micro-m and %.2e W/m^2.micro-m respectively \n (d) Irradiation on a small object inside the enclosure = %.2e W/m^2",E,wl1,wl2,Eb,wlmax,G);
+//END
+
+
+
diff --git a/534/CH12/EX12.4/12_4_Blackbody_Angular_Radiation.sce b/534/CH12/EX12.4/12_4_Blackbody_Angular_Radiation.sce new file mode 100644 index 000000000..6015f17bc --- /dev/null +++ b/534/CH12/EX12.4/12_4_Blackbody_Angular_Radiation.sce @@ -0,0 +1,26 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 12.4 Page 743 \n')// Example 12.4
+
+// Rate of emission per unit area over all directions between 0 degC and 60 degC and over all wavelengths between wavelengths 2 and 4 micro-m
+
+T = 1500 ;//[K] temperature of surface
+stfncnstt = 5.67*10^-8 ;//[W/m^2.K^4] Stefan-Boltzmann constant
+
+//From Equation 12.26 Black Body Radiation
+Eb = stfncnstt*T^4; //[W/m^2]
+
+//From Table 12.1 as wl1*T = 2*1500 (micro-m.K)
+F02 = .273;
+//From Table 12.1 as wl2*T = 4*1500 (micro-m.K)
+F04 = .738;
+
+//From equation 12.10 and 12.11
+i1 = integrate('2*cos(x)*sin(x)','x',0,%pi/3);
+delE = i1*(F04-F02)*Eb;
+
+printf("\n Rate of emission per unit area over all directions between 0 degC and 60 degC and over all wavelengths between wavelengths 2 micro-m and 4 micro-m = %.1e W/m^2",delE);
+//END
+
+
+
diff --git a/534/CH12/EX12.5/12_5_Diffuse_emitter.sce b/534/CH12/EX12.5/12_5_Diffuse_emitter.sce new file mode 100644 index 000000000..8d2f40319 --- /dev/null +++ b/534/CH12/EX12.5/12_5_Diffuse_emitter.sce @@ -0,0 +1,45 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 12.5 Page 748 \n')// Example 12.5
+
+// Total hemispherical emissivity
+// Total emissive Power
+// Wavelength at which spectral emissive power will be maximum
+
+T = 1600 ;//[K] temperature of surface
+wl1 = 2 ;//[micro-m] wavelength 1
+wl2 = 5 ;//[micro-m] wavelength 2
+stfncnstt = 5.67*10^-8; //[W/m^2.K^4] Stefan-Boltzmann constant
+// From the given graph of emissivities
+e1 = .4;
+e2 = .8;
+//From Equation 12.26 Black Body Radiation
+Eb = stfncnstt*T^4; //[W/m^2]
+
+//Solution (A)
+//From Table 12.1 as wl1*T = 2*1600 (micro-m.K)
+F02 = .318;
+//From Table 12.1 as wl2*T = 5*1600 (micro-m.K)
+F05 = .856;
+//From Equation 12.36
+e = e1*F02 + e2*[F05 - F02];
+
+//Solution (B)
+//From equation 12.35
+E = e*Eb;
+
+//Solution (C)
+//For maximum condition Using Weins Law
+consttmax = 2898 ;//[micro-m.K]
+wlmax = consttmax/T;
+
+//equation 12.32 with Table 12.1
+E1 = %pi*e1*.722*10^-4*stfncnstt*T^5;
+
+E2 = %pi*e2*.706*10^-4*stfncnstt*T^5;
+
+printf("\n (a) Total hemispherical emissivity = %.3f \n (b) Total emissive Power = %i kW/m^2 \n (c) Emissive Power at wavelength 2micro-m is greater than Emissive power at maximum wavelength \n i.e. %.1f kW/m^2 > %.1f kW/m^2 \n Thus, Peak emission occurs at %i micro-m",e,E/1000,E2/1000,E1/1000,wl1);
+//END
+
+
+
diff --git a/534/CH12/EX12.6/12_6_Metallic_surface.sce b/534/CH12/EX12.6/12_6_Metallic_surface.sce new file mode 100644 index 000000000..2a4c4b7f7 --- /dev/null +++ b/534/CH12/EX12.6/12_6_Metallic_surface.sce @@ -0,0 +1,32 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 12.6 Page 751 \n')// Example 12.6
+
+// Spectral , Normal emissivity en and spectral hemispherical emissivity e
+// Spectral normal intensity In and Spectral emissive power
+
+T = 2000 ;//[K] temperature of surface
+wl = 1 ;//[micro-m] wavelength
+stfncnstt = 5.67*10^-8; //[W/m^2.K^4] Stefan-Boltzmann constant
+
+// From the given graph of emissivities
+e1 = .3;
+e2 = .6;
+//From Equation 12.26 Black Body Radiation
+Eb = stfncnstt*T^4; //[W/m^2]
+
+//Equation 12.34
+i1 = integrate('e1*cos(x)*sin(x)','x',0,%pi/3);
+i2 = integrate('e2*cos(x)*sin(x)','x',%pi/3,4*%pi/9);
+e = 2*[i1+i2];
+
+// From Table 12.1 at wl = 1 micro-m and T = 2000 K.
+
+I = .493*10^-4 * stfncnstt*T^5 ;//[W/m^2.micro-m.sr]
+
+In = e1*I;
+
+//Using Equation 12.32 for wl = 1 micro-m and T = 2000 K
+E = e*%pi*I;
+
+printf('\n Spectral Normal emissivity en = %.1f and spectral hemispherical emissivity e = %.2f \n Spectral normal intensity In = %.2e W/m^2.micro-m.sr and Spectral emissive power = %.1e W/m^2.micro-m.sr ', e1, e,In,E);
\ No newline at end of file diff --git a/534/CH12/EX12.7/12_7_Opaque_surface.sce b/534/CH12/EX12.7/12_7_Opaque_surface.sce new file mode 100644 index 000000000..941a2e172 --- /dev/null +++ b/534/CH12/EX12.7/12_7_Opaque_surface.sce @@ -0,0 +1,29 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 12.7 Page 759 \n')// Example 12.7
+
+// Spectral distribution of reflectivity
+// Total, hemispherical absorptivity
+// Nature of surface temperature change
+
+T = 500 ;//[K] temperature of surface
+e = .8;
+stfncnstt = 5.67*10^-8; //[W/m^2.K^4] Stefan-Boltzmann constant
+
+x=[0 6 8 16];
+y=[.8 .8 0 0];
+clf();
+plot2d(x,y,style=5,rect=[0,0,20,1]);
+
+
+xtitle("Spectral Distribution of reflectivity", "wavelength (micro-m)", "reflectivity");
+
+//From equation 12.43 and 12.44
+Gabs = {.2*500/2*(6-2)+500*[.2*(8-6)+(1-.2)*(8-6)/2]+1*500*(12-8)+500*(16-12)/2} ;//[w/m^2]
+G = {500*(6-2)/2+500*(12-6)+500*(16-12)/2} ;//[w/m^2]
+a = Gabs/G;
+
+//Neglecting convection effects net het flux to the surface
+qnet = a*G - e*stfncnstt*T^4;
+
+printf('\n Total, hemispherical absorptivity %.2f \n Nature of surface temperature change = %i W/m^2 \n Since qnet > 0, the sirface temperature will increase with the time', a,qnet);
\ No newline at end of file diff --git a/534/CH12/EX12.8/12_8_Glass_Cover.sce b/534/CH12/EX12.8/12_8_Glass_Cover.sce new file mode 100644 index 000000000..c723347b9 --- /dev/null +++ b/534/CH12/EX12.8/12_8_Glass_Cover.sce @@ -0,0 +1,20 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 12.8 Page 761 \n')// Example 12.8
+
+// Total emissivity of cover glass to solar radiation
+
+T = 5800 ;//[K] temperature of surface
+e = .8;
+stfncnstt = 5.67*10^-8; //[W/m^2.K^4] Stefan-Boltzmann constant
+
+//From Table 12.1
+//For wl1 = .3 micro-m and T = 5800 K, At wl1*T = 1740 micro-m.K
+F0wl1 = .0335;
+//For wl1 = .3 micro-m and T = 5800 K, At wl2*T = 14500 micro-m.K
+F0wl2 = .9664;
+
+//Hence from equation 12.29
+t = .90*[F0wl2 - F0wl1];
+
+printf('\n Total emissivity of cover glass to solar radiation = %.2f',t);
\ No newline at end of file diff --git a/534/CH12/EX12.9/12_9_Brick_Wall.sce b/534/CH12/EX12.9/12_9_Brick_Wall.sce new file mode 100644 index 000000000..55c598a70 --- /dev/null +++ b/534/CH12/EX12.9/12_9_Brick_Wall.sce @@ -0,0 +1,35 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 12.9 Page 766 \n')// Example 12.9
+
+// Total hemispherical emissivity of fire brick wall
+// Total emissive power of brick wall
+// Absorptivity of the wall to irradiation from coals
+
+Ts = 500 ;//[K] temperature of brick surface
+Tc = 2000 ;//[K] Temperature of coal exposed
+stfncnstt = 5.67*10^-8; //[W/m^2.K^4] Stefan-Boltzmann constant
+// From the given graph of emissivities
+e1 = .1; //between wavelength 0 micro-m- 1.5 micro-m
+e2 = .5; //between wavelength 1.5 micro-m- 10 micro-m
+e3 = .8; //greater than wavelength 10 micro-m
+
+//From Table 12.1
+//For wl1 = 1.5 micro-m and T = 500 K, At wl1*T = 750 micro-m.K
+F0wl1 = 0;
+//For wl2 = 10 micro-m and T = 500 K, At wl2*T = 5000 micro-m.K
+F0wl2 = .634;
+//From equation 12.36
+e = e1*F0wl1 + e2*F0wl2 + e3*(1-F0wl1-F0wl2);
+
+//Equation 12.26 and 12.35
+E = e*stfncnstt*Ts^4;
+
+//From Table 12.1
+//For wl1 = 1.5 micro-m and T = 2000 K, At wl1*T = 3000 micro-m.K
+F0wl1c = 0.273;
+//For wl2 = 10 micro-m and T = 2000 K, At wl2*T = 20000 micro-m.K
+F0wl2c = .986;
+ac = e1*F0wl1c + e2*[F0wl2c-F0wl1c] + e3*(1-F0wl2c);
+
+printf('\n Total hemispherical emissivity of fire brick wall = %.3f \n Total emissive power of brick wall = %i W/m^2.\n Absorptivity of the wall to irradiation from coals = %.3f',e,E,ac);
\ No newline at end of file |