From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3511/CH5/EX5.1/Ex5_1.sce | 26 ++++++++++++++++++++++++++ 3511/CH5/EX5.10/Ex5_10.sce | 24 ++++++++++++++++++++++++ 3511/CH5/EX5.11/Ex5_11.sce | 17 +++++++++++++++++ 3511/CH5/EX5.12/Ex5_12.sce | 38 ++++++++++++++++++++++++++++++++++++++ 3511/CH5/EX5.13/Ex5_13.sce | 14 ++++++++++++++ 3511/CH5/EX5.15/Ex5_15.sce | 35 +++++++++++++++++++++++++++++++++++ 3511/CH5/EX5.16/Ex5_16.sce | 16 ++++++++++++++++ 3511/CH5/EX5.19/Ex5_19.sce | 21 +++++++++++++++++++++ 3511/CH5/EX5.2/Ex5_2.sce | 20 ++++++++++++++++++++ 3511/CH5/EX5.3/Ex5_3.sce | 21 +++++++++++++++++++++ 3511/CH5/EX5.4/Ex5_4.sce | 21 +++++++++++++++++++++ 3511/CH5/EX5.5/Ex5_5.sce | 18 ++++++++++++++++++ 3511/CH5/EX5.6/Ex5_6.sce | 20 ++++++++++++++++++++ 3511/CH5/EX5.7/Ex5_7.sce | 18 ++++++++++++++++++ 3511/CH5/EX5.8/Ex5_8.sce | 10 ++++++++++ 3511/CH5/EX5.9/Ex5_9.sce | 17 +++++++++++++++++ 16 files changed, 336 insertions(+) create mode 100644 3511/CH5/EX5.1/Ex5_1.sce create mode 100644 3511/CH5/EX5.10/Ex5_10.sce create mode 100644 3511/CH5/EX5.11/Ex5_11.sce create mode 100644 3511/CH5/EX5.12/Ex5_12.sce create mode 100644 3511/CH5/EX5.13/Ex5_13.sce create mode 100644 3511/CH5/EX5.15/Ex5_15.sce create mode 100644 3511/CH5/EX5.16/Ex5_16.sce create mode 100644 3511/CH5/EX5.19/Ex5_19.sce create mode 100644 3511/CH5/EX5.2/Ex5_2.sce create mode 100644 3511/CH5/EX5.3/Ex5_3.sce create mode 100644 3511/CH5/EX5.4/Ex5_4.sce create mode 100644 3511/CH5/EX5.5/Ex5_5.sce create mode 100644 3511/CH5/EX5.6/Ex5_6.sce create mode 100644 3511/CH5/EX5.7/Ex5_7.sce create mode 100644 3511/CH5/EX5.8/Ex5_8.sce create mode 100644 3511/CH5/EX5.9/Ex5_9.sce (limited to '3511/CH5') diff --git a/3511/CH5/EX5.1/Ex5_1.sce b/3511/CH5/EX5.1/Ex5_1.sce new file mode 100644 index 000000000..9dba042b6 --- /dev/null +++ b/3511/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,26 @@ +clc; +p1=1; // Pressure before compression in bar +T1=350; // Temperature before compression in kelvin +T3=2000; // Temperature after combustion in kelvin +rp=1.3; // Pressure ratio +Cp=1.005; // Specific heat at constant pressure in kJ/kg K +r=1.4; // Specific heat ratio +R=287; // Characteristic gas constant in J/kg K + +T2=T1*(rp)^((r-1)/r); // Temperature at the end of the compression +T4=T3*(1/rp)^((r-1)/r); // Temperature after expansion +Wc=Cp*(T2-T1); // Work done during compression +WT=Cp*(T3-T4); // Work done during expansion +WN=WT-Wc; // Net work done +p2=rp*p1; // Pressure at state 2 +p3=p2; p4=p1; // Constant pressure process +V1=R*T1/(p1*10^5); // specific Volume at state 1 +V2=R*T2/(p2*10^5); // specific Volume at state 2 +V3=R*T3/(p3*10^5); // specific Volume at state 3 +V4=R*T4/(p4*10^5); // specific Volume at state 4 +imep=WN*10^3/(V4-V2); // Mean effective pressure +q=Cp*(T3-T2); // Heat supplied +eff=WN/q; // Efficiency of a Joule cycle +disp ("bar",imep*10^-5,"Mean effective pressure = "); +disp ("%",eff*100,"Efficiency of a Joule cycle = "); + diff --git a/3511/CH5/EX5.10/Ex5_10.sce b/3511/CH5/EX5.10/Ex5_10.sce new file mode 100644 index 000000000..a571fdbb4 --- /dev/null +++ b/3511/CH5/EX5.10/Ex5_10.sce @@ -0,0 +1,24 @@ +clc; +T1=15+273; // Inlet temperature of air at compressor inlet in kelvin +rp=6; // Compressor pressure ratio +T3=750+273; // Maximum permissible temperature in kelvin +T5=T3; // After reheat +Cp=1.005; // Specific heat at constant pressure in kJ/kg K +r=1.4; // Specific heat ratio + +c=rp^((r-1)/r); +T2=T1*c; // Temperature at state 2 +p3_p4=sqrt (rp); // For maximum expansion work +T4=T3/(p3_p4)^((r-1)/r); // Temperature at state 4 +T6=T4; // As pressure ratio is same +Wc=Cp*(T2-T1); // Compressor work +WT=Cp*(T3-T4)+Cp*(T5-T6); // Turbine work +T7=T4; // Because of 100% regeneration +q=Cp*(T3-T7)+Cp*(T5-T4); // Heat supplied +WN=WT-Wc; // Net work done +eff=WN/q; // Efficiency of the plant +Wratio=WN/WT; // Work ratio +disp ("kJ/kg of air",q,"Heat supplied = "); +disp ("kW (roundoff error)",WN,"Net shaft work = "); +disp ("%",eff*100,"The cycle thermal efficiency = "); +disp (Wratio,"Work ratio = "); diff --git a/3511/CH5/EX5.11/Ex5_11.sce b/3511/CH5/EX5.11/Ex5_11.sce new file mode 100644 index 000000000..be77d3868 --- /dev/null +++ b/3511/CH5/EX5.11/Ex5_11.sce @@ -0,0 +1,17 @@ +clc; +Tmin=5+273; // Minimum operating temperature in kelvin +Tmax=839+273; // Maximum operating temperature in kelvin +Cp=1.005; // Specific heat at constant pressure in kJ/kg K +r=1.4; // Specific heat ratio + +eff_carnot=1-Tmin/Tmax; // Efficiency of the carnot cycle +c=1/(1-eff_carnot); +p2_p1=c^(r/(r-1)); // Pressure ratio +disp (p2_p1,"(i).Pressure ratio at which efficiency equals Carnot cycle efficiency = "); +t=Tmax/Tmin; // Temperature ratio +// Pressure ratio for maximum work is obtained when +c=sqrt (t); +p2_p1=c^(r/(r-1)); // Pressure ratio +eff=1-1/c;// Efficiency at maximum work output +disp (p2_p1,"(ii).Pressure ratio at which maximum work is obtained = "); +disp ("%",eff*100,"(iii).Efficiency at maximum work output = "); diff --git a/3511/CH5/EX5.12/Ex5_12.sce b/3511/CH5/EX5.12/Ex5_12.sce new file mode 100644 index 000000000..cb500abfb --- /dev/null +++ b/3511/CH5/EX5.12/Ex5_12.sce @@ -0,0 +1,38 @@ +clc; +rp=4;// Overall pressure ratio +T1=300; // Temperature at state 1 in kelvin +T3=1000; // Temperature at state 3 in kelvin +Cp=1; // Specific heat at constant pressure in kJ/kg K +Cv=0.717; // Specific heat at constant volume in kJ/kg K + +// Basic cycle +r=Cp/Cv; // Specific heat ratio +c=rp^((r-1)/r); +t=T3/T1; // Temperature ratio +WN=Cp*T1*(t*(1-1/c)-(c-1)); // Net work output +eff=(1-1/c)*100; // Efficiency of the cycle + +// Basic cycle with heat exchanger +WN_he=WN; +eff_he=(1-c/t)*100; // Efficiency of the cycle with heat exchanger +dev_WN1=(WN_he-WN)*100/WN; //Percentage deviation of Net work from basic cycle +dev_eff1=(eff_he-eff)*100/eff; // Percentage deviation of efficiency from basic cycle + +// Basic cycle with intercooled compressor +WN_ic=(Cp*T1)*(t*(1-1/c)-2*(sqrt(c)-1)); +eff_ic=(1-(((t/c)+sqrt(c)-2)/(t-sqrt(c))))*100; +dev_WN2=(WN_ic-WN)*100/WN; //Percentage deviation of Net work from basic cycle +dev_eff2=(eff_ic-eff)*100/eff; // Percentage deviation of efficiency from basic cycle + +// Basic cycle with heat exchanger and intercooled compressor +WN_iche=WN_ic; +eff_iche=(1-((2*(sqrt(c)-1))/(t*(1-1/c))))*100; +dev_WN3=(WN_iche-WN)*100/WN; //Percentage deviation of Net work from basic cycle +dev_eff3=(eff_iche-eff)*100/eff; // Percentage deviation of efficiency from basic cycle + +printf ("Cycle \t\t\t\t\t\t WN(kJ/kg) \t\tefficiency (in percentage)\t\t percentage Change in WN \t\tpercentage change in efficiency"); +printf("\n\t\t\t\t\t\t(roundoff error) \t(roundoff error) \t\t\t (roundoff error)\t\t\t\t (roundoff error)"); +printf ("\n\nBasci cycle \t\t\t\t\t %f \t\t\t %f\t\t\t\t\t - \t\t\t\t\t -",WN,eff); +printf ("\n\nWith Heat Exchanger \t\t\t\t %f \t\t\t %f\t\t\t\t\t %f \t\t\t %f",WN_he,eff_he,dev_WN1,dev_eff1); +printf ("\n\nWith intercooling \t\t\t\t %f \t\t\t %f\t\t\t\t\t %f \t\t\t %f",WN_ic,eff_ic,dev_WN2,dev_eff2); +printf ("\n\nWith Heat Exchanger & Intercooling \t\t %f \t\t\t %f\t\t\t\t\t %f \t\t\t %f",WN_iche,eff_iche,dev_WN3,dev_eff3); diff --git a/3511/CH5/EX5.13/Ex5_13.sce b/3511/CH5/EX5.13/Ex5_13.sce new file mode 100644 index 000000000..8b42b7f0e --- /dev/null +++ b/3511/CH5/EX5.13/Ex5_13.sce @@ -0,0 +1,14 @@ +clc; +T1=27+273; // Temperature at state 1 in kelvin +T3=827+273; // Temperature at state 3 in kelvin +Cp=1.005; // Specific heat at constant pressure in kJ/kg K +r=1.4; // Specific heat ratio + +t=T3/T1; // Temperature ratio +Wmax=Cp*((T3*(1-1/sqrt(t)))-T1*(sqrt(t)-1)); // Maximum work +eff_wmax=(1-1/sqrt(t)); // Efficiency of brayton cycle +Tmax=T3; Tmin=T1; +eff_carnot=(Tmax-Tmin)/Tmax; // Carnot efficiency +disp ("kJ/kg of air",Wmax,"Maximum net work per kg of air = "); +disp ("%",eff_wmax*100,"Brayton cycle efficiency = "); +disp ("%",eff_carnot*100,"Carnot cycle efficiency = "); diff --git a/3511/CH5/EX5.15/Ex5_15.sce b/3511/CH5/EX5.15/Ex5_15.sce new file mode 100644 index 000000000..9dd175c75 --- /dev/null +++ b/3511/CH5/EX5.15/Ex5_15.sce @@ -0,0 +1,35 @@ +clc; +p1=1; // Pressure at state 1 in bar +T1=300; // Temperature at state 1 in kelvin +p4=5; // Pressure at state 4 in bar +T5=1250; // Temperature at state 5 in kelvin +Cp=1.005; // Specific heat at constant pressure in kJ/kg K +r=1.4; // Specific heat ratio + +rp=p4/p1; // pressure ratio +p2=sqrt (rp); // Because of perfect intercooling +c1=p2^((r-1)/r); +T2=T1*c1; // Temperature at state 2 +T4=T2; T3=T1; + +Wc1=Cp*(T2-T1); // Work of compressor 1 +Wc=2*Wc1; // net work of compressor +WT1=Wc; +T6=T5-(WT1/Cp); // Temperature at state 6 +p5_p6=(T5/T6)^(r/(r-1)); // Pressure ratio +p6=rp/p5_p6; // Pressure at state 6 +p7=p1; T7=T5;p8=p6; +T8=T7*(p7/p8)^((r-1)/r); // Temperature in state 8 +WT2=Cp*(T7-T8); // Turbine 2 work +q=Cp*(T5-T4)+Cp*(T7-T6); // Heat supplied +eff=WT2/q; // Efficiency of the cycle +// With regenerator +T9=T8; +q_withregen=Cp*((T5-T9)+(T7-T6)); // Heat supplied with regenerator +eff_withregen=WT2/q_withregen; // Efficiency of the cycle with regenerator +I_eff=(eff_withregen-eff)/eff_withregen; // Percentage improvement in efficiency + +disp ("%",eff*100,"Efficiency of the cycle = ","kJ/kg",q,"Heat supplied = ","kJ/kg",WT2,"Work of turbine = ","(i). Without regenerator "); +disp ("%",eff_withregen*100,"Efficiency of the cycle = ","kJ/kg (roundoff error)",q_withregen,"Heat supplied = ","(ii). With regenerator" ); + +disp ("%",I_eff*100,"Percentage improvement in efficiency = "); diff --git a/3511/CH5/EX5.16/Ex5_16.sce b/3511/CH5/EX5.16/Ex5_16.sce new file mode 100644 index 000000000..43714e242 --- /dev/null +++ b/3511/CH5/EX5.16/Ex5_16.sce @@ -0,0 +1,16 @@ +clc; +p1=1; // pressure at inlet in bar +T1=27+273; // Temperature at inlet in kelvin +T4=1200; // Maximum temperature in kelvin +t=T4/T1; // Temperature ratio +r=1.4; // Specific heat ratio + +rp=t; +c=rp^((r-1)/r); +x=(1-sqrt(c)/rp)/(1-c/rp); +eff2_1=x; +r1=sqrt(rp); +r2=r1; r3=r1; r4=r1; + +disp (eff2_1,"Efficiency ratio of power plants = "); +disp (r4,"pressure ratio of LPT = ",r3,"pressure ratio of HPT = ",r2,"pressure ratio of HPC = ",r1,"pressure ratio of LPC = "); diff --git a/3511/CH5/EX5.19/Ex5_19.sce b/3511/CH5/EX5.19/Ex5_19.sce new file mode 100644 index 000000000..b09d68535 --- /dev/null +++ b/3511/CH5/EX5.19/Ex5_19.sce @@ -0,0 +1,21 @@ +clc; +m=30; // Mass flow rate in kg/s +p1=1; // pressure of air at compressor inlet in bar +T1=273+15; // Temperature of air at compressor inlet in kelvin +p2=10.5; // Pressure of air at compressor outlet +T_R=420; // Temperature rise due to combustion in kelvin +p4=1.2; // Pressure at turbine outlet in bar +Cp=1.005; // Specific heat at constant pressure in kJ/kg K +r=1.4; // Specific heat ratio + +T2=T1*(p2/p1)^((r-1)/r); // Temperature at state 2 +T3=T2+T_R; // Temperature at state 3 +p3=p2; +T4=T3/(p3/p4)^((r-1)/r); +Wc=m*Cp*(T2-T1); // Compressor work +WT=m*Cp*(T3-T4); // Turbine work +WN=WT-Wc; // Net work output +Q=m*Cp*(T3-T2); // Heat supplied +eff_th=WN/Q; // Thermal efficiency + +disp ("%",eff_th*100,"Thermal efficiency = ","kW (roundoff error)",WN,"Power output = ","kW",Q,"Heat supplied = "); diff --git a/3511/CH5/EX5.2/Ex5_2.sce b/3511/CH5/EX5.2/Ex5_2.sce new file mode 100644 index 000000000..b2a16acc2 --- /dev/null +++ b/3511/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,20 @@ +clc; +p1=1; // Pressure before compression in bar +T1=350; // Temperature before compression in kelvin +T3=2000; // Temperature after combustion in kelvin +rp=1.3; // Pressure ratio +Cp=1.005; // Specific heat at constant pressure in kJ/kg K +r=1.4; // Specific heat ratio +R=287; // Characteristic gas constant in J/kg K + +T2=T1*(rp)^((r-1)/r); // Temperature at the end of the compression +T4=T3*(1/rp)^((r-1)/r); // Temperature after expansion +Wc=Cp*(T2-T1); // Work done during compression +WT=Cp*(T3-T4); // Work done during expansion +WN=WT-Wc; // Net work done +T5=T4; // For a perfect heat exchange +q=Cp*(T3-T5); // Heat added +eff2=WN/q; // Efficiency of a modified Joule cycle +eff1=0.072220534; // Efficiency of a joule cycle +disp ("%",eff2*100,"Efficiency of a modified Joule cycle = "); +disp (eff2/eff1,"Improvement in efficiency = "); diff --git a/3511/CH5/EX5.3/Ex5_3.sce b/3511/CH5/EX5.3/Ex5_3.sce new file mode 100644 index 000000000..7b4b51759 --- /dev/null +++ b/3511/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,21 @@ +clc; +rp=6; // Pressure ratio +T1=300; // Inlet air temperature to the compressor in kelvin +T3=577+273; // Inlet temperature of air at turbine in kelvin +Vr=240; // Volume rate in m^3/s +Cp=1.005; // Specific heat at constant pressure in kJ/kg K +r=1.4; // Specific heat ratio +R=287; // Characteristic gas constant in J/kg K +p1=1; // pressure at state 1 in bar + +T2=T1*(rp)^((r-1)/r); // Temperature at the end of the compression +T4=T3*(1/rp)^((r-1)/r); // Temperature after expansion +Wc=Cp*(T2-T1); // Work done during compression +WT=Cp*(T3-T4); // Work done during expansion +WN=WT-Wc; // Net work done +q=Cp*(T3-T2); // Heat supplied +row1=p1*10^5/(R*T1); // Density of air at state 1 +P=WN*Vr*row1; // Power output +eff=WN/q; // Efficiency of a cycle +disp ("MW (roundoff error)",P/1000,"Power Output = "); +disp ("%",eff*100,"Efficiency of a cycle = "); diff --git a/3511/CH5/EX5.4/Ex5_4.sce b/3511/CH5/EX5.4/Ex5_4.sce new file mode 100644 index 000000000..72a2e5d26 --- /dev/null +++ b/3511/CH5/EX5.4/Ex5_4.sce @@ -0,0 +1,21 @@ +clc; +T1=300; // Inlet air temperature to the compressor in kelvin +p1=1; // pressure at state 1 in bar +T2=475; // Temperature at discharge in kelvin +p2=5;// Pressure at state 2 +T5=655; // Temperature after heat exchanger in kelvin +T3=870+273; // Temperature at he turbine inlet in kelvin +T4=450+273; // Temperature after turbine in kelvin +Cp=1.005; // Specific heat at constant pressure in kJ/kg K +r=1.4; // Specific heat ratio +R=287; // Characteristic gas constant in J/kg K + +Wc=Cp*(T2-T1); // Work done during compression +WT=Cp*(T3-T4); // Work done during expansion +WN=WT-Wc; // Net work done +q=Cp*(T3-T5); // Heat supplied +eff=WN/q; // Efficiency of a cycle + +disp ("kJ/kg",WN,"(i). The output per kg of air = "); +disp ("%",eff*100,"(ii).The efficiency of the cycle = "); +disp ("kJ/kg",Wc,"(iii). The work required to drive the compressor = "); diff --git a/3511/CH5/EX5.5/Ex5_5.sce b/3511/CH5/EX5.5/Ex5_5.sce new file mode 100644 index 000000000..bdd8e085c --- /dev/null +++ b/3511/CH5/EX5.5/Ex5_5.sce @@ -0,0 +1,18 @@ +clc; +p1=1.4; // Pressure at state 1 in bar +T1=310; // Temperature at state 1 in kelvin +rp=5; // Pressure ratio +Tmax=1050; // Maximum temperatuer in kelvin +WN=3000; // Net output in kW +Cp=1.005; // Specific heat at constant pressure in kJ/kg K +r=1.4; // Specific heat ratio +R=287; // Characteristic gas constant in J/kg K + +T3=Tmax; +T2=T1*(rp)^((r-1)/r); // Temperature at the state 2 +T4=T3/(rp)^((r-1)/r); // Temperature at the state 4 +T5=T4; // As regenerator effectiveness in 100 % +m=WN/(Cp*((T3-T4)-(T2-T1))); // mass flow rate of air +eff=(T3-T4-T2+T1)/(T3-T5); // Efficiency of a cycle +disp ("%",eff*100,"(i). Thermal efficiency of the cycle = "); +disp ("kg/min (roundoff error)",m*60,"(ii). The mass flow rate of air per minute = "); diff --git a/3511/CH5/EX5.6/Ex5_6.sce b/3511/CH5/EX5.6/Ex5_6.sce new file mode 100644 index 000000000..91c185702 --- /dev/null +++ b/3511/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,20 @@ +clc; +T1=290; // Compressor inlet temperature in kelvin +T2=460; // Compressor outlet temperature in kelvin +T3=900+273; // Turbine inlet temperature in kelvin +T4=467+273; // Turbine outlet temperature in kelvin +Cp=1.005; // Specific heat at constant pressure in kJ/kg K +r=1.4; // Specific heat ratio +R=287; // Characteristic gas constant in J/kg K + +c=T2/T1; // Temperature ratio +rpc=c^(r/(r-1)); // Compression ratio +WN=(Cp*((T3-T4)-(T2-T1))); // Specific power +T5=T4; // Assuming regenerator effectiveness to be 100% +eff=WN/(Cp*(T3-T5)); // Overall efficiency of the cycle +Wc=Cp*(T2-T1); // Work required to drive the compressor +rpt=(T3/T4)^(r/(r-1)); // Turbine pressure ratio +disp (rpt," Turbine pressure ratio = ",rpc," Compressor pressure ratio = ","(i)."); +disp ("kJ/kg",WN,"(ii). Specific power output = "); +disp ("%",eff*100, "(iii). Overall efficiency of the cycle = "); +disp ("kJ/kg",Wc," (iv). Work required to drive the compressor = "); diff --git a/3511/CH5/EX5.7/Ex5_7.sce b/3511/CH5/EX5.7/Ex5_7.sce new file mode 100644 index 000000000..dc57d3b92 --- /dev/null +++ b/3511/CH5/EX5.7/Ex5_7.sce @@ -0,0 +1,18 @@ +clc; +nW_WT=0.563; // Ratio of net work to turbine work +T1=300; // Inlet temperature to the compressor in kelvin +eff=0.35; // Thermal efficiency of the unit +m=10; // massflow rate in kg/s +Cp=1; // Specific heat at constant pressure in kJ/kg K +r=1.4; // Specific heat ratio + +c=1/(1-eff); // For ideal simple cycle +T2=T1*c; // Temperature at state 2 +Wc=Cp*(T2-T1); // Compressor work +WT=Wc/(1-nW_WT); // Turbine work +WN=WT-Wc; // Net work +q=WN/eff; // Net heat supplied per kg of air +T3=(q/Cp)+T2; // Temperature at state 3 +T4=T3/c; // Temperature at state 4 +T3_T4=T3-T4; // Temperature drop across the turbine +disp ("K",T3_T4,"Temperature drop across the turbine = "); diff --git a/3511/CH5/EX5.8/Ex5_8.sce b/3511/CH5/EX5.8/Ex5_8.sce new file mode 100644 index 000000000..f989c947b --- /dev/null +++ b/3511/CH5/EX5.8/Ex5_8.sce @@ -0,0 +1,10 @@ +clc; +p=336.5; //specific power output of a turbine in kW/kg +T4=700; // Temperature at turbine outlet in kelvin +Cp=1; // Specific heat at constant pressure in kJ/kg K +Cv=0.717; // Specific heat at constant volume in kJ/kg K + +r=Cp/Cv; // Specific heat ratio +T3=T4+(p/Cp); // Temperature at turbine inlet +p3_p4=(T3/T4)^(r/(r-1)); // Pressure ratio across the turbine +disp (round(p3_p4),"Pressure ratio across the turbine = "); diff --git a/3511/CH5/EX5.9/Ex5_9.sce b/3511/CH5/EX5.9/Ex5_9.sce new file mode 100644 index 000000000..372c3ddb4 --- /dev/null +++ b/3511/CH5/EX5.9/Ex5_9.sce @@ -0,0 +1,17 @@ +clc; +T1=300; // Minimum operating temperature in kelvin +T3=900; // Maximum operating temperature in kelvin +p1=1; // Minimum pressure in bar +p3=4; // Maximum pressure in bar +m=1600; // Mass flowrate in kg/min +r=1.4; // Specific heat ratio +Cp=1.005; // Specific heat at constant pressure in kJ/kg K + +p2=p3; p4=p1; // Constant pressure process +c=(p2/p1)^((r-1)/r); +eff=(1-1/c); // The efficiency of the cycle +t=T3/T1; // ratio of maximum and minimum temperature +W=Cp*T1*(t*(1-1/c)-(c-1)); // Work output per kg of air +P=(m/60)*W; // Shaft power available +disp ("%",eff*100," Thermal efficiency of the plant = "); +disp ("kW (roundoff error)",P,"Shaft power available for external Load = "); -- cgit