summaryrefslogtreecommitdiff
path: root/534/CH12/EX12.11/12_11_Solar_Collector.sce
diff options
context:
space:
mode:
Diffstat (limited to '534/CH12/EX12.11/12_11_Solar_Collector.sce')
-rw-r--r--534/CH12/EX12.11/12_11_Solar_Collector.sce28
1 files changed, 28 insertions, 0 deletions
diff --git a/534/CH12/EX12.11/12_11_Solar_Collector.sce b/534/CH12/EX12.11/12_11_Solar_Collector.sce
new file mode 100644
index 000000000..645ac0b7b
--- /dev/null
+++ b/534/CH12/EX12.11/12_11_Solar_Collector.sce
@@ -0,0 +1,28 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 12.11 Page 774 \n')// Example 12.11
+
+// Useful heat removal rate per unit area
+// Efficiency of the collector
+
+Ts = 120+273; //[K] temperature of surface
+Gs = 750; //[W/m^2] Solar irradiation
+Tsky = -10+273; //[K] Temperature of Sky
+Tsurr = 30+273; //[K] Temperature os surrounding Air
+e = .1 ;// emissivity
+as = .95 ;// Absorptivity of Surface
+asky = e ;// Absorptivity of Sky
+stfncnstt = 5.67*10^-8; //[W/m^2.K^4] Stefan-Boltzmann constant
+h = 0.22*(Ts - Tsurr)^.3334 ;//[W/m^2.K] Convective Heat transfer Coeff
+//From equation 12.67
+Gsky = stfncnstt*Tsky^4; //[W/m^2] Irradiadtion from sky
+qconv = h*(Ts-Tsurr); //[W/m^2] Convective Heat transfer
+E = e*stfncnstt*Ts^4; //[W/m^2] Irradiadtion from Surface
+
+//From energy Balance
+q = as*Gs + asky*Gsky - qconv - E;
+
+//Collector efficiency
+eff = q/Gs;
+
+printf('\n Useful heat removal rate per unit area by Energy Conservation = %i W/m^2 \n Collector efficiency defined as the fraction of solar irradiation extracted as useful energy is %.2f',q,eff); \ No newline at end of file