summaryrefslogtreecommitdiff
path: root/3511/CH5
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3511/CH5
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3511/CH5')
-rw-r--r--3511/CH5/EX5.1/Ex5_1.sce26
-rw-r--r--3511/CH5/EX5.10/Ex5_10.sce24
-rw-r--r--3511/CH5/EX5.11/Ex5_11.sce17
-rw-r--r--3511/CH5/EX5.12/Ex5_12.sce38
-rw-r--r--3511/CH5/EX5.13/Ex5_13.sce14
-rw-r--r--3511/CH5/EX5.15/Ex5_15.sce35
-rw-r--r--3511/CH5/EX5.16/Ex5_16.sce16
-rw-r--r--3511/CH5/EX5.19/Ex5_19.sce21
-rw-r--r--3511/CH5/EX5.2/Ex5_2.sce20
-rw-r--r--3511/CH5/EX5.3/Ex5_3.sce21
-rw-r--r--3511/CH5/EX5.4/Ex5_4.sce21
-rw-r--r--3511/CH5/EX5.5/Ex5_5.sce18
-rw-r--r--3511/CH5/EX5.6/Ex5_6.sce20
-rw-r--r--3511/CH5/EX5.7/Ex5_7.sce18
-rw-r--r--3511/CH5/EX5.8/Ex5_8.sce10
-rw-r--r--3511/CH5/EX5.9/Ex5_9.sce17
16 files changed, 336 insertions, 0 deletions
diff --git a/3511/CH5/EX5.1/Ex5_1.sce b/3511/CH5/EX5.1/Ex5_1.sce
new file mode 100644
index 000000000..9dba042b6
--- /dev/null
+++ b/3511/CH5/EX5.1/Ex5_1.sce
@@ -0,0 +1,26 @@
+clc;
+p1=1; // Pressure before compression in bar
+T1=350; // Temperature before compression in kelvin
+T3=2000; // Temperature after combustion in kelvin
+rp=1.3; // Pressure ratio
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+T2=T1*(rp)^((r-1)/r); // Temperature at the end of the compression
+T4=T3*(1/rp)^((r-1)/r); // Temperature after expansion
+Wc=Cp*(T2-T1); // Work done during compression
+WT=Cp*(T3-T4); // Work done during expansion
+WN=WT-Wc; // Net work done
+p2=rp*p1; // Pressure at state 2
+p3=p2; p4=p1; // Constant pressure process
+V1=R*T1/(p1*10^5); // specific Volume at state 1
+V2=R*T2/(p2*10^5); // specific Volume at state 2
+V3=R*T3/(p3*10^5); // specific Volume at state 3
+V4=R*T4/(p4*10^5); // specific Volume at state 4
+imep=WN*10^3/(V4-V2); // Mean effective pressure
+q=Cp*(T3-T2); // Heat supplied
+eff=WN/q; // Efficiency of a Joule cycle
+disp ("bar",imep*10^-5,"Mean effective pressure = ");
+disp ("%",eff*100,"Efficiency of a Joule cycle = ");
+
diff --git a/3511/CH5/EX5.10/Ex5_10.sce b/3511/CH5/EX5.10/Ex5_10.sce
new file mode 100644
index 000000000..a571fdbb4
--- /dev/null
+++ b/3511/CH5/EX5.10/Ex5_10.sce
@@ -0,0 +1,24 @@
+clc;
+T1=15+273; // Inlet temperature of air at compressor inlet in kelvin
+rp=6; // Compressor pressure ratio
+T3=750+273; // Maximum permissible temperature in kelvin
+T5=T3; // After reheat
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+
+c=rp^((r-1)/r);
+T2=T1*c; // Temperature at state 2
+p3_p4=sqrt (rp); // For maximum expansion work
+T4=T3/(p3_p4)^((r-1)/r); // Temperature at state 4
+T6=T4; // As pressure ratio is same
+Wc=Cp*(T2-T1); // Compressor work
+WT=Cp*(T3-T4)+Cp*(T5-T6); // Turbine work
+T7=T4; // Because of 100% regeneration
+q=Cp*(T3-T7)+Cp*(T5-T4); // Heat supplied
+WN=WT-Wc; // Net work done
+eff=WN/q; // Efficiency of the plant
+Wratio=WN/WT; // Work ratio
+disp ("kJ/kg of air",q,"Heat supplied = ");
+disp ("kW (roundoff error)",WN,"Net shaft work = ");
+disp ("%",eff*100,"The cycle thermal efficiency = ");
+disp (Wratio,"Work ratio = ");
diff --git a/3511/CH5/EX5.11/Ex5_11.sce b/3511/CH5/EX5.11/Ex5_11.sce
new file mode 100644
index 000000000..be77d3868
--- /dev/null
+++ b/3511/CH5/EX5.11/Ex5_11.sce
@@ -0,0 +1,17 @@
+clc;
+Tmin=5+273; // Minimum operating temperature in kelvin
+Tmax=839+273; // Maximum operating temperature in kelvin
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+
+eff_carnot=1-Tmin/Tmax; // Efficiency of the carnot cycle
+c=1/(1-eff_carnot);
+p2_p1=c^(r/(r-1)); // Pressure ratio
+disp (p2_p1,"(i).Pressure ratio at which efficiency equals Carnot cycle efficiency = ");
+t=Tmax/Tmin; // Temperature ratio
+// Pressure ratio for maximum work is obtained when
+c=sqrt (t);
+p2_p1=c^(r/(r-1)); // Pressure ratio
+eff=1-1/c;// Efficiency at maximum work output
+disp (p2_p1,"(ii).Pressure ratio at which maximum work is obtained = ");
+disp ("%",eff*100,"(iii).Efficiency at maximum work output = ");
diff --git a/3511/CH5/EX5.12/Ex5_12.sce b/3511/CH5/EX5.12/Ex5_12.sce
new file mode 100644
index 000000000..cb500abfb
--- /dev/null
+++ b/3511/CH5/EX5.12/Ex5_12.sce
@@ -0,0 +1,38 @@
+clc;
+rp=4;// Overall pressure ratio
+T1=300; // Temperature at state 1 in kelvin
+T3=1000; // Temperature at state 3 in kelvin
+Cp=1; // Specific heat at constant pressure in kJ/kg K
+Cv=0.717; // Specific heat at constant volume in kJ/kg K
+
+// Basic cycle
+r=Cp/Cv; // Specific heat ratio
+c=rp^((r-1)/r);
+t=T3/T1; // Temperature ratio
+WN=Cp*T1*(t*(1-1/c)-(c-1)); // Net work output
+eff=(1-1/c)*100; // Efficiency of the cycle
+
+// Basic cycle with heat exchanger
+WN_he=WN;
+eff_he=(1-c/t)*100; // Efficiency of the cycle with heat exchanger
+dev_WN1=(WN_he-WN)*100/WN; //Percentage deviation of Net work from basic cycle
+dev_eff1=(eff_he-eff)*100/eff; // Percentage deviation of efficiency from basic cycle
+
+// Basic cycle with intercooled compressor
+WN_ic=(Cp*T1)*(t*(1-1/c)-2*(sqrt(c)-1));
+eff_ic=(1-(((t/c)+sqrt(c)-2)/(t-sqrt(c))))*100;
+dev_WN2=(WN_ic-WN)*100/WN; //Percentage deviation of Net work from basic cycle
+dev_eff2=(eff_ic-eff)*100/eff; // Percentage deviation of efficiency from basic cycle
+
+// Basic cycle with heat exchanger and intercooled compressor
+WN_iche=WN_ic;
+eff_iche=(1-((2*(sqrt(c)-1))/(t*(1-1/c))))*100;
+dev_WN3=(WN_iche-WN)*100/WN; //Percentage deviation of Net work from basic cycle
+dev_eff3=(eff_iche-eff)*100/eff; // Percentage deviation of efficiency from basic cycle
+
+printf ("Cycle \t\t\t\t\t\t WN(kJ/kg) \t\tefficiency (in percentage)\t\t percentage Change in WN \t\tpercentage change in efficiency");
+printf("\n\t\t\t\t\t\t(roundoff error) \t(roundoff error) \t\t\t (roundoff error)\t\t\t\t (roundoff error)");
+printf ("\n\nBasci cycle \t\t\t\t\t %f \t\t\t %f\t\t\t\t\t - \t\t\t\t\t -",WN,eff);
+printf ("\n\nWith Heat Exchanger \t\t\t\t %f \t\t\t %f\t\t\t\t\t %f \t\t\t %f",WN_he,eff_he,dev_WN1,dev_eff1);
+printf ("\n\nWith intercooling \t\t\t\t %f \t\t\t %f\t\t\t\t\t %f \t\t\t %f",WN_ic,eff_ic,dev_WN2,dev_eff2);
+printf ("\n\nWith Heat Exchanger & Intercooling \t\t %f \t\t\t %f\t\t\t\t\t %f \t\t\t %f",WN_iche,eff_iche,dev_WN3,dev_eff3);
diff --git a/3511/CH5/EX5.13/Ex5_13.sce b/3511/CH5/EX5.13/Ex5_13.sce
new file mode 100644
index 000000000..8b42b7f0e
--- /dev/null
+++ b/3511/CH5/EX5.13/Ex5_13.sce
@@ -0,0 +1,14 @@
+clc;
+T1=27+273; // Temperature at state 1 in kelvin
+T3=827+273; // Temperature at state 3 in kelvin
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+
+t=T3/T1; // Temperature ratio
+Wmax=Cp*((T3*(1-1/sqrt(t)))-T1*(sqrt(t)-1)); // Maximum work
+eff_wmax=(1-1/sqrt(t)); // Efficiency of brayton cycle
+Tmax=T3; Tmin=T1;
+eff_carnot=(Tmax-Tmin)/Tmax; // Carnot efficiency
+disp ("kJ/kg of air",Wmax,"Maximum net work per kg of air = ");
+disp ("%",eff_wmax*100,"Brayton cycle efficiency = ");
+disp ("%",eff_carnot*100,"Carnot cycle efficiency = ");
diff --git a/3511/CH5/EX5.15/Ex5_15.sce b/3511/CH5/EX5.15/Ex5_15.sce
new file mode 100644
index 000000000..9dd175c75
--- /dev/null
+++ b/3511/CH5/EX5.15/Ex5_15.sce
@@ -0,0 +1,35 @@
+clc;
+p1=1; // Pressure at state 1 in bar
+T1=300; // Temperature at state 1 in kelvin
+p4=5; // Pressure at state 4 in bar
+T5=1250; // Temperature at state 5 in kelvin
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+
+rp=p4/p1; // pressure ratio
+p2=sqrt (rp); // Because of perfect intercooling
+c1=p2^((r-1)/r);
+T2=T1*c1; // Temperature at state 2
+T4=T2; T3=T1;
+
+Wc1=Cp*(T2-T1); // Work of compressor 1
+Wc=2*Wc1; // net work of compressor
+WT1=Wc;
+T6=T5-(WT1/Cp); // Temperature at state 6
+p5_p6=(T5/T6)^(r/(r-1)); // Pressure ratio
+p6=rp/p5_p6; // Pressure at state 6
+p7=p1; T7=T5;p8=p6;
+T8=T7*(p7/p8)^((r-1)/r); // Temperature in state 8
+WT2=Cp*(T7-T8); // Turbine 2 work
+q=Cp*(T5-T4)+Cp*(T7-T6); // Heat supplied
+eff=WT2/q; // Efficiency of the cycle
+// With regenerator
+T9=T8;
+q_withregen=Cp*((T5-T9)+(T7-T6)); // Heat supplied with regenerator
+eff_withregen=WT2/q_withregen; // Efficiency of the cycle with regenerator
+I_eff=(eff_withregen-eff)/eff_withregen; // Percentage improvement in efficiency
+
+disp ("%",eff*100,"Efficiency of the cycle = ","kJ/kg",q,"Heat supplied = ","kJ/kg",WT2,"Work of turbine = ","(i). Without regenerator ");
+disp ("%",eff_withregen*100,"Efficiency of the cycle = ","kJ/kg (roundoff error)",q_withregen,"Heat supplied = ","(ii). With regenerator" );
+
+disp ("%",I_eff*100,"Percentage improvement in efficiency = ");
diff --git a/3511/CH5/EX5.16/Ex5_16.sce b/3511/CH5/EX5.16/Ex5_16.sce
new file mode 100644
index 000000000..43714e242
--- /dev/null
+++ b/3511/CH5/EX5.16/Ex5_16.sce
@@ -0,0 +1,16 @@
+clc;
+p1=1; // pressure at inlet in bar
+T1=27+273; // Temperature at inlet in kelvin
+T4=1200; // Maximum temperature in kelvin
+t=T4/T1; // Temperature ratio
+r=1.4; // Specific heat ratio
+
+rp=t;
+c=rp^((r-1)/r);
+x=(1-sqrt(c)/rp)/(1-c/rp);
+eff2_1=x;
+r1=sqrt(rp);
+r2=r1; r3=r1; r4=r1;
+
+disp (eff2_1,"Efficiency ratio of power plants = ");
+disp (r4,"pressure ratio of LPT = ",r3,"pressure ratio of HPT = ",r2,"pressure ratio of HPC = ",r1,"pressure ratio of LPC = ");
diff --git a/3511/CH5/EX5.19/Ex5_19.sce b/3511/CH5/EX5.19/Ex5_19.sce
new file mode 100644
index 000000000..b09d68535
--- /dev/null
+++ b/3511/CH5/EX5.19/Ex5_19.sce
@@ -0,0 +1,21 @@
+clc;
+m=30; // Mass flow rate in kg/s
+p1=1; // pressure of air at compressor inlet in bar
+T1=273+15; // Temperature of air at compressor inlet in kelvin
+p2=10.5; // Pressure of air at compressor outlet
+T_R=420; // Temperature rise due to combustion in kelvin
+p4=1.2; // Pressure at turbine outlet in bar
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+
+T2=T1*(p2/p1)^((r-1)/r); // Temperature at state 2
+T3=T2+T_R; // Temperature at state 3
+p3=p2;
+T4=T3/(p3/p4)^((r-1)/r);
+Wc=m*Cp*(T2-T1); // Compressor work
+WT=m*Cp*(T3-T4); // Turbine work
+WN=WT-Wc; // Net work output
+Q=m*Cp*(T3-T2); // Heat supplied
+eff_th=WN/Q; // Thermal efficiency
+
+disp ("%",eff_th*100,"Thermal efficiency = ","kW (roundoff error)",WN,"Power output = ","kW",Q,"Heat supplied = ");
diff --git a/3511/CH5/EX5.2/Ex5_2.sce b/3511/CH5/EX5.2/Ex5_2.sce
new file mode 100644
index 000000000..b2a16acc2
--- /dev/null
+++ b/3511/CH5/EX5.2/Ex5_2.sce
@@ -0,0 +1,20 @@
+clc;
+p1=1; // Pressure before compression in bar
+T1=350; // Temperature before compression in kelvin
+T3=2000; // Temperature after combustion in kelvin
+rp=1.3; // Pressure ratio
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+T2=T1*(rp)^((r-1)/r); // Temperature at the end of the compression
+T4=T3*(1/rp)^((r-1)/r); // Temperature after expansion
+Wc=Cp*(T2-T1); // Work done during compression
+WT=Cp*(T3-T4); // Work done during expansion
+WN=WT-Wc; // Net work done
+T5=T4; // For a perfect heat exchange
+q=Cp*(T3-T5); // Heat added
+eff2=WN/q; // Efficiency of a modified Joule cycle
+eff1=0.072220534; // Efficiency of a joule cycle
+disp ("%",eff2*100,"Efficiency of a modified Joule cycle = ");
+disp (eff2/eff1,"Improvement in efficiency = ");
diff --git a/3511/CH5/EX5.3/Ex5_3.sce b/3511/CH5/EX5.3/Ex5_3.sce
new file mode 100644
index 000000000..7b4b51759
--- /dev/null
+++ b/3511/CH5/EX5.3/Ex5_3.sce
@@ -0,0 +1,21 @@
+clc;
+rp=6; // Pressure ratio
+T1=300; // Inlet air temperature to the compressor in kelvin
+T3=577+273; // Inlet temperature of air at turbine in kelvin
+Vr=240; // Volume rate in m^3/s
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+p1=1; // pressure at state 1 in bar
+
+T2=T1*(rp)^((r-1)/r); // Temperature at the end of the compression
+T4=T3*(1/rp)^((r-1)/r); // Temperature after expansion
+Wc=Cp*(T2-T1); // Work done during compression
+WT=Cp*(T3-T4); // Work done during expansion
+WN=WT-Wc; // Net work done
+q=Cp*(T3-T2); // Heat supplied
+row1=p1*10^5/(R*T1); // Density of air at state 1
+P=WN*Vr*row1; // Power output
+eff=WN/q; // Efficiency of a cycle
+disp ("MW (roundoff error)",P/1000,"Power Output = ");
+disp ("%",eff*100,"Efficiency of a cycle = ");
diff --git a/3511/CH5/EX5.4/Ex5_4.sce b/3511/CH5/EX5.4/Ex5_4.sce
new file mode 100644
index 000000000..72a2e5d26
--- /dev/null
+++ b/3511/CH5/EX5.4/Ex5_4.sce
@@ -0,0 +1,21 @@
+clc;
+T1=300; // Inlet air temperature to the compressor in kelvin
+p1=1; // pressure at state 1 in bar
+T2=475; // Temperature at discharge in kelvin
+p2=5;// Pressure at state 2
+T5=655; // Temperature after heat exchanger in kelvin
+T3=870+273; // Temperature at he turbine inlet in kelvin
+T4=450+273; // Temperature after turbine in kelvin
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+Wc=Cp*(T2-T1); // Work done during compression
+WT=Cp*(T3-T4); // Work done during expansion
+WN=WT-Wc; // Net work done
+q=Cp*(T3-T5); // Heat supplied
+eff=WN/q; // Efficiency of a cycle
+
+disp ("kJ/kg",WN,"(i). The output per kg of air = ");
+disp ("%",eff*100,"(ii).The efficiency of the cycle = ");
+disp ("kJ/kg",Wc,"(iii). The work required to drive the compressor = ");
diff --git a/3511/CH5/EX5.5/Ex5_5.sce b/3511/CH5/EX5.5/Ex5_5.sce
new file mode 100644
index 000000000..bdd8e085c
--- /dev/null
+++ b/3511/CH5/EX5.5/Ex5_5.sce
@@ -0,0 +1,18 @@
+clc;
+p1=1.4; // Pressure at state 1 in bar
+T1=310; // Temperature at state 1 in kelvin
+rp=5; // Pressure ratio
+Tmax=1050; // Maximum temperatuer in kelvin
+WN=3000; // Net output in kW
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+T3=Tmax;
+T2=T1*(rp)^((r-1)/r); // Temperature at the state 2
+T4=T3/(rp)^((r-1)/r); // Temperature at the state 4
+T5=T4; // As regenerator effectiveness in 100 %
+m=WN/(Cp*((T3-T4)-(T2-T1))); // mass flow rate of air
+eff=(T3-T4-T2+T1)/(T3-T5); // Efficiency of a cycle
+disp ("%",eff*100,"(i). Thermal efficiency of the cycle = ");
+disp ("kg/min (roundoff error)",m*60,"(ii). The mass flow rate of air per minute = ");
diff --git a/3511/CH5/EX5.6/Ex5_6.sce b/3511/CH5/EX5.6/Ex5_6.sce
new file mode 100644
index 000000000..91c185702
--- /dev/null
+++ b/3511/CH5/EX5.6/Ex5_6.sce
@@ -0,0 +1,20 @@
+clc;
+T1=290; // Compressor inlet temperature in kelvin
+T2=460; // Compressor outlet temperature in kelvin
+T3=900+273; // Turbine inlet temperature in kelvin
+T4=467+273; // Turbine outlet temperature in kelvin
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+R=287; // Characteristic gas constant in J/kg K
+
+c=T2/T1; // Temperature ratio
+rpc=c^(r/(r-1)); // Compression ratio
+WN=(Cp*((T3-T4)-(T2-T1))); // Specific power
+T5=T4; // Assuming regenerator effectiveness to be 100%
+eff=WN/(Cp*(T3-T5)); // Overall efficiency of the cycle
+Wc=Cp*(T2-T1); // Work required to drive the compressor
+rpt=(T3/T4)^(r/(r-1)); // Turbine pressure ratio
+disp (rpt," Turbine pressure ratio = ",rpc," Compressor pressure ratio = ","(i).");
+disp ("kJ/kg",WN,"(ii). Specific power output = ");
+disp ("%",eff*100, "(iii). Overall efficiency of the cycle = ");
+disp ("kJ/kg",Wc," (iv). Work required to drive the compressor = ");
diff --git a/3511/CH5/EX5.7/Ex5_7.sce b/3511/CH5/EX5.7/Ex5_7.sce
new file mode 100644
index 000000000..dc57d3b92
--- /dev/null
+++ b/3511/CH5/EX5.7/Ex5_7.sce
@@ -0,0 +1,18 @@
+clc;
+nW_WT=0.563; // Ratio of net work to turbine work
+T1=300; // Inlet temperature to the compressor in kelvin
+eff=0.35; // Thermal efficiency of the unit
+m=10; // massflow rate in kg/s
+Cp=1; // Specific heat at constant pressure in kJ/kg K
+r=1.4; // Specific heat ratio
+
+c=1/(1-eff); // For ideal simple cycle
+T2=T1*c; // Temperature at state 2
+Wc=Cp*(T2-T1); // Compressor work
+WT=Wc/(1-nW_WT); // Turbine work
+WN=WT-Wc; // Net work
+q=WN/eff; // Net heat supplied per kg of air
+T3=(q/Cp)+T2; // Temperature at state 3
+T4=T3/c; // Temperature at state 4
+T3_T4=T3-T4; // Temperature drop across the turbine
+disp ("K",T3_T4,"Temperature drop across the turbine = ");
diff --git a/3511/CH5/EX5.8/Ex5_8.sce b/3511/CH5/EX5.8/Ex5_8.sce
new file mode 100644
index 000000000..f989c947b
--- /dev/null
+++ b/3511/CH5/EX5.8/Ex5_8.sce
@@ -0,0 +1,10 @@
+clc;
+p=336.5; //specific power output of a turbine in kW/kg
+T4=700; // Temperature at turbine outlet in kelvin
+Cp=1; // Specific heat at constant pressure in kJ/kg K
+Cv=0.717; // Specific heat at constant volume in kJ/kg K
+
+r=Cp/Cv; // Specific heat ratio
+T3=T4+(p/Cp); // Temperature at turbine inlet
+p3_p4=(T3/T4)^(r/(r-1)); // Pressure ratio across the turbine
+disp (round(p3_p4),"Pressure ratio across the turbine = ");
diff --git a/3511/CH5/EX5.9/Ex5_9.sce b/3511/CH5/EX5.9/Ex5_9.sce
new file mode 100644
index 000000000..372c3ddb4
--- /dev/null
+++ b/3511/CH5/EX5.9/Ex5_9.sce
@@ -0,0 +1,17 @@
+clc;
+T1=300; // Minimum operating temperature in kelvin
+T3=900; // Maximum operating temperature in kelvin
+p1=1; // Minimum pressure in bar
+p3=4; // Maximum pressure in bar
+m=1600; // Mass flowrate in kg/min
+r=1.4; // Specific heat ratio
+Cp=1.005; // Specific heat at constant pressure in kJ/kg K
+
+p2=p3; p4=p1; // Constant pressure process
+c=(p2/p1)^((r-1)/r);
+eff=(1-1/c); // The efficiency of the cycle
+t=T3/T1; // ratio of maximum and minimum temperature
+W=Cp*T1*(t*(1-1/c)-(c-1)); // Work output per kg of air
+P=(m/60)*W; // Shaft power available
+disp ("%",eff*100," Thermal efficiency of the plant = ");
+disp ("kW (roundoff error)",P,"Shaft power available for external Load = ");