diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2258/CH7 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2258/CH7')
29 files changed, 454 insertions, 0 deletions
diff --git a/2258/CH7/EX7.1/7_1.sce b/2258/CH7/EX7.1/7_1.sce new file mode 100755 index 000000000..5f91cbf25 --- /dev/null +++ b/2258/CH7/EX7.1/7_1.sce @@ -0,0 +1,21 @@ +clc();
+clear;
+// To calculate the number of electron hole pairs
+T1=300; //temp in K
+T2=310; //temp in K
+ni1=2.5*10^19; //per cubic metre
+EgeV1=0.72; //value of Eg in eV
+EgeV2=1.12; //value of Eg in eV
+Eg1=EgeV1*1.6*10^-19; //Eg in J
+Eg2=EgeV2*1.6*10^-19; //Eg in J
+KB=1.38*10^-23; //boltzmann constant in J/k
+//density of electron hole pair is ni = A*(T^(3/2))*exp(-Eg/(2*KB*T))
+// let (T^(3/2))*exp(-Eg/(2*KB*T)) be X
+X1=(T1^(3/2))*exp(-Eg1/(2*KB*T1));
+X2=(T2^(3/2))*exp(-Eg2/(2*KB*T2));
+//therefore ni1=A*X1 and ni2=A*X2. dividing ni2/ni1 we get X2/X1
+ni2=ni1*(X2/X1);
+printf("the number of electron hole pairs per cubic metre is");
+disp(ni2);
+
+//answer given in the book is wrong
diff --git a/2258/CH7/EX7.10/7_10.sce b/2258/CH7/EX7.10/7_10.sce new file mode 100755 index 000000000..9d7f50a1b --- /dev/null +++ b/2258/CH7/EX7.10/7_10.sce @@ -0,0 +1,17 @@ +clc();
+clear;
+// To calculate the resistance
+l=1; //length in cm
+l=l*10^-2; //length in m
+e=1.6*10^-19;
+w=1; //width in mm
+w=w*10^-3; //width in m
+t=1; //thickness in mm
+t=t*10^-3; //thickness in m
+A=w*t;
+ni=2.5*10^19;
+mew_e=0.39;
+mew_p=0.19;
+sigma=ni*e*(mew_p+mew_e);
+R=l/(sigma*A);
+printf("resistance of intrinsic Ge rod is %f ohm",R);
diff --git a/2258/CH7/EX7.11/7_11.sce b/2258/CH7/EX7.11/7_11.sce new file mode 100755 index 000000000..5600b38ae --- /dev/null +++ b/2258/CH7/EX7.11/7_11.sce @@ -0,0 +1,21 @@ +clc();
+clear;
+// To calculate the conductivity
+Eg=1.1; //energy gap in eV
+m=9.109*10^-31;
+k=1.38*10^-23;
+T=300;
+e=1.6*10^-19;
+h=6.626*10^-34;
+mew_e=0.48; //electron mobility
+mew_h=0.013; //hole mobility
+C=2*(2*%pi*m*k/(h^2))^(3/2);
+X=2*k*T/e;
+Y=-Eg/X;
+A=exp(Y);
+ni=C*(T^(3/2))*A;
+sigma=ni*e*(mew_e+mew_h);
+printf("conductivity in ohm-1 m-1 is");
+disp(sigma);
+
+//answer given in the book is wrong
diff --git a/2258/CH7/EX7.12/7_12.sce b/2258/CH7/EX7.12/7_12.sce new file mode 100755 index 000000000..7c49f7299 --- /dev/null +++ b/2258/CH7/EX7.12/7_12.sce @@ -0,0 +1,18 @@ +clc();
+clear;
+// To calculate the intrinsic carrier density and conductivity
+m=9.109*10^-31;
+k=1.38*10^-23;
+T=300;
+e=1.6*10^-19;
+h=6.626*10^-34;
+Eg=0.7;
+mew_e=0.4; //electron mobility
+mew_h=0.2; //hole mobility
+C=2*(2*%pi*m*k/((h^2)))^(3/2);
+X=2*k*T/e;
+ni=C*(T^(3/2))*exp(-Eg/X);
+sigma=ni*e*(mew_e+mew_h);
+printf("conductivity is %f ohm-1 m-1",sigma);
+
+//answer given in the book is wrong
diff --git a/2258/CH7/EX7.13/7_13.sce b/2258/CH7/EX7.13/7_13.sce new file mode 100755 index 000000000..9908f81e2 --- /dev/null +++ b/2258/CH7/EX7.13/7_13.sce @@ -0,0 +1,14 @@ +clc();
+clear;
+// To calculate the energy band gap
+k=8.616*10^-5;
+T1=20; //temp in C
+T1=T1+273; //temp in K
+T2=32; //temp in C
+T2=T2+273; //temp in K
+rho2=4.5; //resistivity in ohm m
+rho1=2; //resistivity in ohm m
+dy=log10(rho2)-log10(rho1);
+dx=(1/T1)-(1/T2);
+Eg=2*k*dy/dx;
+printf("energy band gap is %f eV",Eg);
diff --git a/2258/CH7/EX7.14/7_14.sce b/2258/CH7/EX7.14/7_14.sce new file mode 100755 index 000000000..c80307335 --- /dev/null +++ b/2258/CH7/EX7.14/7_14.sce @@ -0,0 +1,15 @@ +clc();
+clear;
+// To calculate the temperature
+EgeV=1; //energy in eV
+k=1.38*10^-23;
+Eg=EgeV*1.602*10^-19; //in J
+//EF can be taken as (Ev+0.5)eV
+//therefore (Ev+0.5)eV = (Ec+Ev)/2--------(1)
+//let fermi level shift by 10% then (Ev+0.6)eV = ((Ec+Ev)/2)+((3*k*T/4)*log(4))-----(2)
+//subtracting (1) from (2)
+//0.1 eV = (3*k*T/4)*log(4)
+E=0.1; //energy in eV
+E=E*1.602*10^-19; //energy in J
+T=(4*E)/(3*k*log(4));
+printf("temperature is %f K",T);
diff --git a/2258/CH7/EX7.15/7_15.sce b/2258/CH7/EX7.15/7_15.sce new file mode 100755 index 000000000..f32b21d0f --- /dev/null +++ b/2258/CH7/EX7.15/7_15.sce @@ -0,0 +1,26 @@ +clc();
+clear;
+// To calculate the conductivity of intrinsic silicon
+ni=1.5*10^16;
+e=1.6*10^-19;
+mew_e=0.13;
+mew_h=0.05;
+sigma=ni*e*(mew_e+mew_h);
+printf("conductivity is %f ohm-1 m-1",sigma);
+M=28.1; //atomic weight of Si
+d=2.33*10^3; //density in kg/m^3
+v=M/d;
+N=6.02*10^26;
+N1=N/v;
+printf("number of Si atoms per m^3 is");
+disp(N1);
+//1 donor type impurity is added to 1 impurity atom
+ND=N1/(10^8);
+p=(ni^2)/ND;
+sigma_exd=ND*e*mew_e;
+printf("conductivity for donor type impurity is %f ohm-1 m-1",sigma_exd);
+//1 acceptor type impurity is added to 1 impurity atom
+Na=N1/(10^8);
+n=(ni^2)/Na;
+sigma_exa=Na*e*mew_h;
+printf("conductivity for acceptor type impurity is %f ohm-1 m-1",sigma_exa);
diff --git a/2258/CH7/EX7.16/7_16.sce b/2258/CH7/EX7.16/7_16.sce new file mode 100755 index 000000000..75fdddabe --- /dev/null +++ b/2258/CH7/EX7.16/7_16.sce @@ -0,0 +1,9 @@ +clc();
+clear;
+// To calculate the diffusion coefficient of electrons
+T=300; //temperature in K
+KB=1.38*10^-23;
+e=1.6*10^-19;
+mew_e=0.19; //mobility of electrons in m^2/Vs
+Dn=mew_e*KB*T/e;
+printf("diffusion coefficient of electrons is %f m^2/s",Dn);
diff --git a/2258/CH7/EX7.17/7_17.sce b/2258/CH7/EX7.17/7_17.sce new file mode 100755 index 000000000..de2ce317e --- /dev/null +++ b/2258/CH7/EX7.17/7_17.sce @@ -0,0 +1,11 @@ +clc();
+clear;
+// To calculate the Hall voltage
+RH=3.66*10^-4; //hall coefficient in m^3/coulomb
+I=10^-2; //current in amp
+B=0.5; //magnetic field in wb/m^2
+t=1; //thickness in mm
+t=t*10^-3; //thickness in m
+VH=(RH*I*B)/t;
+VH=VH*10^3; //converting from Volts to mV
+printf("Hall voltage is %f mV",VH);
diff --git a/2258/CH7/EX7.18/7_18.sce b/2258/CH7/EX7.18/7_18.sce new file mode 100755 index 000000000..d6354859f --- /dev/null +++ b/2258/CH7/EX7.18/7_18.sce @@ -0,0 +1,11 @@ +clc();
+clear;
+// To calculate the density and mobility of charge carrier
+RH=-7.35*10^-5; //hall coefficient
+e=1.6*10^-19;
+n=(-1/(RH*e));
+sigma=200;
+mew=sigma/(n*e);
+printf("density of charge carriers in m^3 is");
+disp(n);
+printf("mobility of charge carriers is %f m^2/Vs",mew);
diff --git a/2258/CH7/EX7.19/7_19.sce b/2258/CH7/EX7.19/7_19.sce new file mode 100755 index 000000000..bfa4bcfba --- /dev/null +++ b/2258/CH7/EX7.19/7_19.sce @@ -0,0 +1,12 @@ +clc();
+clear;
+// To calculate the magnitude of Hall voltage
+I=50; //current in amp
+B=1.5; //magnetic field in T
+n=8.4*10^28; //free electron concentration in electron/m^3
+t=0.5; //thickness in cm
+e=1.6*10^-19;
+t=t*10^-2; //thickness in m
+VH=(I*B)/(n*e*t);
+VH=VH*10^6; //converting VH from V to micro V
+printf("magnitude of Hall voltage is %f microVolt",VH);
diff --git a/2258/CH7/EX7.2/7_2.sce b/2258/CH7/EX7.2/7_2.sce new file mode 100755 index 000000000..dd3ab1a6f --- /dev/null +++ b/2258/CH7/EX7.2/7_2.sce @@ -0,0 +1,15 @@ +clc();
+clear;
+// To calculate the charge carrier density and electron mobility
+RH=3.66*10^-4; //hall coefficient in m^3/coulomb
+sigma=112; //conductivity in ohm-1 m-1
+e=1.6*10^-19;
+ne=1/(RH*e);
+//sigma = e*ne*(mew_e+mew_h)
+//assuming mew_h = 0
+mew_e=sigma/(e*ne);
+printf("the charge carrier density per m^3 is");
+disp(ne);
+printf("electron mobility is %f m^2/Vs",mew_e);
+
+//answer given in the book is wrong
diff --git a/2258/CH7/EX7.20/7_20.sce b/2258/CH7/EX7.20/7_20.sce new file mode 100755 index 000000000..11778893a --- /dev/null +++ b/2258/CH7/EX7.20/7_20.sce @@ -0,0 +1,11 @@ +clc();
+clear;
+// To calculate mew and n
+RH=3.66*10^-4;
+e=1.6*10^-19;
+rho_n=8.93*10^-3;
+n=1/(RH*e);
+mew_e=RH/rho_n;
+printf("n per m^3 is");
+disp(n);
+printf("mew_e is %f m^2/V",mew_e);
diff --git a/2258/CH7/EX7.21/7_21.sce b/2258/CH7/EX7.21/7_21.sce new file mode 100755 index 000000000..104df520a --- /dev/null +++ b/2258/CH7/EX7.21/7_21.sce @@ -0,0 +1,18 @@ +clc();
+clear;
+// To calculate the conductivity and equilibrium hole concentration
+mew_e=0.13; //electron mobility in m^2/Vs
+mew_h=0.048; //hole mobility in m^2/Vs
+ni=1.5*10^16;
+e=1.6*10^-19;
+T=300; //temp in K
+ND=10^23; //density per m^3
+sigmai=ni*e*(mew_e+mew_h);
+sigma=ND*mew_e*e;
+p=(ni^2)/ND;
+printf("conductivity of intrinsic Si is %f s",sigmai);
+printf("conductivity is %f s",sigma);
+printf("equilibrium hole concentration per m^3 is");
+disp(p);
+
+//answers for sigmai and sigma given in the book are wrong
diff --git a/2258/CH7/EX7.22/7_22.sce b/2258/CH7/EX7.22/7_22.sce new file mode 100755 index 000000000..59e56de2c --- /dev/null +++ b/2258/CH7/EX7.22/7_22.sce @@ -0,0 +1,22 @@ +clc();
+clear;
+// To calculate the forbidden energy gap
+T=300; //temp in K
+kB=1.38*10^-23;
+mew_e=0.36; //mobility of electrons in m^2/Vs
+e=1.6*10^-19;
+mew_h=0.7; //mobility of electrons in m^2/Vs
+sigma=2.12; //conductivity in ohm-1 m-1
+C=4.83*10^21; //proportional constant
+ni=sigma/(e*(mew_e+mew_h));
+//exp(-Eg/(2*kB*T)) = (C*(T^(3/2)))/ni
+//let X be (C*(T^(3/2)))/ni
+X=(C*(T^(3/2)))/ni;
+//exp(-Eg/(2*kB*T)) = X
+//applyinf log on both sides
+//Eg/(2*kB*T) = log(X)
+Eg=2*kB*T*log(X);
+printf("forbidden energy gap in eV is");
+disp(Eg);
+
+//answer given in the book is wrong
diff --git a/2258/CH7/EX7.23/7_23.sce b/2258/CH7/EX7.23/7_23.sce new file mode 100755 index 000000000..9e0ec3ba0 --- /dev/null +++ b/2258/CH7/EX7.23/7_23.sce @@ -0,0 +1,23 @@ +clc();
+clear;
+// To calculate the probability of occupation
+Eg=0.4; //energy gap in eV
+Eg=Eg*1.6*10^-19; //Eg in J
+KB=1.38*10^-23;
+T1=0; //temp 1 in C
+T1k=T1+273; //temp 1 in K
+T2=50; //temp 2 in C
+T2k=T2+273; //temp 2 in K
+T3=100; //temp 3 in C
+T3k=T3+273; //temp 3 in K
+//F(E) = 1/(1+(exp((E-Ep)/(KB*T))))
+//but E-Ep = (1/2)*Eg
+//therefore F(E) = 1/(1+(exp(Eg/(2*KB*T))))
+FE1=1/(1+(exp(Eg/(2*KB*T1k))));
+FE2=1/(1+(exp(Eg/(2*KB*T2k))));
+FE3=1/(1+(exp(Eg/(2*KB*T3k))));
+printf("probability of occupation at 0 C is %f eV",FE1);
+printf("probability of occupation at 50 C is %f eV",FE2);
+printf("probability of occupation at 100 C is %f eV",FE3);
+
+//answers given in the book are wrong
diff --git a/2258/CH7/EX7.24/7_24.sce b/2258/CH7/EX7.24/7_24.sce new file mode 100755 index 000000000..1365aaad0 --- /dev/null +++ b/2258/CH7/EX7.24/7_24.sce @@ -0,0 +1,14 @@ +clc();
+clear;
+// To calculate the ratio between conductivity
+Eg=1.2; //energy in eV
+Eg=Eg*1.6*10^-19; //in J
+KB=1.38*10^-23;
+T1=600; //temp in K
+T2=300; //temp in K
+//sigma is proportional to exp(-Eg/(2*KB*T))
+//let sigma1/sigma2 be R
+R=exp((Eg/(2*KB))*((1/T2)-(1/T1)));
+disp(R);
+
+//answer given in the book is wrong
diff --git a/2258/CH7/EX7.25/7_25.sce b/2258/CH7/EX7.25/7_25.sce new file mode 100755 index 000000000..e08c114a7 --- /dev/null +++ b/2258/CH7/EX7.25/7_25.sce @@ -0,0 +1,16 @@ +clc();
+clear;
+// To calculate the resistivity of doped Ge
+ni=2.5*10^19; //density of charge carriers in m^3
+r=1/(10^6); //ratio
+e=1.6*10^-19;
+mew_e=0.36; //mobility of electrons in m^2/Vs
+mew_h=0.18; //mobility of holes in m^2/Vs
+N=4.2*10^28; //number of Si atoms per m^3
+Ne=r*N;
+printf("number of impurity atoms per m^3 is");
+disp(Ne);
+Nh=(ni^2)/Ne;
+sigma=(Ne*e*mew_e)+(Nh*e*mew_h);
+rho=1/sigma;
+printf("the resistivity of doped Ge is %f ohm m",rho);
diff --git a/2258/CH7/EX7.26/7_26.sce b/2258/CH7/EX7.26/7_26.sce new file mode 100755 index 000000000..286d01025 --- /dev/null +++ b/2258/CH7/EX7.26/7_26.sce @@ -0,0 +1,10 @@ +clc();
+clear;
+// To calculate the conductivity of material
+n=5*10^17; //concentration in m^3
+vd=350; //drift velocity in m/s
+E=1000; //electric field in V/m
+e=1.6*10^-19;
+mew=vd/E;
+sigma=n*e*mew;
+printf("the conductivity of material is %f ohm m",sigma);
diff --git a/2258/CH7/EX7.27/7_27.sce b/2258/CH7/EX7.27/7_27.sce new file mode 100755 index 000000000..7cfe809c3 --- /dev/null +++ b/2258/CH7/EX7.27/7_27.sce @@ -0,0 +1,9 @@ +clc();
+clear;
+// To calculate the concentration
+sigma_e=2.2*10^-4; //conductivity
+mew_e=125*10^-3; //mobility of electrons in m^2/Vs
+e=1.602*10^-19;
+ne=sigma_e/(e*mew_e);
+printf("concentration in m^3 is");
+disp(ne);
diff --git a/2258/CH7/EX7.28/7_28.sce b/2258/CH7/EX7.28/7_28.sce new file mode 100755 index 000000000..52538a1e1 --- /dev/null +++ b/2258/CH7/EX7.28/7_28.sce @@ -0,0 +1,11 @@ +clc();
+clear;
+// To calculate the mobility and density of charge carrier
+RH=3.66*10^-4; //hall coefficient in m^3/c
+rho_i=8.93*10^-3; //resistivity in ohm m
+e=1.6*10^-19;
+nh=1/(RH*e);
+mew_h=1/(rho_i*nh*e);
+printf("density of charge carriers in m^3 is");
+disp(nh);
+printf("mobility of charge carriers is %f m^2/Vs",mew_h);
diff --git a/2258/CH7/EX7.29/7_29.sce b/2258/CH7/EX7.29/7_29.sce new file mode 100755 index 000000000..8d35860df --- /dev/null +++ b/2258/CH7/EX7.29/7_29.sce @@ -0,0 +1,20 @@ +clc();
+clear;
+// To calculate the Hall voltage and charge carrier concentration
+I=3; //current in mA
+I=I*10^-3; //current in amp
+e=1.6*10^-19;
+RH=3.66*10^-4; //hall coefficient in m^3/C
+B=1; //flux density in w/m^2
+d=2; //dimension along Y in cm
+d=d*10^-2; //dimension along Y in m
+z=1; //dimension along z in mm
+z=z*10^-3; //dimension along z in m
+A=d*z; //area in m^2
+EH=RH*I*B/A;
+VH=EH*d;
+VH=VH*10^3; //converting from V to mV
+n=1/(RH*e);
+printf("Hall voltage is %f mV",VH);
+printf("charge carrier concentration in m^3 is");
+disp(n);
diff --git a/2258/CH7/EX7.3/7_3.sce b/2258/CH7/EX7.3/7_3.sce new file mode 100755 index 000000000..e81c5b276 --- /dev/null +++ b/2258/CH7/EX7.3/7_3.sce @@ -0,0 +1,17 @@ +clc();
+clear;
+// To calculate the conductivity of intrinsic silicon and resultant conductivity
+ni=1.5*10^16; //intrinsic concentration per m^3
+e=1.6*10^-19;
+mew_e=0.13; //mobility of electrons in m^2/Vs
+mew_h=0.05; //mobility of holes in m^2/Vs
+ND=5*10^20; //conductivity in atoms/m^3
+sigma1=ni*e*(mew_e+mew_h);
+nd=(ni^2)/ND;
+sigma2=ND*e*mew_e;
+NA=5*10^20;
+na=(ni^2)/NA;
+sigma3=NA*e*mew_h;
+printf("intrinsic conductivity of Si is %f ohm-1 m-1",sigma1);
+printf("conductivity of Si during donor impurity is %f ohm-1 m-1",sigma2);
+printf("conductivity of Si during acceptor impurity is %f ohm-1 m-1",sigma3);
diff --git a/2258/CH7/EX7.4/7_4.sce b/2258/CH7/EX7.4/7_4.sce new file mode 100755 index 000000000..c0ffdde02 --- /dev/null +++ b/2258/CH7/EX7.4/7_4.sce @@ -0,0 +1,22 @@ +clc();
+clear;
+// To calculate the conductivity
+sigma1=2; //conductivity in ohm-1 m-1
+EgeV=0.72; //band gap in eV
+Eg=EgeV*1.6*10^-19; //in J
+KB=1.38*10^-23; //boltzmann constant
+T1=20; //temp in C
+T1=T1+273; //temp in K
+T2=40; //temp in C
+T2=T2+273; //temp in K
+//sigma2/sigma1 = exp((-Eg/(2*KB))*((1/T2)-(1/T1)))
+//by taking log on both sides we get 2.303*log10(sigma2/sigma1) = (Eg/(2*KB))*((1/T1)-(1/T2))
+//let (Eg/(2*KB))*((1/T1)-(1/T2)) be X
+X=(Eg/(2*KB))*((1/T1)-(1/T2));
+//let log10(sigma2/sigma1) be Y
+Y=X/2.303;
+//log10(sigma2/sigma1) = log10(sigma2)-log10(sigma1)
+//let log10(sigma2) be A
+A=Y+log10(sigma1);
+sigma2=10^A;
+printf("the conductivity is %f ohm-1 m-1",sigma2);
diff --git a/2258/CH7/EX7.5/7_5.sce b/2258/CH7/EX7.5/7_5.sce new file mode 100755 index 000000000..7c5b96d01 --- /dev/null +++ b/2258/CH7/EX7.5/7_5.sce @@ -0,0 +1,20 @@ +clc();
+clear;
+// To calculate the concentration of holes and electrons
+mew_n=1300*10^-4; //in m^2/Vs
+mew_p=500*10^-4; //in m^2/Vs
+sigma=3*10^4; //conductivity in ohm-1 m-1
+e=1.6*10^-19;
+N=sigma/(e*mew_n);
+ni=1.5*10^16; //per m^3
+p=(ni^2)/N;
+P=sigma/(e*mew_p);
+n=(ni^2)/P;
+printf("concentration of electrons in n-type per cubic metre are");
+disp(N);
+printf("concentration of holes in n-type per cubic metre are");
+disp(p);
+printf("concentration of electrons in p-type per cubic metre are");
+disp(n);
+printf("concentration of holes in p-type per cubic metre are");
+disp(P);
diff --git a/2258/CH7/EX7.6/7_6.sce b/2258/CH7/EX7.6/7_6.sce new file mode 100755 index 000000000..e33546f43 --- /dev/null +++ b/2258/CH7/EX7.6/7_6.sce @@ -0,0 +1,10 @@ +clc();
+clear;
+// To calculate the resistivity
+ni=2.37*10^19; //intrinsic carrier density per m^3
+mew_e=0.38; //in m^2/Vs
+mew_n=0.18; //in m^2/Vs
+e=1.6*10^-19;
+sigmai=ni*e*(mew_e+mew_n);
+rho=1/sigmai;
+printf("resistivity is %f ohm m",rho);
diff --git a/2258/CH7/EX7.7/7_7.sce b/2258/CH7/EX7.7/7_7.sce new file mode 100755 index 000000000..292240261 --- /dev/null +++ b/2258/CH7/EX7.7/7_7.sce @@ -0,0 +1,14 @@ +clc();
+clear;
+// To calculate the position of fermi level
+Eg=1.12; //band gap in eV
+K=1.38*10^-23;
+T=300; //temp in K
+//EF = (Eg/2)+(3*K*T/4)*log(mh/me)
+//given me=0.12m0 and mh=0.28m0. therefore mh/me = 0.28/0.12
+//let mh/me be X. therefore X=0.28/0.12
+X=0.28/0.12;
+EF=(Eg/2)+((3*K*T/4)*log(X));
+printf("the position of fermi level is %f eV",EF);
+
+//answer given in the book is wrong
diff --git a/2258/CH7/EX7.8/7_8.sce b/2258/CH7/EX7.8/7_8.sce new file mode 100755 index 000000000..db5de244a --- /dev/null +++ b/2258/CH7/EX7.8/7_8.sce @@ -0,0 +1,17 @@ +clc();
+clear;
+// To calculate the concentration of intrinsic charge carriers
+KB=1.38*10^-23;
+T=300; //temp in K
+h=6.626*10^-34;
+m0=9.11*10^-31;
+mh=m0;
+me=m0;
+EgeV=0.7; //energy gap in eV
+Eg=EgeV*1.6*10^-19; //in J
+A=((2*%pi*KB/(h^2))^(3/2))*(me*mh)^(3/4);
+B=T^(3/2);
+C=exp(-Eg/(2*KB*T));
+ni=2*A*B*C;
+printf("concentration of intrinsic charge carriers per cubic metre is");
+disp(ni);
diff --git a/2258/CH7/EX7.9/7_9.sce b/2258/CH7/EX7.9/7_9.sce new file mode 100755 index 000000000..ff2bc987e --- /dev/null +++ b/2258/CH7/EX7.9/7_9.sce @@ -0,0 +1,10 @@ +clc();
+clear;
+// To calculate the resistivity
+ni=2.4*10^19;
+mew_e=0.39;
+mew_h=0.19;
+e=1.6*10^-19;
+sigmai=ni*e*(mew_e+mew_h);
+rhoi=1/sigmai;
+printf("resistivity is %f ohm m",rhoi);
|