diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3511 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3511')
73 files changed, 1995 insertions, 0 deletions
diff --git a/3511/CH11/EX11.1/Ex11_1.sce b/3511/CH11/EX11.1/Ex11_1.sce new file mode 100644 index 000000000..ad4d88b9c --- /dev/null +++ b/3511/CH11/EX11.1/Ex11_1.sce @@ -0,0 +1,19 @@ +clc;
+p02=6; // Inlet pressure in bar
+T02=900; // Inlet temperature in kelvin
+p0fs=1; // Outlet pressure in bar
+eff_isenT=0.85; // insentropic efficiency of turbine
+alpha_2=75; // Nozzle outlet angle in degree
+u=250; // Mean blade velocity in m/s
+Cp=1.15*10^3; // Specific heat in J/ kg K
+r=1.333; // Specific heat ratio
+
+T0fs=T02/(p02/p0fs)^((r-1)/r); // Isentropic temperature at the exit of the final stage
+Del_Toverall=eff_isenT*(T02-T0fs); // Actual overall temperature drop
+c2=2*u/sind (alpha_2); // absolute velocity
+c3= c2*cosd (alpha_2);// absolute velocity
+c1=c3; // From velocity triangles
+Del_Tstage=(c2^2-c1^2)/(2*Cp); // Stage temperature drop
+n=Del_Toverall/Del_Tstage; // Number of stages
+
+disp (round (n),"Number of stages n =");
diff --git a/3511/CH11/EX11.2/Ex11_2.sce b/3511/CH11/EX11.2/Ex11_2.sce new file mode 100644 index 000000000..f2db7249d --- /dev/null +++ b/3511/CH11/EX11.2/Ex11_2.sce @@ -0,0 +1,33 @@ +clc;
+N=10000; // Speed of gas turbine in rpm
+T01=700+273.15; // Total head temperature at nozzle entry in kelvin
+P01=4.5; //Total head pressure at nozzle entry in bar
+P02=2.6; // Outlet pressure from nozzle in bar
+p3=1.5;// Pressure at trbine outlet annulus in bar
+M=0.5; // Mach number at outlet
+alpha_2=70; // outlet nozzle angle in degrees
+D=64; // Blade mean diameter in cm
+m=22.5; // Mass flow rate in kg/s
+eff_T=0.99; // turbine mechanical efficiency
+Cp=1.147; // Specific heat in kJ/kg K
+r=1.33; // Specific heat ratio
+fl=0.03; // frictional loss
+R=284.6; // characteristic gas constant in J/kg K
+
+eff_N=1-fl; // Nozzle efficiency
+T_02=(P02/P01)^((r-1)/r)*T01; // Isentropic temperature after expansion
+T02=T01-eff_N*(T01-T_02); // Actual temperature after expansion
+c2=sqrt (2*Cp*10^3*(T01-T02)); // Absolute velocity
+u=(3.14*D*10^-2*N)/60; // Mean blade velocity
+// From velocity triangles
+wt2=c2*sind (alpha_2)-u;
+ca=c2*cosd (alpha_2);
+beta_2=atand((wt2)/ca);
+T3=T02/(P02/p3)^((r-1)/r); // Assuming rotor losses are negligible
+c3=M*sqrt (r*R*T3); // Absolute velocity
+beta_3=atand(u/c3);
+ct2=c2*sind(alpha_2);
+P=eff_T*m*(ct2)*u/1000; // Power developed
+
+disp ("degree",beta_3,"Gas angle at exit = ","degree",beta_2,"Gas angle at entry","(i).");
+disp ("kW (roundoff error)",P,"Power developed = ","(ii).");
diff --git a/3511/CH11/EX11.3/Ex11_3.sce b/3511/CH11/EX11.3/Ex11_3.sce new file mode 100644 index 000000000..a35b84b23 --- /dev/null +++ b/3511/CH11/EX11.3/Ex11_3.sce @@ -0,0 +1,22 @@ +clc;
+alpha_2=65; // Nozzle discharge angle in degree
+c3=300; // Absolute velocity in m/s
+alpha_3=30; // in degrees
+
+ca2=c3*cosd (alpha_3); // Axial velocity
+c2=ca2/cosd(alpha_2); // Absolute velocity
+// ca3=ca2=ca and equal blade angles then
+ca=ca2;
+beta_2=atand((c2*sind(alpha_2)+c3*sind(alpha_3))/(2*ca)); // Blade angle
+beta_3=beta_2; // equal blade angles
+u=c2*sind(alpha_2)-ca2*tand(beta_2); // Mean blade velocity
+// From velocity triangles
+ct2=c2*sind(alpha_2);
+ct3=c3*sind(alpha_3);
+WT=u*(ct2+ct3)/1000; // Work done
+sigma=u/c2; // optimum speed ratio
+eff_B=4*(sigma*sind(alpha_2)-sigma^2);
+
+disp ("degree",beta_2,"Blade angle = beta_2= beta_3 = ");
+disp ("kJ/kg (roundoff error)",WT,"Power Produced = ");
+disp ("%",eff_B*100,"Blade efficiency = ");
diff --git a/3511/CH11/EX11.4/Ex11_4.sce b/3511/CH11/EX11.4/Ex11_4.sce new file mode 100644 index 000000000..8aef2d3bd --- /dev/null +++ b/3511/CH11/EX11.4/Ex11_4.sce @@ -0,0 +1,26 @@ +clc;
+P01=7; // Pressure at inlet in bar
+T01=300+273.15; // Temperature at inlet in kelvin
+P02=3; // Pressure at outlet in bar
+alpha_2=70; // Nozzle angle in degree
+eff_N=0.9; // Isentropic efficiency of nozzle
+WT=75; // Power Produced in kW
+Cp=1.15; // Specific heat in kJ/kg K
+r=1.33; // Specific heat ratio
+
+T_02=T01*(P02/P01)^((r-1)/r); // Isentropic temperature after expansion
+T02=T01-eff_N*(T01-T_02); // Actual temperature after expansion
+c2=sqrt (2*Cp*10^3*(T01-T02)); // Absolute velocity
+// For optimum blade speed ratio
+u=(c2*sind (alpha_2)/2); // Mean blade velocity
+beta_2=atand((c2*sind(alpha_2)-u)/(c2*cosd(alpha_2))); // Blade angle
+// From velocity triangles
+ct2=c2*sind(alpha_2);
+w2=c2*cosd(alpha_2)/cosd(beta_2);
+w3=w2; // Equal inlet and outlet angles
+beta_3=54; // in degrees
+ct3=w3*sind(beta_3)-u;
+m=(WT*10^3)/(u*(ct2+ct3)); // Gas mass flow rate
+
+disp ("degree",beta_2,"Blade angle = ");
+disp ("kg/s",m,"Gas Mass Flow Rate = ");
diff --git a/3511/CH11/EX11.5/Ex11_5.sce b/3511/CH11/EX11.5/Ex11_5.sce new file mode 100644 index 000000000..893986aeb --- /dev/null +++ b/3511/CH11/EX11.5/Ex11_5.sce @@ -0,0 +1,41 @@ +clc;
+P01=4.6; // Total head inlet pressure in bar
+T01=700+273.15; // Total head inlet temperature in kelvin
+P2=1.6; // Static head pressure at mean radius in bar
+Dm_h=10; // Mean blade diameter/blade height
+lc=0.1; // Nozzle losses coefficient
+alpha_2=60; // Nozzle outlet angle in degree
+Cp=1.147; // Specific heat in kJ/kg K
+r=1.33; // Specific heat ratio
+m=20; // Mass flow rate in kg/s
+R=284.6; // characteristic gas constant in J/kg K
+
+T_2=T01*(P2/P01)^((r-1)/r); // Isentropic temperature after expansion
+T2=(lc*T01+T_2)/(1+lc); // Actual temperature after expansion
+c2=sqrt(2*Cp*10^3*(T01-T2)); // Absolute velocity
+// From velocity triangles
+ca=c2*cosd(alpha_2);
+row=P2*10^5/(R*T2); // Density of gas
+A=m/(ca*row); // Area
+Dm=sqrt (A*Dm_h/3.14); // Mean Diameter
+h=Dm/10; // Blade height
+rm=Dm/2; // Mean radius
+// At root
+r_root=(Dm-h)/2;
+//At the tip
+r_tip=(Dm+h)/2;
+// Free vorte flow
+ct_mean=c2*sind (alpha_2);
+// At the root
+ct2_root=(ct_mean*rm)/r_root;
+alpha2_root=atand(ct2_root/ca);
+c2_root=ct2_root/sind (alpha2_root);
+T2_root=T01-c2_root^2/(2*Cp*10^3);
+// At the tip
+ct2_tip=ct_mean*rm/r_tip;
+alpha2_tip = atand (ct2_tip/ca);
+c2_tip=ct2_tip/sind(alpha2_tip);
+T2_tip=T01-c2_tip^2/(2*Cp*10^3);
+
+disp ("degree",alpha2_root,"Discharge angle at the root = ","m/s",c2_root,"Gas velocity at the root = ","K",T2_root,"Gas Temperature at the root = ","A the Root");
+disp ("degree",alpha2_tip,"Discharge angle at the tip = ","m/s",c2_tip,"Gas velocity at the tip = ","K",T2_tip,"Gas Temperature at the tip = ","A the tip");
diff --git a/3511/CH5/EX5.1/Ex5_1.sce b/3511/CH5/EX5.1/Ex5_1.sce new file mode 100644 index 000000000..9dba042b6 --- /dev/null +++ b/3511/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,26 @@ +clc;
+p1=1; // Pressure before compression in bar
+T1=350; // Temperature before compression in kelvin
+T3=2000; // Temperature after combustion in kelvin
+rp=1.3; // Pressure ratio
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+T2=T1*(rp)^((r-1)/r); // Temperature at the end of the compression
+T4=T3*(1/rp)^((r-1)/r); // Temperature after expansion
+Wc=Cp*(T2-T1); // Work done during compression
+WT=Cp*(T3-T4); // Work done during expansion
+WN=WT-Wc; // Net work done
+p2=rp*p1; // Pressure at state 2
+p3=p2; p4=p1; // Constant pressure process
+V1=R*T1/(p1*10^5); // specific Volume at state 1
+V2=R*T2/(p2*10^5); // specific Volume at state 2
+V3=R*T3/(p3*10^5); // specific Volume at state 3
+V4=R*T4/(p4*10^5); // specific Volume at state 4
+imep=WN*10^3/(V4-V2); // Mean effective pressure
+q=Cp*(T3-T2); // Heat supplied
+eff=WN/q; // Efficiency of a Joule cycle
+disp ("bar",imep*10^-5,"Mean effective pressure = ");
+disp ("%",eff*100,"Efficiency of a Joule cycle = ");
+
diff --git a/3511/CH5/EX5.10/Ex5_10.sce b/3511/CH5/EX5.10/Ex5_10.sce new file mode 100644 index 000000000..a571fdbb4 --- /dev/null +++ b/3511/CH5/EX5.10/Ex5_10.sce @@ -0,0 +1,24 @@ +clc;
+T1=15+273; // Inlet temperature of air at compressor inlet in kelvin
+rp=6; // Compressor pressure ratio
+T3=750+273; // Maximum permissible temperature in kelvin
+T5=T3; // After reheat
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+
+c=rp^((r-1)/r);
+T2=T1*c; // Temperature at state 2
+p3_p4=sqrt (rp); // For maximum expansion work
+T4=T3/(p3_p4)^((r-1)/r); // Temperature at state 4
+T6=T4; // As pressure ratio is same
+Wc=Cp*(T2-T1); // Compressor work
+WT=Cp*(T3-T4)+Cp*(T5-T6); // Turbine work
+T7=T4; // Because of 100% regeneration
+q=Cp*(T3-T7)+Cp*(T5-T4); // Heat supplied
+WN=WT-Wc; // Net work done
+eff=WN/q; // Efficiency of the plant
+Wratio=WN/WT; // Work ratio
+disp ("kJ/kg of air",q,"Heat supplied = ");
+disp ("kW (roundoff error)",WN,"Net shaft work = ");
+disp ("%",eff*100,"The cycle thermal efficiency = ");
+disp (Wratio,"Work ratio = ");
diff --git a/3511/CH5/EX5.11/Ex5_11.sce b/3511/CH5/EX5.11/Ex5_11.sce new file mode 100644 index 000000000..be77d3868 --- /dev/null +++ b/3511/CH5/EX5.11/Ex5_11.sce @@ -0,0 +1,17 @@ +clc;
+Tmin=5+273; // Minimum operating temperature in kelvin
+Tmax=839+273; // Maximum operating temperature in kelvin
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+
+eff_carnot=1-Tmin/Tmax; // Efficiency of the carnot cycle
+c=1/(1-eff_carnot);
+p2_p1=c^(r/(r-1)); // Pressure ratio
+disp (p2_p1,"(i).Pressure ratio at which efficiency equals Carnot cycle efficiency = ");
+t=Tmax/Tmin; // Temperature ratio
+// Pressure ratio for maximum work is obtained when
+c=sqrt (t);
+p2_p1=c^(r/(r-1)); // Pressure ratio
+eff=1-1/c;// Efficiency at maximum work output
+disp (p2_p1,"(ii).Pressure ratio at which maximum work is obtained = ");
+disp ("%",eff*100,"(iii).Efficiency at maximum work output = ");
diff --git a/3511/CH5/EX5.12/Ex5_12.sce b/3511/CH5/EX5.12/Ex5_12.sce new file mode 100644 index 000000000..cb500abfb --- /dev/null +++ b/3511/CH5/EX5.12/Ex5_12.sce @@ -0,0 +1,38 @@ +clc;
+rp=4;// Overall pressure ratio
+T1=300; // Temperature at state 1 in kelvin
+T3=1000; // Temperature at state 3 in kelvin
+Cp=1; // Specific heat at constant pressure in kJ/kg K
+Cv=0.717; // Specific heat at constant volume in kJ/kg K
+
+// Basic cycle
+r=Cp/Cv; // Specific heat ratio
+c=rp^((r-1)/r);
+t=T3/T1; // Temperature ratio
+WN=Cp*T1*(t*(1-1/c)-(c-1)); // Net work output
+eff=(1-1/c)*100; // Efficiency of the cycle
+
+// Basic cycle with heat exchanger
+WN_he=WN;
+eff_he=(1-c/t)*100; // Efficiency of the cycle with heat exchanger
+dev_WN1=(WN_he-WN)*100/WN; //Percentage deviation of Net work from basic cycle
+dev_eff1=(eff_he-eff)*100/eff; // Percentage deviation of efficiency from basic cycle
+
+// Basic cycle with intercooled compressor
+WN_ic=(Cp*T1)*(t*(1-1/c)-2*(sqrt(c)-1));
+eff_ic=(1-(((t/c)+sqrt(c)-2)/(t-sqrt(c))))*100;
+dev_WN2=(WN_ic-WN)*100/WN; //Percentage deviation of Net work from basic cycle
+dev_eff2=(eff_ic-eff)*100/eff; // Percentage deviation of efficiency from basic cycle
+
+// Basic cycle with heat exchanger and intercooled compressor
+WN_iche=WN_ic;
+eff_iche=(1-((2*(sqrt(c)-1))/(t*(1-1/c))))*100;
+dev_WN3=(WN_iche-WN)*100/WN; //Percentage deviation of Net work from basic cycle
+dev_eff3=(eff_iche-eff)*100/eff; // Percentage deviation of efficiency from basic cycle
+
+printf ("Cycle \t\t\t\t\t\t WN(kJ/kg) \t\tefficiency (in percentage)\t\t percentage Change in WN \t\tpercentage change in efficiency");
+printf("\n\t\t\t\t\t\t(roundoff error) \t(roundoff error) \t\t\t (roundoff error)\t\t\t\t (roundoff error)");
+printf ("\n\nBasci cycle \t\t\t\t\t %f \t\t\t %f\t\t\t\t\t - \t\t\t\t\t -",WN,eff);
+printf ("\n\nWith Heat Exchanger \t\t\t\t %f \t\t\t %f\t\t\t\t\t %f \t\t\t %f",WN_he,eff_he,dev_WN1,dev_eff1);
+printf ("\n\nWith intercooling \t\t\t\t %f \t\t\t %f\t\t\t\t\t %f \t\t\t %f",WN_ic,eff_ic,dev_WN2,dev_eff2);
+printf ("\n\nWith Heat Exchanger & Intercooling \t\t %f \t\t\t %f\t\t\t\t\t %f \t\t\t %f",WN_iche,eff_iche,dev_WN3,dev_eff3);
diff --git a/3511/CH5/EX5.13/Ex5_13.sce b/3511/CH5/EX5.13/Ex5_13.sce new file mode 100644 index 000000000..8b42b7f0e --- /dev/null +++ b/3511/CH5/EX5.13/Ex5_13.sce @@ -0,0 +1,14 @@ +clc;
+T1=27+273; // Temperature at state 1 in kelvin
+T3=827+273; // Temperature at state 3 in kelvin
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+
+t=T3/T1; // Temperature ratio
+Wmax=Cp*((T3*(1-1/sqrt(t)))-T1*(sqrt(t)-1)); // Maximum work
+eff_wmax=(1-1/sqrt(t)); // Efficiency of brayton cycle
+Tmax=T3; Tmin=T1;
+eff_carnot=(Tmax-Tmin)/Tmax; // Carnot efficiency
+disp ("kJ/kg of air",Wmax,"Maximum net work per kg of air = ");
+disp ("%",eff_wmax*100,"Brayton cycle efficiency = ");
+disp ("%",eff_carnot*100,"Carnot cycle efficiency = ");
diff --git a/3511/CH5/EX5.15/Ex5_15.sce b/3511/CH5/EX5.15/Ex5_15.sce new file mode 100644 index 000000000..9dd175c75 --- /dev/null +++ b/3511/CH5/EX5.15/Ex5_15.sce @@ -0,0 +1,35 @@ +clc;
+p1=1; // Pressure at state 1 in bar
+T1=300; // Temperature at state 1 in kelvin
+p4=5; // Pressure at state 4 in bar
+T5=1250; // Temperature at state 5 in kelvin
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+
+rp=p4/p1; // pressure ratio
+p2=sqrt (rp); // Because of perfect intercooling
+c1=p2^((r-1)/r);
+T2=T1*c1; // Temperature at state 2
+T4=T2; T3=T1;
+
+Wc1=Cp*(T2-T1); // Work of compressor 1
+Wc=2*Wc1; // net work of compressor
+WT1=Wc;
+T6=T5-(WT1/Cp); // Temperature at state 6
+p5_p6=(T5/T6)^(r/(r-1)); // Pressure ratio
+p6=rp/p5_p6; // Pressure at state 6
+p7=p1; T7=T5;p8=p6;
+T8=T7*(p7/p8)^((r-1)/r); // Temperature in state 8
+WT2=Cp*(T7-T8); // Turbine 2 work
+q=Cp*(T5-T4)+Cp*(T7-T6); // Heat supplied
+eff=WT2/q; // Efficiency of the cycle
+// With regenerator
+T9=T8;
+q_withregen=Cp*((T5-T9)+(T7-T6)); // Heat supplied with regenerator
+eff_withregen=WT2/q_withregen; // Efficiency of the cycle with regenerator
+I_eff=(eff_withregen-eff)/eff_withregen; // Percentage improvement in efficiency
+
+disp ("%",eff*100,"Efficiency of the cycle = ","kJ/kg",q,"Heat supplied = ","kJ/kg",WT2,"Work of turbine = ","(i). Without regenerator ");
+disp ("%",eff_withregen*100,"Efficiency of the cycle = ","kJ/kg (roundoff error)",q_withregen,"Heat supplied = ","(ii). With regenerator" );
+
+disp ("%",I_eff*100,"Percentage improvement in efficiency = ");
diff --git a/3511/CH5/EX5.16/Ex5_16.sce b/3511/CH5/EX5.16/Ex5_16.sce new file mode 100644 index 000000000..43714e242 --- /dev/null +++ b/3511/CH5/EX5.16/Ex5_16.sce @@ -0,0 +1,16 @@ +clc;
+p1=1; // pressure at inlet in bar
+T1=27+273; // Temperature at inlet in kelvin
+T4=1200; // Maximum temperature in kelvin
+t=T4/T1; // Temperature ratio
+r=1.4; // Specific heat ratio
+
+rp=t;
+c=rp^((r-1)/r);
+x=(1-sqrt(c)/rp)/(1-c/rp);
+eff2_1=x;
+r1=sqrt(rp);
+r2=r1; r3=r1; r4=r1;
+
+disp (eff2_1,"Efficiency ratio of power plants = ");
+disp (r4,"pressure ratio of LPT = ",r3,"pressure ratio of HPT = ",r2,"pressure ratio of HPC = ",r1,"pressure ratio of LPC = ");
diff --git a/3511/CH5/EX5.19/Ex5_19.sce b/3511/CH5/EX5.19/Ex5_19.sce new file mode 100644 index 000000000..b09d68535 --- /dev/null +++ b/3511/CH5/EX5.19/Ex5_19.sce @@ -0,0 +1,21 @@ +clc;
+m=30; // Mass flow rate in kg/s
+p1=1; // pressure of air at compressor inlet in bar
+T1=273+15; // Temperature of air at compressor inlet in kelvin
+p2=10.5; // Pressure of air at compressor outlet
+T_R=420; // Temperature rise due to combustion in kelvin
+p4=1.2; // Pressure at turbine outlet in bar
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+
+T2=T1*(p2/p1)^((r-1)/r); // Temperature at state 2
+T3=T2+T_R; // Temperature at state 3
+p3=p2;
+T4=T3/(p3/p4)^((r-1)/r);
+Wc=m*Cp*(T2-T1); // Compressor work
+WT=m*Cp*(T3-T4); // Turbine work
+WN=WT-Wc; // Net work output
+Q=m*Cp*(T3-T2); // Heat supplied
+eff_th=WN/Q; // Thermal efficiency
+
+disp ("%",eff_th*100,"Thermal efficiency = ","kW (roundoff error)",WN,"Power output = ","kW",Q,"Heat supplied = ");
diff --git a/3511/CH5/EX5.2/Ex5_2.sce b/3511/CH5/EX5.2/Ex5_2.sce new file mode 100644 index 000000000..b2a16acc2 --- /dev/null +++ b/3511/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,20 @@ +clc;
+p1=1; // Pressure before compression in bar
+T1=350; // Temperature before compression in kelvin
+T3=2000; // Temperature after combustion in kelvin
+rp=1.3; // Pressure ratio
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+T2=T1*(rp)^((r-1)/r); // Temperature at the end of the compression
+T4=T3*(1/rp)^((r-1)/r); // Temperature after expansion
+Wc=Cp*(T2-T1); // Work done during compression
+WT=Cp*(T3-T4); // Work done during expansion
+WN=WT-Wc; // Net work done
+T5=T4; // For a perfect heat exchange
+q=Cp*(T3-T5); // Heat added
+eff2=WN/q; // Efficiency of a modified Joule cycle
+eff1=0.072220534; // Efficiency of a joule cycle
+disp ("%",eff2*100,"Efficiency of a modified Joule cycle = ");
+disp (eff2/eff1,"Improvement in efficiency = ");
diff --git a/3511/CH5/EX5.3/Ex5_3.sce b/3511/CH5/EX5.3/Ex5_3.sce new file mode 100644 index 000000000..7b4b51759 --- /dev/null +++ b/3511/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,21 @@ +clc;
+rp=6; // Pressure ratio
+T1=300; // Inlet air temperature to the compressor in kelvin
+T3=577+273; // Inlet temperature of air at turbine in kelvin
+Vr=240; // Volume rate in m^3/s
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+p1=1; // pressure at state 1 in bar
+
+T2=T1*(rp)^((r-1)/r); // Temperature at the end of the compression
+T4=T3*(1/rp)^((r-1)/r); // Temperature after expansion
+Wc=Cp*(T2-T1); // Work done during compression
+WT=Cp*(T3-T4); // Work done during expansion
+WN=WT-Wc; // Net work done
+q=Cp*(T3-T2); // Heat supplied
+row1=p1*10^5/(R*T1); // Density of air at state 1
+P=WN*Vr*row1; // Power output
+eff=WN/q; // Efficiency of a cycle
+disp ("MW (roundoff error)",P/1000,"Power Output = ");
+disp ("%",eff*100,"Efficiency of a cycle = ");
diff --git a/3511/CH5/EX5.4/Ex5_4.sce b/3511/CH5/EX5.4/Ex5_4.sce new file mode 100644 index 000000000..72a2e5d26 --- /dev/null +++ b/3511/CH5/EX5.4/Ex5_4.sce @@ -0,0 +1,21 @@ +clc;
+T1=300; // Inlet air temperature to the compressor in kelvin
+p1=1; // pressure at state 1 in bar
+T2=475; // Temperature at discharge in kelvin
+p2=5;// Pressure at state 2
+T5=655; // Temperature after heat exchanger in kelvin
+T3=870+273; // Temperature at he turbine inlet in kelvin
+T4=450+273; // Temperature after turbine in kelvin
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+Wc=Cp*(T2-T1); // Work done during compression
+WT=Cp*(T3-T4); // Work done during expansion
+WN=WT-Wc; // Net work done
+q=Cp*(T3-T5); // Heat supplied
+eff=WN/q; // Efficiency of a cycle
+
+disp ("kJ/kg",WN,"(i). The output per kg of air = ");
+disp ("%",eff*100,"(ii).The efficiency of the cycle = ");
+disp ("kJ/kg",Wc,"(iii). The work required to drive the compressor = ");
diff --git a/3511/CH5/EX5.5/Ex5_5.sce b/3511/CH5/EX5.5/Ex5_5.sce new file mode 100644 index 000000000..bdd8e085c --- /dev/null +++ b/3511/CH5/EX5.5/Ex5_5.sce @@ -0,0 +1,18 @@ +clc;
+p1=1.4; // Pressure at state 1 in bar
+T1=310; // Temperature at state 1 in kelvin
+rp=5; // Pressure ratio
+Tmax=1050; // Maximum temperatuer in kelvin
+WN=3000; // Net output in kW
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+T3=Tmax;
+T2=T1*(rp)^((r-1)/r); // Temperature at the state 2
+T4=T3/(rp)^((r-1)/r); // Temperature at the state 4
+T5=T4; // As regenerator effectiveness in 100 %
+m=WN/(Cp*((T3-T4)-(T2-T1))); // mass flow rate of air
+eff=(T3-T4-T2+T1)/(T3-T5); // Efficiency of a cycle
+disp ("%",eff*100,"(i). Thermal efficiency of the cycle = ");
+disp ("kg/min (roundoff error)",m*60,"(ii). The mass flow rate of air per minute = ");
diff --git a/3511/CH5/EX5.6/Ex5_6.sce b/3511/CH5/EX5.6/Ex5_6.sce new file mode 100644 index 000000000..91c185702 --- /dev/null +++ b/3511/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,20 @@ +clc;
+T1=290; // Compressor inlet temperature in kelvin
+T2=460; // Compressor outlet temperature in kelvin
+T3=900+273; // Turbine inlet temperature in kelvin
+T4=467+273; // Turbine outlet temperature in kelvin
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+c=T2/T1; // Temperature ratio
+rpc=c^(r/(r-1)); // Compression ratio
+WN=(Cp*((T3-T4)-(T2-T1))); // Specific power
+T5=T4; // Assuming regenerator effectiveness to be 100%
+eff=WN/(Cp*(T3-T5)); // Overall efficiency of the cycle
+Wc=Cp*(T2-T1); // Work required to drive the compressor
+rpt=(T3/T4)^(r/(r-1)); // Turbine pressure ratio
+disp (rpt," Turbine pressure ratio = ",rpc," Compressor pressure ratio = ","(i).");
+disp ("kJ/kg",WN,"(ii). Specific power output = ");
+disp ("%",eff*100, "(iii). Overall efficiency of the cycle = ");
+disp ("kJ/kg",Wc," (iv). Work required to drive the compressor = ");
diff --git a/3511/CH5/EX5.7/Ex5_7.sce b/3511/CH5/EX5.7/Ex5_7.sce new file mode 100644 index 000000000..dc57d3b92 --- /dev/null +++ b/3511/CH5/EX5.7/Ex5_7.sce @@ -0,0 +1,18 @@ +clc;
+nW_WT=0.563; // Ratio of net work to turbine work
+T1=300; // Inlet temperature to the compressor in kelvin
+eff=0.35; // Thermal efficiency of the unit
+m=10; // massflow rate in kg/s
+Cp=1; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+
+c=1/(1-eff); // For ideal simple cycle
+T2=T1*c; // Temperature at state 2
+Wc=Cp*(T2-T1); // Compressor work
+WT=Wc/(1-nW_WT); // Turbine work
+WN=WT-Wc; // Net work
+q=WN/eff; // Net heat supplied per kg of air
+T3=(q/Cp)+T2; // Temperature at state 3
+T4=T3/c; // Temperature at state 4
+T3_T4=T3-T4; // Temperature drop across the turbine
+disp ("K",T3_T4,"Temperature drop across the turbine = ");
diff --git a/3511/CH5/EX5.8/Ex5_8.sce b/3511/CH5/EX5.8/Ex5_8.sce new file mode 100644 index 000000000..f989c947b --- /dev/null +++ b/3511/CH5/EX5.8/Ex5_8.sce @@ -0,0 +1,10 @@ +clc;
+p=336.5; //specific power output of a turbine in kW/kg
+T4=700; // Temperature at turbine outlet in kelvin
+Cp=1; // Specific heat at constant pressure in kJ/kg K
+Cv=0.717; // Specific heat at constant volume in kJ/kg K
+
+r=Cp/Cv; // Specific heat ratio
+T3=T4+(p/Cp); // Temperature at turbine inlet
+p3_p4=(T3/T4)^(r/(r-1)); // Pressure ratio across the turbine
+disp (round(p3_p4),"Pressure ratio across the turbine = ");
diff --git a/3511/CH5/EX5.9/Ex5_9.sce b/3511/CH5/EX5.9/Ex5_9.sce new file mode 100644 index 000000000..372c3ddb4 --- /dev/null +++ b/3511/CH5/EX5.9/Ex5_9.sce @@ -0,0 +1,17 @@ +clc;
+T1=300; // Minimum operating temperature in kelvin
+T3=900; // Maximum operating temperature in kelvin
+p1=1; // Minimum pressure in bar
+p3=4; // Maximum pressure in bar
+m=1600; // Mass flowrate in kg/min
+r=1.4; // Specific heat ratio
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+
+p2=p3; p4=p1; // Constant pressure process
+c=(p2/p1)^((r-1)/r);
+eff=(1-1/c); // The efficiency of the cycle
+t=T3/T1; // ratio of maximum and minimum temperature
+W=Cp*T1*(t*(1-1/c)-(c-1)); // Work output per kg of air
+P=(m/60)*W; // Shaft power available
+disp ("%",eff*100," Thermal efficiency of the plant = ");
+disp ("kW (roundoff error)",P,"Shaft power available for external Load = ");
diff --git a/3511/CH6/EX6.1/Ex6_1.sce b/3511/CH6/EX6.1/Ex6_1.sce new file mode 100644 index 000000000..de3cc245b --- /dev/null +++ b/3511/CH6/EX6.1/Ex6_1.sce @@ -0,0 +1,30 @@ +clc;
+p01=1; // Pressure at state 1 in bar
+T01=30+273; // Temperature at state 1 in kelvin
+p02=6; // Pressure of air after compressed in bar
+eff_c=0.87; // Isentropic efficiency of compressor
+T03=700+273; // Temperature at state 3 in kelvin
+eff_T=0.85; // Isentropic efficiency of the turbine
+CV=43.1; // calorific value of fuel in MJ/kg
+ma=80; // Mass flow rate of air in kg/min
+
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+T_02=T01*(p02/p01)^((r-1)/r); // from T-S diagram
+T02=T01+(T_02-T01)/eff_c; // Temperature after compression
+// Neglecting the addition of fuel in the combustion chamber we have mf+ma=ma
+mf=(ma/60)*Cpg*(T03-T02)/(CV*10^3);
+ma_mf=(ma/60)*(1/mf); // Air fuel ratio
+A_F=ma_mf;
+p04=p01;p03=p02;
+T_04=T03*(p04/p03)^((rg-1)/rg);
+T04=T03-eff_T*(T03-T_04);
+WN=(ma/60)*Cpg*(T03-T04)-(ma/60)*Cpa*(T02-T01); //The net power of installation
+eff_th=WN/(mf*CV*10^3); // The overall thermal efficiency
+
+disp (A_F,"(i).Air fuel ratio of the turbine gases = ");
+disp ("K",T04,"(ii).The final temperature of exhaust gases = ");
+disp ("kW",WN,"(iii).The net power of installation = ");
+disp ("%",eff_th*100,"(iv).The overall thermal efficiency = ");
diff --git a/3511/CH6/EX6.10/Ex6_10.sce b/3511/CH6/EX6.10/Ex6_10.sce new file mode 100644 index 000000000..c50ed2574 --- /dev/null +++ b/3511/CH6/EX6.10/Ex6_10.sce @@ -0,0 +1,16 @@ +clc;
+eff_C=0.85; // Isentropic efficiency of the compressor
+rp=4; // Pressure ratio
+r=1.4; // specific heat ratio
+eff_pc=(((r-1)/r)*log (rp))/log (((rp^((r-1)/r)-1)/eff_C)+1);
+disp ("%",eff_pc*100,"Polytropic efficiency = ");
+disp ("variation of compressor efficiency with compression ratio is shown in window1");
+xset('window',1);
+function eff_c=f(rc)
+ eff_c=(rc^0.286-1)/(rc^0.326-1);
+endfunction
+rc=linspace (2,10,4);
+plot(rc,f);
+title ("variation of compressor efficiency with compression ratio","fontsize",4,"color","blue");
+xlabel("compression ratio (rc)","fontsize",4,"color","blue");
+ylabel ("Compressor efficiency","fontsize",4,"color","blue");
diff --git a/3511/CH6/EX6.11/Ex6_11.sce b/3511/CH6/EX6.11/Ex6_11.sce new file mode 100644 index 000000000..129cef6dd --- /dev/null +++ b/3511/CH6/EX6.11/Ex6_11.sce @@ -0,0 +1,34 @@ +clc;
+eff_pe=0.88; // Compressor and turbine polytropic efficiencies
+T01=310; // Temperature at LP compressor inlet in kelvin
+p01=14; // Pressure at LP compressor inlet in bar
+rp=2; // Compressor pressure ratio
+T03=300;// Temperature at HP compressor inlet in kelvin
+m=180; // Mass flow of Helium in kg/s
+Q=500; // Heat input to gas turbine in MW
+T07=700; // Helium Temperature at entry to reactor channels in kelvin
+P_precoller=0.34; // Pressure loss in pre-cooler and intercooler in bar
+P_loss_HE=0.27; // Pressure loss in heat exchanger in bar
+P_loss_RC=1.03; // Pressure loss in reactor channel in bar
+eff_pc=0.88; // Polytropiic efficiency
+Cp=5.19;// Specific heat at constant pressure in kJ/kg K
+r=1.66; // Specific heat ratio
+
+n_1_n=((r-1)/r)*(1/eff_pc);
+T02=T01*rp^n_1_n;
+T04=T03*rp^n_1_n;
+T05=((Q*10^3)/(m*Cp))+T07;
+T_press_loss=P_precoller+P_loss_HE+P_loss_RC; // Total pressure loss
+p05=56-T_press_loss;
+p06=p01+P_precoller+P_loss_HE;
+n__1_n=eff_pc*((r-1)/r);
+T06=T05/(p05/p06)^n__1_n;
+WC=m*Cp*((T02-T01)+(T04-T03)); // Work of compressor
+WT=m*Cp*(T05-T06); // Work of Turbine
+WN=WT-WC; // Net work output
+eff_th=WN/(Q*10^3); // Efficiency
+eff=(T07-T04)/(T06-T04); // Effectiveness
+
+disp ("MW (roundoff error)",WN/1000,"Power output = ");
+disp ("% (roundoff error)",eff_th*100,"Thermal efficiency = ");
+disp ("% (roundoff error)",eff*100,"Effectiveness = ");
diff --git a/3511/CH6/EX6.12/Ex6_12.sce b/3511/CH6/EX6.12/Ex6_12.sce new file mode 100644 index 000000000..0d2488c09 --- /dev/null +++ b/3511/CH6/EX6.12/Ex6_12.sce @@ -0,0 +1,22 @@ +clc;
+rp=4; // Pressure ratio
+WN=1500; // Net work output in kW
+T01=25+273; // Inlet temperature in kelvin
+p01=1; // Inlet pressure in bar
+p03=4; // Turbine inlet pressure in bar
+T03=700+273;// turbine inlet temperature in kelvin
+eff_c=0.85; // Compressor efficiency
+eff_over=0.21; // Overall efficiency
+Cp=1.005;// Specific heat of air at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio of air
+
+T02=T01+T01*(rp^((r-1)/r)-1)/eff_c;
+Q=WN/eff_over;
+m=Q/(Cp*(T03-T02));
+Wn=WN/m; // Net work per kg
+T04=T03-T02+T01-(Wn/Cp);
+T_04=T03/rp^((r-1)/r);
+eff_T=(T03-T04)/(T03-T_04);
+
+disp ("kg/s",m,"Mass flow rate = ");
+disp ("%",eff_T*100,"Isentropic efficiency of the Turbine = ");
diff --git a/3511/CH6/EX6.13/Ex6_13.sce b/3511/CH6/EX6.13/Ex6_13.sce new file mode 100644 index 000000000..6924b887c --- /dev/null +++ b/3511/CH6/EX6.13/Ex6_13.sce @@ -0,0 +1,32 @@ +clc;
+rp=4; // Pressure ratio
+eff_c=0.86; // Compressor efficiency
+eff_Thp=0.84;// High pressure turbine efficiency
+eff_Tlp=0.8;// Low pressure turbine efficiency
+eff_M=0.92; // Mechanical efficiency
+T03=660+273; // in kelvin
+T05=625+273; // In kelvin
+T01=15+273; // Inlet temperature in kelvin
+p01=1; // Inlet pressure in bar
+Cp=1.005;// Specific heat of air at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio of air
+eff= 0.75; // Heat exchanger effectiveness
+
+T_02=T01*(rp)^((r-1)/r);
+T02=((T_02-T01)/eff_c)+T01;
+T04=T03-((T02-T01)/eff_M);
+// In HP turbine
+T_04=T03-((T03-T04)/eff_Thp);
+p_04=rp/(T03/T_04)^(r/(r-1));
+// In LP turbine
+p05=p_04;p_06=p01;
+T_06=T05/(p05/p_06)^((r-1)/r);
+T06=T05-(eff_Tlp*(T05-T_06));
+T07=T02+eff*(T06-T02);
+Q=Cp*(T03-T07+T05-T04);
+Wc=Cp*(T02-T01);
+WT=Cp*(T03-T04+T05-T06);
+eff_th=(WT-Wc)/Q;
+
+disp ("bar",p_04,"(i).Pressure of gas entering low pressure turbine = ");
+disp ("%",eff_th*100,"Overall efficiency = ");
diff --git a/3511/CH6/EX6.14/Ex6_14.sce b/3511/CH6/EX6.14/Ex6_14.sce new file mode 100644 index 000000000..f07812768 --- /dev/null +++ b/3511/CH6/EX6.14/Ex6_14.sce @@ -0,0 +1,21 @@ +clc;
+T01=38+273; // Inlet temperature of compressor in kelvin
+eff_c=0.82; // Compressor efficiency
+T03=650+273; // Turbine inlet temperature in kelvin
+eff_T=0.8; // Turbine efficiency
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+
+t=T03/T01;
+// For maximun specific work we know that
+ropt=(sqrt (t*eff_c*eff_T))^(r/(r-1));
+T_02=T01*ropt^((r-1)/r);
+T02=T01+(T_02-T01)/eff_c;
+T_04=T03/ropt^((rg-1)/rg);
+T04=T03-eff_T*(T03-T_04);
+eff_th=((Cpg*(T03-T04))-(Cpa*(T02-T01)))/(Cpg*(T03-T02));
+
+disp (ropt,"Optimum pressure ratio = ");
+disp ("%",eff_th*100, "Overall efficiency = ");
diff --git a/3511/CH6/EX6.15/Ex6_15.sce b/3511/CH6/EX6.15/Ex6_15.sce new file mode 100644 index 000000000..08a920784 --- /dev/null +++ b/3511/CH6/EX6.15/Ex6_15.sce @@ -0,0 +1,28 @@ +clc;
+p01=1; // Stagnation pressure at entry in bar
+pa=0.93; // Static pressure at entry in bar
+T1=10+273;// Static temperature in entry in kelvin
+p02=6; // Pressure at state 2 in bar
+T02=230+273; // Temperature at state 2 in kelvin
+P=5100; // Turbine output power in kW
+A=0.1; // Compressor entry area in m^2
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+R=287; // Characteristic constant in J/kg K
+T04=460+273; // Exhaust pipe temperature in kelvin
+
+M=sqrt (((p01/pa)^((r-1)/r)-1)/((r-1)/2));
+T01=T1*(1+(r-1)/2*M^2);
+T_02=T01*(p02/p01)^((r-1)/r);
+eff_c=(T_02-T01)/(T02-T01);
+row_s=(pa*10^5)/(R*T1);
+a=sqrt (r*R*T1);
+V=M*a;
+m=row_s*A*V;
+T03=(P/(m*Cpg))+T04;
+
+disp ("%",eff_c*100,"Compressor efficiency = ");
+disp ("kg/s",m,"Mass flow rate = ");
+disp ("K (roundoff error)",T03,"Turbine inlet stagnation temperature = ");
diff --git a/3511/CH6/EX6.16/Ex6_16.sce b/3511/CH6/EX6.16/Ex6_16.sce new file mode 100644 index 000000000..b50e3c222 --- /dev/null +++ b/3511/CH6/EX6.16/Ex6_16.sce @@ -0,0 +1,36 @@ +clc;
+T01=27+273; // Inlet temperature in kelvin
+p01=1; // Inlet pressure in bar
+rp=3; // Pressure ratio
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+R=287; // Characteristic constant in J/kg K
+
+T_02=T01*rp^((r-1)/r);
+// Turbines 70 years ago
+eff_c=0.65; // Compressor efficiency
+eff_T=0.7; // Turbine efficiency
+T03=700+273; // in kelvin
+T02=T01*(1+((rp^((r-1)/r)-1)/eff_c));
+T04=T03*(1-eff_T*(1-(1/rp^((rg-1)/rg))));
+eff_th=(Cpg*(T03-T04)-Cpa*(T02-T01))/(Cpg*(T03-T02));
+WR=(Cpg*(T03-T04)-Cpa*(T02-T01))/(Cpg*(T03-T04));
+
+disp (WR,"Work ratio = ",eff_th*100,"The Efficiency = ","(i).70 years ago");
+
+//Modern turbines
+eff_c=0.85; // Compressor efficiency
+eff_T=0.9; // Turbine efficiency
+T03=1000+273; // in kelvin
+T02=T01+(T_02-T01)/eff_c;
+T_04=T03/rp^((rg-1)/rg);
+T04=T03-eff_T*(T03-T_04);
+Wc=Cpa*(T02-T01);
+WT=Cpg*(T03-T04);
+WN=WT-Wc;
+eff_th=WN/(Cpg*(T03-T02));
+WR=WN/WT;
+
+disp (WR,"Work ratio = ","%",eff_th*100,"The Efficiency = ","(ii).Modern turbines");
diff --git a/3511/CH6/EX6.17/Ex6_17.sce b/3511/CH6/EX6.17/Ex6_17.sce new file mode 100644 index 000000000..e0532c208 --- /dev/null +++ b/3511/CH6/EX6.17/Ex6_17.sce @@ -0,0 +1,26 @@ +clc;
+rp=7; // Pressure ratio
+T03=1000; // Maximum temperature in kelvin
+eff_c=0.85; // Compressor efficiency
+eff_T=0.9; // Turbine efficiency
+T01=288; // Air entering temperature in kelvin
+PN=750; // Power output in kW
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+R=287; // Characteristic constant in J/kg K
+
+// Actual cycle
+T02=T01*(1+((rp^((r-1)/r)-1)/eff_c));
+T04=T03*(1-(eff_T*(1-(1/rp^((r-1)/r)))));
+WN_a=(Cpa*(T03-T04)-Cpa*(T02-T01));
+eff_th=WN_a/(Cpa*(T03-T02));
+disp ("%",eff_th*100,"The Efficiency = ","kJ/kg",WN_a,"Net work = ","(i).Actual cycles");
+
+// Ideal cycle
+WN=Cpa*((T03*(1-(1/rp^((r-1)/r))))-T01*((rp^((r-1)/r)-1)));
+eff_th=1-(1/rp^((r-1)/r));
+ma=PN/WN_a;
+
+disp ("kg/s",ma,"Mass flow rate = ","%",eff_th*100,"The Efficiency = ","kJ/kg",WN,"Net work = ","(ii).Ideal cycles");
diff --git a/3511/CH6/EX6.18/Ex6_18.sce b/3511/CH6/EX6.18/Ex6_18.sce new file mode 100644 index 000000000..6d3548738 --- /dev/null +++ b/3511/CH6/EX6.18/Ex6_18.sce @@ -0,0 +1,34 @@ +clc;
+m=5; // Mass flow rate in kg/s
+p01=1; // Pressure at state 1 in bar
+p02=5; // Pressure at state 2 in bar
+eff_c=0.85;// Compressor efficiency
+eff_Thp=0.87; // High pressure turbine efficiency
+eff_Tlp=0.82; // Low pressure turbine efficiency
+T03=675+273; // HP turbine inlet temperature in kelvin
+eff=0.7; // Effectiveness of the heat exchanger
+T01=15+273; // Temperature at state 1 in kelvin
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio of air
+R=287; // Characteristic constant in J/kg K
+p03=p02;
+
+T_02=T01*(p02/p01)^((r-1)/r);
+T02=T01+(T_02-T01)/eff_c;
+T04=T01-T02+T03;
+T_04=T03-(T03-T04)/eff_Thp;
+p04=p03/(T03/T_04)^(r/(r-1));
+p05=p01;
+T_05=T04/(p04/p05)^((r-1)/r);
+T05=T04-eff_Tlp*(T04-T_05);
+T0x=eff*(T05-T02)+T02;
+Wlpt=Cpa*(T04-T05);
+Plpt=Wlpt*m;
+Q=Cpa*(T03-T0x);
+eff_th=Wlpt/Q;
+
+disp ("Intermediate pressure p04 and temperature T04 between the two turbine stages ");
+disp ("K",T04,"To4 = ","bar",p04,"P04 = ");
+disp ("kW",Plpt,"Power output of LP turbine = ");
+disp ("kJ/kg",Q,"Heat supplied = ");
+disp ("%",eff_th*100,"The Overall efficiency = ");
diff --git a/3511/CH6/EX6.19/Ex6_19.sce b/3511/CH6/EX6.19/Ex6_19.sce new file mode 100644 index 000000000..eb86eb983 --- /dev/null +++ b/3511/CH6/EX6.19/Ex6_19.sce @@ -0,0 +1,25 @@ +clc;
+rlp=3; // Pressure ratio
+rhp=rlp;
+eff_c=0.82; // Compressor efficiency
+T04=650+273; // Temperature at state 4 in kelvin
+T05=540+273; // Temperature at state 5 in kelvin
+eff_T=0.87; // Efficiency of turbine
+T01=15+273; // Temperature at compressor inlet in kelvin
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+
+T02=T01*(1+(rlp^((r-1)/r)-1)/eff_c);
+T03=T02*(1+(rhp^((r-1)/r)-1)/eff_c);
+T_06=T05/(rlp)^(2*(rg-1)/rg);
+T06=T05-eff_T*(T05-T_06);
+x1=1-((T02-T01)/(((Cpg/Cpa)*(T05-T06)-(T03-T02))));
+x=abs (x1);
+T07=T04*(1-(eff_T*(1-(1/rhp^((rg-1)/rg)))));
+eff_th=(x*Cpg*(T04-T07))/((1-x)*Cpg*(T05-T03)+x*Cpg*(T04-T02));
+
+disp ("%",(x)*100,"Percentage of the total air intake that passes to the power turbine = ");
+disp ("% (Roundoff error)",(eff_th)*100,"The overall efficiency = ");
+
diff --git a/3511/CH6/EX6.2/Ex6_2.sce b/3511/CH6/EX6.2/Ex6_2.sce new file mode 100644 index 000000000..8f9908eab --- /dev/null +++ b/3511/CH6/EX6.2/Ex6_2.sce @@ -0,0 +1,38 @@ +clc;
+p01=1; // Air inlet pressure in bar
+T01=7+273;// Air inlet temperature in kelvin
+p02=4; // Pressure at state 2 in bar
+eff_c=0.82;// Isentropic efficiency of compressor
+T03=800+273; // Maximum temperature at the turbine inlet in kelvin
+eff_T=0.85; // Isentropic efficiency of the turbine
+CV=43.1; // calorific value of fuel in MJ/kg
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+LS=0.85;
+mf=1; // Let assume mass of fuel to be 1 kg
+
+T_02=T01*(p02/p01)^((r-1)/r); // from T-S diagram
+T02=T01+(T_02-T01)/eff_c; // Temperature after compression
+Wc=Cpa*(T02-T01); // Work of compression
+Q=Cpg*(T03-T02); // Heat supplied
+p04=p01;p03=p02;
+T_04=T03*(p04/p03)^((rg-1)/rg);
+T04=T03-eff_T*(T03-T_04);
+WT=Cpg*(T03-T04); // Turbine work
+WN=WT-Wc; // Net work done
+eff_th=WN/(Q/LS); // The thermal efficiency
+ma_mf=(LS*CV*10^3/Q)-1; // AIR FUEL ratio
+ma=mf*ma_mf;
+sfc=(3600/(ma_mf*WN)); // specific fuel consumption
+Wc_WT=(Wc*ma)/(WT*(ma+mf)); // work ratio
+
+disp ("kJ/kg of air",Wc,"(i).Compressor work = ");
+disp ("kJ/kg of air",Q,"(ii).Heat supplied = ");
+disp ("kJ/kg of air",WT,"(iii).Turbine work = ");
+disp ("kJ/kg of air",WN,"(iv).Net work = ");
+disp ("%",eff_th*100,"(v).Thermal Efficiency = ");
+disp (ma_mf,"(vi).Air/Fuel ratio = ")
+disp ("kg/kWh",sfc,"(vii).Specific fuel consumption =");
+disp (Wc_WT,"(viii).Ratio of compressor work to turbine work = ");
diff --git a/3511/CH6/EX6.20/Ex6_20.sce b/3511/CH6/EX6.20/Ex6_20.sce new file mode 100644 index 000000000..97c6a8cc1 --- /dev/null +++ b/3511/CH6/EX6.20/Ex6_20.sce @@ -0,0 +1,29 @@ +clc;
+rp=2; // Pressure ratio
+T01=15+273; // Inlet temperature in kelvin
+p01=1; // Inlet pressure in bar
+T05=700+273; // Temperature at state 5 in kelvin
+T07=T05;
+eff_c=0.85; // compressor efficiency
+eff_T=0.85; // Turbine efficiency
+eff=0.5; // Effectiveness of heat exchanger
+Cp=1.147;// Specific heat at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+
+T03=T01;
+// p02/p01=p04/p03=rp
+//p04/p01=p05/p08=rp^2
+T_02=T01*(rp)^((r-1)/r);
+T02=T01+(T_02-T01)/eff_c;
+T04=T02;
+T_06=T05/rp^((rg-1)/rg);
+T06=T05-eff_T*(T05-T_06);
+T08=T06;
+T09=T04+eff*(T08-T04);
+WN=Cp*(T07-T08);
+Q=Cp*(2*T05-T06-T09);
+eff_th=WN/Q;
+
+disp ("kJ/kg",WN,"Net work done = ");
+disp ("%",eff_th*100,"The overall efficiency = ");
diff --git a/3511/CH6/EX6.21/Ex6_21.sce b/3511/CH6/EX6.21/Ex6_21.sce new file mode 100644 index 000000000..8e6817029 --- /dev/null +++ b/3511/CH6/EX6.21/Ex6_21.sce @@ -0,0 +1,24 @@ +clc;
+T01=270+273; // Temperature at state 1 in kelvin
+T03=T01;
+p01=1; // Inlet pressure in bar
+rp=6; // Pressure ratio
+eff_c=0.85; // Compressor efficiency
+T05=1150+273; // Temperature at inlet to expansion in kelvin
+eff_T=0.9; // Turbine efficiency
+n=1.24; // Polytropic index
+R=10.05; // in kJ/kg K
+
+T_02=T01*rp^((n-1)/n);
+T02=T01+(T_02-T01)/eff_c;
+Cv=R/(n-1);
+Cp=R+Cv;
+Wc=2*Cp*(T02-T01);
+T_06=T05/rp^((n-1)/n);
+T06=T05-eff_T*(T05-T_06);
+WT=2*Cp*(T05-T06);
+Q=Cp*(T05-T02)+Cp*(T05-T06);
+WN=WT-Wc;
+eff_th=WN/Q;
+
+disp ("%",eff_th*100,"The Cycle efficiency = ");
diff --git a/3511/CH6/EX6.3/Ex6_3.sce b/3511/CH6/EX6.3/Ex6_3.sce new file mode 100644 index 000000000..1d9725905 --- /dev/null +++ b/3511/CH6/EX6.3/Ex6_3.sce @@ -0,0 +1,75 @@ +clc;
+eff_c=0.82; // Isentropic efficency of the compressor
+eff_T=0.85; // Isentropic efficency of the turbine
+eff_m=0.99; // Mechanical transmission efficiency
+rp=7; // Pressure ratio
+T03=1000; // Maximum cycle temperature in kelvin
+eff_comb=0.97; // Combustion efficiency
+CV=43.1; // Calorific value in MJ/kg
+ma=20; // Air mass flow rate in kg/s
+eff_reg=0.75; // Regenerator effectiveness
+del_P=0.1; // Regenerator gas side pressure loss in bar
+T01=327; // Ambient temperature in kelvin
+p01=1; // Ambient pressure in bar
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+
+//(i).With Regeneration and pressure loss
+T_02=T01*(rp)^((r-1)/r);
+T02=T01+(T_02-T01)/eff_c;
+p04=p01+del_P;
+p03=rp/p01;
+T_04=T03*(p04/p03)^((rg-1)/rg);
+T04_1=T03-eff_T*(T03-T_04);
+T05=T02+eff_reg*(T04_1-T02);
+mf1=(ma*Cpg*(T03-T05))/(CV*10^3*eff_comb); // By neglecting the effect of change in mass flow rate due to mf in combustion chamber
+p03_p04_1=p03/p04;
+WT1=(ma+mf1)*Cpg*(T03-T04_1); // Turbine work
+WN1=(ma+mf1)*Cpg*(T03-T04_1)-(ma*Cpa*(T02-T01)/eff_m); // Net work output
+sfc1=mf1*3600/WN1; // Specifc fuel consumption
+eff_th1=WN1/(mf1*CV*10^3); // Thermal efficiency
+
+
+
+//(ii).Without Regenerator and without pressure loss
+
+p04=p01;
+T_04=T03*(p04/p03)^((rg-1)/rg);
+T04_2=T03-eff_T*(T03-T_04);
+mf2=(ma*Cpg*(T03-T02))/(CV*10^3*eff_comb);
+WT2=(ma*Cpg*(T03-T04_2));
+WN2=(ma*Cpg*(T03-T04_2))-(ma*Cpa*(T02-T01)/eff_m); // Net work output
+p03_p04_2=p03/p04;
+sfc2=mf2*3600/WN2; // Specific fuel consumption
+eff_th2=WN2/(mf2*CV*10^3); // Thermal efficiency
+
+
+//(iii).With Regenerator and without pressure loss
+T_02=T01*(rp)^((r-1)/r);
+T02=T01+(T_02-T01)/eff_c;
+p04=p01;
+p03=rp/p01;
+T_04=T03*(p04/p03)^((rg-1)/rg);
+T04_3=T03-eff_T*(T03-T_04);
+T05=T02+eff_reg*(T04_3-T02);
+WT3=(ma*Cpg*(T03-T05));
+mf3=(ma*Cpg*(T03-T05))/(CV*10^3*eff_comb); // By neglecting the effect of change in mass flow rate due to mf in combustion chamber
+p03_p04_3=p03/p04;
+WN3=(ma+mf3)*Cpg*(T03-T04_3)-(ma*Cpa*(T02-T01)/eff_m); // Net work output
+sfc3=mf3*3600/WN3; // Specifc fuel consumption
+eff_th3=WN3/(mf3*CV*10^3); // Thermal efficiency
+
+
+printf("Quantities \t\t\t \t\tRegenerator \t\t\t\t\t\t Without");
+printf ("\n\t\t\t\twith Del_P\t\twithout Del_P\t\t\t\tregenerator and Del_P");
+printf ("\n\t\t\t\t(roundoff error)\t(roundoff error)\t\t\t(roundoff error)");
+printf("\n\n P03/P04\t\t\t%f\t\t%f\t\t\t\t\t%f",p03_p04_1,p03_p04_3,p03_p04_2);
+printf ("\n\nT04 (K)\t\t\t\t%f\t\t%f\t\t\t\t\t%f",T04_1,T04_3,T04_2);
+printf ("\n\nmf (kg/s)\t\t\t%f\t\t%f\t\t\t\t\t%f",mf1,mf3,mf2);
+printf ("\n\nWT (kW)\t\t\t\t%f\t\t%f\t\t\t\t\t%f",WT1,WT3,WT2);
+printf ("\n\nsfc (kg/kW h)\t\t\t%f\t\t%f\t\t\t\t\t%f",sfc1,sfc3,sfc2);
+printf ("\n\nefficiency (in percentage)\t%f\t\t%f\t\t\t\t\t%f",eff_th1*100,eff_th3*100,eff_th2*100);
+
+printf ("\n\nAs can be seen from the table that pressure loss plays a major role in the efficiency than the regenerator. \n\nHence,more care should be taken in the design to have minimum pressure loss.");
diff --git a/3511/CH6/EX6.4/Ex6_4.sce b/3511/CH6/EX6.4/Ex6_4.sce new file mode 100644 index 000000000..1b4731b6d --- /dev/null +++ b/3511/CH6/EX6.4/Ex6_4.sce @@ -0,0 +1,44 @@ +clc;
+eff_c=0.8; // Isentropic efficiency of compression each stage
+eff_CT=0.88; // Isentropic efficiency of compressor turbine
+eff_PT=0.88; // Isentropic efficiency of power turbine
+eff_trans=0.98; // Turbine to compressor transmission efficiency
+rp=3; // Pressure ratio in each stage of compression
+T08=297; // Temperature after intercooler in kelvin
+ma=15; // Air mass flow in kg/s
+eff_reg=0.8; // Regenerator effectiveness
+del_P=0.1; // Regenerator gas side pressure loss in bar
+T01=327; // Ambient temperature in kelvin
+p01=1; // Ambient pressure in bar
+T03=1000; // Maximum cycle temperature in kelvin
+CV=43.1; // Calorific value in MJ/kg
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+p03=rp^2; // Pressre at state 3 in bar
+T_07=T01*(rp)^((r-1)/r);
+T07=T01+(T_07-T01)/eff_c;
+WLPC=ma*Cpa*(T07-T01); // Work of low pressue compressor
+T_02=T08*(rp)^((r-1)/r);
+T02=T08+(T_02-T08)/eff_c;
+WHPC=ma*Cpa*(T02-T08);
+WC=WLPC+WHPC; // Compressor work
+WCa=WC/eff_trans; // Actual compressor work
+// Neglecting effect of mf
+T09=T03-(WCa/(ma*Cpg));
+T_09=T03-(T03-T09)/eff_PT;
+p09=p03/(T03/T_09)^(rg/(rg-1));
+p04=p01+del_P;
+T_04=T09*(p04/p09)^((rg-1)/rg);
+T04=T09-eff_PT*(T09-T_04);
+WTP=ma*Cpg*(T09-T04); // Work output of power turbine
+T05=T02+eff_reg*(T04-T02);
+mf=(ma*Cpg*(T03-T05))/(CV*10^3);
+sfc=mf*3600/(WTP);//Specifc fuel consumption
+eff_th=WTP/(mf*CV*10^3); // Thermal efficiency
+
+
+disp ("kW (roundoff error)",WTP,"Work output of power turbine = ");
+disp ("kg/kW h",sfc,"Specifc fuel consumption = ");
+disp ("%",eff_th*100,"Thermal efficiency = ");
diff --git a/3511/CH6/EX6.5/Ex6_5.sce b/3511/CH6/EX6.5/Ex6_5.sce new file mode 100644 index 000000000..13400f716 --- /dev/null +++ b/3511/CH6/EX6.5/Ex6_5.sce @@ -0,0 +1,55 @@ +clc;
+Wplant=1850; // Plant work output in KW
+p01=1; // Ambient pressure in bar
+T01=27+273; // Ambient temperature in kelvin
+T03=720+273; // Maximum cycle temperature in kelvin
+rp=2.5; // Pressure ratio
+eff_T=0.80; // Turbine and compressor efficiency
+eff_reg=0.75; // Regenerator effectiveness
+eff_comb=0.98; // Combustion efficiency
+CV=43.1; // Calorific value in MJ/kg
+del_p=0.03; // Pressure drop
+p02=6.25; // Pressure in bar
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+
+T_07=T01*rp^((r-1)/r);
+T07=T01+(T_07-T01)/eff_T;
+T02=T07;
+WLPC=Cpa*(T07-T01); // Work of low pressure compressor
+WHPT=WLPC;
+T09=T03-WHPT/Cpg;
+T_09=T03-(T03-T09)/eff_T;
+p03=(1-del_p)^2*p02
+p09=p03/(T03/T_09)^(rg/(rg-1));
+p10=p09*(1-del_p);
+T10=T03;
+p04=p01+del_p;
+T_04=T10*(p04/p10)^((rg-1)/rg);
+T04=T10-eff_T*(T10-T_04);
+Wlpt=Cpg*(T10-T04);
+WN=Wlpt-WHPT;
+ma=Wplant/WN;
+T05=T02+eff_reg*(T04-T02);
+Q=Cpg*(T03-T05+T10-T09);
+eff_th=WN/Q;
+WHPT_1=ma*WHPT;
+Wlpt_1=ma*Wlpt;
+mf=ma*Q*3600/(eff_comb*CV*10^3);
+sfc=mf/Wplant;
+
+disp ("K",T_07,"T_07 = ");
+disp ("K",T07,"T07 = ");
+disp ("K",T09,"T09 = ");
+disp ("K",T_09,"T_09 = ");
+disp ("K",T_04,"T_04 = ");
+disp ("K",T04,"T04 = ");
+disp ("K",T05,"T05 = ");
+disp ("bar",p03,"P03 = ");
+disp ("bar",p09,"P09 = ");
+disp ("bar",p10,"P10 = ");
+disp ("kg/s",ma,"Mass flow rate = ");
+disp ("%",eff_th*100,"The overall efficiency = ");
+disp ("kg of fuel/kW h",sfc,"Specific fuel consumption = ");
diff --git a/3511/CH6/EX6.6/Ex6_6.sce b/3511/CH6/EX6.6/Ex6_6.sce new file mode 100644 index 000000000..644f9b9b9 --- /dev/null +++ b/3511/CH6/EX6.6/Ex6_6.sce @@ -0,0 +1,23 @@ +clc;
+rp=11.3137; // Pressure ratio
+WN=0; // Net work output
+Q=476.354; // Heat added per kg of air mass in kJ
+T01=300; // Inlet air total temperature in kelvin
+eff_T=0.71; // turbine efficiency
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+
+T_02=T01*rp^((r-1)/r);
+T03_T02=Q/Cpa;
+T03_T_04=rp^((r-1)/r);
+T04_T03=1-(eff_T*(1/T03_T_04)*(T03_T_04-1));
+T04=T01+(T03_T02);
+T03=T04/T04_T03;
+t=T03/T01; //Temperature ratio
+T02=T03-T03_T02;
+eff_C=(T_02-T01)/(T02-T01); // Compressor efficiency
+
+disp ("%",eff_C*100,"Compressor Efficiency = ",);
+disp (t,"Temperature ratio = ");
diff --git a/3511/CH6/EX6.7/Ex6_7.sce b/3511/CH6/EX6.7/Ex6_7.sce new file mode 100644 index 000000000..27d986f1f --- /dev/null +++ b/3511/CH6/EX6.7/Ex6_7.sce @@ -0,0 +1,18 @@ +clc;
+eff_C=0.7042; // Efficiency of the compressor
+eff_T=0.71; // Efficiency of the turbine
+Q=476.354; // Head added in kJ/kg
+WR=0.0544; // Work ratio
+T01=300;// Total inlet temperature in kelvin
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+
+c_t=(1-WR)*(eff_T*eff_C);
+t=((Q/(Cpg*T01))+1-1/eff_C)/(1-c_t/eff_C); // Temperature ratio
+c=c_t*t;
+rp=c^(r/(r-1)); // Pressure ratio
+
+disp (rp,"Pressure ratio = ");
+disp (t,"Temperature ratio = ");
diff --git a/3511/CH6/EX6.8/Ex6_8.sce b/3511/CH6/EX6.8/Ex6_8.sce new file mode 100644 index 000000000..ea6388eca --- /dev/null +++ b/3511/CH6/EX6.8/Ex6_8.sce @@ -0,0 +1,16 @@ +clc;
+WR=0.3; // Work ratio
+rp=12; // Pressure ratio
+t=4; // Temperature ratio
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+
+c=rp^((r-1)/r);
+eff_C_T=1/((1-WR)*t/c);
+tmin=c/eff_C_T;
+eff=1-1/c;
+
+disp (tmin,"Minimum Temperature ratio = ");
+disp ("%",eff*100,"Efficiency = ");
diff --git a/3511/CH6/EX6.9/Ex6_9.sce b/3511/CH6/EX6.9/Ex6_9.sce new file mode 100644 index 000000000..e15991a35 --- /dev/null +++ b/3511/CH6/EX6.9/Ex6_9.sce @@ -0,0 +1,15 @@ +clc;
+eff_pe=0.85; // Polytropic efficiency of the compressor
+T_02_T01=2;
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+
+rc=(T_02_T01)^(r/(r-1));
+eff_C=(T_02_T01-1)/(((rc^(((r-1)/r)*(1/eff_pe)))-1)); // Compressor efficiency
+eff_T=(1-(1/rc)^(eff_pe*(r-1)/r))/(1-(1/rc)^((r-1)/r)); // Turbine efficiency
+
+
+disp ("%",eff_C*100," Isentropic compressor efficiency = ");
+disp ("%",eff_T*100," Isentropic Turbine efficiency = ");
diff --git a/3511/CH7/EX7.1/Ex7_1.sce b/3511/CH7/EX7.1/Ex7_1.sce new file mode 100644 index 000000000..ea1631c34 --- /dev/null +++ b/3511/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,13 @@ +clc;
+CV=43; // Calorific value of fuel in MJ/kg
+mf=0.18*9000/3600; // Fuel consumption in kg/s
+F=9; // Thrust in kN
+ci=500; // Aircraft velocity in m/s
+ma=27; // Mass of air passing through compressor in kg/s
+
+A_F=ma/mf; // Air fuel ratio
+PT=F*ci; // Thrust power
+Q=mf*(CV*10^3); // Heat supplied
+eff=PT/Q; // Overall efficiency
+disp (A_F,"Air fuel ratio = ");
+disp ("%",eff*100,"Overall efficiency = ");
diff --git a/3511/CH7/EX7.10/Ex7_10.sce b/3511/CH7/EX7.10/Ex7_10.sce new file mode 100644 index 000000000..0a49eacc5 --- /dev/null +++ b/3511/CH7/EX7.10/Ex7_10.sce @@ -0,0 +1,33 @@ +clc;
+ma=(12*10^4)/3600; // Air flow rate in kg/s
+T01=15+273; // Temperature in kelvin
+rp=4; // pressure ratio
+p01=1.03; // Pressure in bar
+T02=182+273; // Temperature in kelvin
+T03=815+273; // Temperature in kelvin
+T04=650+273; // Temperature in kelvin
+ci=800*1000/3600; // Velocity in m/s
+eff_nozzle=0.90; // Nozzle efficiency
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+p03=4.12; // in bar
+
+eff_c=1/((T02-T01)/(T01*((rp^((r-1)/r))-1)));
+eff_T=eff_c;
+Wc=ma*Cpa*(T02-T01);
+rp_T=(1/(1-((T03-T04)/(eff_T*T03))))^((r/(r-1)));
+p04=p03/rp_T;
+p04_pc=1/(1-((rg-1)/((rg+1)*eff_nozzle)))^(rg/(rg-1));
+p5=p01;
+T_5=T04*(p5/p04)^((rg-1)/rg);
+T5=T04-eff_nozzle*(T04-T_5);
+cj=sqrt(2*Cpg*10^3*(T04-T5));
+F=ma*(cj-ci);
+
+disp ("%",eff_c*100,"Efficiency of the compressor = ");
+disp ("%",eff_T*100,"Efficiency of the Turbine = ");
+disp ("kW",Wc,"Compressor work = ");
+disp ("m/s (roundoff error)",cj,"The exit speed of gases = ");
+disp ("N (roundoff error)",F,"Thrust developed = ");
diff --git a/3511/CH7/EX7.2/Ex7_2.sce b/3511/CH7/EX7.2/Ex7_2.sce new file mode 100644 index 000000000..fb25c7b5f --- /dev/null +++ b/3511/CH7/EX7.2/Ex7_2.sce @@ -0,0 +1,44 @@ +clc;
+T03=1200; // Maximum turbine inblet temperature in kelvin
+rc=4.25; // Pressure ratio across compressor
+ma=25; // Mass flow rate in kg/s
+eff_C=0.87; // Isentropic efficiency of the compressor
+eff_T=0.915; // Isentropic efficiency of turbine
+eff_n=0.965; // Propelling nozzle efficiency
+eff_Tr=0.985; // Transmission efficiency
+del_pcomb=0.21; // Combustion chamber pressure loss in bar
+Cpa=1.005; // Specific heat at constant pressure of air in kJ/kg K
+ra=1.4; // Specific heat ratio of air
+Cpg=1.147; // Specific heat of fuel in kJ/kg K
+rg=1.33; // Specific heat of fuel
+T01=293; // Ambient temperature in kelvin
+p01=1; // Ambient pressure in bar
+A_F=50; // Air Fuel ratio
+p02=rc/p01;
+
+T02=(T01*((rc)^((ra-1)/ra)-1)/eff_C)+T01; // Actual temperature at state 2
+T04=T03-((Cpa*(T02-T01))/(eff_Tr*Cpg)); // Temperature at state 4
+rt=(1/(1-((T03-T04)/(eff_T*T03))))^(1/((rg-1)/rg)); // Pressure ratio across turbine
+p04=(p02-del_pcomb)/rt; // Pressure at 4
+p5=p01;
+T_5=T04/(p04/p5)^((rg-1)/rg); // Temperature at 5
+T5=T04-eff_n*(T04-T_5);
+c5=sqrt (2*Cpg*10^3*(T04-T5));
+F=ma*c5; // Total design thrust
+p04_pc=1/(1-((1/eff_n)*((rg-1)/(rg+1))))^(rg/(rg-1))
+pc=p04*(1/p04_pc);
+Tc=T04*(1/p04_pc)^((rg-1)/rg);
+R=Cpg*10^3*(rg-1)/rg;
+cj=sqrt (rg*R*Tc);
+row_c=(pc*10^5)/(R*Tc);
+A=ma/(row_c*cj); // Area of the propelling nozzle
+d=sqrt (4*A/3.14); // Diameter of the nozzle
+pa=p01;
+Fp=(pc-pa)*10^5*A;// Pressure thrust
+Fm=ma*cj;
+Ft=Fp+Fm; // Total thrust
+sfc=(ma/A_F)*3600/Ft;
+
+disp ("N (roundoff error)",F," Total design thrust/s = ");
+disp ("N (roundoff error)",Ft,"Total thrust /s = ");
+disp ("kg/ N thrust h",sfc, "Specific fuel consumption = ");
diff --git a/3511/CH7/EX7.3/Ex7_3.sce b/3511/CH7/EX7.3/Ex7_3.sce new file mode 100644 index 000000000..99adf06e4 --- /dev/null +++ b/3511/CH7/EX7.3/Ex7_3.sce @@ -0,0 +1,14 @@ +clc;
+p03=4.5; // Pressure at turbine inlet in bar
+T03=800+273; // Temperature at turbine inlet in kelvin
+p04=1.75; // Pressure at turbine outlet in bar
+eff_T=0.75; //Turbine efficiency
+p05=1.03; // Pressure at state 5 in bar
+Cp=1.05; // Specific heat at constant pressure in kJ/kg K
+r=1.38; // Specific heat ratio
+
+T04=T03*(1-eff_T*(1-(1/(p03/p04)^((r-1)/r)))); // Temperature at state 4
+cj=sqrt (2*Cp*10^3*T04*(1-(1/(p04/p05)^((r-1)/r)))); // Velocity leaving nozzle
+
+disp ("K",T04,"(i).Temperature of the gas entering the jet (nozzle) = ");
+disp ("m/s",cj,"(ii).Velocity of gas leaving the jet = ");
diff --git a/3511/CH7/EX7.4/Ex7_4.sce b/3511/CH7/EX7.4/Ex7_4.sce new file mode 100644 index 000000000..4ea4e7389 --- /dev/null +++ b/3511/CH7/EX7.4/Ex7_4.sce @@ -0,0 +1,13 @@ +clc;
+cj=2700; // The effective jet velocity from jet engine in m/s
+ci=1350; // Flight velocity in m/s
+ma=78.6; // Air flow rate in m/s
+
+a=ci/cj;
+F=ma*(cj-ci); // Thrust
+P=F*ci; // Thrust power
+eff_P=2*a/(a+1); // Propulsive efficiency
+
+disp ("N",F,"(i).Thrust = ");
+disp ("MN",P/10^6,"(ii). Thrust power = ");
+disp ("%",eff_P*100,"(iii). Propulsive efficiency = ");
diff --git a/3511/CH7/EX7.5/Ex7_5.sce b/3511/CH7/EX7.5/Ex7_5.sce new file mode 100644 index 000000000..34887bc87 --- /dev/null +++ b/3511/CH7/EX7.5/Ex7_5.sce @@ -0,0 +1,41 @@ +clc;
+pa=0.458; // Ambient pressure in bar
+Ta=248; // Ambient temperature in kelvin
+Ci=805*1000/3600; // Speed of the aircraft in m/s
+rp=4;// Pressure ratio
+DelP_comb=0.21; // Combustion chamber pressure loss in bar
+T03=1100; // Turbine inlet temperature in kelvin
+eff_ram=0.95; // Intake duct efficiency
+eff_c=0.85; // Compressor efficiency
+eff_T=0.90; // Turbine efficiency
+eff_m=0.99; // Mechanical efficiency of transmission
+eff_nozzle=0.95; // Nozzle efficiency
+CV=43; // Low calorific value in MJ/kg
+Ac=0.0935; // Nozzle outlet area in m^2
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+R=287; // Characteristic gas constant in J/kg K
+
+p01=pa*(1+eff_ram*((1+Ci^2/(2*Cpa*Ta*10^3))^(r/(r-1))-1));
+p02=p01*rp;
+T01=Ta+Ci^2/(2*Cpa*10^3);
+T02=T01+T01*(rp^((r-1)/r)-1)/eff_c;
+T04=T03-(Cpa*(T02-T01))/(Cpg*eff_m);
+p03=p02-DelP_comb;
+T_04=T03-(T03-T04)/eff_T;
+p04=p03*(T_04/T03)^(r/(r-1));
+p04_pc=1/(1-(((rg-1)/(rg+1))/eff_nozzle))^(rg/(rg-1));
+Tc=T04*(1/p04_pc)^((rg-1)/rg);
+pc=p04/p04_pc;
+row_c=(pc*10^5)/(R*Tc);
+cj=sqrt (rg*R*Tc);
+m=row_c*Ac*cj;
+F=m*(cj-Ci)+Ac*(pc-pa)*10^5; // Total thrust
+mf=(m*Cpg*(T03-T02))/(CV*10^3);
+sfc=mf*3600/F; // specific fuel consumption
+
+disp ("N (roundoff error)",F,"Total thrust = ");
+disp ("kg/N h (roundoff error)",sfc,"specific fuel consumption = ");
+
diff --git a/3511/CH7/EX7.6/Ex7_6.sce b/3511/CH7/EX7.6/Ex7_6.sce new file mode 100644 index 000000000..a33ca376d --- /dev/null +++ b/3511/CH7/EX7.6/Ex7_6.sce @@ -0,0 +1,31 @@ +clc;
+ci=600*1000/3600; // Velocity in m/s
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+R=287; // Characteristic gas constant in J/kg K
+pa=0.458; // Ambient pressure in bar
+Ta=-15+273; // Ambient temperature in kelvin
+rp=9; // pressure ratio
+T03=1200; // Maximum temperature in kelvin
+eff_ram=0.9; // Intake duct efficiency
+eff_c=0.89; // Compressor efficiency
+eff_T=0.93; // Turbine efficiency
+eff_m=0.98; // Mechanical efficiency of transmission
+
+cj=ci
+T_01=Ta+(ci^2/(2*Cpa*10^3));
+p_01=pa*(T_01/Ta)^(r/(r-1));
+p01=eff_ram*(p_01-pa);
+p02=rp*p01;
+T01=T_01;
+T_02=T01*rp^((r-1)/r);
+T02=T01+(T_02-T01)/(eff_c);
+T_04=T03*(1/rp)^((rg-1)/rg);
+T04=T03-eff_T*(T03-T_04);
+WN=Cpg*(T03-T04)-Cpa*(T02-T01)/eff_m;// net work done
+eff_th=WN/(Cpg*(T03-T02)); // Thermal efficiency
+
+disp ("kJ/kg (roundoff error)",WN,"Net work done = ");
+disp ("%",eff_th*100,"Thermal efficiency = ");
diff --git a/3511/CH7/EX7.7/Ex7_7.sce b/3511/CH7/EX7.7/Ex7_7.sce new file mode 100644 index 000000000..40e2e1714 --- /dev/null +++ b/3511/CH7/EX7.7/Ex7_7.sce @@ -0,0 +1,33 @@ +clc;
+pa=0.7; // Ambient pressure in bar
+Ta=1+273; // Ambient temperature in kelvin
+Ci=800*1000/3600; // Speed of the aircraft in m/s
+rp=5;// Pressure ratio
+eff_ram=1.00; // Intake duct efficiency
+eff_c=0.85; // Compressor efficiency
+eff_T=0.90; // Turbine efficiency
+eff_comb=0.98; //Combustion efficiency
+eff_nozzle=0.95; // Nozzle efficiency
+rp_T=2.23;// Turbine pressure ratio
+CV=43; // Low calorific value in MJ/kg
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.005;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.4;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+R=287; // Characteristic gas constant in J/kg K
+F=25000; // Thrust in N
+
+cj=2*Ci;
+T_01=Ta+(Ci^2/(2*Cpa*10^3));
+T01=T_01;
+T02=T01+(T01*(((rp)^((r-1)/r))-1))/eff_c;
+p_01=pa*(1+Ci^2/(2*Cpa*10^3*Ta))^(r/(r-1));
+p01=eff_ram*(p_01-pa);
+p02=rp*p01;
+T03=(T02-T01)/(eff_T*(1-1/rp_T^((r-1)/r)));
+ma=F/(cj-Ci);
+// Neglecting the effect of the mass addition of fuel on the right hand side
+mf=(ma*Cpa*(T03-T02))/(eff_comb*CV*10^3);
+
+disp ("kg/s",ma,"Mass flow rate of air = ");
+disp ("kg/s (roundoff error)",mf,"Mass flow rate of fuel = ");
diff --git a/3511/CH7/EX7.8/Ex7_8.sce b/3511/CH7/EX7.8/Ex7_8.sce new file mode 100644 index 000000000..763c4c538 --- /dev/null +++ b/3511/CH7/EX7.8/Ex7_8.sce @@ -0,0 +1,42 @@ +clc;
+Ta=288; // Ambient temperature in kelvin
+pa=1.01; // Ambient pressure in bar
+p04=2.4; // Stagnation pressure in bar
+T04=1000;// Stagnation temperature in kelvin
+m=23; // Mass flow rate in kg/s
+rp=1.75; // Pressure ratio
+eff_f=0.88 ; // Efficiency of the fan
+eff_ft=0.9; // Efficiency of the fan turbine
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+R=284.6; // Characteristic gas constant in J/kg K
+T01=Ta;
+p01=pa;
+pc=p04*(2/(r+1))^(r/(r-1));
+// since pc>pa the nozzle will choke
+Tc=T04*(2/(r+1));
+row_c=pc*10^5/(R*Tc);
+cj=sqrt (r*R*Tc);
+A=m/(row_c*cj);
+p1=pa;
+F=m*cj+(A*(pc-p1)*10^5);
+// For fan engine
+T_02=T01*(rp)^((r-1)/r);
+T02=T01+(T_02-T01)/eff_f;
+// For cold nozzle
+m_nozzle=2*m; // Flow through cold nozzle
+pc1=p01*rp*(2/(r+1))^(r/(r-1));
+F_cold=m_nozzle*sqrt (2*Cpa*10^3*(T02-T01));
+// Fan Turbine
+T05=T04-((m_nozzle*Cpa*(T02-T01))/(m*Cpg));
+T_05=T04-(T04-T05)/eff_ft;
+p_05=p04*(T_05/T04)^(rg/(rg-1));
+pc=p_05*(2/(rg+1))^(rg/(rg-1));
+F_hot=m*sqrt (2*Cpg*10^3*(T05-T01));
+Takeoffthrust= F_cold + F_hot;
+
+disp ("m^2 (roundoff error)",A,"Nozzle Exit area = ");
+disp ("N (roundoff error)",F,"Total Thrust = ");
+disp ("N (roundoff error)",Takeoffthrust,"Take-off Thrust = ");
diff --git a/3511/CH7/EX7.9/Ex7_9.sce b/3511/CH7/EX7.9/Ex7_9.sce new file mode 100644 index 000000000..44ac536d5 --- /dev/null +++ b/3511/CH7/EX7.9/Ex7_9.sce @@ -0,0 +1,47 @@ +clc;
+ma=18.2; // Massflow rater in m/s
+Mi=0.6; // Mach number
+pa=0.55; // Ambient pressure in bar
+Ta=255; // Ambient temperature in kelvin
+rp=5; // Pressure ratio
+T03=1273; // Maximum temperature in kelvin
+eff_c=0.81; // Compressor efficiency
+eff_T=0.85; // Turbine efficiency
+eff_nozzle=0.915; // Nozzle efficiency
+eff_ram=0.9; // Intake duct efficiency
+CV=45870; // Low calorific value in kJ/kg
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+R=284.6; // Characteristic gas constant in J/kg K
+
+ci=Mi*sqrt(r*R*Ta);
+T_01=Ta+ci^2/(2*Cpa*10^3);
+T01=T_01;
+p_01=pa*(T01/Ta)^(r/(r-01));
+p01=eff_ram*(p_01-pa)+pa;
+p02=rp*p01;
+T02=T01*(1+((rp^((r-1)/r))-1)/eff_c);
+Wc=ma*Cpa*(T02-T01);
+WT=Wc;
+mf=ma/((CV/(Cpg*(T03-T02)))-1);
+f1=mf/ma;
+T04=T03-(WT/((ma+mf)*Cpg));
+rp_T=(1/(1-((1-(T04/T03))/eff_T)))^(r/(r-1));
+p03=p02;
+p04=p03/rp_T;
+p04_pc=1/(1-((rg-1)/((rg+1)*eff_nozzle)))^(rg/(rg-1));
+pc=p04_pc/p04;
+Tc=T04*(1/p04_pc)^((rg-1)/rg);
+cj=sqrt (r*R*Tc);
+row_c=pc*10^5/(R*Tc);
+An=(ma+mf)/(row_c*cj);
+F=(ma+mf)*cj-ma*ci+An*(pc-pa);
+Fp=F*ci;
+
+disp ("kW (roundoff error)",Wc,"Work of compression = ");
+disp ("kW (roundoff error)",WT,"Power output of the turbine = ");
+disp (f1,"Fuel-Air ratio = ");
+disp ("N (roundoff error)",F,"Thrust = ");
+disp ("kW (roundoff error)",Fp/1000,"Thrust power = ");
diff --git a/3511/CH8/EX8.1/Ex8_1.sce b/3511/CH8/EX8.1/Ex8_1.sce new file mode 100644 index 000000000..1daf6307a --- /dev/null +++ b/3511/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,17 @@ +clc;
+N=11500; // Speed in rpm
+T01=21+273; // Inlet total temperature in kelvin
+p01=1;// Inlet total pressure in bar
+p02=4;// Outlet total pressure in bar
+D=0.75; // impeller diameter in m
+mu=0.92;// slip factor
+Cp=1.005; // specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+
+u=3.14*D*N/60;
+W=mu*u^2;
+T02=W/(Cp*10^3)+T01;
+T_02=T01*(p02/p01)^((r-1)/r);
+eff_c=(T_02-T01)/(T02-T01);
+
+disp ("%",eff_c*100,"Efficiency of the compressor = ");
diff --git a/3511/CH8/EX8.10/Ex8_10.sce b/3511/CH8/EX8.10/Ex8_10.sce new file mode 100644 index 000000000..29506976f --- /dev/null +++ b/3511/CH8/EX8.10/Ex8_10.sce @@ -0,0 +1,23 @@ +clc;
+m=30; // mass flow rate in kg/s
+N=15000; // Speed in rpm
+r2=0.3; // Radius in m
+D2=r2*2; // Diameter in m
+w2=100; // Relative velocity in m/s
+beta_1=80; // in degrees
+p01=1; // Inlet pressure in bar
+T01=300 // Inlet temperature in kelvin
+Cp=1.005; // specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+u2=3.14*D2*N/60;
+ct2=u2-(w2*cosd (beta_1));
+Fr=m*ct2*r2;
+P=Fr*(2*3.14*N/60);
+W=u2*ct2;
+P02=p01*(1+(W*10^-3/(Cp*T01)))^(r/(r-1));
+
+disp ("Nm",Fr,"Torque = ");
+disp ("kW",P/1000,"Power = ");
+disp ("bar",P02,"Head Developed = ");
diff --git a/3511/CH8/EX8.2/Ex8_2.sce b/3511/CH8/EX8.2/Ex8_2.sce new file mode 100644 index 000000000..e858564d2 --- /dev/null +++ b/3511/CH8/EX8.2/Ex8_2.sce @@ -0,0 +1,22 @@ +clc;
+m=35; // mass flow rate of air in kg/s
+D=0.76; // Impeller diameter in m
+N=11500; // speed in rpm
+eff_c=0.8; // Efficiency of the compressor
+rp=4.2; // Pressure ratio
+cr=120; // Radial velocity in m/s
+p01=1; // Inlet pressure in bar
+T01=47+273; // Inlet temperature in kelvin
+Cp=1.005; // specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+T_02=T01*rp^((r-1)/r);
+T02=T01+(T_02-T01)/eff_c;
+// ignoring the effects of the velocity of flow
+p02=rp/p01;
+row2=p02*10^5/(R*T02);
+Atip=m/(row2*cr);
+AW=Atip/(3.14*D); // Axial width
+
+disp ("cm",AW*100,"Axial Width = ");
diff --git a/3511/CH8/EX8.3/Ex8_3.sce b/3511/CH8/EX8.3/Ex8_3.sce new file mode 100644 index 000000000..53cce853f --- /dev/null +++ b/3511/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,18 @@ +clc;
+D=0.15; // Inlet eye diameter in m
+N=20000; // Speed in rpm
+ca1=107; // Axial velocity in m/s
+T01=294; // Inlet temperature in kelvin
+p01=1.03; // Inlet pressure in kg/cm^2
+Cp=1.005; // specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+u1=3.14*D*N/60;
+beta_1=atand (ca1/u1);// Blade angle
+cr=u1/cosd (beta_1);
+a=sqrt (r*R*(T01-ca1^2/(2*Cp*10^3)));
+M=cr/a; // Mach number at the tip
+
+disp ("degree",beta_1,"(i).Theoretical angle of the blade at this point = ");
+disp (M,"(ii).Mach number of the flow at the tip of the eye = ");
diff --git a/3511/CH8/EX8.4/Ex8_4.sce b/3511/CH8/EX8.4/Ex8_4.sce new file mode 100644 index 000000000..ab17942fb --- /dev/null +++ b/3511/CH8/EX8.4/Ex8_4.sce @@ -0,0 +1,22 @@ +clc;
+T01=0+273; // Inlet gas temperature in kelvin
+p01=0.7; // Inlet pressure in bar
+p02=1.05; // Delivery pressure in bar
+eff_c=0.83; // Compressor efficiency
+Cp=1.005;// Specific heat at constant pressure in kJ/kg K
+Cv=0.717;// Specific heat at constant volume in kJ/kg K
+r=1.4; // Specific heat ratio
+
+T_02=T01*(p02/p01)^((r-1)/r);
+T02=T01+(T_02-T01)/eff_c; // Final temperature of the gas
+Wc=Cp*(T02-T01); // Work of compression
+
+// With additional compressor
+T_03=T02*(p02/p01)^((r-1)/r);
+T03=T02+(T_03-T02)/eff_c;
+T_03=T01*(p02/p01)^(2*(r-1)/r);
+eff_overall=(T_03-T01)/(T03-T01);
+
+disp ("K",T02,"Final temperature of the gas = ");
+disp ("kJ/kg",Wc," Work of compression = ");
+disp ("%",eff_overall*100,"Overall efficiency = ");
diff --git a/3511/CH8/EX8.5/Ex8_5.sce b/3511/CH8/EX8.5/Ex8_5.sce new file mode 100644 index 000000000..bbb11b731 --- /dev/null +++ b/3511/CH8/EX8.5/Ex8_5.sce @@ -0,0 +1,36 @@ +clc;
+N=12500; // Speed in rpm
+m=15; // Mass flow rate in kg/s
+rp=4; // Pressure ratio
+eff_c=0.75; // Isentropic efficiency
+mu=0.9; // Slip factor
+pi=0.3; // Flow coefficient at impeller exit
+D=0.15; // Hub diameter in m
+ca2=150; // Axial velocity in m/s
+T01=275; // Inlet temperature in kelvin
+p01=1; // Inlet pressure in bar
+Cp=1.005;// Specific heat at constant pressure in kJ/kg K
+Cv=0.717;// Specific heat at constant volume in kJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+u2=ca2/pi;
+P=m*mu*u2^2/1000; // Power output
+D2=u2*60/(3.14*N);
+T1=T01-ca2^2/(2*Cp*10^3);
+p1=p01*(T1/T01)^(r/(r-1));
+row1=p1*10^5/(R*T1);
+A1=m/(row1*ca2);
+D1=sqrt ((A1*4/(3.14))+D^2);
+p3_p1=rp;
+p2=2*p1;
+T_2=T1*(p2/p1)^((r-1)/r);
+T2=T1+(T_2-T1)/eff_c;
+row2=p2*10^5/(R*T2);
+W2=(m)/(row2*ca2*3.14*D2);
+
+disp ("kW",P,"Power = ");
+disp ("Impeller Diameters");
+disp ("cm",D2*100,"D2 = ","cm (roundoff error)",D1*100,"D1 = ");
+disp ("Impeller width")
+disp ("cm (roundoff error)",W2*100,"W2 = ");
diff --git a/3511/CH8/EX8.6/Ex8_6.sce b/3511/CH8/EX8.6/Ex8_6.sce new file mode 100644 index 000000000..cea20760c --- /dev/null +++ b/3511/CH8/EX8.6/Ex8_6.sce @@ -0,0 +1,31 @@ +clc;
+m=14; // mass flow rate in kg/s
+rp=4; // pressure ratio
+N=12000; // Speed in rpm
+T01=288; // Inlet temperature in kelvin
+p01=1.033; // Inlet pressure in bar
+Cp=1.005;// Specific heat at constant pressure in kJ/kg K
+Cv=0.717;// Specific heat at constant volume in kJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+mu=0.9; // Slip factor
+chi=1.04; // Power input factor
+eff_c=0.8; // Compressor efficiency
+
+T03=(((rp^((r-1)/r))-1)*T01/eff_c)+T01;;
+U=sqrt ((T03-T01)*Cp*10^3/(chi*mu));
+D=U*60/(3.14*N);
+
+T3=T03/1.2;
+c2=sqrt (r*R*T3);
+ca2=sqrt (c2^2-(mu*U)^2);
+T02=eff_c*(T03-T01)+T01;
+Loss=T03-T02;
+T2=T3-Loss/2
+p2=p01*(T2/T01)^(r/(r-1));
+row2=p2*10^5/(R*T2);
+A=m/(row2*ca2);
+Depth=A/(2*3.14*D/2);
+
+disp ("cm",D*100,"Overall diameter of the Impeller = ");
+disp ("cm (roundoff error)",Depth*100,"Depth of the diffuser = ");
diff --git a/3511/CH8/EX8.7/Ex8_7.sce b/3511/CH8/EX8.7/Ex8_7.sce new file mode 100644 index 000000000..c48b8ea8a --- /dev/null +++ b/3511/CH8/EX8.7/Ex8_7.sce @@ -0,0 +1,34 @@ +clc;
+N=10000; // Speed in rpm
+Q=600; // Flow rate m^2/min
+rp=4; // Pressure ratio
+eff_c=0.82; // Compressor efficiency
+T01=293; // Inlet temperature in kelvin
+p01=1.0; // Inlet pressure in bar
+Cp=1.005;// Specific heat at constant pressure in kJ/kg K
+Cv=0.717;// Specific heat at constant volume in kJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+ca=60; // Axial velocity in m/s
+D2_D1=2 ;// Diameter ratio
+
+T_03=T01*rp^((r-1)/r);
+T03=T01+(T_03-T01)/eff_c;
+u2=sqrt (Cp*10^3*(T03-T01));
+Wc=u2^2; // Work of compression
+D2=(u2*60/(3.14*N));
+D1=D2/D2_D1;
+T1=T01-(ca^2/(2-Cp*10^3));
+p1=p01*(T1/T01)^(r/(r-1));
+row1=p1*10^5/(R*T1);
+Wroot=(Q/60)*(1/(ca*3.14*D1));
+u1=3.14*N*D1/60;
+alpha_root=atand (ca/u1);
+alpha_tip= atand (ca/u2);
+
+disp ("(i).Power input ");
+disp ("kW/kg/s",Wc/1000,"Wc = ");
+disp ("(ii).Impeller Diameters");
+disp ("m",D2,"D2 = ","m",D1,"D1 = ");
+disp ("(iii).Impeller and diffuser blade angles at inlet");
+disp ("degree",alpha_tip,"alpha_tip = ","degree",alpha_root,"alpha_root = ");
diff --git a/3511/CH8/EX8.8/Ex8_8.sce b/3511/CH8/EX8.8/Ex8_8.sce new file mode 100644 index 000000000..ef65918ff --- /dev/null +++ b/3511/CH8/EX8.8/Ex8_8.sce @@ -0,0 +1,26 @@ +clc;
+rp=4; // Pressure ratio
+eff_c=0.8; // Compressor efficiency
+N=15000; // Speed in rpm
+T01=293; // Inlet temperature in kelvin
+De=0.25; // Diameter of eye in m
+C1=150; // Absolute velocity in m/s
+Di=0.6; // Impeller diameter in m
+a1=25; // in degree
+Cp=1.005;// Specific heat at constant pressure in kJ/kg K
+Cv=0.717;// Specific heat at constant volume in kJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+T02=T01*rp^((r-1)/r);
+DelT_actual=(T02-T01)/eff_c;
+P=Cp*10^3*DelT_actual; // Power input
+u1=3.14*De*N/60;
+ct1=C1*sind (a1);
+// At Exit
+u2=3.14*Di*N/60;
+ct2=(P+(u1*ct1))/u2;
+mu=ct2/u2; // Slip factor
+
+disp (mu,"Slip Factor = ");
+
diff --git a/3511/CH8/EX8.9/Ex8_9.sce b/3511/CH8/EX8.9/Ex8_9.sce new file mode 100644 index 000000000..d3b86f1b6 --- /dev/null +++ b/3511/CH8/EX8.9/Ex8_9.sce @@ -0,0 +1,15 @@ +clc;
+P=180*10^3; // Power input in J
+N=15000; // Speed in rpm
+a1=25; // in degrees
+De=0.25; // Mean dia of the eye in m
+Di=0.6;// Impeller tip diameter in m
+c1=150; // Absolute air velocity at inlet in m/s
+
+u1=3.14*De*N/60;
+u2=3.14*Di*N/60;
+ct1=c1*sind (a1);
+ct2=(P+(u1*ct1))/u2;
+mu=ct2/u2;
+z=(1.98)/(1-mu); // Number of impeller vanes
+disp(z,"Number of impeller vanes using Stanitz formulae = ");
diff --git a/3511/CH9/EX9.1/Ex9_1.sce b/3511/CH9/EX9.1/Ex9_1.sce new file mode 100644 index 000000000..dccc6bef8 --- /dev/null +++ b/3511/CH9/EX9.1/Ex9_1.sce @@ -0,0 +1,22 @@ +clc;
+n=10; // No of stages in the axial flow compressor
+rp=5; // Overall pressure ratio
+eff_C=0.87; // Overall isentropic efficiency
+T1=15+273; // Temperature of air at inlet in kelvin
+u=210; // Blade speed in m/s
+ca=170; // Axial velocity in m/s
+wf=1; // Work factor
+r=1.33; // Specific heat ratio
+Cp=1.005; // Specific heat in kJ/kg K
+
+Del_Tstage=(T1*(rp^((r-1)/r)-1))/(n*eff_C); // Temperature increase per stage
+// By property relations and let us assume
+// tan_beta1-tan_beta2=Del_Tstage*Cp/(wf*u*ca)
+// tan_beta1+tan_beta2=u/ca for 50% reaction
+// To solve this above equations using matrix method
+a=[1,-1;1,1]; c=[(Del_Tstage*Cp*10^3/(wf*u*ca));u/ca];
+b=a\c;
+beta1=atand(b(1));// Blade angles at inlet
+beta2=atand(b(2)); // Blade angles at outlet
+
+disp ("degree (roundoff error)",beta2,"Blade angle at outlet = ","degree (roundoff error)",beta1,"Blade angle at inlet = ");
diff --git a/3511/CH9/EX9.10/Ex9_10.sce b/3511/CH9/EX9.10/Ex9_10.sce new file mode 100644 index 000000000..0465b841b --- /dev/null +++ b/3511/CH9/EX9.10/Ex9_10.sce @@ -0,0 +1,22 @@ +clc;
+u=250; // Mean blade speed in m/s
+rp=1.3; // Pressure ratio
+ca=200; // Axial velocity in m/s
+p01=1; // Inlet pressure in bar
+T01=300; // Inlet temperature in kelvin
+R1=0.5; // Degree of reaction
+Cp=1.005; // Specific heat in KJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+Del_T=(rp^((r-1)/r)-1)*T01;
+//tan_beta1+tan_beta2=(R*2*u/ca);
+//tan_beta1-tan_beta2=(Del_T*Cp*10^3/(u*ca));
+A=[1 1;1 -1]; B=[(R1*2*u/ca) ;(Del_T*Cp*10^3/(u*ca))];
+tan_beta=A\B;
+beta_1=atand (tan_beta(1));
+beta_2=atand (tan_beta(2));
+alpha_1=beta_2; alpha_2=beta_1;
+
+disp ("degree",beta_2,"beta2 = ","degree",beta_1,"beta1 = ");
+disp ("degree",alpha_2,"alpha2 = ","degree",alpha_1,"alpha1 = ");
diff --git a/3511/CH9/EX9.11/Ex9_11.sce b/3511/CH9/EX9.11/Ex9_11.sce new file mode 100644 index 000000000..b8757dd54 --- /dev/null +++ b/3511/CH9/EX9.11/Ex9_11.sce @@ -0,0 +1,34 @@ +clc;
+n=4; // Number of stage
+rp=10; // Pressure ratio
+eff_p_ac=0.92; // Ploytropic efficiency of axial compressor
+eff_p_cc=0.83; // Polytropic efficiency of centrifugal compressor
+Del_Trise=30; // Axial compressor stage temperature in kelvin
+R=0.5; // Reaction stage
+beta_2=20; // Outlet stator angle in degree
+D=0.25; // Mean diameter of each stage in m
+wf=0.8; // Work done factor
+ca=150; // Axial velocity in m/s
+Di=0.33; //Impeller diameter in m
+mu=0.9; // Slip factor
+p01=1.01; // Ambient pressure in bar
+T01=288; // Ambient temperature in kelvin
+pif=1.04; // Power input factor
+Cp=1.005; // Specific heat in KJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+beta_1=atand (sqrt ((Cp*10^3*Del_Trise/(wf*ca^2))+(tand(beta_2)^2)));
+u=ca*(tand (beta_1)+tand(beta_2));
+Nac=(u/(3.14*D));
+r1=(1+n*Del_Trise/T01)^(eff_p_ac*r/(r-1)); // Total pressure ratio across the axial compressor
+
+r2=rp/r1; // Pressure ratio across centrifugal compressor
+T02=T01*r1^((r-1)/(eff_p_ac*r));
+T03=T02*r2^((r-1)/(eff_p_cc*r));
+Del_Tsc=T03-T02;
+u=sqrt ((Del_Tsc*Cp*10^3)/(pif*mu));
+Ncc=u/(3.14*Di);
+
+disp ("rps (roundoff error)",Nac,"Speed of the axial compressor = ");
+disp ("rps (roundoff error)",Ncc,"Speed of the centrifugal compressor = ");
diff --git a/3511/CH9/EX9.2/Ex9_2.sce b/3511/CH9/EX9.2/Ex9_2.sce new file mode 100644 index 000000000..16ee79351 --- /dev/null +++ b/3511/CH9/EX9.2/Ex9_2.sce @@ -0,0 +1,32 @@ +clc;
+P1=1.0132; // Inlet air pressure in bar
+T01=288; // Inlet air temperature in kelvin
+ca=150; // axial velocity in m/s
+dtip=60; // Tip diameter of rotor in cm
+dhub=50; // Hub diameter of rotor in cm
+N=100; // Speed of rotor in rps
+t_angle=30; // Deflected angle of air in degree (in question it is 30.2 but in solution it is 30)
+P2_P1=1.2; // Stage pressure ratio
+Cp=1005; // Specific heat in J/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+u=(3.142857*(dhub+dtip)*10^-2*N)/2; // Mean blade velocity
+beta_1=atand(u/ca); // Blade angle at inlet
+beta_2=beta_1-t_angle; // As air is deflected by 30
+// from velocity triangle
+x=ca*tand(beta_2);
+alpha_2=atand ((u-x)/ca);
+C1=ca;
+T1=T01-(C1^2/(2*Cp)); // Static temperature at inlet
+P2=P1*P2_P1; // Pressure at outlet
+T2=T1*(P2/P1)^((r-1)/r); // Static temperature at outlet
+row_2=(P2*10^5)/(R*T2); // Density at outlet
+m=3.14*(dtip^2-dhub^2)*ca*row_2*10^-4/4; // Mass flow rate
+wf=1; // Work factor
+P=wf*u*ca*m*(tand(beta_1)-tand(beta_2))/1000; // Power developed
+R=ca*(tand(beta_1)+tand(beta_2))/(2*u); // Degree of reaction
+
+disp ("kg/s",m,"Mass flow rate = ");
+disp("kW (Error due to more decimal values in expression)",P,"Power developed = ");
+disp (R,"Degree of Reaction = ");
diff --git a/3511/CH9/EX9.3/Ex9_3.sce b/3511/CH9/EX9.3/Ex9_3.sce new file mode 100644 index 000000000..f6fc103fe --- /dev/null +++ b/3511/CH9/EX9.3/Ex9_3.sce @@ -0,0 +1,28 @@ +clc;
+beta_1=45; // Inlet blade angle in degree
+beta_2=10; // Outlet blade angle in degree
+rp=6; // Compressor pressure ratio
+eff_C=0.85;// Overall isentropic efficiency
+T1=37+273; // Inet static temperature in kelvin
+u=200; // Blade speed in m/s
+Cp=1005; // Specific heat in J/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+// (i). wf=1
+wf=1; // Work factor
+ca=u/(tand(beta_1)+tand(beta_2)); // Axial velocity
+Del_Tstage=wf*u*ca*(tand(beta_1)-tand(beta_2))/Cp; // Stage temperature drop
+Del_Toverall=(T1*(rp^((r-1)/r)-1))/eff_C; // Overall temperature drop
+n=Del_Toverall/Del_Tstage; // No of stages
+
+disp (n,"Number of stages required = ","(i).wf = 1");
+
+// (ii).wf = 0.87
+wf =0.87; // Work factor
+ca=u/(tand(beta_1)+tand(beta_2)); // Axial velocity
+Del_Tstage=wf*u*ca*(tand(beta_1)-tand(beta_2))/Cp; // Stage temperature drop
+Del_Toverall=T1*(rp^((r-1)/r)-1)/eff_C; // Overall temperature drop
+n=Del_Toverall/Del_Tstage; // No of stages
+
+disp (n,"Number of stages required = ","(ii).wf = 0.87");
diff --git a/3511/CH9/EX9.4/Ex9_4.sce b/3511/CH9/EX9.4/Ex9_4.sce new file mode 100644 index 000000000..e37bf1934 --- /dev/null +++ b/3511/CH9/EX9.4/Ex9_4.sce @@ -0,0 +1,28 @@ +clc;
+rp=4; // Total head pressure ratio
+eff_O=0.85; // Overall total head isentropic efficiency
+T01=290; // Total head inlet temperature in kelvin
+alpha_1=10; // Inlet air angle in degree
+alpha_2=45; // Outlet air angle in degree
+u=220; // Blade velocity in m/s
+wf=0.86; // Wok done factor
+R=284.6; // Characteristic gas constant in kJ/kg K
+Cp=1005; // Specific heat in J/kg K
+r=1.4; // Specific heat ratio
+
+eff_P=1/(log10(((rp^((r-1)/r)-1)/eff_O)+1)/(log10(rp)*((r-1)/r)));;
+// From velocity triangle
+ca=u/(tand(alpha_1)+tand(alpha_2)); // Axial velocity
+Del_Tstage=wf*u*ca*(tand(alpha_2)-tand(alpha_1))/Cp; // Stage temperature rise
+T02=T01*(rp)^((r-1)/(r*eff_P)); // Total head temperature
+T02_T01=T02-T01; // Total temperature rise
+n=T02_T01/Del_Tstage; // Total number of stages
+// from velocty traingles
+w1=ca/cosd(alpha_2);
+c1=ca/cosd(alpha_1);
+T1=T01-c1^2/(2*Cp); // Static temperature
+M=w1/sqrt(r*R*T1); // Mach number at inlet
+
+disp (eff_P*100,"Polytropic efficiency of the compressor = ");
+disp (n,"Total number of stages = ");
+disp (M,"Mach number at inlet = ");
diff --git a/3511/CH9/EX9.5/Ex9_5.sce b/3511/CH9/EX9.5/Ex9_5.sce new file mode 100644 index 000000000..b44bb889c --- /dev/null +++ b/3511/CH9/EX9.5/Ex9_5.sce @@ -0,0 +1,31 @@ +clc;
+Q=1000; // Flow rate of free air in m^3/min
+P1=0.98; // Inlet pressure in bar
+T1=15+273; // Inlet temperature in kelvin
+Dm=0.6; // Mean diameter in m
+h=6.75; // blade length in cm
+CL=0.6; CD=0.05; // At zero angle of incidence
+Cp=1.005; // Specific heat in kJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+k=1-0.1; //Blade occupys 10% of axial area
+N=6000; // speed in rpm
+Ac=19.25*10^-4; // Projected area in m^2
+n=50;
+eff_C=1; // Efficiency of compressor
+
+row=(P1*10^5)/(R*T1); // Density
+A=k*3.14*Dm*h*10^-2; // Area of axial
+ca=Q/(60*A); // Axial velocity
+u=3.14*Dm*N/60; // Blade velocity
+beta_1=atand(u/ca); // Blade angle at inlet
+w=sqrt (ca^2+u^2); // From velocity triangle
+L=CL*row*w^2*Ac/2;
+D=CD*row*w^2*Ac/2;
+P=(L*cosd(beta_1)+D*sind (beta_1))*u*n*10^-3; // Power input / stage
+m=Q*row/60;// mass flow rate
+rp=((P*eff_C/(m*Cp*T1))+1)^(r/(r-1)); // pressure ratio
+P2=rp*P1; // Pressure
+
+disp ("kW (Roundoff error )",P,"Power input/stage = ");
+disp ("bar",P2,"Pressure at outlet = ");
diff --git a/3511/CH9/EX9.6/Ex9_6.sce b/3511/CH9/EX9.6/Ex9_6.sce new file mode 100644 index 000000000..dfbb9325d --- /dev/null +++ b/3511/CH9/EX9.6/Ex9_6.sce @@ -0,0 +1,29 @@ +clc;
+T1=290; // Temperature at inlet in kelvin
+n=10; // Number of stages
+rp=6.5; // Pressure ratio
+m=3; // mass flow rate in kg/s
+eff_C=0.9; // isentropic efficiency of the compression
+ca=110; // Axial velocity in m/s
+u=180; // Mean blade velocity in m/s
+Cp=1.005; // Specific heat in kJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+T_2=(rp)^((r-1)/r)*T1; // temperature after isentropic compression
+T2=((T_2-T1)/eff_C)+T1; // Temperature after actual compression
+P=m*Cp*(T2-T1); // Power given to the air
+Del_Tstage=(T2-T1)/n; // Temperature rise per stage
+Del_ct=Cp*10^3*Del_Tstage/u; // For work done per kg of air per second
+// To find blade angles let solve the following equations
+// Del_ct=ca(tan beta_1-tan beta_2) for symmetrical stages
+// u=ca(tan beta_1=tan beta_2) for degree of reaction = 0.5
+// Solving by matrix method
+A=[1,-1;1,1]; C=[Del_ct/ca;u/ca];
+B=A\C;
+// Blade angles at entry and exit
+beta_1=atand(B(1));
+beta_2=atand(B(2));
+
+disp ("kW (roundoff error)",P,"Power given to the air = ");
+disp ("degree",beta_2,"Blade angle at exit = ","degree",beta_1,"Blade angle at inlet = ");
diff --git a/3511/CH9/EX9.7/Ex9_7.sce b/3511/CH9/EX9.7/Ex9_7.sce new file mode 100644 index 000000000..ba05eed7a --- /dev/null +++ b/3511/CH9/EX9.7/Ex9_7.sce @@ -0,0 +1,43 @@ +clc;
+rp=4; // Overall pressure ratio
+m=3; // mass flow rate in kg/s
+eff_pc=0.88; // Polytropic efficiency
+Del_Tstage=25; // The stagnation temperature pressure rise in kelvin
+c1=165; // Absolute velocity in m/s
+alpha_1=20; // air angle from axial direction in degree
+wf=0.83; // Workdone factor
+D=18; // Mean diameter of the last stage rotor in cm
+P01=1.01; // Ambient pressure in bar
+T01=288; // Ambient temperature in kelvin
+Cp=1005; // Specific heat in J/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+n=1/(1-(r-1)/(r*eff_pc));
+T02=T01*(rp)^((n-1)/n); // Total pressure at stage 2
+Del_Toverall= T02-T01; // Overall temperature difference
+Ns=Del_Toverall/Del_Tstage; // Number of stages
+eff_C=((rp^((r-1)/r)-1)/(rp^((r-1)/(r*eff_pc))-1));// Efficiency of compressor
+rp1=(1+(eff_C*Del_Tstage/T01))^(r/(r-1)); // Pressure ratio acrocc first stage
+Del_Tstage1=Del_Toverall/Ns; // Temperature rise across stage 1
+T0ls=T02-Del_Tstage1; // Temperature at inlet to last stage
+rpls=(1+(eff_C*Del_Tstage1/T0ls))^(r/(r-1)); // Pressure ratio acrocc last stage
+// For symmetrical blade, R=0.5
+beta_2=alpha_1;
+ca=c1*cosd (alpha_1); // Axial velocity
+beta_1=atand(sqrt(((Cp*Del_Tstage1/(wf*ca))/ca)+(tand(beta_2))^2)); // blade angle
+u=ca*(tand(beta_1)+tand(beta_2)); // mean velocity of blade
+N=60*u/(3.14*D*10^-2*60); // Speed in rps
+Po=rp/rpls; // Total pressure at inlet to the last stage
+T0=T0ls; // Total temperature to the last stage
+Tst=T0-c1^2/(2*Cp); // Static temperature
+Pst=Po/(T0/Tst)^((r-1)/r); // Static pressure
+row=(Pst*10^5)/(R*Tst); // Density
+h=m/(ca*row*3.14*D*10^-2);// Length of last stage
+
+disp (Ns,"Number of stages = ");
+disp (rp1,"Pressure ratio across first stage = ");
+disp (" (roundoff error)",rpls,"Temperature at inlet to last stage = ");
+disp ("degree (roundoff error)",beta_1,"beta1=" );
+disp ("rps (roundoff error)",N,"Speed = ");
+disp ("cm (roundoff error)",h*100,"Length of last stage = ");
diff --git a/3511/CH9/EX9.8/Ex9_8.sce b/3511/CH9/EX9.8/Ex9_8.sce new file mode 100644 index 000000000..c5d15553c --- /dev/null +++ b/3511/CH9/EX9.8/Ex9_8.sce @@ -0,0 +1,36 @@ +clc;
+N=6000; // Speed in rpm
+Del_rise=20; // Stagnation temperature rise in kelvin
+wf=0.93; // Work done factor eff_c=0.89; // Isentropic efficiency of the state
+c1=140; // Inlet velocity in m/s
+p01=1.01; // Ambient pressure in bar
+T01=288; // Ambient temperature in kelvin
+M1=0.95; // Mach number
+Cp=1.005; // Specific heat in J/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+H_T_ratio=0.6; // Hub tip ratio in
+eff_s=0.89; // Stage efficiency
+T1=T01-c1^2/(2*Cp*10^3);
+w1=M1*sqrt (r*R*T1);
+beta_1=acosd (c1/w1);
+u=w1*sind (beta_1);
+beta_2=atand (tand(beta_1)-((Cp*10^3*Del_rise)/(u*wf*c1)));
+p1=p01/(T01/T1)^(r/(r-1));
+row_1=(p1*10^5)/(R*T1);
+Rtip=60*u/(2*3.14*N);
+Rroot=H_T_ratio*Rtip;
+Rm=(Rtip+Rroot)/2;
+h=Rtip-Rroot;
+m=row_1*2*3.14*Rm*h*c1;
+rp=(1+(eff_s*Del_rise)/(T01))^(r/(r-1));
+P=m*Cp*Del_rise;
+uroot=2*3.14*Rroot*N/60;
+beta_1root=atand (uroot/c1);
+beta_2root=atand (tand (beta_1root)-((Cp*10^3*Del_rise)/(wf*uroot*c1)));
+
+disp ("degree",beta_2,"beta 2 = ","degree",beta_1,"beta 1 = ","Rotor air angles at tip:","m",Rtip,"Tip Radius = ","(i). ");
+disp ("kg/s (Roundoff error)",m,"Mass flow rate = ","(ii).");
+disp ("kW",P,"Power input = ",rp,"Stagnation pressure ratio = ","(iii).");
+disp ("degree",beta_2root,"beta 2 = ","degree",beta_1root,"beta 1 = ","Rotor air angles at root sections","(iv).");
+
diff --git a/3511/CH9/EX9.9/Ex9_9.sce b/3511/CH9/EX9.9/Ex9_9.sce new file mode 100644 index 000000000..eaf44d850 --- /dev/null +++ b/3511/CH9/EX9.9/Ex9_9.sce @@ -0,0 +1,17 @@ +clc;
+rp=1.35; // Actual pressure ratio
+DelT_rise=30; // Actual temperature rise in K
+beta_1=47; // Inlet blade angle in degree
+beta_2=15; // Outlet blade angle in degree
+u=225; // Peripheral velocity in m/s
+ca=180; // Axial velocity in m/s
+T01=27+273; // Ambient temperature in kelvin
+Cp=1.005; // Specific heat in KJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+eff_s=(rp^((r-1)/r)-1)*T01/DelT_rise;
+wf=(DelT_rise*Cp*10^3)/(u*ca*(tand(beta_1)-tand(beta_2)));
+
+disp ("%",eff_s*100,"Stage Efficiency = ");
+disp (wf,"Work done factor = ");
|