summaryrefslogtreecommitdiff
path: root/3511/CH6
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3511/CH6
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3511/CH6')
-rw-r--r--3511/CH6/EX6.1/Ex6_1.sce30
-rw-r--r--3511/CH6/EX6.10/Ex6_10.sce16
-rw-r--r--3511/CH6/EX6.11/Ex6_11.sce34
-rw-r--r--3511/CH6/EX6.12/Ex6_12.sce22
-rw-r--r--3511/CH6/EX6.13/Ex6_13.sce32
-rw-r--r--3511/CH6/EX6.14/Ex6_14.sce21
-rw-r--r--3511/CH6/EX6.15/Ex6_15.sce28
-rw-r--r--3511/CH6/EX6.16/Ex6_16.sce36
-rw-r--r--3511/CH6/EX6.17/Ex6_17.sce26
-rw-r--r--3511/CH6/EX6.18/Ex6_18.sce34
-rw-r--r--3511/CH6/EX6.19/Ex6_19.sce25
-rw-r--r--3511/CH6/EX6.2/Ex6_2.sce38
-rw-r--r--3511/CH6/EX6.20/Ex6_20.sce29
-rw-r--r--3511/CH6/EX6.21/Ex6_21.sce24
-rw-r--r--3511/CH6/EX6.3/Ex6_3.sce75
-rw-r--r--3511/CH6/EX6.4/Ex6_4.sce44
-rw-r--r--3511/CH6/EX6.5/Ex6_5.sce55
-rw-r--r--3511/CH6/EX6.6/Ex6_6.sce23
-rw-r--r--3511/CH6/EX6.7/Ex6_7.sce18
-rw-r--r--3511/CH6/EX6.8/Ex6_8.sce16
-rw-r--r--3511/CH6/EX6.9/Ex6_9.sce15
21 files changed, 641 insertions, 0 deletions
diff --git a/3511/CH6/EX6.1/Ex6_1.sce b/3511/CH6/EX6.1/Ex6_1.sce
new file mode 100644
index 000000000..de3cc245b
--- /dev/null
+++ b/3511/CH6/EX6.1/Ex6_1.sce
@@ -0,0 +1,30 @@
+clc;
+p01=1; // Pressure at state 1 in bar
+T01=30+273; // Temperature at state 1 in kelvin
+p02=6; // Pressure of air after compressed in bar
+eff_c=0.87; // Isentropic efficiency of compressor
+T03=700+273; // Temperature at state 3 in kelvin
+eff_T=0.85; // Isentropic efficiency of the turbine
+CV=43.1; // calorific value of fuel in MJ/kg
+ma=80; // Mass flow rate of air in kg/min
+
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+T_02=T01*(p02/p01)^((r-1)/r); // from T-S diagram
+T02=T01+(T_02-T01)/eff_c; // Temperature after compression
+// Neglecting the addition of fuel in the combustion chamber we have mf+ma=ma
+mf=(ma/60)*Cpg*(T03-T02)/(CV*10^3);
+ma_mf=(ma/60)*(1/mf); // Air fuel ratio
+A_F=ma_mf;
+p04=p01;p03=p02;
+T_04=T03*(p04/p03)^((rg-1)/rg);
+T04=T03-eff_T*(T03-T_04);
+WN=(ma/60)*Cpg*(T03-T04)-(ma/60)*Cpa*(T02-T01); //The net power of installation
+eff_th=WN/(mf*CV*10^3); // The overall thermal efficiency
+
+disp (A_F,"(i).Air fuel ratio of the turbine gases = ");
+disp ("K",T04,"(ii).The final temperature of exhaust gases = ");
+disp ("kW",WN,"(iii).The net power of installation = ");
+disp ("%",eff_th*100,"(iv).The overall thermal efficiency = ");
diff --git a/3511/CH6/EX6.10/Ex6_10.sce b/3511/CH6/EX6.10/Ex6_10.sce
new file mode 100644
index 000000000..c50ed2574
--- /dev/null
+++ b/3511/CH6/EX6.10/Ex6_10.sce
@@ -0,0 +1,16 @@
+clc;
+eff_C=0.85; // Isentropic efficiency of the compressor
+rp=4; // Pressure ratio
+r=1.4; // specific heat ratio
+eff_pc=(((r-1)/r)*log (rp))/log (((rp^((r-1)/r)-1)/eff_C)+1);
+disp ("%",eff_pc*100,"Polytropic efficiency = ");
+disp ("variation of compressor efficiency with compression ratio is shown in window1");
+xset('window',1);
+function eff_c=f(rc)
+ eff_c=(rc^0.286-1)/(rc^0.326-1);
+endfunction
+rc=linspace (2,10,4);
+plot(rc,f);
+title ("variation of compressor efficiency with compression ratio","fontsize",4,"color","blue");
+xlabel("compression ratio (rc)","fontsize",4,"color","blue");
+ylabel ("Compressor efficiency","fontsize",4,"color","blue");
diff --git a/3511/CH6/EX6.11/Ex6_11.sce b/3511/CH6/EX6.11/Ex6_11.sce
new file mode 100644
index 000000000..129cef6dd
--- /dev/null
+++ b/3511/CH6/EX6.11/Ex6_11.sce
@@ -0,0 +1,34 @@
+clc;
+eff_pe=0.88; // Compressor and turbine polytropic efficiencies
+T01=310; // Temperature at LP compressor inlet in kelvin
+p01=14; // Pressure at LP compressor inlet in bar
+rp=2; // Compressor pressure ratio
+T03=300;// Temperature at HP compressor inlet in kelvin
+m=180; // Mass flow of Helium in kg/s
+Q=500; // Heat input to gas turbine in MW
+T07=700; // Helium Temperature at entry to reactor channels in kelvin
+P_precoller=0.34; // Pressure loss in pre-cooler and intercooler in bar
+P_loss_HE=0.27; // Pressure loss in heat exchanger in bar
+P_loss_RC=1.03; // Pressure loss in reactor channel in bar
+eff_pc=0.88; // Polytropiic efficiency
+Cp=5.19;// Specific heat at constant pressure in kJ/kg K
+r=1.66; // Specific heat ratio
+
+n_1_n=((r-1)/r)*(1/eff_pc);
+T02=T01*rp^n_1_n;
+T04=T03*rp^n_1_n;
+T05=((Q*10^3)/(m*Cp))+T07;
+T_press_loss=P_precoller+P_loss_HE+P_loss_RC; // Total pressure loss
+p05=56-T_press_loss;
+p06=p01+P_precoller+P_loss_HE;
+n__1_n=eff_pc*((r-1)/r);
+T06=T05/(p05/p06)^n__1_n;
+WC=m*Cp*((T02-T01)+(T04-T03)); // Work of compressor
+WT=m*Cp*(T05-T06); // Work of Turbine
+WN=WT-WC; // Net work output
+eff_th=WN/(Q*10^3); // Efficiency
+eff=(T07-T04)/(T06-T04); // Effectiveness
+
+disp ("MW (roundoff error)",WN/1000,"Power output = ");
+disp ("% (roundoff error)",eff_th*100,"Thermal efficiency = ");
+disp ("% (roundoff error)",eff*100,"Effectiveness = ");
diff --git a/3511/CH6/EX6.12/Ex6_12.sce b/3511/CH6/EX6.12/Ex6_12.sce
new file mode 100644
index 000000000..0d2488c09
--- /dev/null
+++ b/3511/CH6/EX6.12/Ex6_12.sce
@@ -0,0 +1,22 @@
+clc;
+rp=4; // Pressure ratio
+WN=1500; // Net work output in kW
+T01=25+273; // Inlet temperature in kelvin
+p01=1; // Inlet pressure in bar
+p03=4; // Turbine inlet pressure in bar
+T03=700+273;// turbine inlet temperature in kelvin
+eff_c=0.85; // Compressor efficiency
+eff_over=0.21; // Overall efficiency
+Cp=1.005;// Specific heat of air at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio of air
+
+T02=T01+T01*(rp^((r-1)/r)-1)/eff_c;
+Q=WN/eff_over;
+m=Q/(Cp*(T03-T02));
+Wn=WN/m; // Net work per kg
+T04=T03-T02+T01-(Wn/Cp);
+T_04=T03/rp^((r-1)/r);
+eff_T=(T03-T04)/(T03-T_04);
+
+disp ("kg/s",m,"Mass flow rate = ");
+disp ("%",eff_T*100,"Isentropic efficiency of the Turbine = ");
diff --git a/3511/CH6/EX6.13/Ex6_13.sce b/3511/CH6/EX6.13/Ex6_13.sce
new file mode 100644
index 000000000..6924b887c
--- /dev/null
+++ b/3511/CH6/EX6.13/Ex6_13.sce
@@ -0,0 +1,32 @@
+clc;
+rp=4; // Pressure ratio
+eff_c=0.86; // Compressor efficiency
+eff_Thp=0.84;// High pressure turbine efficiency
+eff_Tlp=0.8;// Low pressure turbine efficiency
+eff_M=0.92; // Mechanical efficiency
+T03=660+273; // in kelvin
+T05=625+273; // In kelvin
+T01=15+273; // Inlet temperature in kelvin
+p01=1; // Inlet pressure in bar
+Cp=1.005;// Specific heat of air at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio of air
+eff= 0.75; // Heat exchanger effectiveness
+
+T_02=T01*(rp)^((r-1)/r);
+T02=((T_02-T01)/eff_c)+T01;
+T04=T03-((T02-T01)/eff_M);
+// In HP turbine
+T_04=T03-((T03-T04)/eff_Thp);
+p_04=rp/(T03/T_04)^(r/(r-1));
+// In LP turbine
+p05=p_04;p_06=p01;
+T_06=T05/(p05/p_06)^((r-1)/r);
+T06=T05-(eff_Tlp*(T05-T_06));
+T07=T02+eff*(T06-T02);
+Q=Cp*(T03-T07+T05-T04);
+Wc=Cp*(T02-T01);
+WT=Cp*(T03-T04+T05-T06);
+eff_th=(WT-Wc)/Q;
+
+disp ("bar",p_04,"(i).Pressure of gas entering low pressure turbine = ");
+disp ("%",eff_th*100,"Overall efficiency = ");
diff --git a/3511/CH6/EX6.14/Ex6_14.sce b/3511/CH6/EX6.14/Ex6_14.sce
new file mode 100644
index 000000000..f07812768
--- /dev/null
+++ b/3511/CH6/EX6.14/Ex6_14.sce
@@ -0,0 +1,21 @@
+clc;
+T01=38+273; // Inlet temperature of compressor in kelvin
+eff_c=0.82; // Compressor efficiency
+T03=650+273; // Turbine inlet temperature in kelvin
+eff_T=0.8; // Turbine efficiency
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+
+t=T03/T01;
+// For maximun specific work we know that
+ropt=(sqrt (t*eff_c*eff_T))^(r/(r-1));
+T_02=T01*ropt^((r-1)/r);
+T02=T01+(T_02-T01)/eff_c;
+T_04=T03/ropt^((rg-1)/rg);
+T04=T03-eff_T*(T03-T_04);
+eff_th=((Cpg*(T03-T04))-(Cpa*(T02-T01)))/(Cpg*(T03-T02));
+
+disp (ropt,"Optimum pressure ratio = ");
+disp ("%",eff_th*100, "Overall efficiency = ");
diff --git a/3511/CH6/EX6.15/Ex6_15.sce b/3511/CH6/EX6.15/Ex6_15.sce
new file mode 100644
index 000000000..08a920784
--- /dev/null
+++ b/3511/CH6/EX6.15/Ex6_15.sce
@@ -0,0 +1,28 @@
+clc;
+p01=1; // Stagnation pressure at entry in bar
+pa=0.93; // Static pressure at entry in bar
+T1=10+273;// Static temperature in entry in kelvin
+p02=6; // Pressure at state 2 in bar
+T02=230+273; // Temperature at state 2 in kelvin
+P=5100; // Turbine output power in kW
+A=0.1; // Compressor entry area in m^2
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+R=287; // Characteristic constant in J/kg K
+T04=460+273; // Exhaust pipe temperature in kelvin
+
+M=sqrt (((p01/pa)^((r-1)/r)-1)/((r-1)/2));
+T01=T1*(1+(r-1)/2*M^2);
+T_02=T01*(p02/p01)^((r-1)/r);
+eff_c=(T_02-T01)/(T02-T01);
+row_s=(pa*10^5)/(R*T1);
+a=sqrt (r*R*T1);
+V=M*a;
+m=row_s*A*V;
+T03=(P/(m*Cpg))+T04;
+
+disp ("%",eff_c*100,"Compressor efficiency = ");
+disp ("kg/s",m,"Mass flow rate = ");
+disp ("K (roundoff error)",T03,"Turbine inlet stagnation temperature = ");
diff --git a/3511/CH6/EX6.16/Ex6_16.sce b/3511/CH6/EX6.16/Ex6_16.sce
new file mode 100644
index 000000000..b50e3c222
--- /dev/null
+++ b/3511/CH6/EX6.16/Ex6_16.sce
@@ -0,0 +1,36 @@
+clc;
+T01=27+273; // Inlet temperature in kelvin
+p01=1; // Inlet pressure in bar
+rp=3; // Pressure ratio
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+R=287; // Characteristic constant in J/kg K
+
+T_02=T01*rp^((r-1)/r);
+// Turbines 70 years ago
+eff_c=0.65; // Compressor efficiency
+eff_T=0.7; // Turbine efficiency
+T03=700+273; // in kelvin
+T02=T01*(1+((rp^((r-1)/r)-1)/eff_c));
+T04=T03*(1-eff_T*(1-(1/rp^((rg-1)/rg))));
+eff_th=(Cpg*(T03-T04)-Cpa*(T02-T01))/(Cpg*(T03-T02));
+WR=(Cpg*(T03-T04)-Cpa*(T02-T01))/(Cpg*(T03-T04));
+
+disp (WR,"Work ratio = ",eff_th*100,"The Efficiency = ","(i).70 years ago");
+
+//Modern turbines
+eff_c=0.85; // Compressor efficiency
+eff_T=0.9; // Turbine efficiency
+T03=1000+273; // in kelvin
+T02=T01+(T_02-T01)/eff_c;
+T_04=T03/rp^((rg-1)/rg);
+T04=T03-eff_T*(T03-T_04);
+Wc=Cpa*(T02-T01);
+WT=Cpg*(T03-T04);
+WN=WT-Wc;
+eff_th=WN/(Cpg*(T03-T02));
+WR=WN/WT;
+
+disp (WR,"Work ratio = ","%",eff_th*100,"The Efficiency = ","(ii).Modern turbines");
diff --git a/3511/CH6/EX6.17/Ex6_17.sce b/3511/CH6/EX6.17/Ex6_17.sce
new file mode 100644
index 000000000..e0532c208
--- /dev/null
+++ b/3511/CH6/EX6.17/Ex6_17.sce
@@ -0,0 +1,26 @@
+clc;
+rp=7; // Pressure ratio
+T03=1000; // Maximum temperature in kelvin
+eff_c=0.85; // Compressor efficiency
+eff_T=0.9; // Turbine efficiency
+T01=288; // Air entering temperature in kelvin
+PN=750; // Power output in kW
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+R=287; // Characteristic constant in J/kg K
+
+// Actual cycle
+T02=T01*(1+((rp^((r-1)/r)-1)/eff_c));
+T04=T03*(1-(eff_T*(1-(1/rp^((r-1)/r)))));
+WN_a=(Cpa*(T03-T04)-Cpa*(T02-T01));
+eff_th=WN_a/(Cpa*(T03-T02));
+disp ("%",eff_th*100,"The Efficiency = ","kJ/kg",WN_a,"Net work = ","(i).Actual cycles");
+
+// Ideal cycle
+WN=Cpa*((T03*(1-(1/rp^((r-1)/r))))-T01*((rp^((r-1)/r)-1)));
+eff_th=1-(1/rp^((r-1)/r));
+ma=PN/WN_a;
+
+disp ("kg/s",ma,"Mass flow rate = ","%",eff_th*100,"The Efficiency = ","kJ/kg",WN,"Net work = ","(ii).Ideal cycles");
diff --git a/3511/CH6/EX6.18/Ex6_18.sce b/3511/CH6/EX6.18/Ex6_18.sce
new file mode 100644
index 000000000..6d3548738
--- /dev/null
+++ b/3511/CH6/EX6.18/Ex6_18.sce
@@ -0,0 +1,34 @@
+clc;
+m=5; // Mass flow rate in kg/s
+p01=1; // Pressure at state 1 in bar
+p02=5; // Pressure at state 2 in bar
+eff_c=0.85;// Compressor efficiency
+eff_Thp=0.87; // High pressure turbine efficiency
+eff_Tlp=0.82; // Low pressure turbine efficiency
+T03=675+273; // HP turbine inlet temperature in kelvin
+eff=0.7; // Effectiveness of the heat exchanger
+T01=15+273; // Temperature at state 1 in kelvin
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio of air
+R=287; // Characteristic constant in J/kg K
+p03=p02;
+
+T_02=T01*(p02/p01)^((r-1)/r);
+T02=T01+(T_02-T01)/eff_c;
+T04=T01-T02+T03;
+T_04=T03-(T03-T04)/eff_Thp;
+p04=p03/(T03/T_04)^(r/(r-1));
+p05=p01;
+T_05=T04/(p04/p05)^((r-1)/r);
+T05=T04-eff_Tlp*(T04-T_05);
+T0x=eff*(T05-T02)+T02;
+Wlpt=Cpa*(T04-T05);
+Plpt=Wlpt*m;
+Q=Cpa*(T03-T0x);
+eff_th=Wlpt/Q;
+
+disp ("Intermediate pressure p04 and temperature T04 between the two turbine stages ");
+disp ("K",T04,"To4 = ","bar",p04,"P04 = ");
+disp ("kW",Plpt,"Power output of LP turbine = ");
+disp ("kJ/kg",Q,"Heat supplied = ");
+disp ("%",eff_th*100,"The Overall efficiency = ");
diff --git a/3511/CH6/EX6.19/Ex6_19.sce b/3511/CH6/EX6.19/Ex6_19.sce
new file mode 100644
index 000000000..eb86eb983
--- /dev/null
+++ b/3511/CH6/EX6.19/Ex6_19.sce
@@ -0,0 +1,25 @@
+clc;
+rlp=3; // Pressure ratio
+rhp=rlp;
+eff_c=0.82; // Compressor efficiency
+T04=650+273; // Temperature at state 4 in kelvin
+T05=540+273; // Temperature at state 5 in kelvin
+eff_T=0.87; // Efficiency of turbine
+T01=15+273; // Temperature at compressor inlet in kelvin
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+
+T02=T01*(1+(rlp^((r-1)/r)-1)/eff_c);
+T03=T02*(1+(rhp^((r-1)/r)-1)/eff_c);
+T_06=T05/(rlp)^(2*(rg-1)/rg);
+T06=T05-eff_T*(T05-T_06);
+x1=1-((T02-T01)/(((Cpg/Cpa)*(T05-T06)-(T03-T02))));
+x=abs (x1);
+T07=T04*(1-(eff_T*(1-(1/rhp^((rg-1)/rg)))));
+eff_th=(x*Cpg*(T04-T07))/((1-x)*Cpg*(T05-T03)+x*Cpg*(T04-T02));
+
+disp ("%",(x)*100,"Percentage of the total air intake that passes to the power turbine = ");
+disp ("% (Roundoff error)",(eff_th)*100,"The overall efficiency = ");
+
diff --git a/3511/CH6/EX6.2/Ex6_2.sce b/3511/CH6/EX6.2/Ex6_2.sce
new file mode 100644
index 000000000..8f9908eab
--- /dev/null
+++ b/3511/CH6/EX6.2/Ex6_2.sce
@@ -0,0 +1,38 @@
+clc;
+p01=1; // Air inlet pressure in bar
+T01=7+273;// Air inlet temperature in kelvin
+p02=4; // Pressure at state 2 in bar
+eff_c=0.82;// Isentropic efficiency of compressor
+T03=800+273; // Maximum temperature at the turbine inlet in kelvin
+eff_T=0.85; // Isentropic efficiency of the turbine
+CV=43.1; // calorific value of fuel in MJ/kg
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+LS=0.85;
+mf=1; // Let assume mass of fuel to be 1 kg
+
+T_02=T01*(p02/p01)^((r-1)/r); // from T-S diagram
+T02=T01+(T_02-T01)/eff_c; // Temperature after compression
+Wc=Cpa*(T02-T01); // Work of compression
+Q=Cpg*(T03-T02); // Heat supplied
+p04=p01;p03=p02;
+T_04=T03*(p04/p03)^((rg-1)/rg);
+T04=T03-eff_T*(T03-T_04);
+WT=Cpg*(T03-T04); // Turbine work
+WN=WT-Wc; // Net work done
+eff_th=WN/(Q/LS); // The thermal efficiency
+ma_mf=(LS*CV*10^3/Q)-1; // AIR FUEL ratio
+ma=mf*ma_mf;
+sfc=(3600/(ma_mf*WN)); // specific fuel consumption
+Wc_WT=(Wc*ma)/(WT*(ma+mf)); // work ratio
+
+disp ("kJ/kg of air",Wc,"(i).Compressor work = ");
+disp ("kJ/kg of air",Q,"(ii).Heat supplied = ");
+disp ("kJ/kg of air",WT,"(iii).Turbine work = ");
+disp ("kJ/kg of air",WN,"(iv).Net work = ");
+disp ("%",eff_th*100,"(v).Thermal Efficiency = ");
+disp (ma_mf,"(vi).Air/Fuel ratio = ")
+disp ("kg/kWh",sfc,"(vii).Specific fuel consumption =");
+disp (Wc_WT,"(viii).Ratio of compressor work to turbine work = ");
diff --git a/3511/CH6/EX6.20/Ex6_20.sce b/3511/CH6/EX6.20/Ex6_20.sce
new file mode 100644
index 000000000..97c6a8cc1
--- /dev/null
+++ b/3511/CH6/EX6.20/Ex6_20.sce
@@ -0,0 +1,29 @@
+clc;
+rp=2; // Pressure ratio
+T01=15+273; // Inlet temperature in kelvin
+p01=1; // Inlet pressure in bar
+T05=700+273; // Temperature at state 5 in kelvin
+T07=T05;
+eff_c=0.85; // compressor efficiency
+eff_T=0.85; // Turbine efficiency
+eff=0.5; // Effectiveness of heat exchanger
+Cp=1.147;// Specific heat at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+
+T03=T01;
+// p02/p01=p04/p03=rp
+//p04/p01=p05/p08=rp^2
+T_02=T01*(rp)^((r-1)/r);
+T02=T01+(T_02-T01)/eff_c;
+T04=T02;
+T_06=T05/rp^((rg-1)/rg);
+T06=T05-eff_T*(T05-T_06);
+T08=T06;
+T09=T04+eff*(T08-T04);
+WN=Cp*(T07-T08);
+Q=Cp*(2*T05-T06-T09);
+eff_th=WN/Q;
+
+disp ("kJ/kg",WN,"Net work done = ");
+disp ("%",eff_th*100,"The overall efficiency = ");
diff --git a/3511/CH6/EX6.21/Ex6_21.sce b/3511/CH6/EX6.21/Ex6_21.sce
new file mode 100644
index 000000000..8e6817029
--- /dev/null
+++ b/3511/CH6/EX6.21/Ex6_21.sce
@@ -0,0 +1,24 @@
+clc;
+T01=270+273; // Temperature at state 1 in kelvin
+T03=T01;
+p01=1; // Inlet pressure in bar
+rp=6; // Pressure ratio
+eff_c=0.85; // Compressor efficiency
+T05=1150+273; // Temperature at inlet to expansion in kelvin
+eff_T=0.9; // Turbine efficiency
+n=1.24; // Polytropic index
+R=10.05; // in kJ/kg K
+
+T_02=T01*rp^((n-1)/n);
+T02=T01+(T_02-T01)/eff_c;
+Cv=R/(n-1);
+Cp=R+Cv;
+Wc=2*Cp*(T02-T01);
+T_06=T05/rp^((n-1)/n);
+T06=T05-eff_T*(T05-T_06);
+WT=2*Cp*(T05-T06);
+Q=Cp*(T05-T02)+Cp*(T05-T06);
+WN=WT-Wc;
+eff_th=WN/Q;
+
+disp ("%",eff_th*100,"The Cycle efficiency = ");
diff --git a/3511/CH6/EX6.3/Ex6_3.sce b/3511/CH6/EX6.3/Ex6_3.sce
new file mode 100644
index 000000000..1d9725905
--- /dev/null
+++ b/3511/CH6/EX6.3/Ex6_3.sce
@@ -0,0 +1,75 @@
+clc;
+eff_c=0.82; // Isentropic efficency of the compressor
+eff_T=0.85; // Isentropic efficency of the turbine
+eff_m=0.99; // Mechanical transmission efficiency
+rp=7; // Pressure ratio
+T03=1000; // Maximum cycle temperature in kelvin
+eff_comb=0.97; // Combustion efficiency
+CV=43.1; // Calorific value in MJ/kg
+ma=20; // Air mass flow rate in kg/s
+eff_reg=0.75; // Regenerator effectiveness
+del_P=0.1; // Regenerator gas side pressure loss in bar
+T01=327; // Ambient temperature in kelvin
+p01=1; // Ambient pressure in bar
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+
+//(i).With Regeneration and pressure loss
+T_02=T01*(rp)^((r-1)/r);
+T02=T01+(T_02-T01)/eff_c;
+p04=p01+del_P;
+p03=rp/p01;
+T_04=T03*(p04/p03)^((rg-1)/rg);
+T04_1=T03-eff_T*(T03-T_04);
+T05=T02+eff_reg*(T04_1-T02);
+mf1=(ma*Cpg*(T03-T05))/(CV*10^3*eff_comb); // By neglecting the effect of change in mass flow rate due to mf in combustion chamber
+p03_p04_1=p03/p04;
+WT1=(ma+mf1)*Cpg*(T03-T04_1); // Turbine work
+WN1=(ma+mf1)*Cpg*(T03-T04_1)-(ma*Cpa*(T02-T01)/eff_m); // Net work output
+sfc1=mf1*3600/WN1; // Specifc fuel consumption
+eff_th1=WN1/(mf1*CV*10^3); // Thermal efficiency
+
+
+
+//(ii).Without Regenerator and without pressure loss
+
+p04=p01;
+T_04=T03*(p04/p03)^((rg-1)/rg);
+T04_2=T03-eff_T*(T03-T_04);
+mf2=(ma*Cpg*(T03-T02))/(CV*10^3*eff_comb);
+WT2=(ma*Cpg*(T03-T04_2));
+WN2=(ma*Cpg*(T03-T04_2))-(ma*Cpa*(T02-T01)/eff_m); // Net work output
+p03_p04_2=p03/p04;
+sfc2=mf2*3600/WN2; // Specific fuel consumption
+eff_th2=WN2/(mf2*CV*10^3); // Thermal efficiency
+
+
+//(iii).With Regenerator and without pressure loss
+T_02=T01*(rp)^((r-1)/r);
+T02=T01+(T_02-T01)/eff_c;
+p04=p01;
+p03=rp/p01;
+T_04=T03*(p04/p03)^((rg-1)/rg);
+T04_3=T03-eff_T*(T03-T_04);
+T05=T02+eff_reg*(T04_3-T02);
+WT3=(ma*Cpg*(T03-T05));
+mf3=(ma*Cpg*(T03-T05))/(CV*10^3*eff_comb); // By neglecting the effect of change in mass flow rate due to mf in combustion chamber
+p03_p04_3=p03/p04;
+WN3=(ma+mf3)*Cpg*(T03-T04_3)-(ma*Cpa*(T02-T01)/eff_m); // Net work output
+sfc3=mf3*3600/WN3; // Specifc fuel consumption
+eff_th3=WN3/(mf3*CV*10^3); // Thermal efficiency
+
+
+printf("Quantities \t\t\t \t\tRegenerator \t\t\t\t\t\t Without");
+printf ("\n\t\t\t\twith Del_P\t\twithout Del_P\t\t\t\tregenerator and Del_P");
+printf ("\n\t\t\t\t(roundoff error)\t(roundoff error)\t\t\t(roundoff error)");
+printf("\n\n P03/P04\t\t\t%f\t\t%f\t\t\t\t\t%f",p03_p04_1,p03_p04_3,p03_p04_2);
+printf ("\n\nT04 (K)\t\t\t\t%f\t\t%f\t\t\t\t\t%f",T04_1,T04_3,T04_2);
+printf ("\n\nmf (kg/s)\t\t\t%f\t\t%f\t\t\t\t\t%f",mf1,mf3,mf2);
+printf ("\n\nWT (kW)\t\t\t\t%f\t\t%f\t\t\t\t\t%f",WT1,WT3,WT2);
+printf ("\n\nsfc (kg/kW h)\t\t\t%f\t\t%f\t\t\t\t\t%f",sfc1,sfc3,sfc2);
+printf ("\n\nefficiency (in percentage)\t%f\t\t%f\t\t\t\t\t%f",eff_th1*100,eff_th3*100,eff_th2*100);
+
+printf ("\n\nAs can be seen from the table that pressure loss plays a major role in the efficiency than the regenerator. \n\nHence,more care should be taken in the design to have minimum pressure loss.");
diff --git a/3511/CH6/EX6.4/Ex6_4.sce b/3511/CH6/EX6.4/Ex6_4.sce
new file mode 100644
index 000000000..1b4731b6d
--- /dev/null
+++ b/3511/CH6/EX6.4/Ex6_4.sce
@@ -0,0 +1,44 @@
+clc;
+eff_c=0.8; // Isentropic efficiency of compression each stage
+eff_CT=0.88; // Isentropic efficiency of compressor turbine
+eff_PT=0.88; // Isentropic efficiency of power turbine
+eff_trans=0.98; // Turbine to compressor transmission efficiency
+rp=3; // Pressure ratio in each stage of compression
+T08=297; // Temperature after intercooler in kelvin
+ma=15; // Air mass flow in kg/s
+eff_reg=0.8; // Regenerator effectiveness
+del_P=0.1; // Regenerator gas side pressure loss in bar
+T01=327; // Ambient temperature in kelvin
+p01=1; // Ambient pressure in bar
+T03=1000; // Maximum cycle temperature in kelvin
+CV=43.1; // Calorific value in MJ/kg
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+p03=rp^2; // Pressre at state 3 in bar
+T_07=T01*(rp)^((r-1)/r);
+T07=T01+(T_07-T01)/eff_c;
+WLPC=ma*Cpa*(T07-T01); // Work of low pressue compressor
+T_02=T08*(rp)^((r-1)/r);
+T02=T08+(T_02-T08)/eff_c;
+WHPC=ma*Cpa*(T02-T08);
+WC=WLPC+WHPC; // Compressor work
+WCa=WC/eff_trans; // Actual compressor work
+// Neglecting effect of mf
+T09=T03-(WCa/(ma*Cpg));
+T_09=T03-(T03-T09)/eff_PT;
+p09=p03/(T03/T_09)^(rg/(rg-1));
+p04=p01+del_P;
+T_04=T09*(p04/p09)^((rg-1)/rg);
+T04=T09-eff_PT*(T09-T_04);
+WTP=ma*Cpg*(T09-T04); // Work output of power turbine
+T05=T02+eff_reg*(T04-T02);
+mf=(ma*Cpg*(T03-T05))/(CV*10^3);
+sfc=mf*3600/(WTP);//Specifc fuel consumption
+eff_th=WTP/(mf*CV*10^3); // Thermal efficiency
+
+
+disp ("kW (roundoff error)",WTP,"Work output of power turbine = ");
+disp ("kg/kW h",sfc,"Specifc fuel consumption = ");
+disp ("%",eff_th*100,"Thermal efficiency = ");
diff --git a/3511/CH6/EX6.5/Ex6_5.sce b/3511/CH6/EX6.5/Ex6_5.sce
new file mode 100644
index 000000000..13400f716
--- /dev/null
+++ b/3511/CH6/EX6.5/Ex6_5.sce
@@ -0,0 +1,55 @@
+clc;
+Wplant=1850; // Plant work output in KW
+p01=1; // Ambient pressure in bar
+T01=27+273; // Ambient temperature in kelvin
+T03=720+273; // Maximum cycle temperature in kelvin
+rp=2.5; // Pressure ratio
+eff_T=0.80; // Turbine and compressor efficiency
+eff_reg=0.75; // Regenerator effectiveness
+eff_comb=0.98; // Combustion efficiency
+CV=43.1; // Calorific value in MJ/kg
+del_p=0.03; // Pressure drop
+p02=6.25; // Pressure in bar
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+
+T_07=T01*rp^((r-1)/r);
+T07=T01+(T_07-T01)/eff_T;
+T02=T07;
+WLPC=Cpa*(T07-T01); // Work of low pressure compressor
+WHPT=WLPC;
+T09=T03-WHPT/Cpg;
+T_09=T03-(T03-T09)/eff_T;
+p03=(1-del_p)^2*p02
+p09=p03/(T03/T_09)^(rg/(rg-1));
+p10=p09*(1-del_p);
+T10=T03;
+p04=p01+del_p;
+T_04=T10*(p04/p10)^((rg-1)/rg);
+T04=T10-eff_T*(T10-T_04);
+Wlpt=Cpg*(T10-T04);
+WN=Wlpt-WHPT;
+ma=Wplant/WN;
+T05=T02+eff_reg*(T04-T02);
+Q=Cpg*(T03-T05+T10-T09);
+eff_th=WN/Q;
+WHPT_1=ma*WHPT;
+Wlpt_1=ma*Wlpt;
+mf=ma*Q*3600/(eff_comb*CV*10^3);
+sfc=mf/Wplant;
+
+disp ("K",T_07,"T_07 = ");
+disp ("K",T07,"T07 = ");
+disp ("K",T09,"T09 = ");
+disp ("K",T_09,"T_09 = ");
+disp ("K",T_04,"T_04 = ");
+disp ("K",T04,"T04 = ");
+disp ("K",T05,"T05 = ");
+disp ("bar",p03,"P03 = ");
+disp ("bar",p09,"P09 = ");
+disp ("bar",p10,"P10 = ");
+disp ("kg/s",ma,"Mass flow rate = ");
+disp ("%",eff_th*100,"The overall efficiency = ");
+disp ("kg of fuel/kW h",sfc,"Specific fuel consumption = ");
diff --git a/3511/CH6/EX6.6/Ex6_6.sce b/3511/CH6/EX6.6/Ex6_6.sce
new file mode 100644
index 000000000..644f9b9b9
--- /dev/null
+++ b/3511/CH6/EX6.6/Ex6_6.sce
@@ -0,0 +1,23 @@
+clc;
+rp=11.3137; // Pressure ratio
+WN=0; // Net work output
+Q=476.354; // Heat added per kg of air mass in kJ
+T01=300; // Inlet air total temperature in kelvin
+eff_T=0.71; // turbine efficiency
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+
+T_02=T01*rp^((r-1)/r);
+T03_T02=Q/Cpa;
+T03_T_04=rp^((r-1)/r);
+T04_T03=1-(eff_T*(1/T03_T_04)*(T03_T_04-1));
+T04=T01+(T03_T02);
+T03=T04/T04_T03;
+t=T03/T01; //Temperature ratio
+T02=T03-T03_T02;
+eff_C=(T_02-T01)/(T02-T01); // Compressor efficiency
+
+disp ("%",eff_C*100,"Compressor Efficiency = ",);
+disp (t,"Temperature ratio = ");
diff --git a/3511/CH6/EX6.7/Ex6_7.sce b/3511/CH6/EX6.7/Ex6_7.sce
new file mode 100644
index 000000000..27d986f1f
--- /dev/null
+++ b/3511/CH6/EX6.7/Ex6_7.sce
@@ -0,0 +1,18 @@
+clc;
+eff_C=0.7042; // Efficiency of the compressor
+eff_T=0.71; // Efficiency of the turbine
+Q=476.354; // Head added in kJ/kg
+WR=0.0544; // Work ratio
+T01=300;// Total inlet temperature in kelvin
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+
+c_t=(1-WR)*(eff_T*eff_C);
+t=((Q/(Cpg*T01))+1-1/eff_C)/(1-c_t/eff_C); // Temperature ratio
+c=c_t*t;
+rp=c^(r/(r-1)); // Pressure ratio
+
+disp (rp,"Pressure ratio = ");
+disp (t,"Temperature ratio = ");
diff --git a/3511/CH6/EX6.8/Ex6_8.sce b/3511/CH6/EX6.8/Ex6_8.sce
new file mode 100644
index 000000000..ea6388eca
--- /dev/null
+++ b/3511/CH6/EX6.8/Ex6_8.sce
@@ -0,0 +1,16 @@
+clc;
+WR=0.3; // Work ratio
+rp=12; // Pressure ratio
+t=4; // Temperature ratio
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+
+c=rp^((r-1)/r);
+eff_C_T=1/((1-WR)*t/c);
+tmin=c/eff_C_T;
+eff=1-1/c;
+
+disp (tmin,"Minimum Temperature ratio = ");
+disp ("%",eff*100,"Efficiency = ");
diff --git a/3511/CH6/EX6.9/Ex6_9.sce b/3511/CH6/EX6.9/Ex6_9.sce
new file mode 100644
index 000000000..e15991a35
--- /dev/null
+++ b/3511/CH6/EX6.9/Ex6_9.sce
@@ -0,0 +1,15 @@
+clc;
+eff_pe=0.85; // Polytropic efficiency of the compressor
+T_02_T01=2;
+Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K
+Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K
+rg=1.33;// Specific heat ratio of fuel
+r=1.4; // Specific heat ratio of air
+
+rc=(T_02_T01)^(r/(r-1));
+eff_C=(T_02_T01-1)/(((rc^(((r-1)/r)*(1/eff_pe)))-1)); // Compressor efficiency
+eff_T=(1-(1/rc)^(eff_pe*(r-1)/r))/(1-(1/rc)^((r-1)/r)); // Turbine efficiency
+
+
+disp ("%",eff_C*100," Isentropic compressor efficiency = ");
+disp ("%",eff_T*100," Isentropic Turbine efficiency = ");