summaryrefslogtreecommitdiff
path: root/534/CH12/EX12.4/12_4_Blackbody_Angular_Radiation.sce
diff options
context:
space:
mode:
Diffstat (limited to '534/CH12/EX12.4/12_4_Blackbody_Angular_Radiation.sce')
-rw-r--r--534/CH12/EX12.4/12_4_Blackbody_Angular_Radiation.sce26
1 files changed, 26 insertions, 0 deletions
diff --git a/534/CH12/EX12.4/12_4_Blackbody_Angular_Radiation.sce b/534/CH12/EX12.4/12_4_Blackbody_Angular_Radiation.sce
new file mode 100644
index 000000000..6015f17bc
--- /dev/null
+++ b/534/CH12/EX12.4/12_4_Blackbody_Angular_Radiation.sce
@@ -0,0 +1,26 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 12.4 Page 743 \n')// Example 12.4
+
+// Rate of emission per unit area over all directions between 0 degC and 60 degC and over all wavelengths between wavelengths 2 and 4 micro-m
+
+T = 1500 ;//[K] temperature of surface
+stfncnstt = 5.67*10^-8 ;//[W/m^2.K^4] Stefan-Boltzmann constant
+
+//From Equation 12.26 Black Body Radiation
+Eb = stfncnstt*T^4; //[W/m^2]
+
+//From Table 12.1 as wl1*T = 2*1500 (micro-m.K)
+F02 = .273;
+//From Table 12.1 as wl2*T = 4*1500 (micro-m.K)
+F04 = .738;
+
+//From equation 12.10 and 12.11
+i1 = integrate('2*cos(x)*sin(x)','x',0,%pi/3);
+delE = i1*(F04-F02)*Eb;
+
+printf("\n Rate of emission per unit area over all directions between 0 degC and 60 degC and over all wavelengths between wavelengths 2 micro-m and 4 micro-m = %.1e W/m^2",delE);
+//END
+
+
+