summaryrefslogtreecommitdiff
path: root/3638/CH11
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3638/CH11
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3638/CH11')
-rw-r--r--3638/CH11/EX11.1/Ex11_1.jpgbin0 -> 100778 bytes
-rw-r--r--3638/CH11/EX11.1/Ex11_1.sce21
-rw-r--r--3638/CH11/EX11.2/Ex11_2.jpgbin0 -> 118118 bytes
-rw-r--r--3638/CH11/EX11.2/Ex11_2.sce21
-rw-r--r--3638/CH11/EX11.3/Ex11_3.jpgbin0 -> 65237 bytes
-rw-r--r--3638/CH11/EX11.3/Ex11_3.sce13
-rw-r--r--3638/CH11/EX11.4/Ex11_4.jpgbin0 -> 64800 bytes
-rw-r--r--3638/CH11/EX11.4/Ex11_4.sce13
-rw-r--r--3638/CH11/EX11.5/Ex11_5.jpgbin0 -> 64642 bytes
-rw-r--r--3638/CH11/EX11.5/Ex11_5.sce13
-rw-r--r--3638/CH11/EX11.6/Ex11_6.jpgbin0 -> 89300 bytes
-rw-r--r--3638/CH11/EX11.6/Ex11_6.sce26
12 files changed, 107 insertions, 0 deletions
diff --git a/3638/CH11/EX11.1/Ex11_1.jpg b/3638/CH11/EX11.1/Ex11_1.jpg
new file mode 100644
index 000000000..7e884598e
--- /dev/null
+++ b/3638/CH11/EX11.1/Ex11_1.jpg
Binary files differ
diff --git a/3638/CH11/EX11.1/Ex11_1.sce b/3638/CH11/EX11.1/Ex11_1.sce
new file mode 100644
index 000000000..a891c6732
--- /dev/null
+++ b/3638/CH11/EX11.1/Ex11_1.sce
@@ -0,0 +1,21 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 11.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+//E1 & E2 are the ground level and first excited level of energy respectively
+h=6.626e-34;//Planck's constant in SI Units
+c=3e8;//speed of electrons in m/s
+lambda=694e-9;//wavelength corresponding to the energy gap between E1 & E2
+//Let E2-E1=DeltaE
+DeltaE=h*c/lambda;
+mprintf("\n E2-E1=%e",DeltaE);//Energy gap between E1 & E2 in J
+//The answers vary due to round off error
+kB=1.38e-23;//Boltzmann constant in SI Units
+T=300;//Temperature in K
+mprintf("\n kB*T=%e",kB*T);
+//Let N2/N1 be N
+N=exp(-DeltaE/(kB*T));//Ratio of population density at E2 and E1 energy levels
+mprintf("\n N2/N1=%e",N);//The answers vary due to round off error
diff --git a/3638/CH11/EX11.2/Ex11_2.jpg b/3638/CH11/EX11.2/Ex11_2.jpg
new file mode 100644
index 000000000..92ff3bcae
--- /dev/null
+++ b/3638/CH11/EX11.2/Ex11_2.jpg
Binary files differ
diff --git a/3638/CH11/EX11.2/Ex11_2.sce b/3638/CH11/EX11.2/Ex11_2.sce
new file mode 100644
index 000000000..861d3897e
--- /dev/null
+++ b/3638/CH11/EX11.2/Ex11_2.sce
@@ -0,0 +1,21 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 11.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+//For Cr+3 ions in ruby
+N1=1.6e19;//Population density of E1 energy level in cm^(-3)
+N2=0;//Population density of E2 energy level in cm^(-3)
+n=1.76;//refractive index of medium
+Tsp=3e-3;//Spontaneous emission lifetime of atom in sec
+//Let g(v0) be g
+g=6.9e-12;//normalized lineshape function in s
+lambda0=694.3e-7;//wavelength at which absorption takes place in cm
+c=3e10;//speed of electrons in cm/s
+v=c/lambda0;
+//Let Y(v0) be Y
+Y=((c/n)^2)*g*(N2-N1)/(8*%pi*Tsp*(v^2));//Corresponding gain coefficient of medium
+mprintf("\n Absorption coefficient = %f",Y);//The answers vary due to round off error
+//negative sign implies absorption
diff --git a/3638/CH11/EX11.3/Ex11_3.jpg b/3638/CH11/EX11.3/Ex11_3.jpg
new file mode 100644
index 000000000..e55326668
--- /dev/null
+++ b/3638/CH11/EX11.3/Ex11_3.jpg
Binary files differ
diff --git a/3638/CH11/EX11.3/Ex11_3.sce b/3638/CH11/EX11.3/Ex11_3.sce
new file mode 100644
index 000000000..26a94b810
--- /dev/null
+++ b/3638/CH11/EX11.3/Ex11_3.sce
@@ -0,0 +1,13 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 11.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+R1=0.99;//reflection coefficient of mirror 1
+R2=0.9;//reflection coefficient of mirror 2
+l=10;//Distance between the two mirrors in cm
+alpha=0;//average loss coefficient per unit length of resonator in cm^(-1)
+Vth=alpha-log(R1*R2)/(2*l);//Corresponding threshold gain coefficient in cm^(-1)
+mprintf("\n The threshold gain coefficient = %e cm^-1",Vth);//The answers vary due to round off error
diff --git a/3638/CH11/EX11.4/Ex11_4.jpg b/3638/CH11/EX11.4/Ex11_4.jpg
new file mode 100644
index 000000000..799cb1ef9
--- /dev/null
+++ b/3638/CH11/EX11.4/Ex11_4.jpg
Binary files differ
diff --git a/3638/CH11/EX11.4/Ex11_4.sce b/3638/CH11/EX11.4/Ex11_4.sce
new file mode 100644
index 000000000..d5aeb33fb
--- /dev/null
+++ b/3638/CH11/EX11.4/Ex11_4.sce
@@ -0,0 +1,13 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 11.4
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+R1=0.32;//reflection coefficient of mirror 1
+R2=0.32;//reflection coefficient of mirror 2
+l=300e-4;//Distance between the two mirrors in cm
+alpha=10;//average loss coefficient per unit length of resonator in cm^(-1)
+Vth=alpha-log(R1*R2)/(2*l);//Corresponding threshold gain coefficient in cm^(-1)
+mprintf("\n The threshold gain coefficient = %e cm^-1",Vth);//The answers vary due to round off error
diff --git a/3638/CH11/EX11.5/Ex11_5.jpg b/3638/CH11/EX11.5/Ex11_5.jpg
new file mode 100644
index 000000000..7d17e207f
--- /dev/null
+++ b/3638/CH11/EX11.5/Ex11_5.jpg
Binary files differ
diff --git a/3638/CH11/EX11.5/Ex11_5.sce b/3638/CH11/EX11.5/Ex11_5.sce
new file mode 100644
index 000000000..20984b125
--- /dev/null
+++ b/3638/CH11/EX11.5/Ex11_5.sce
@@ -0,0 +1,13 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 11.5
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+R1=0.3;//reflection coefficient of mirror 1
+R2=0.3;//reflection coefficient of mirror 2
+l=500e-4;//Distance between the two mirrors in cm
+alpha=5e1;//average loss coefficient per unit length of resonator in cm^(-1)
+Vth=alpha-log(R1*R2)/(2*l);//Corresponding threshold gain coefficient in cm^(-1)
+mprintf("\n The threshold gain coefficient = %e cm^-1",Vth);//The answers vary due to round off error
diff --git a/3638/CH11/EX11.6/Ex11_6.jpg b/3638/CH11/EX11.6/Ex11_6.jpg
new file mode 100644
index 000000000..98bcef740
--- /dev/null
+++ b/3638/CH11/EX11.6/Ex11_6.jpg
Binary files differ
diff --git a/3638/CH11/EX11.6/Ex11_6.sce b/3638/CH11/EX11.6/Ex11_6.sce
new file mode 100644
index 000000000..955777a45
--- /dev/null
+++ b/3638/CH11/EX11.6/Ex11_6.sce
@@ -0,0 +1,26 @@
+//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 11.6
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given Case(i)
+lambdag=1.30e-6;//emission wavelength in m
+//Bandgap energy in eV is given by :
+Eg=1.24/(lambdag/1e-6);//Division by 10^(-6) to convert lambdag into um
+mprintf("\nCase 1: for lambda0 =1.30 um");
+mprintf("\n Eg=%f eV",Eg);//The answers vary due to round off error
+p=[0.12 -0.72 1.35-Eg];//Relation between Eg & y is given as 'Eg(y)=1.35-0.72y+0.12y^2 in eV'
+y=roots(p);
+mprintf("\n y=%f",y(2,1));//Roots are arranged in descending order & y cannot be greater than 1
+//The answers vary due to round off error
+//given Case(ii)
+lambdag=1.55e-6;//emission wavelength in m
+//Bandgap energy in eV is given by :
+Eg=1.24/(lambdag/1e-6);//Division by 10^(-6) to convert lambdag into um
+mprintf("\nCase 2: for lambda0 =1.55 um");
+mprintf("\n Eg=%f eV",Eg);//The answers vary due to round off error
+p=[0.12 -0.72 1.35-Eg];//Relation between Eg & y is given as 'Eg(y)=1.35-0.72y+0.12y^2 in eV'
+y=roots(p);
+mprintf("\n y=%f",y(2,1));//Roots are arranged in descending order & y cannot be greater than 1
+//The answers vary due to round off error