clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 12.7 Page 759 \n')// Example 12.7 // Spectral distribution of reflectivity // Total, hemispherical absorptivity // Nature of surface temperature change T = 500 ;//[K] temperature of surface e = .8; stfncnstt = 5.67*10^-8; //[W/m^2.K^4] Stefan-Boltzmann constant x=[0 6 8 16]; y=[.8 .8 0 0]; clf(); plot2d(x,y,style=5,rect=[0,0,20,1]); xtitle("Spectral Distribution of reflectivity", "wavelength (micro-m)", "reflectivity"); //From equation 12.43 and 12.44 Gabs = {.2*500/2*(6-2)+500*[.2*(8-6)+(1-.2)*(8-6)/2]+1*500*(12-8)+500*(16-12)/2} ;//[w/m^2] G = {500*(6-2)/2+500*(12-6)+500*(16-12)/2} ;//[w/m^2] a = Gabs/G; //Neglecting convection effects net het flux to the surface qnet = a*G - e*stfncnstt*T^4; printf('\n Total, hemispherical absorptivity %.2f \n Nature of surface temperature change = %i W/m^2 \n Since qnet > 0, the sirface temperature will increase with the time', a,qnet);