blob: 941a2e172a74bd2d24e280ade69a9fb512e1c021 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
clear;
clc;
printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 12.7 Page 759 \n')// Example 12.7
// Spectral distribution of reflectivity
// Total, hemispherical absorptivity
// Nature of surface temperature change
T = 500 ;//[K] temperature of surface
e = .8;
stfncnstt = 5.67*10^-8; //[W/m^2.K^4] Stefan-Boltzmann constant
x=[0 6 8 16];
y=[.8 .8 0 0];
clf();
plot2d(x,y,style=5,rect=[0,0,20,1]);
xtitle("Spectral Distribution of reflectivity", "wavelength (micro-m)", "reflectivity");
//From equation 12.43 and 12.44
Gabs = {.2*500/2*(6-2)+500*[.2*(8-6)+(1-.2)*(8-6)/2]+1*500*(12-8)+500*(16-12)/2} ;//[w/m^2]
G = {500*(6-2)/2+500*(12-6)+500*(16-12)/2} ;//[w/m^2]
a = Gabs/G;
//Neglecting convection effects net het flux to the surface
qnet = a*G - e*stfncnstt*T^4;
printf('\n Total, hemispherical absorptivity %.2f \n Nature of surface temperature change = %i W/m^2 \n Since qnet > 0, the sirface temperature will increase with the time', a,qnet);
|