summaryrefslogtreecommitdiff
path: root/3511/CH6/EX6.2/Ex6_2.sce
diff options
context:
space:
mode:
Diffstat (limited to '3511/CH6/EX6.2/Ex6_2.sce')
-rw-r--r--3511/CH6/EX6.2/Ex6_2.sce38
1 files changed, 38 insertions, 0 deletions
diff --git a/3511/CH6/EX6.2/Ex6_2.sce b/3511/CH6/EX6.2/Ex6_2.sce
new file mode 100644
index 000000000..8f9908eab
--- /dev/null
+++ b/3511/CH6/EX6.2/Ex6_2.sce
@@ -0,0 +1,38 @@
+clc;
+p01=1; // Air inlet pressure in bar
+T01=7+273;// Air inlet temperature in kelvin
+p02=4; // Pressure at state 2 in bar
+eff_c=0.82;// Isentropic efficiency of compressor
+T03=800+273; // Maximum temperature at the turbine inlet in kelvin
+eff_T=0.85; // Isentropic efficiency of the turbine
+CV=43.1; // calorific value of fuel in MJ/kg
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+LS=0.85;
+mf=1; // Let assume mass of fuel to be 1 kg
+
+T_02=T01*(p02/p01)^((r-1)/r); // from T-S diagram
+T02=T01+(T_02-T01)/eff_c; // Temperature after compression
+Wc=Cpa*(T02-T01); // Work of compression
+Q=Cpg*(T03-T02); // Heat supplied
+p04=p01;p03=p02;
+T_04=T03*(p04/p03)^((rg-1)/rg);
+T04=T03-eff_T*(T03-T_04);
+WT=Cpg*(T03-T04); // Turbine work
+WN=WT-Wc; // Net work done
+eff_th=WN/(Q/LS); // The thermal efficiency
+ma_mf=(LS*CV*10^3/Q)-1; // AIR FUEL ratio
+ma=mf*ma_mf;
+sfc=(3600/(ma_mf*WN)); // specific fuel consumption
+Wc_WT=(Wc*ma)/(WT*(ma+mf)); // work ratio
+
+disp ("kJ/kg of air",Wc,"(i).Compressor work = ");
+disp ("kJ/kg of air",Q,"(ii).Heat supplied = ");
+disp ("kJ/kg of air",WT,"(iii).Turbine work = ");
+disp ("kJ/kg of air",WN,"(iv).Net work = ");
+disp ("%",eff_th*100,"(v).Thermal Efficiency = ");
+disp (ma_mf,"(vi).Air/Fuel ratio = ")
+disp ("kg/kWh",sfc,"(vii).Specific fuel consumption =");
+disp (Wc_WT,"(viii).Ratio of compressor work to turbine work = ");