diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2102 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2102')
148 files changed, 2415 insertions, 0 deletions
diff --git a/2102/CH1/EX1.10/exa_1_10.sce b/2102/CH1/EX1.10/exa_1_10.sce new file mode 100755 index 000000000..5709400cf --- /dev/null +++ b/2102/CH1/EX1.10/exa_1_10.sce @@ -0,0 +1,10 @@ +// Exa 1.10
+clc;
+clear;
+close;
+// Given data
+format('v',13)
+Bo= 1.7*10^-5;// in weber/meter^2
+miu_o= 4*%pi*10^-7 ;// in weber/amp-meter
+H= Bo/miu_o;//in A/m
+disp(H,"The horizontal component of the magnetic intensity in A/m is : ")
diff --git a/2102/CH1/EX1.11/exa_1_11.sce b/2102/CH1/EX1.11/exa_1_11.sce new file mode 100755 index 000000000..04218f546 --- /dev/null +++ b/2102/CH1/EX1.11/exa_1_11.sce @@ -0,0 +1,12 @@ +// Exa 1.11
+clc;
+clear;
+close;
+// Given data
+H= 5*10^3;// in amp/meter
+N= 50;
+l= 10;//in cm
+l=l*10^-2;// in m
+n=N/l;// in turns/meter
+i= H/n;// in amp
+disp(i,"Current should be sent through the solenoid in ampere is : ")
diff --git a/2102/CH1/EX1.12/exa_1_12.sce b/2102/CH1/EX1.12/exa_1_12.sce new file mode 100755 index 000000000..cb70d3d6e --- /dev/null +++ b/2102/CH1/EX1.12/exa_1_12.sce @@ -0,0 +1,17 @@ +// Exa 1.12
+clc;
+clear;
+close;
+// Given data
+vol= 10^-4;// volume of the rod in m^3
+i=0.5;// in amp
+n= 5;// turns/cm
+n= n*10^2;// turns/meter
+miu_r= 1000;
+//B= miu_o*(H+I)
+// Where I= Bo/miu_o-H and B= miu*H = miu_r*miu_o*H
+// Then I= miu_r*miu_o*H/miu_o - H = (miu_r-1)*H
+// H= n*i
+I= (miu_r-1)*n*i;// in amp/meter
+MagMoment= I*vol;// in Am^2
+disp(round(MagMoment),"Magnetic moment in Am^2 is : ")
diff --git a/2102/CH1/EX1.13/exa_1_13.sce b/2102/CH1/EX1.13/exa_1_13.sce new file mode 100755 index 000000000..f0f67a6ad --- /dev/null +++ b/2102/CH1/EX1.13/exa_1_13.sce @@ -0,0 +1,10 @@ +// Exa 1.13
+clc;
+clear;
+close;
+format('v',13);
+// Given data
+Xm= 9.48*10^-9;
+miu_r= 1+Xm;//
+disp(miu_r,"Relative permeability si : ")
+disp("That is µr is slightly greater than 1");
diff --git a/2102/CH1/EX1.14/exa_1_14.sce b/2102/CH1/EX1.14/exa_1_14.sce new file mode 100755 index 000000000..515cfb398 --- /dev/null +++ b/2102/CH1/EX1.14/exa_1_14.sce @@ -0,0 +1,20 @@ +// Exa 1.14
+clc;
+clear;
+close;
+// Given data
+fie_B= 2*10^-6;// in weber
+A= 10^-4;// in m^2
+N= 300;// number of turns
+l=30;//in cm
+l=l*10^-2;//in meter
+i=0.032;// in amp
+miu_o= 4*%pi*10^-7;
+B=fie_B/A;// in weber/meter^2
+disp(B,"Flux density in weber/meter^2 is : ")
+H= N*i/l;// in amp-turn/meter
+disp(H,"Magnetic intensity in amp-turn/meter is :")
+miu= B/H;// in weber/amp-meter
+disp(miu,"Pemeability in weber/amp-meter is :")
+miu_r= miu/miu_o;
+disp(miu_r,"Relative permeability is : ")
diff --git a/2102/CH1/EX1.15/exa_1_15.sce b/2102/CH1/EX1.15/exa_1_15.sce new file mode 100755 index 000000000..244d2ca63 --- /dev/null +++ b/2102/CH1/EX1.15/exa_1_15.sce @@ -0,0 +1,11 @@ +// Exa 1.15
+clc;
+clear;
+close;
+// Given data
+q=1.6*10^-19;// in C
+ni= 1.5*10^16;// in /m^3
+miu_n= 0.13;// in m^3/vs
+miu_p= 0.05;// in m^3/vs
+sigma= q*ni*(miu_n+miu_p);// in Ω/m
+disp(sigma,"The conductivity in Ω/m is : ")
diff --git a/2102/CH1/EX1.16/exa_1_16.sce b/2102/CH1/EX1.16/exa_1_16.sce new file mode 100755 index 000000000..2286447b6 --- /dev/null +++ b/2102/CH1/EX1.16/exa_1_16.sce @@ -0,0 +1,17 @@ +// Exa 1.16
+clc;
+clear;
+close;
+// Given data
+q=1.6*10^-19;// in C
+n=4*10^22;// in /m^3
+ni= 2.4*10^19;// in /m^3
+miu_n= 3500;// in cm^2/vs
+miu_n= miu_n*10^-4;// in m^2/vs
+// Formula n*p= ni^2
+p= ni^2/n;// in m^-3
+disp(p,"Hole concentration in m^-3 is : ")
+sigma=q*n*miu_n;// in (Ω-m)^-1
+disp(sigma,"The conductivity of the extrinsic semiconductor in (Ωm)^-1 is :")
+
+// Note : There is miss print in the printed value of p and also calculation error in evaluating the value of p . So the answer in the book is wrong
diff --git a/2102/CH1/EX1.17/exa_1_17.sce b/2102/CH1/EX1.17/exa_1_17.sce new file mode 100755 index 000000000..b4a2100c1 --- /dev/null +++ b/2102/CH1/EX1.17/exa_1_17.sce @@ -0,0 +1,14 @@ +// Exa 1.17
+clc;
+clear;
+close;
+// Given data
+ni= 1.8*10^16;// in /m^3
+q= 1.6*10^-19;// in C
+em=0.14;// electron mobility in m^2/v-sec
+hm=0.05;// hole mobility in m^2/v-sec
+resistivity= 1.2;// in Ωm
+n= 1/(q*em*resistivity);// in /m^3
+disp(n,"The electron concenration in /m^3 is :")
+p= ni^2/n;// in /m^3
+disp(p,"The hole concentration in /m^3 is : ")
diff --git a/2102/CH1/EX1.18/exa_1_18.sce b/2102/CH1/EX1.18/exa_1_18.sce new file mode 100755 index 000000000..aab435176 --- /dev/null +++ b/2102/CH1/EX1.18/exa_1_18.sce @@ -0,0 +1,10 @@ +// Exa 1.18
+clc;
+clear;
+close;
+// Given data
+miu= 35.2*10^-4;// in m^2/vs
+n=7.87*10^28;
+e= 1.6*10^-19;// in C
+sigma= n*e*miu;// in s/m
+disp(sigma,"Conductivity in s/m is : ")
diff --git a/2102/CH1/EX1.19/exa_1_19.sce b/2102/CH1/EX1.19/exa_1_19.sce new file mode 100755 index 000000000..f6c4fa55f --- /dev/null +++ b/2102/CH1/EX1.19/exa_1_19.sce @@ -0,0 +1,14 @@ +// Exa 1.19
+clc;
+clear;
+close;
+// Given data
+ni= 2.25*10^13;// in /cm^3
+e= 1.6*10^-19;// in C
+miu_n= 3800;// in cm^2/vs
+miu_p= 1800;// in cm^2/vs
+no=ni;
+sigma= no*e*(miu_n+miu_p);// in s/cm
+disp(sigma,"The intrinsic conductivity in s/cm is :")
+
+// Note: Answer in the book is wrong due to calculation error to evaluating the value of sigma
diff --git a/2102/CH1/EX1.2/exa_1_2.sce b/2102/CH1/EX1.2/exa_1_2.sce new file mode 100755 index 000000000..ae3b6cec6 --- /dev/null +++ b/2102/CH1/EX1.2/exa_1_2.sce @@ -0,0 +1,24 @@ +// Exa 1.2
+clc;
+clear;
+close;
+// Given data
+format('v',13)
+I=0.5;// in A
+rho= 7.4;// in Ω/1000 ft
+rho= rho/(3.05*10^4);// in Ω/cm
+sigma= 1/rho;//in cm/Ω
+disp(sigma,"Conductivity in Ω/cm is : ")
+
+// Part (ii)
+n= 6.5*10^28;// in per meter cube
+q= 1.6*10^-19;// in C
+// Formula sigma= n*q*miu_n
+miu_n= sigma/(n*q);// in cm^2/Vs
+disp(miu_n,"Mobility in cm^2/Vs is : ")
+
+// Part (iii)
+D= 2.5*10^-3;// in m
+A= %pi*D^2/4;// in m^2
+v_d= I/(n*q*A);// in m/s
+disp(v_d,"Drift velocity in m/s is : ")
diff --git a/2102/CH1/EX1.20/exa_1_20.sce b/2102/CH1/EX1.20/exa_1_20.sce new file mode 100755 index 000000000..a41c00e3f --- /dev/null +++ b/2102/CH1/EX1.20/exa_1_20.sce @@ -0,0 +1,12 @@ +// Exa 1.20
+clc;
+clear;
+close;
+// Given data
+e= 1.6*10^-19;// in C
+I=100;// in A
+n_o= 8.5*10^28;// in m^-3
+A=10^-5;// in m^2
+// Formula I= n_o*A*e*Vd
+Vd= I/(n_o*e*A);// in ms^-1
+disp(Vd,"The drift velocity of free electron in ms^-1 is : ")
diff --git a/2102/CH1/EX1.21/exa_1_21.sce b/2102/CH1/EX1.21/exa_1_21.sce new file mode 100755 index 000000000..e16c81bf9 --- /dev/null +++ b/2102/CH1/EX1.21/exa_1_21.sce @@ -0,0 +1,11 @@ +// Exa 1.21
+clc;
+clear;
+close;
+// Given data
+miu_n= 0.13;// in m^2/v-sec
+lip= 0.05;// in m^2/v-sec
+n=5*10^28/10^9;// in /m^3
+q= 1.6*10^-19;// in C
+sigma= q*n*miu_n;// in (Ωm)^-1
+disp(sigma,"The conductivity of silicon material in (Ωm)^-1 is : ")
diff --git a/2102/CH1/EX1.22/exa_1_22.sce b/2102/CH1/EX1.22/exa_1_22.sce new file mode 100755 index 000000000..92af74a44 --- /dev/null +++ b/2102/CH1/EX1.22/exa_1_22.sce @@ -0,0 +1,10 @@ +// Exa 1.22
+clc;
+clear;
+close;
+// Given data
+miu_p= 0.05;// in m^2/v-sec
+rho=5*10^28/10^8;// in /m^3
+q= 1.6*10^-19;// in C
+sigma= q*rho*miu_p;// in (Ωm)^-1
+disp(sigma,"The conductivity of silicon material in (Ωm)^-1 is : ")
diff --git a/2102/CH1/EX1.3/exa_1_3.sce b/2102/CH1/EX1.3/exa_1_3.sce new file mode 100755 index 000000000..6186341dd --- /dev/null +++ b/2102/CH1/EX1.3/exa_1_3.sce @@ -0,0 +1,16 @@ +// Exa 1.3
+clc;
+clear;
+close;
+// Given data
+format('v',13)
+N_D= 6*10^18;// in per cube cm
+N_A= 3*10^15;// in per cube cm
+ni= 2.5*10^12;
+Nn= N_D-N_A;// in per cube cm
+rho_n= ni^2/Nn;// in per cube cm
+// Part (i)
+disp(rho_n,"The concentration of holes in n-type in per cm^3 is : ")
+disp(Nn,"Concentration of electrons in n-type in per cm^3 is : ")
+// Part (ii)
+disp("The material is of n-type")
diff --git a/2102/CH1/EX1.4/exa_1_4.sce b/2102/CH1/EX1.4/exa_1_4.sce new file mode 100755 index 000000000..ee7e91343 --- /dev/null +++ b/2102/CH1/EX1.4/exa_1_4.sce @@ -0,0 +1,14 @@ +// Exa 1.4
+clc;
+clear;
+close;
+// Given data
+format('v',13)
+ni= 2.5*10^19;
+q= 1.6*10^-19;// in C
+miu_n= 0.36;
+miu_p= 0.17;
+sigma= q*ni*(miu_n+miu_p);// in s/m
+rho= 1/sigma;// in Ωm
+disp(sigma,"The conductivity of Ge in s/m is ")
+disp(rho,"The resistivity of Ge in Ωm is : ")
diff --git a/2102/CH1/EX1.5/exa_1_5.sce b/2102/CH1/EX1.5/exa_1_5.sce new file mode 100755 index 000000000..7a9a6e85b --- /dev/null +++ b/2102/CH1/EX1.5/exa_1_5.sce @@ -0,0 +1,18 @@ +// Exa 1.5
+clc;
+clear;
+close;
+// Given data
+format('v',13)
+e= 1.6*10^-19;// in C
+ni= 1.5*10^16;
+miu_n= 0.13;
+miu_p= 0.05;
+atomicDensity= 5*10^28;//atomic density of Si in /m^3
+C= 1/(2*10^8);// concentration
+N_D= atomicDensity*C;// in /m^3
+n=N_D;
+p= ni^2/N_D;// in /m^3
+sigma= e*(n*miu_n+p*miu_p);// in s/m
+disp(sigma,"Conductivity of the extrinsic semiconductor in s/m is : ")
+
diff --git a/2102/CH1/EX1.6/exa_1_6.sce b/2102/CH1/EX1.6/exa_1_6.sce new file mode 100755 index 000000000..4efb8f7a7 --- /dev/null +++ b/2102/CH1/EX1.6/exa_1_6.sce @@ -0,0 +1,14 @@ +// Exa 1.6
+clc;
+clear;
+close;
+// Given data
+format('v',13)
+Eg= 0.72;// in eV
+Ef= Eg/2;//in eV
+K= 8.61*10^-5;// in eV/K
+T=300;//in K
+nc= 1;
+n= 1+%e^((Eg-Ef)/(K*T));
+ncBYn= nc/n;
+disp(ncBYn,"The fraction of the total number or electrons is : ")
diff --git a/2102/CH1/EX1.7/exa_1_7.sce b/2102/CH1/EX1.7/exa_1_7.sce new file mode 100755 index 000000000..fee6ad519 --- /dev/null +++ b/2102/CH1/EX1.7/exa_1_7.sce @@ -0,0 +1,12 @@ +// Exa 1.7
+clc;
+clear;
+close;
+// Given data
+format('v',13)
+ni= 1.4*10^18;//in /m^3
+N_D= 1.4*10^24;//in /m^3
+n=N_D;
+p= ni^2/n;// in /m^3
+nbyp= n/p;
+disp(nbyp,"The ratio of electron to holes concentration is : ")
diff --git a/2102/CH1/EX1.8/exa_1_8.sce b/2102/CH1/EX1.8/exa_1_8.sce new file mode 100755 index 000000000..4aa61befa --- /dev/null +++ b/2102/CH1/EX1.8/exa_1_8.sce @@ -0,0 +1,29 @@ +// Exa 1.8
+clc;
+clear;
+close;
+// Given data
+format('v',13)
+d= 2;// in mm
+d=d*10^-3;//in m
+sigma= 5.8*10^7;// in s/m
+miu_c= 0.0032;// in m^2/v-sec
+E= 20;//in mV/m
+E=E*10^-3;//in V/m
+e= 1.6*10^-19;// in C
+// Part (a)
+n= sigma/(e*miu_c);//in /m^3
+disp(n,"Charge density per meter cube is : ")
+
+// Part (b)
+J= sigma*E;//in A/m^2
+disp(J,"Current density in A/m^2 is : ")
+
+// Part (c)
+Area= %pi*d^2/4;// in area of cross-section of wire in m^2
+I= J*Area;// in A
+disp(I,"Current flowing in the wire in amp is : ")
+
+// Part (d)
+v= miu_c*E;// in m/sec
+disp(v,"Electron drift velocity in m/sec is : ")
diff --git a/2102/CH1/EX1.9/exa_1_9.sce b/2102/CH1/EX1.9/exa_1_9.sce new file mode 100755 index 000000000..ff945256c --- /dev/null +++ b/2102/CH1/EX1.9/exa_1_9.sce @@ -0,0 +1,16 @@ +// Exa 1.9
+clc;
+clear;
+close;
+// Given data
+format('v',13)
+rho= 0.5;// in Ω-m
+miu_c= 0.4;// in m^2/v-sec
+J=100;//in A/m^2
+distance=10;// µm
+distance=distance*10^-6;//in sec
+// V= miu_c*E = miu_c*J/sigma = miu_c*J*rho
+V= miu_c*J*rho ;// in m/sec
+disp(V,"Drift velocity in m/sec is : ")
+T= distance/V;// in second
+disp(T,"The time taken by the electron to travel 10 micro meter in the crystal in second is : ")
diff --git a/2102/CH2/EX2.1/exa_2_1.sce b/2102/CH2/EX2.1/exa_2_1.sce new file mode 100755 index 000000000..9502023ba --- /dev/null +++ b/2102/CH2/EX2.1/exa_2_1.sce @@ -0,0 +1,18 @@ +// Exa 2.1
+clc;
+clear;
+close;
+// Given data
+miu= 0.3;// in m^2/vs
+V= 50;// in mV
+V=V*10^-3;// in V
+d=0.4;// in mm
+d=d*10^-3;// in m
+// Part (a)
+// miu= vd/E and vd= miu*E, so
+vd= miu*V/d;// in m/s
+disp(vd,"Drift velocity in m/s is : ")
+
+// Part (b)
+T= d/vd;// in sec
+disp(T*10^6,"Time required for an electron to move in µs is :")
diff --git a/2102/CH2/EX2.10/exa_2_10.sce b/2102/CH2/EX2.10/exa_2_10.sce new file mode 100755 index 000000000..5a31e9fe5 --- /dev/null +++ b/2102/CH2/EX2.10/exa_2_10.sce @@ -0,0 +1,29 @@ +// Exa 2.10
+clc;
+clear;
+close;
+// Given data
+ni= 1.8*10^15;// in /m^3
+rho= 2*10^5;// in Ωm
+q=1.6*10^-19;// in C
+dopingConcentration= 10^25;// in /m^3
+n=dopingConcentration;
+MCC= ni^2/dopingConcentration; // Minority carrier concentration per cube meter
+miu_n= 1/(2*rho*q*ni);// in m^3/Vs
+disp(miu_n,"The value of µn in m^3/Vs is : ")
+
+// Part (b)
+sigma= q*n*miu_n;//in (Ωm)^-1
+rho= 1/sigma;// in Ωm
+disp(rho,"Resistivity in Ωm is : ")
+
+// Part(c)
+kT= 26*10^-3;//in V
+no= n;// in /m^3
+Shift_inFermiLevel= kT*log(no/ni);// in eV
+disp(Shift_inFermiLevel,"Shift in Fermi level due to doping in eV is :")
+disp("Hence, E_F lies "+string(Shift_inFermiLevel)+" eV above Fermi level Ei")
+
+// Part (d)
+MCC= ni^2/dopingConcentration; // Minority carrier concentration per cube meter
+disp(MCC,"Minority carrier concentration per cube meter when its temperature is increased is : ")
diff --git a/2102/CH2/EX2.11/exa_2_11.sce b/2102/CH2/EX2.11/exa_2_11.sce new file mode 100755 index 000000000..9aad4e45a --- /dev/null +++ b/2102/CH2/EX2.11/exa_2_11.sce @@ -0,0 +1,13 @@ +// Exa 2.11
+clc;
+clear;
+close;
+// Given data
+miu_n= 1700;//in cm^2/Vs
+miu_p= 560;//in cm^2/Vs
+ni= 2.5*10^10;// in /cm^3
+q=1.6*10^-19;// in C
+sigma= q*ni*(miu_n+miu_p);//in (Ωcm)^-1
+rho= 1/sigma;// in Ωcm
+disp(sigma,"Conductivity of intrinsic sample in (Ωcm)^-1 is : ")
+disp(rho,"Resistivity of intrinsic sample in Ωcm")
diff --git a/2102/CH2/EX2.12/exa_2_12.sce b/2102/CH2/EX2.12/exa_2_12.sce new file mode 100755 index 000000000..aa63fac3c --- /dev/null +++ b/2102/CH2/EX2.12/exa_2_12.sce @@ -0,0 +1,18 @@ +// Exa 2.12
+clc;
+clear;
+close;
+// Given data
+ni= 1.45*10^10;// in /cm^3
+q=1.6*10^-19;// in C
+miu_n= 1300;// in cm^2/Vs
+density= 5*10^22;// density of silicon atom in /cm^3
+N_D= density/10^12;
+n=N_D;
+// n*p= ni^2
+p= ni^2/n;//in /cm^3
+sigma= q*n*miu_n;// in (Ωcm)^-1
+rho= 1/sigma;// in Ωcm
+disp(rho,"Resistivity of silicon in Ωcm is : ")
+
+// Note: The value of n is putted wrong (5*10^14 at place of 5*10^10) to evaluate the value of sigma. So the answer in the book is wrong .
diff --git a/2102/CH2/EX2.13/exa_2_13.sce b/2102/CH2/EX2.13/exa_2_13.sce new file mode 100755 index 000000000..3ff50a74d --- /dev/null +++ b/2102/CH2/EX2.13/exa_2_13.sce @@ -0,0 +1,28 @@ +// Exa 2.13
+clc;
+clear;
+close;
+// Given data
+q=1.6*10^-19;// in C
+rho=75;//in Ωcm
+N_D= 10^13;// in /cm^3
+N_A= 5*10^12;//in /cm^3
+E=3;// in V/cm
+ni= 2.7*10^12;// in /cm^3
+sigma= 1/rho;// in (Ωcm)^-1
+// miu_p/miu_n= 1/3 or miu_n=3*miu_p
+// sigma= q*ni*(miu_n+miu_p) = q*ni*(3*miu_p+miu_p) = q*ni*(4*miu_p)
+miu_p= sigma/(q*ni*4);
+miu_n= 3*miu_p;
+// n+N_A= p+N_D or n= p+N_D-N_A
+// n*p= ni^2 or (p+N_D-N_A)*p= ni^2
+// p^2 + (N_D-N_A)*p-ni^2 =0
+// values= [1 (N_D-N_A) -ni^2];
+p = roots([1 5*10^12 -7.29*10^24])
+p=p(2);//discarding -ve value
+n=p+N_D-N_A;
+I= q*(n*miu_n+p*miu_p)*E// in A/m^2
+disp(I,"The total conduction current in A/m^2 is : ")
+
+// Note: There is some difference between book answer and coding. The reson behind this is that
+// The value of P is evaluated 1.8*10^12 while accurate value is 1.179674*10^12
diff --git a/2102/CH2/EX2.14/exa_2_14.sce b/2102/CH2/EX2.14/exa_2_14.sce new file mode 100755 index 000000000..d868c9cff --- /dev/null +++ b/2102/CH2/EX2.14/exa_2_14.sce @@ -0,0 +1,18 @@ +// Exa 2.14
+clc;
+clear;
+close;
+// Given data
+N_D= 10^20;// in /cm^3
+ni= 2.5*10^12;// in /cm^3
+kT=26;// in meV
+kT=kT*10^-3;// in eV
+n= N_D;// as N_D>>ni
+p= ni^2/n;//in /cm^3
+disp(p,"The minority carrier concentration per cm^3 is :")
+
+// Part (b)
+LocationOfFermiLevel= kT*log(N_D/ni);// in eV
+disp("The Fermi Level will be "+string(LocationOfFermiLevel)+" eV above Fermi level")
+
+//Note: The value of Minority carrier concentration of part(a) is calculated wrong because the value of (2.5*10^12)^2/(10^20) will be 62500 not 2.5*10^4
diff --git a/2102/CH2/EX2.15/exa_2_15.sce b/2102/CH2/EX2.15/exa_2_15.sce new file mode 100755 index 000000000..0f7ed4d8f --- /dev/null +++ b/2102/CH2/EX2.15/exa_2_15.sce @@ -0,0 +1,24 @@ +// Exa 2.15
+clc;
+clear;
+close;
+// Given data
+miu_n= 1300;// in cm^2/Vs
+q=1.6*10^-19;// in C
+ni= 4.3*10^-6;// in /cm^3
+V= 1;// in volt
+L=8;// in cm
+A=0.8*0.8;// in cm^2
+I=4*10^-3;// in A
+// R= rho*L/A = V/I
+R= V/I;// in Ω
+sigma= L/(R*A);// in (Ωcm)^-1
+// sigma= q*n*miu_n
+n= sigma/(q*miu_n);
+N_D= n;
+disp(N_D,"The value of N_D is :")
+// Part (b)
+d=L;
+E= V/d;
+vd=miu_n*E;// in cm/s
+disp(vd,"Drift velocity in cm/s is : ")
diff --git a/2102/CH2/EX2.16/exa_2_16.sce b/2102/CH2/EX2.16/exa_2_16.sce new file mode 100755 index 000000000..891579fc8 --- /dev/null +++ b/2102/CH2/EX2.16/exa_2_16.sce @@ -0,0 +1,14 @@ +// Exa 2.16
+clc;
+clear;
+close;
+// Given data
+E= 1;//in v/m
+miu= 32*10^-4;// in m^2/Vs
+m= 9.1*10^-28;// in gram
+m=m*10^-3;// in kg
+q=1.6*10^-19;// in C
+toh_r= 2*miu*m/q;// in sec
+Vd= miu*E;// in m/sec
+disp(toh_r,"The relaxation time in sec is :")
+disp(Vd*10^2,"Drift velocity in cm/sec is :")
diff --git a/2102/CH2/EX2.17/exa_2_17.sce b/2102/CH2/EX2.17/exa_2_17.sce new file mode 100755 index 000000000..9fa132acf --- /dev/null +++ b/2102/CH2/EX2.17/exa_2_17.sce @@ -0,0 +1,12 @@ +// Exa 2.17
+clc;
+clear;
+close;
+// Given data
+miu_n= 0.145;// in m^2/Vs
+miu_p= 0.05;// in m^2/Vs
+q=1.6*10^-19;// in C
+n=10^15;// per m^3
+p=10^2;// per m^3
+rho= 1/(q*(n*miu_n+p*miu_p));// in Ωm
+disp(rho,"The resistivity in Ωm is :")
diff --git a/2102/CH2/EX2.18/exa_2_18.sce b/2102/CH2/EX2.18/exa_2_18.sce new file mode 100755 index 000000000..48c2e1c62 --- /dev/null +++ b/2102/CH2/EX2.18/exa_2_18.sce @@ -0,0 +1,28 @@ +// Exa 2.18
+clc;
+clear;
+close;
+// Given data
+miu_n= 0.13;// in m^2/Vs
+miu_p= 0.05;// in m^2/Vs
+q=1.6*10^-19;// in C
+ni=1.5*10^16;// per m^3
+sigma_intrinsic= q*ni*(miu_n+miu_p);// in (Ωm)^-1
+disp(sigma_intrinsic,"The conductivity of silicon in Intrinsic condition in (Ωm)^-1 is : ")
+
+// Part (b)
+n= 5*10^28/10^9;
+sigma= q*n*miu_n;// in (Ωm)^-1
+disp(sigma,"The conductivity with donar impurity in (Ωm)^-1 is : ")
+
+// Part (c)
+p= 5*10^28/10^8;
+sigma= q*p*miu_p;// in (Ωm)^-1
+disp(sigma,"The conductivity with acceptor impurity in (Ωm)^-1 is : ")
+
+// Part (d)
+p_desh= p-n;// in /m^3
+sigma= q*p_desh*miu_p;// in (Ωm)^-1
+disp(sigma,"The conductivity with donar and acceptor impurity in (Ωm)^-1 is : ")
+
+// Note : Answer in the book of part (a) may be miss printed or wrong
diff --git a/2102/CH2/EX2.19/exa_2_19.sce b/2102/CH2/EX2.19/exa_2_19.sce new file mode 100755 index 000000000..d9d67f6ab --- /dev/null +++ b/2102/CH2/EX2.19/exa_2_19.sce @@ -0,0 +1,14 @@ +// Exa 2.19
+clc;
+clear;
+close;
+// Given data
+rho= 1.2;// in Ωm
+miu_n= 0.14;// in m^2/Vs
+q=1.6*10^-19;// in C
+ni= 1.8*10^16;// per m^3
+// sigma = 1/rho = q*n*miu_n
+n= 1/(rho*q*miu_n);// per m^3
+p= ni^2/n;// per m^3
+disp(n,"The value of n in per m^3 is :")
+disp(p,"The value of p in per m^3 is :")
diff --git a/2102/CH2/EX2.2/exa_2_2.sce b/2102/CH2/EX2.2/exa_2_2.sce new file mode 100755 index 000000000..96aba4bf1 --- /dev/null +++ b/2102/CH2/EX2.2/exa_2_2.sce @@ -0,0 +1,11 @@ +// Exa 2.2
+clc;
+clear;
+close;
+// Given data
+miu_n= 0.36;// in m^2/vs
+miu_p= 0.17;// in m^2/vs
+ni= 2.9*10^19;// in /m^3
+q=1.6*10^-19;// in C
+sigma_i= q*ni*(miu_n+miu_p);// in (Ωm)^-1
+disp(sigma_i,"Intrinsic conductivity of Ge in (Ωm)^-1 is :")
diff --git a/2102/CH2/EX2.20/exa_2_20.sce b/2102/CH2/EX2.20/exa_2_20.sce new file mode 100755 index 000000000..99a41ef76 --- /dev/null +++ b/2102/CH2/EX2.20/exa_2_20.sce @@ -0,0 +1,14 @@ +// Exa 2.20
+clc;
+clear;
+close;
+// Given data
+N_D= 5*10^22/10^8;
+q=1.6*10^-19;// in C
+ni= 1.45*10^10;// per m^3
+miu_n= 1300;// in m^2/Vs
+// n*p= ni^2 or N_D*p = ni^2
+p= ni^2/N_D;// in /cm^3
+sigma= q*miu_n*N_D;// in (Ωcm)^-1
+rho= 1/sigma;//in Ωcm
+disp(rho,"Resistivity in Ωcm is : ")
diff --git a/2102/CH2/EX2.21/exa_2_21.sce b/2102/CH2/EX2.21/exa_2_21.sce new file mode 100755 index 000000000..dcdfe941d --- /dev/null +++ b/2102/CH2/EX2.21/exa_2_21.sce @@ -0,0 +1,15 @@ +// Exa 2.21
+clc;
+clear;
+close;
+// Given data
+q=1.6*10^-19;// in C
+n=8.4*10^28;
+rho= 6.51;// in Ω/1000ft
+rho= rho/(3.05*10^4);// in Ω/cm
+sigma= 1/rho;// in mho/cm
+sigma=sigma*10^2;// in mho/m
+// sigma= n*q*miu
+miu= sigma/(n*q);// in m^2/v-s
+disp(sigma,"Conductivity in mho/m is : ")
+disp(miu,"Mobility in m^2/v-s is : ")
diff --git a/2102/CH2/EX2.22/exa_2_22.sce b/2102/CH2/EX2.22/exa_2_22.sce new file mode 100755 index 000000000..1c72c778b --- /dev/null +++ b/2102/CH2/EX2.22/exa_2_22.sce @@ -0,0 +1,13 @@ +// Exa 2.22
+clc;
+clear;
+close;
+// Given data
+miu_n= 1350;// in cm^2/v-sec
+miu_p= 480;// in cm^2/v-sec
+ni=1.52*10^10;// in /cm^3
+q=1.6*10^-19;// in C
+sigma= q*ni*(miu_n+miu_p);// in (Ωcm)^-1
+rho= 1/sigma;// in Ωcm
+disp(sigma,"Conductivity in (Ωcm)^-1 is : ")
+disp(rho,"Resistivity in Ωcm is : ")
diff --git a/2102/CH2/EX2.23/exa_2_23.sce b/2102/CH2/EX2.23/exa_2_23.sce new file mode 100755 index 000000000..a872c06b5 --- /dev/null +++ b/2102/CH2/EX2.23/exa_2_23.sce @@ -0,0 +1,11 @@ +// Exa 2.23
+clc;
+clear;
+close;
+// Given data
+ni=2.5*10^19;// in /m^3
+miu_n= 0.38;// in m^2/v-sec
+miu_p= 0.18;// in m^2/v-sec
+q=1.6*10^-19;// in C
+sigma= q*ni*(miu_n+miu_p);// in (Ωm)^-1
+disp(sigma,"Conductivity in (Ωm)^-1 is : ")
diff --git a/2102/CH2/EX2.24/exa_2_24.sce b/2102/CH2/EX2.24/exa_2_24.sce new file mode 100755 index 000000000..030026882 --- /dev/null +++ b/2102/CH2/EX2.24/exa_2_24.sce @@ -0,0 +1,13 @@ +// Exa 2.24
+clc;
+clear;
+close;
+// Given data
+rho= 0.5;// in
+miu_n= 0.39;// in m^2/v-sec
+miu_p= 0.19;// in m^2/v-sec
+q=1.6*10^-19;// in C
+sigma= 1/rho;// in (Ωm)^-1
+// Formula sigma= q*ni*(miu_n+miu_p)
+ni= sigma/(q*(miu_n+miu_p));// in /m^3
+disp(ni,"The intrinsic carrier concentration of germanium in /m^3 is : ")
diff --git a/2102/CH2/EX2.25/exa_2_25.sce b/2102/CH2/EX2.25/exa_2_25.sce new file mode 100755 index 000000000..fb21807bf --- /dev/null +++ b/2102/CH2/EX2.25/exa_2_25.sce @@ -0,0 +1,13 @@ +// Exa 2.25
+clc;
+clear;
+close;
+// Given data
+q=1.6*10^-19;// in C
+miu_n= 0.18;// in m^2/v-s
+N_D= 10^21;// per m^3
+N_A= 5*10^20;// per m^3
+N_deshD= N_D-N_A;// per m^3
+n=N_deshD;// per m^3
+sigma= q*n*miu_n;// in (Ωm)^-1
+disp(sigma,"Conductivity of the silicon sample in (Ωm)^-1 is : ")
diff --git a/2102/CH2/EX2.26/exa_2_26.sce b/2102/CH2/EX2.26/exa_2_26.sce new file mode 100755 index 000000000..778f3c8ca --- /dev/null +++ b/2102/CH2/EX2.26/exa_2_26.sce @@ -0,0 +1,13 @@ +// Exa 2.26
+clc;
+clear;
+close;
+// Given data
+q=1.6*10^-19;// in C
+miu_n= 0.36;// in m^2/v-s
+miu_p= 0.17;// in m^2/v-s
+ni= 2.5*10^19;// per m^3
+sigma= q*ni*(miu_n+miu_p);// in s/m
+rho= 1/sigma;// in Ωm
+disp(sigma,"Conductivity of Ge in s/m is : ")
+disp(rho,"Resistivity in Ωm is : ")
diff --git a/2102/CH2/EX2.27/exa_2_27.sce b/2102/CH2/EX2.27/exa_2_27.sce new file mode 100755 index 000000000..2c57a9324 --- /dev/null +++ b/2102/CH2/EX2.27/exa_2_27.sce @@ -0,0 +1,14 @@ +// Exa 2.27
+clc;
+clear;
+close;
+// Given data
+e=1.6*10^-19;// in C
+miu_n= 0.13;// in m^2/v-s
+miu_p= 0.05;// in m^2/v-s
+N_D= 5*10^28/(2*10^8);// per m^3
+n=N_D;// per m^3
+ni= 1.5*10^16;// per m^3
+p= ni^2/N_D;// per m^3
+sigma= e*(n*miu_n+p*miu_p);// in s/m
+disp(sigma,"Conductivity of the intrinsic semiconductor in s/m is ")
diff --git a/2102/CH2/EX2.28/exa_2_28.sce b/2102/CH2/EX2.28/exa_2_28.sce new file mode 100755 index 000000000..5a7d0ceca --- /dev/null +++ b/2102/CH2/EX2.28/exa_2_28.sce @@ -0,0 +1,14 @@ +// Exa 2.28
+clc;
+clear;
+close;
+// Given data
+format('v',13)
+Eg= 0.72;// in eV
+Ef= Eg/2;//in eV
+K= 8.61*10^-5;// in eV/K
+T=300;//in K
+nc= 1;
+n= 1+%e^((Eg-Ef)/(K*T));
+ncBYn= nc/n;
+disp(ncBYn,"The fraction of the total number or electrons is : ")
diff --git a/2102/CH2/EX2.29/exa_2_29.sce b/2102/CH2/EX2.29/exa_2_29.sce new file mode 100755 index 000000000..663649609 --- /dev/null +++ b/2102/CH2/EX2.29/exa_2_29.sce @@ -0,0 +1,11 @@ +// Exa 2.29
+clc;
+clear;
+close;
+// Given data
+N_D= 1.4*10^24;// per m^3
+ni= 1.4*10^18;// per m^3
+n=N_D;//per m^3
+p=ni^2/n;// per m^3
+R= n/p;// ratio of electron to holes concentration
+disp(R,"Ratio of electron to holes concentraiton is : ")
diff --git a/2102/CH2/EX2.3/exa_2_3.sce b/2102/CH2/EX2.3/exa_2_3.sce new file mode 100755 index 000000000..3747ce823 --- /dev/null +++ b/2102/CH2/EX2.3/exa_2_3.sce @@ -0,0 +1,12 @@ +// Exa 2.3
+clc;
+clear;
+close;
+// Given data
+rho= 0.60;// in Ωm
+q=1.6*10^-19;// in C
+miu_n= 0.38;// in m^2/vs
+miu_p= 0.18;// in m^2/vs
+sigma= 1/rho;// in (Ωm)^-1
+ni= sigma/(q*(miu_n+miu_p));// in /m^3
+disp(ni,"The intrinsic carrier concentration per meter cube is :")
diff --git a/2102/CH2/EX2.30/exa_2_30.sce b/2102/CH2/EX2.30/exa_2_30.sce new file mode 100755 index 000000000..7217bd464 --- /dev/null +++ b/2102/CH2/EX2.30/exa_2_30.sce @@ -0,0 +1,27 @@ +// Exa 2.30
+clc;
+clear;
+close;
+// Given data
+e=1.6*10^-19;// in C
+miu_e= 0.0032;// in m^2/v-s
+sigma= 5.8*10^7;// in s/m
+E= 20*10^-3;// in V/m
+d=0.002;// in m
+Area= %pi*d^2/4;// in m^2
+
+// Part (a)
+n= sigma/(e*miu_e);// per m^3
+disp(n,"The charge density per meter cube is : ")
+
+// Part (b)
+J= sigma*E;// in A/m^2
+disp(J,"Current density in A/m^2 is : ")
+
+// Part (c)
+I= J*Area;// in A
+disp(I,"Current flowing in the wire in ampere is : ")
+
+// Part (d)
+v=miu_e*E;// in m/sec
+disp(v,"Electron drift velocity in m/sec is : ")
diff --git a/2102/CH2/EX2.31/exa_2_31.sce b/2102/CH2/EX2.31/exa_2_31.sce new file mode 100755 index 000000000..5164fe7f5 --- /dev/null +++ b/2102/CH2/EX2.31/exa_2_31.sce @@ -0,0 +1,16 @@ +// Exa 2.31
+clc;
+clear;
+close;
+// Given data
+format('v',13)
+rho= 0.5;// in Ω-m
+miu_c= 0.4;// in m^2/v-sec
+J=100;//in A/m^2
+distance=10;// µm
+distance=distance*10^-6;//in sec
+// V= miu_c*E = miu_c*J/sigma = miu_c*J*rho
+V= miu_c*J*rho ;// in m/sec
+disp(V,"Drift velocity in m/sec is : ")
+T= distance/V;// in second
+disp(T,"The time taken by the electron to travel 10 micro meter in the crystal in second is : ")
diff --git a/2102/CH2/EX2.32/exa_2_32.sce b/2102/CH2/EX2.32/exa_2_32.sce new file mode 100755 index 000000000..541ae3b19 --- /dev/null +++ b/2102/CH2/EX2.32/exa_2_32.sce @@ -0,0 +1,18 @@ +// Exa 2.32
+clc;
+clear;
+close;
+// Given data
+e=1.6*10^-19;// in C
+miu_e= 3800;// in cm v-s
+miu_p= 1800;// in cm v-s
+ni= 2.5*10^13;// per cm^3
+N_D= 4.4*10^22*10^-7;// per cm^3
+n=N_D;// per cm^3
+p= ni^2/N_D;// holes/cm^3
+sigma_i= ni*e*(miu_e+miu_p);// in (Ωcm)^-1
+sigma_n= e*N_D*miu_e;// in (Ωcm)^-1
+disp(sigma_i,"Intrinsic conductivity in (Ωcm)^-1 is : ")
+disp(n,"Concentration of electrons per cm^3 is : ")
+disp(p,"Concentration of holes per cm^3 is : ")
+disp(sigma_n,"The conductivity in n-type Ge semiconductor in (Ωcm)^-1 is : ")
diff --git a/2102/CH2/EX2.33/exa_2_33.sce b/2102/CH2/EX2.33/exa_2_33.sce new file mode 100755 index 000000000..ef9c25d87 --- /dev/null +++ b/2102/CH2/EX2.33/exa_2_33.sce @@ -0,0 +1,28 @@ +// Exa 2.33
+clc;
+clear;
+close;
+// Given data
+e=1.6*10^-19;// in C
+a= 0.004*0.0015;// in m^2
+ni= 2.5*10^19;// per m^3
+miu_e= 0.38;// in m^2/ v-s
+miu_p= 0.18;// in m^2/v-s
+V=10;// in V
+i= 25;// in mm
+i=i*10^-3;// in m
+E= V/i;// in V/m
+// Part (a)
+ve= miu_e*E;// in m/sec
+disp(ve,"Electric drift velocity in m/sec is : ")
+vp= miu_p*E;// in m/sec
+disp(vp,"Hole drift velocity in m/sec is : ")
+
+// Part (b)
+sigma_i= ni*e*(miu_e+miu_p);// in (Ωcm)^-1
+disp(sigma_i,"Intrinsic carrier conductivity of Ge in (Ωcm)^-1 is : ")
+
+// Part (c)
+I= sigma_i*E*a;// in A
+I=I*10^3;// in mA
+disp(I,"Total current in mA is : ")
diff --git a/2102/CH2/EX2.34/exa_2_34.sce b/2102/CH2/EX2.34/exa_2_34.sce new file mode 100755 index 000000000..17105d6e8 --- /dev/null +++ b/2102/CH2/EX2.34/exa_2_34.sce @@ -0,0 +1,17 @@ +// Exa 2.34
+clc;
+clear;
+close;
+// Given data
+miu_e= 0.14;// in m^2/ v-s
+miu_p= 0.05;// in m^2/v-s
+e=1.6*10^-19;// in C
+N=3*10^25;// per m^3
+Eg= 1.1;// in eV
+Eg= Eg*1.602*10^-19;// in J
+k= 1.38*10^-23;// in J/K
+T=300;// in K
+ni= N*%e^(-Eg/(2*k*T));// in /m^3
+sigma= ni*e*(miu_e+miu_p);// in s/m
+disp(ni,"The intrinsic carrier concentration in Si in /m^3 is : ")
+disp(sigma,"Conductivity of Si in s/m is : ")
diff --git a/2102/CH2/EX2.35/exa_2_35.sce b/2102/CH2/EX2.35/exa_2_35.sce new file mode 100755 index 000000000..061c0dab8 --- /dev/null +++ b/2102/CH2/EX2.35/exa_2_35.sce @@ -0,0 +1,12 @@ +// Exa 2.35
+clc;
+clear;
+close;
+// Given data
+N_A= 4.4*10^22/10^8;// in /m^3
+N_D= 10^3*N_A;// in /m^3
+ni= 2.5*10^13;// /cm^3
+Vt= 26;// in mV
+Vt= Vt*10^-3;// in V
+Vj= Vt*log(N_A*N_D/ni^2);// in V
+disp(Vj,"The junction potential in volts is : ")
diff --git a/2102/CH2/EX2.36/exa_2_36.sce b/2102/CH2/EX2.36/exa_2_36.sce new file mode 100755 index 000000000..9c3d09879 --- /dev/null +++ b/2102/CH2/EX2.36/exa_2_36.sce @@ -0,0 +1,10 @@ +// Exa 2.36
+clc;
+clear;
+close;
+// Given data
+I_o= 0.3;// in µA
+I_o= I_o*10^-6;// in A
+V_F= 0.15;// in V
+I= I_o*%e^(40*V_F);// in A
+disp(I*10^6,"Current flowing in the diode in µA is : ")
diff --git a/2102/CH2/EX2.37/exa_2_37.sce b/2102/CH2/EX2.37/exa_2_37.sce new file mode 100755 index 000000000..273e63f7b --- /dev/null +++ b/2102/CH2/EX2.37/exa_2_37.sce @@ -0,0 +1,14 @@ +// Exa 2.37
+clc;
+clear;
+close;
+// Given data
+format('v',11)
+Io= 1;// in nA
+Io= Io*10^-9;// in A
+T= 27+273;//in K
+V_T= T/11600;// in V
+V_F= 0.3;// in V
+n=1;
+I_F= Io*[%e^(V_F/(n*V_T))-1];// in A
+disp(I_F,"The forward current of diode in ampere is : ")
diff --git a/2102/CH2/EX2.38/exa_2_38.sce b/2102/CH2/EX2.38/exa_2_38.sce new file mode 100755 index 000000000..d0f32403b --- /dev/null +++ b/2102/CH2/EX2.38/exa_2_38.sce @@ -0,0 +1,13 @@ +// Exa 2.38
+clc;
+clear;
+close;
+// Given data
+format('v',11)
+I_F= 2;// in mA
+I_F= I_F*10^-3;// in A
+V_T= 25;// in mV
+V_T=V_T*10^-3;// in V
+n=1;
+r_F= n*V_T/I_F;// in Ω
+disp(r_F,"The dynamic resistance of a Ge p-n junction diode in Ω is : ")
diff --git a/2102/CH2/EX2.39/exa_2_39.sce b/2102/CH2/EX2.39/exa_2_39.sce new file mode 100755 index 000000000..8ef9e2020 --- /dev/null +++ b/2102/CH2/EX2.39/exa_2_39.sce @@ -0,0 +1,15 @@ +// Exa 2.39
+clc;
+clear;
+close;
+// Given data
+T=300;// in K
+n=1;
+V_T= 26;// in mV
+V_T=V_T*10^-3;// in V
+V_F= 200;// in mV
+V_F=V_F*10^-3;// in V
+Io= 1;// in µA
+Io= Io*10^-6;// in A
+r_F= n*V_T/(Io*%e^(V_F/(n*V_T)));// in Ω
+disp(r_F,"The ac resistance of a semiconductor diode in Ω")
diff --git a/2102/CH2/EX2.4/exa_2_4.sce b/2102/CH2/EX2.4/exa_2_4.sce new file mode 100755 index 000000000..19ef153db --- /dev/null +++ b/2102/CH2/EX2.4/exa_2_4.sce @@ -0,0 +1,13 @@ +// Exa 2.4
+clc;
+clear;
+close;
+// Given data
+N_D= 10^21;// in /m^3
+N_A= 2*10^20;// in /m^3
+miu_n= 0.15;// in m^2/vs
+N_DeshD= N_D-N_A;// in /m^3
+n=N_DeshD;// in /m^3
+q=1.6*10^-19;// in C
+sigma= q*n*miu_n;// in (Ωm)^-1
+disp(sigma,"Conductivity of silicon in (Ωm)^-1 is : ")
diff --git a/2102/CH2/EX2.40/exa_2_40.sce b/2102/CH2/EX2.40/exa_2_40.sce new file mode 100755 index 000000000..9c3eb03d5 --- /dev/null +++ b/2102/CH2/EX2.40/exa_2_40.sce @@ -0,0 +1,12 @@ +// Exa 2.40
+clc;
+clear;
+close;
+// Given data
+n=2;
+V_T= 26;// in mV
+V_T=V_T*10^-3;// in V
+I= 1;// in mA
+I= I*10^-3;// in A
+r= n*V_T/I;// in Ω
+disp(r,"The magnitude of r in Ω is : ")
diff --git a/2102/CH2/EX2.5/exa_2_5.sce b/2102/CH2/EX2.5/exa_2_5.sce new file mode 100755 index 000000000..9da27d322 --- /dev/null +++ b/2102/CH2/EX2.5/exa_2_5.sce @@ -0,0 +1,10 @@ +// Exa 2.5
+clc;
+clear;
+close;
+// Given data
+n=6.023*10^23*7.4/63.54;
+miu= 32.6;// in cm^2/Vs
+q=1.6*10^-19;// in C
+sigma= n*q*miu;// in (Ωcm)^-1
+disp(sigma,"Conductivity of copper in (Ωcm)^-1 is : ")
diff --git a/2102/CH2/EX2.6/exa_2_6.sce b/2102/CH2/EX2.6/exa_2_6.sce new file mode 100755 index 000000000..6a573f450 --- /dev/null +++ b/2102/CH2/EX2.6/exa_2_6.sce @@ -0,0 +1,27 @@ +// Exa 2.6
+clc;
+clear;
+close;
+// Given data
+// For silicon
+q=1.6*10^-19;// in C
+ni= 2.5*10^12;// in /cm^3
+miu_n= 1700;// in cm^2/Vs
+miu_p= 600;// in cm^2/Vs
+sigma= 0.2;// in (Ωm)^-1
+// Formula sigma= q*n*miu_n
+n= sigma/(q*miu_n);// in /cm^3
+p= ni^2/n;// in /cm^3
+disp("For silicon")
+disp(n,"Concentration of electron in /cm^3 is : ")
+disp(p,"Concentration of holes in /cm^3 is : ")
+// For germanium
+ni= 3.4*10^15;// in /cm^3
+miu_n= 3600;// in cm^2/Vs
+miu_p= 1600;// in cm^2/Vs
+sigma= 150;// in (Ωm)^-1
+p= sigma/(q*miu_p);// in /cm^3
+n= ni^2/p;// in /cm^3
+disp("For germanium")
+disp(n,"Concentration of electron in /cm^3 is : ")
+disp(p,"Concentration of holes in /cm^3 is : ")
diff --git a/2102/CH2/EX2.7/exa_2_7.sce b/2102/CH2/EX2.7/exa_2_7.sce new file mode 100755 index 000000000..ff2c6c48c --- /dev/null +++ b/2102/CH2/EX2.7/exa_2_7.sce @@ -0,0 +1,16 @@ +// Exa 2.7
+clc;
+clear;
+close;
+// Given data
+miu_n= 3900;// in cm^2/Vs
+miu_p= 1900;// in cm^2/Vs
+ni= 2.5*10^10;// in /cm^3
+Nge= 4.41*10^22;// in /cm^3
+q=1.6*10^-19;// in C
+N_D= Nge/10^8;// in /cm^3
+n=N_D;// approx
+p= ni^2/N_D;// in /cm^2
+sigma= q*n*miu_n;// in (Ωcm)^-1
+rho= 1/sigma;// in Ωcm
+disp(rho,"Resistivity of the doped germanium in Ωcm is : ")
diff --git a/2102/CH2/EX2.8/exa_2_8.sce b/2102/CH2/EX2.8/exa_2_8.sce new file mode 100755 index 000000000..af3a663ee --- /dev/null +++ b/2102/CH2/EX2.8/exa_2_8.sce @@ -0,0 +1,19 @@ +// Exa 2.8
+clc;
+clear;
+close;
+// Given data
+Nsi = 4.9*10^22;// in /cm^3
+ni= 2.5*10^12;// in /cm^3
+q=1.6*10^-19;// in C
+miu_n= 1600;// in cm^2/Vs
+miu_p= 400;// in cm^2/Vs
+N_D= Nsi/(100*10^6);
+sigma= q*ni*(miu_n+miu_p);// in (Ωcm)^-1
+rho= 1/sigma;// in Ωcm
+disp(rho,"Resistivity of silicon in Ωcm is :")
+n=N_D;// approx
+p= ni^2/n;// in /cm^3
+sigma= q*n*miu_n;// in (Ωcm)-1
+rho= 1/sigma;// in Ωcm
+disp(rho,"Resistivity of doped silicon in Ωcm is :")
diff --git a/2102/CH2/EX2.9/exa_2_9.sce b/2102/CH2/EX2.9/exa_2_9.sce new file mode 100755 index 000000000..955ef690e --- /dev/null +++ b/2102/CH2/EX2.9/exa_2_9.sce @@ -0,0 +1,11 @@ +// Exa 2.9
+clc;
+clear;
+close;
+// Given data
+N_D= 5*10^28/(20*10^6);// in /m^3
+// For the Fermi level
+// E_F= E_C if N_C= N_D,
+// N_D= 4.82*10^21 * T^(3/2) /m^3
+T= (N_D/( 4.82*10^21 ))^(2/3);// in K
+disp(T,"Temperature in K is : ")
diff --git a/2102/CH3/EX3.1/exa_3_1.sce b/2102/CH3/EX3.1/exa_3_1.sce new file mode 100755 index 000000000..612903ebc --- /dev/null +++ b/2102/CH3/EX3.1/exa_3_1.sce @@ -0,0 +1,11 @@ +// Exa 3.1
+clc;
+clear;
+close;
+// Given data
+Co= 20;// in pF
+Vr= 5;// in V
+V_T= 26;// in mV
+V_T= V_T*10^-3;// in V
+C_T= Co/(1+(Vr/V_T));// in pF
+disp(C_T,"The transition capacitance of diode in pF")
diff --git a/2102/CH3/EX3.10/exa_3_10.sce b/2102/CH3/EX3.10/exa_3_10.sce new file mode 100755 index 000000000..108ca7674 --- /dev/null +++ b/2102/CH3/EX3.10/exa_3_10.sce @@ -0,0 +1,16 @@ +// Exa 3.10
+clc;
+clear;
+close;
+// Given data
+I_F= 100;// in mA
+I_F=I_F*10^-3;// in A
+V_F= 0.75;// in V
+R_F= V_F/I_F;// in ohm
+disp(R_F,"Forward resistance in ohm is ")
+// At
+V_R= 50;// in V
+I_R= 100;// in nA
+I_R= I_R*10^-9;// in A
+R_R= V_R/I_R;// in ohm
+disp(R_R*10^-6,"Reverse resistance in Mohm is ")
diff --git a/2102/CH3/EX3.11/exa_3_11.sce b/2102/CH3/EX3.11/exa_3_11.sce new file mode 100755 index 000000000..66ebff08b --- /dev/null +++ b/2102/CH3/EX3.11/exa_3_11.sce @@ -0,0 +1,15 @@ +// Exa 3.11
+clc;
+clear;
+close;
+// Given data
+I_F= 70;// in mA
+V_F= 26;// in mV
+delta_I_F= 60;// in mA
+delta_I_F=delta_I_F*10^-3;// in A
+delta_V_F= 0.025;// in V
+r_d= delta_V_F/delta_I_F;// in ohm
+disp(r_d,"Dynamic resistance in ohm is : ")
+// and the stimated value of the dynamic resistance is
+r_d= V_F/I_F;// in ohm
+disp(r_d,"The stimated value of the Dynamic resistance in ohm is : ")
diff --git a/2102/CH3/EX3.12/exa_3_12.sce b/2102/CH3/EX3.12/exa_3_12.sce new file mode 100755 index 000000000..3d0516d44 --- /dev/null +++ b/2102/CH3/EX3.12/exa_3_12.sce @@ -0,0 +1,21 @@ +// Exa 3.12
+clc;
+clear;
+close;
+// Given data
+Io= 1;// in micro amp
+Io=Io*10^-6;// in amp
+V_F= 0.52;// in V
+V_R= -0.52;// in V
+nita= 1;
+T=300;// in K
+V_T= T/11600;// in volt
+V_T=round(V_T*10^3);// in mV
+
+// (i)
+r_F= nita*V_T*10^-3/(Io*%e^(V_F/(nita*V_T*10^-3)));
+disp(r_F,"Dynamic resistance in the forward biased condition in ohm")
+
+// (ii)
+r_r= nita*V_T*10^-3/(Io*%e^(V_R/(nita*V_T*10^-3)));
+disp(r_r,"Dynamic resistance in the reverse biased condition in ohm")
diff --git a/2102/CH3/EX3.13/exa_3_13.sce b/2102/CH3/EX3.13/exa_3_13.sce new file mode 100755 index 000000000..47846731c --- /dev/null +++ b/2102/CH3/EX3.13/exa_3_13.sce @@ -0,0 +1,16 @@ +// Exa 3.13
+clc;
+clear;
+close;
+// Given data
+V_F= 0.2;// in V
+T=300;// in K
+V_T= T/11600;// in volt
+Io= 1;// in micro amp
+Io=Io*10^-6;// in amp
+Id= Io*(%e^(V_F/V_T)-1)
+I_F=Id;
+r_dc= V_F/I_F;// in ohm
+disp(r_dc,"Dynamic resistance in ohm is : ")
+r_ac= .026/I_F;// in ohm
+disp(r_ac,"Static resistance in ohm is : ")
diff --git a/2102/CH3/EX3.14/exa_3_14.sce b/2102/CH3/EX3.14/exa_3_14.sce new file mode 100755 index 000000000..b0f421d8b --- /dev/null +++ b/2102/CH3/EX3.14/exa_3_14.sce @@ -0,0 +1,25 @@ +// Exa 3.14
+clc;
+clear;
+close;
+// Given data
+// Part (i)
+I_D=2;// in mA
+I_D=I_D*10^-3;// in amp
+V_D= 0.5 ; // in volt
+R_DC= V_D/I_D;// in ohm
+disp(R_DC,"DC resistance levels for the diode in ohm")
+
+// Part (ii)
+I_D=20;// in mA
+I_D=I_D*10^-3;// in amp
+V_D= 0.8 ; // in volt
+R_DC= V_D/I_D;// in ohm
+disp(R_DC,"DC resistance levels for the diode in ohm")
+
+// Part (iii)
+I_D=-1;// in micro amp
+I_D=I_D*10^-6;// in amp
+V_D= -10 ; // in volt
+R_DC= V_D/I_D;// in ohm
+disp(R_DC*10^-6,"DC resistance levels for the diode in Mohm")
diff --git a/2102/CH3/EX3.15/exa_3_15.sce b/2102/CH3/EX3.15/exa_3_15.sce new file mode 100755 index 000000000..e0bbdd636 --- /dev/null +++ b/2102/CH3/EX3.15/exa_3_15.sce @@ -0,0 +1,20 @@ +// Exa 3.15
+clc;
+clear;
+close;
+// Given data
+T1= 25;// in °C
+T2= 100;// in °C
+deltaT= T2-T1;// in °C
+deltaV_F= -1.8*10^-3;// in mV/°C
+I_F= 26;// in mA
+V_F1= 0.7;// in V (at T1)
+V_F2= V_F1+(deltaT*deltaV_F);// in V (at T2)
+// At 25°C
+T= 25+273;// in K
+rd= 26/I_F*T/298;// in Ω
+disp(rd,"Junction dynamic resistance at 25°C in Ω is ")
+// At 100°C
+T= 100+273;// in K
+rd= 26/I_F*T/298;// in Ω
+disp(rd,"Junction dynamic resistance at 100°C in Ω is ")
diff --git a/2102/CH3/EX3.16/exa_3_16.sce b/2102/CH3/EX3.16/exa_3_16.sce new file mode 100755 index 000000000..3dc6db7e7 --- /dev/null +++ b/2102/CH3/EX3.16/exa_3_16.sce @@ -0,0 +1,12 @@ +// Exa 3.16
+clc;
+clear;
+close;
+// Given data
+I= 2;// in mA
+I=I*10^-3;// in A
+V_T= 25;// in mV
+V_T= V_T*10^-3;// in V
+nita= 1;
+r_F= nita*V_T/I;// in Ω
+disp(r_F,"The dynamic resistance of a diode in Ω is :")
diff --git a/2102/CH3/EX3.17/exa_3_17.sce b/2102/CH3/EX3.17/exa_3_17.sce new file mode 100755 index 000000000..8bd1fb8b2 --- /dev/null +++ b/2102/CH3/EX3.17/exa_3_17.sce @@ -0,0 +1,13 @@ +// Exa 3.17
+clc;
+clear;
+close;
+// Given data
+I= 30;// in µA
+I=I*10^-6;// in A
+T=125+273;// in K
+r_F= T/(11600*I*%e^(-0.32/T)*11600);// in Ω
+disp(r_F*10^3,"The dynamic resistance in mΩ is : ")
+
+// Note: There are two error in this example in the book. First one is this that putted value of T in first term of calculation (i.e 3.98/11600) is wrong (correct value is 398 not 3.98).
+// and second one error is this that calculaiton is also wrong for putted value
diff --git a/2102/CH3/EX3.2/exa_3_2.sce b/2102/CH3/EX3.2/exa_3_2.sce new file mode 100755 index 000000000..8e0584f64 --- /dev/null +++ b/2102/CH3/EX3.2/exa_3_2.sce @@ -0,0 +1,16 @@ +// Exa 3.2
+clc;
+clear;
+close;
+// Given data
+toh= 10^-6;// in sec
+I=10;// in mA
+I=I*10^-3;// in A
+n=1;
+V_T= 26;// in mV
+V_T= V_T*10^-3;// in V
+C_D= toh*I/(n*V_T);// in F
+disp(C_D*10^9,"The diffusion capacitance in p-n junction diode in nF")
+
+// Note: There are two mistake in the book. First one is this that they put the wrong value of I to evaluating the value of C_D because the value of I is given 10mA (i.e. 10*10^-3= 10^-2 amp) but they put 10^-3 at place
+// of 10^-2 and second one is calculation error. So the answer in the book is wrong.
diff --git a/2102/CH3/EX3.3/exa_3_3.sce b/2102/CH3/EX3.3/exa_3_3.sce new file mode 100755 index 000000000..a3b334d43 --- /dev/null +++ b/2102/CH3/EX3.3/exa_3_3.sce @@ -0,0 +1,12 @@ +// Exa 3.3
+clc;
+clear;
+close;
+// Given data
+T=300;// in K
+V_T= T/11600;// in V
+v= 0.3;// forward bias voltage in volt
+I= 10;// leakage current in micro amp
+I=I*10^-6;// in amp
+id= I*(%e^(v/V_T));// in amp
+disp(id,"The diode current in amp")
diff --git a/2102/CH3/EX3.4/exa_3_4.sce b/2102/CH3/EX3.4/exa_3_4.sce new file mode 100755 index 000000000..2cdc13539 --- /dev/null +++ b/2102/CH3/EX3.4/exa_3_4.sce @@ -0,0 +1,22 @@ +// Exa 3.4
+clc;
+clear;
+close;
+// Given data
+Vd_1= 0.3;// in V
+V_T= 25;// in mV
+V_T= V_T*10^-3;// in V
+// when Id_1= 1 mA
+Id_1= 1;// in mA
+Id_1=Id_1*10^-3;// in A
+// Formula Id_1= Io*[%e^(Vd/(n*V_T))-1]= Io*[e^(Vd/(n*V_T))]
+// Id_1= Io*[e^(Vd_1/(n*V_T))] (i)
+
+// when Id_2= 200 mA
+Id_2= 200;// in mA
+Id_2=Id_2*10^-3;// in A
+Vd_2= 0.45;// in V
+// Id_2= Io*[e^(Vd_2/(n*V_T))] (ii)
+// Dividing (ii) by (i), we have
+n= (Vd_2-Vd_1)/(log(Id_2/Id_1)*V_T);
+disp(n,"The value of the constant for the diode is ")
diff --git a/2102/CH3/EX3.5/exa_3_5.sce b/2102/CH3/EX3.5/exa_3_5.sce new file mode 100755 index 000000000..5d87282c1 --- /dev/null +++ b/2102/CH3/EX3.5/exa_3_5.sce @@ -0,0 +1,15 @@ +// Exa 3.5
+clc;
+clear;
+close;
+// Given data
+T=300;// in K
+V_T= T/11600;// in V
+n=1;// assuming value
+Jd=10^5;// in A/m^2
+Jo=250;// in mA/m^2
+Jo= Jo*10^-3;// in A/m^2
+//Formula Id= Io*(%e^(Vd/V_T)-1) and after dividing both the sides by area of the junction, we have
+// Jd= Jo*(%e^(Vd/V_T));// approx by neglecting 1
+Vd= V_T*log(Jd/Jo);// in volt
+disp(Vd,"Voltage to be applied across a p-n junction in volt is : ")
diff --git a/2102/CH3/EX3.6/exa_3_6.sce b/2102/CH3/EX3.6/exa_3_6.sce new file mode 100755 index 000000000..ff9fa013f --- /dev/null +++ b/2102/CH3/EX3.6/exa_3_6.sce @@ -0,0 +1,20 @@ +// Exa 3.6
+clc;
+clear;
+close;
+// Given data
+J=10^4;// in A/m^2
+Jo=200;// in mA/m^2
+Jo= Jo*10^-3;// in A/m^2
+T=300;// in K
+V_T= T/11600;// in V
+e=1.6*10^-19;// electrone charge
+k= 1.38*10^-23;
+n=1;// assuming value
+//Formula I= Io*(%e^(e*V/(n*k*T))-1) and after dividing both the sides by area of the junction, we have
+// J= Jo*(%e^(e*V/(n*k*T)));// approx by neglecting 1
+V= n*k*T*log(J/Jo)/e;
+disp(V,"Voltage to be applied across the junction in volt is")
+
+// Note:- In the book, the value of T (i.e. 300) has not been putted to evaluate the value of V. So if we'll not put the value of T to evaluate the value of V, then the answer of coding will be same as book. Hence the
+// the answer in the book is wrong.
diff --git a/2102/CH3/EX3.7/exa_3_7.sce b/2102/CH3/EX3.7/exa_3_7.sce new file mode 100755 index 000000000..481180beb --- /dev/null +++ b/2102/CH3/EX3.7/exa_3_7.sce @@ -0,0 +1,18 @@ +// Exa 3.7
+clc;
+clear;
+close;
+// Given data
+n=2;
+V_T=26;// in mV
+Io= 30;// in mA
+// (i) when
+I_D= 0.1;// in mA
+V_D= n*V_T*log(I_D/Io);// in mV
+disp(V_D,"(i) When I_D is 0.1 mA, The junction forward-bias voltage in mV is : ")
+// (ii) when
+I_D= 10;// in mA
+V_D= n*V_T*log(I_D/Io);// in mV
+disp(V_D,"(ii) When I_D is 10 mA, The junction forward-bias voltage in mV is : ")
+
+// Note: There is calculation error in the book so answer in the book is wrong.
diff --git a/2102/CH3/EX3.8/exa_3_8.sce b/2102/CH3/EX3.8/exa_3_8.sce new file mode 100755 index 000000000..c16726031 --- /dev/null +++ b/2102/CH3/EX3.8/exa_3_8.sce @@ -0,0 +1,12 @@ +// Exa 3.8
+clc;
+clear;
+close;
+// Given data
+I_by_Io= -0.9;
+V_T=26;// in mV
+V_T=V_T*10^-3;//in V
+n=1;
+// From Diode equation I= Io*[e^(e*V/(n*V_T))-1]
+V= n*V_T*log(1+I_by_Io);// in volt
+disp(V*10^3,"Voltage in mV is ")
diff --git a/2102/CH3/EX3.9/exa_3_9.sce b/2102/CH3/EX3.9/exa_3_9.sce new file mode 100755 index 000000000..a64fae3c8 --- /dev/null +++ b/2102/CH3/EX3.9/exa_3_9.sce @@ -0,0 +1,21 @@ +// Exa 3.9
+clc;
+clear;
+close;
+// Given data
+nita= 2;
+T1= 25;// in °C
+T2= 150;// in °C
+k= 8.62*10^-5;
+V_T150= k*(T2+273);// in V
+V_T25= k*(T1+273);// in V
+V= 0.4;// in V
+// Io150= Io25*2^(T2-T1)
+Io150byIo25= 2^((T2-T1)/10);
+I150byI25= Io150byIo25 *( %e^(V/(nita*V_T150))-1)/( %e^(V/(nita*V_T25))-1);
+disp(I150byI25,"The factor by which the current will get multiplied when its temperature is raised from 25°C to 150°C is : ")
+
+// Note : There is some difference between coding and the answer of the book because in the book the values of ( Io150byIo25, V_T150, V_T25 )
+// are putted (respectively 5800, 0.0364, 0.026) whereas the accurate values of these are
+// 5792.6188 , 0.0364626 and 0.0256876
+
diff --git a/2102/CH4/EX4.1/exa_4_1.sce b/2102/CH4/EX4.1/exa_4_1.sce new file mode 100755 index 000000000..a5c681f21 --- /dev/null +++ b/2102/CH4/EX4.1/exa_4_1.sce @@ -0,0 +1,14 @@ +// Exa 4.1
+clc;
+clear;
+close;
+// Given data
+Ep= 0.0153*10^-17;//in J
+lamda= 1300;// in nm
+nita_ext= 0.1;
+e = 1.6*10^-19;//in C
+Eg= 1.42*e;// in eV
+S= nita_ext*Eg/e;// in W/A (where S= deltaP/deltaI )
+disp(S,"Slope of efficiency in W/A is : ")
+
+// Note: In the book, the evaluated value of Eg/e is wrong because the value of 1.42*e/e = 1.42 not equal to 0.956 , Hence the answer in the book is wrong
diff --git a/2102/CH4/EX4.10/exa_4_10.sce b/2102/CH4/EX4.10/exa_4_10.sce new file mode 100755 index 000000000..2e1dfd3f1 --- /dev/null +++ b/2102/CH4/EX4.10/exa_4_10.sce @@ -0,0 +1,13 @@ +// Exa 4.10
+clc;
+clear;
+close;
+// Given data
+V_Dmin= 1.5;// in V
+V_Dmax= 2.3;// in V
+Vs= 10;// in V
+R1= 470;// in Ω
+Imax= (Vs-V_Dmin)/R1;// in A
+Imin= (Vs-V_Dmax)/R1;// in A
+disp(Imax*10^3,"The maximum value of current in mA is : ")
+disp(Imin*10^3,"The minimum value of current in mA is : ")
diff --git a/2102/CH4/EX4.11/exa_4_11.sce b/2102/CH4/EX4.11/exa_4_11.sce new file mode 100755 index 000000000..71cd707df --- /dev/null +++ b/2102/CH4/EX4.11/exa_4_11.sce @@ -0,0 +1,20 @@ +// Exa 4.11
+clc;
+clear;
+close;
+// Given data
+V_Dmin= 1.8;// in V
+V_Dmax= 3;// in V
+// Case first
+Vs= 24;// in V
+R1= 820;// in Ω
+Imin= (Vs-V_Dmax)/R1;// in A
+Imax= (Vs-V_Dmin)/R1;// in A
+disp(Imax*10^3-Imin*10^3,"The variation in current in first case in mA is : ")
+// Case second
+Vs= 5;// in V
+R1= 120;// in Ω
+Imin= (Vs-V_Dmax)/R1;// in A
+Imax= (Vs-V_Dmin)/R1;// in A
+disp(Imax*10^3-Imin*10^3,"The variation in current in first case in mA is : ")
+disp("The variation in current in first case is smaller than in second case, So the brighness in the first case will remain constant , whereas in the second case it will be changing.")
diff --git a/2102/CH4/EX4.12/exa_4_12.sce b/2102/CH4/EX4.12/exa_4_12.sce new file mode 100755 index 000000000..89e236138 --- /dev/null +++ b/2102/CH4/EX4.12/exa_4_12.sce @@ -0,0 +1,18 @@ +// Exa 4.12
+clc;
+clear;
+close;
+// Given data
+Vout= 8;// in V
+V_F= 1.8;// in V
+Ip_max= 16;// in mA
+Ip_max= Ip_max*10^-3;// in A
+I_F= Ip_max;
+Rs1= (Vout-V_F)/I_F;// in Ω
+disp(Rs1,"If V_F= 1.8, then the value of Rs in Ω is :")
+// If
+V_F= 2.0;// in V
+Rs2= (Vout-V_F)/I_F;// in Ω
+disp(Rs2,"If V_F= 2.0, then the value of Rs in Ω is :")
+disp("In either case, the smallest standard value resistor that has a value greater than "+string(Rs1)+ "Ω and "+string(Rs2));
+disp("ohm resistor .is the 390 Ω")
diff --git a/2102/CH4/EX4.13/exa_4_13.sce b/2102/CH4/EX4.13/exa_4_13.sce new file mode 100755 index 000000000..fb41b0b9b --- /dev/null +++ b/2102/CH4/EX4.13/exa_4_13.sce @@ -0,0 +1,9 @@ +// Exa 4.13
+clc;
+clear;
+close;
+// Given data
+Ip= 1;// in mA
+Pop= 1.5;// in mW
+R= Ip/Pop;// in A/W
+disp(R,"The responsivity of the photodiode in A/W is : ")
diff --git a/2102/CH4/EX4.14/exa_4_14.sce b/2102/CH4/EX4.14/exa_4_14.sce new file mode 100755 index 000000000..b849b079d --- /dev/null +++ b/2102/CH4/EX4.14/exa_4_14.sce @@ -0,0 +1,11 @@ +// Exa 4.14
+clc;
+clear;
+close;
+// Given data
+lamda= 800;// in nm
+EpIn_eV= 1248/lamda;// in eV
+h_int= 5/100;
+I=50;// in mA
+P= h_int*EpIn_eV*I;// in mW
+disp(P,"Power radiated by an LED in mW is : ")
diff --git a/2102/CH4/EX4.15/exa_4_15.sce b/2102/CH4/EX4.15/exa_4_15.sce new file mode 100755 index 000000000..7627cbdaf --- /dev/null +++ b/2102/CH4/EX4.15/exa_4_15.sce @@ -0,0 +1,12 @@ +// Exa 4.15
+clc;
+clear;
+close;
+// Given data
+toh_r= 35;// in ns
+toh_nr= 110;// in ns
+toh= toh_r*toh_nr/(toh_r+toh_nr);// in ns
+nita_int= toh/toh_r;
+disp(nita_int,"The internal quantum efficiency is : ")
+
+// Note : There is a calculation error (or miss printed ) in evaluating the value of nita_int (internal quantum efficiency ) so the answer in the book is wrong
diff --git a/2102/CH4/EX4.16/exa_4_16.sce b/2102/CH4/EX4.16/exa_4_16.sce new file mode 100755 index 000000000..b305e4bfd --- /dev/null +++ b/2102/CH4/EX4.16/exa_4_16.sce @@ -0,0 +1,9 @@ +// Exa 4.16
+clc;
+clear;
+close;
+// Given data
+N1= 6*10^6;// Number of EHPs generated
+N2= 8*10^6;// Number of incident photons
+nita= N1/N2;
+disp(nita*100,"The quantum efficiency of photon detector in % is : ")
diff --git a/2102/CH4/EX4.17/exa_4_17.sce b/2102/CH4/EX4.17/exa_4_17.sce new file mode 100755 index 000000000..eaa828043 --- /dev/null +++ b/2102/CH4/EX4.17/exa_4_17.sce @@ -0,0 +1,15 @@ +// Exa 4.17
+clc;
+clear;
+close;
+// Given data
+e= 1.6*10^-19;// in C
+Eg= 0.75*e;// in J
+h= 6.62*10^-34; // in Js
+c= 3*10^8;// in m/s
+n=90/100;
+// Formula Eg= h*c/lamda
+lamda= h*c/Eg;// in m
+lamda=lamda*10^9;// in nm
+R= n*lamda/1248;// in A/W
+disp(R,"Responsivity in A/W is : ")
diff --git a/2102/CH4/EX4.18/exa_4_18.sce b/2102/CH4/EX4.18/exa_4_18.sce new file mode 100755 index 000000000..d4f62c0a8 --- /dev/null +++ b/2102/CH4/EX4.18/exa_4_18.sce @@ -0,0 +1,13 @@ +// Exa 4.18
+clc;
+clear;
+close;
+// Given data
+V_Dmin= 1;// in V
+V_Dmax= 2;// in V
+Vs= 20;// in V
+R1= 470;// in Ω
+Imax= (Vs-V_Dmin)/R1;// in A
+Imin= (Vs-V_Dmax)/R1;// in A
+disp(Imax*10^3,"The maximum value of current in mA");
+disp(Imin*10^3,"The maximum value of current in mA");
diff --git a/2102/CH4/EX4.19/exa_4_19.sce b/2102/CH4/EX4.19/exa_4_19.sce new file mode 100755 index 000000000..7fd53600c --- /dev/null +++ b/2102/CH4/EX4.19/exa_4_19.sce @@ -0,0 +1,20 @@ +// Exa 4.19
+clc;
+clear;
+close;
+// Given data
+V_Dmin= 2.5;// in V
+V_Dmax= 5;// in V
+// Case First
+Vs= 25;// in V
+Rs= 250;// in Ω
+Imax= (Vs-V_Dmin)/Rs;// in A
+Imin= (Vs-V_Dmax)/Rs;// in A
+disp(Imax*10^3-Imin*10^3,"The variation in current in first case in mA is : ")
+// Case sec
+Vs= 10;// in V
+Rs= 130;// in Ω
+Imax= (Vs-V_Dmin)/Rs;// in A
+Imin= (Vs-V_Dmax)/Rs;// in A
+disp(Imax*10^3-Imin*10^3,"The variation in current in second case in mA is : ")
+disp("Hence for the 25-V supply, the brightness of LED will be constant and for 10 V , it will be change")
diff --git a/2102/CH4/EX4.2/exa_4_2.sce b/2102/CH4/EX4.2/exa_4_2.sce new file mode 100755 index 000000000..d9a5399ae --- /dev/null +++ b/2102/CH4/EX4.2/exa_4_2.sce @@ -0,0 +1,17 @@ +// Exa 4.2
+clc;
+clear;
+close;
+// Given data
+e = 1.6*10^-19;//in C
+Eg= 1.48*e;// in J
+R=1;// in Ω
+i_p= 100;// in mA
+i_p= i_p*10^-3;// in A
+i_F= 10;// in mA
+i_F= i_F*10^-3;// in A
+Popt= 1.25;// in mW
+Popt= Popt*10^-3;// in W
+nitaP= Popt/((i_p^2*Eg/e)+i_F^2*R)*100;// in %
+disp(nitaP,"Power efficiency in % is : ")
+
diff --git a/2102/CH4/EX4.20/exa_4_20.sce b/2102/CH4/EX4.20/exa_4_20.sce new file mode 100755 index 000000000..b4c0ea7a1 --- /dev/null +++ b/2102/CH4/EX4.20/exa_4_20.sce @@ -0,0 +1,14 @@ +// Exa 4.20
+clc;
+clear;
+close;
+// Given data
+V1= 0.3;// in V
+V2= 0.7;// in V
+R1= 6;// in kΩ
+R2= 6;// in kΩ
+Vs= 12;// in V
+I1= (Vs-V1)/R1;// in mA
+I2= (Vs-V2)/R2;// in mA
+disp(I1,"The value of I1 in mA is : ")
+disp(I2,"The value of I2 in mA is : ")
diff --git a/2102/CH4/EX4.21/exa_4_21.sce b/2102/CH4/EX4.21/exa_4_21.sce new file mode 100755 index 000000000..937bff7b7 --- /dev/null +++ b/2102/CH4/EX4.21/exa_4_21.sce @@ -0,0 +1,13 @@ +// Exa 4.21
+clc;
+clear;
+close;
+// Given data
+n=40/100;
+lamda= 800;// in nm
+Ip = 2*10^-6;// in A
+R= n*lamda/1248;
+// part (b)
+Pop= Ip/R;// in W
+disp(R,"Responsivity is : ")
+disp(Pop,"The received optical power in watt is : ")
diff --git a/2102/CH4/EX4.22/exa_4_22.sce b/2102/CH4/EX4.22/exa_4_22.sce new file mode 100755 index 000000000..ef4c48562 --- /dev/null +++ b/2102/CH4/EX4.22/exa_4_22.sce @@ -0,0 +1,20 @@ +// Exa 4.22
+clc;
+clear;
+close;
+// Given data
+I=35;// in mA
+I=I*10^-3;// in A
+lamda=1300*10^-9;// in m
+h= 6.62*10^-34; // in Js
+c= 3*10^8;// in m/s
+e= 1.6*10^-19;// in C
+toh_r= 30;// in ns
+toh_nr= 90;// in ns
+toh= toh_r*toh_nr/(toh_r+toh_nr);// in ns
+nita_int= toh/toh_r;
+disp(nita_int,"The internal quantum efficiency is : ")
+Ep= h*c/lamda;// in J
+P= nita_int*Ep*I/e;// in W
+disp(P*10^3,"The optical power generated internally to the LED in mW is : ");
+
diff --git a/2102/CH4/EX4.23/exa_4_23.sce b/2102/CH4/EX4.23/exa_4_23.sce new file mode 100755 index 000000000..043c7f9a8 --- /dev/null +++ b/2102/CH4/EX4.23/exa_4_23.sce @@ -0,0 +1,11 @@ +// Exa 4.23
+clc;
+clear;
+close;
+// Given data
+lamda= 600;// in nm
+h_int= 4/100;
+EpIn_eV= 1248/lamda;// in eV
+I=50;// in mA
+P= h_int*EpIn_eV*I;// in mW
+disp(P,"Power radiated by an LED in mW is : ")
diff --git a/2102/CH4/EX4.24/exa_4_24.sce b/2102/CH4/EX4.24/exa_4_24.sce new file mode 100755 index 000000000..481d5f946 --- /dev/null +++ b/2102/CH4/EX4.24/exa_4_24.sce @@ -0,0 +1,14 @@ +// Exa 4.24
+clc;
+clear;
+close;
+// Given data
+
+V_Dmin= 2;// in V
+V_Dmax= 4;// in V
+Vs= 15;// in V
+R1= 470;// in Ω
+Imax= (Vs-V_Dmin)/R1;// in A
+Imin= (Vs-V_Dmax)/R1;// in A
+disp(Imax*10^3,"The maximum value of current in mA is : ")
+disp(Imin*10^3,"The minimum value of current in mA is : ")
diff --git a/2102/CH4/EX4.25/exa_4_25.sce b/2102/CH4/EX4.25/exa_4_25.sce new file mode 100755 index 000000000..3684956eb --- /dev/null +++ b/2102/CH4/EX4.25/exa_4_25.sce @@ -0,0 +1,12 @@ +// Exa 4.25
+clc;
+clear;
+close;
+// Given data
+Vout= 10;// in V
+V_F= 2;// in V
+Ip_max= 15;// in mA
+Ip_max= Ip_max*10^-3;// in A
+I_F= Ip_max;
+Rs= (Vout-V_F)/I_F;// in Ω
+disp(Rs,"The value of Rs in Ω is :")
diff --git a/2102/CH4/EX4.26/exa_4_26.sce b/2102/CH4/EX4.26/exa_4_26.sce new file mode 100755 index 000000000..7868e9619 --- /dev/null +++ b/2102/CH4/EX4.26/exa_4_26.sce @@ -0,0 +1,14 @@ +// Exa 4.26
+clc;
+clear;
+close;
+// Given data
+Ep= 0.0153*10^-17;//in J
+lamda= 1300;// in nm
+nita_ext= 0.1;
+e = 1.6*10^-19;//in C
+Eg= 1.42*e;// in eV
+S= nita_ext*Eg/e;// in W/A (where S= deltaP/deltaI )
+disp(S,"Slope of efficiency in W/A is : ")
+
+// Note: In the book, the evaluated value of Eg/e is wrong because the value of 1.42*e/e = 1.42 not equal to 0.956 , Hence the answer in the book is wrong
diff --git a/2102/CH4/EX4.27/exa_4_27.sce b/2102/CH4/EX4.27/exa_4_27.sce new file mode 100755 index 000000000..fa896d5ad --- /dev/null +++ b/2102/CH4/EX4.27/exa_4_27.sce @@ -0,0 +1,17 @@ +// Exa 4.27
+clc;
+clear;
+close;
+// Given data
+e = 1.6*10^-19;//in C
+Eg= 1.48*e;// in J
+R=1;// in Ω
+i_p= 100;// in mA
+i_p= i_p*10^-3;// in A
+i_F= 10;// in mA
+i_F= i_F*10^-3;// in A
+Popt= 1.25;// in mW
+Popt= Popt*10^-3;// in W
+nitaP= Popt/((i_p^2*Eg/e)+i_F^2*R)*100;// in %
+disp(nitaP,"Power efficiency in % is : ")
+
diff --git a/2102/CH4/EX4.28/exa_4_28.sce b/2102/CH4/EX4.28/exa_4_28.sce new file mode 100755 index 000000000..b34107f68 --- /dev/null +++ b/2102/CH4/EX4.28/exa_4_28.sce @@ -0,0 +1,8 @@ +// Exa 4.28
+clc;
+clear;
+close;
+kT= 0.025;// in eV (Let as take T=300 K)
+E= 1.42/2;// in ev (Let E = E_C-E_F)
+FE= %e^(-E/kT);
+disp(FE,"The probability of exciting electrons at conduction band will be ")
diff --git a/2102/CH4/EX4.29/exa_4_29.sce b/2102/CH4/EX4.29/exa_4_29.sce new file mode 100755 index 000000000..99f2d3989 --- /dev/null +++ b/2102/CH4/EX4.29/exa_4_29.sce @@ -0,0 +1,11 @@ +// Exa 4.29
+clc;
+clear;
+close;
+k= 1.38*10^-23;
+T= 300;// in K (assume)
+V_D= 0.7;// The depletion voltage for silicon
+e=1.6*10^-19;// in C
+// n_n/n_p= p_p/p_n = %e^(e*V_D/(k*T))
+ratio= %e^(e*V_D/(k*T));// ratio of majority to minority charge carriers in n and p of a silicon semiconductor
+disp(ratio,"Ratio of majority to minority charge carriers in n and p of a silicon semiconductor is : ")
diff --git a/2102/CH4/EX4.3/exa_4_3.sce b/2102/CH4/EX4.3/exa_4_3.sce new file mode 100755 index 000000000..ca357efe8 --- /dev/null +++ b/2102/CH4/EX4.3/exa_4_3.sce @@ -0,0 +1,13 @@ +// Exa 4.3
+clc;
+clear;
+close;
+// Given data
+lamda= 670;// in nm
+h_int= 1/100;
+EpIn_eV= 1248/lamda;// in eV
+I=50;// in mA
+P= h_int*EpIn_eV*I;// in mW
+disp(P,"Power radiated by an LED in mW is : ")
+
+// Note : There is a calculation error in evaluating the value of P so the answer in the book is wrong
diff --git a/2102/CH4/EX4.4/exa_4_4.sce b/2102/CH4/EX4.4/exa_4_4.sce new file mode 100755 index 000000000..5ca4adb36 --- /dev/null +++ b/2102/CH4/EX4.4/exa_4_4.sce @@ -0,0 +1,21 @@ +// Exa 4.4
+clc;
+clear;
+close;
+// Given data
+I=40;// in mA
+I=I*10^-3;// in A
+lamda=1310*10^-9;// in m
+h= 6.62*10^-34; // in Js
+c= 3*10^8;// in m/s
+e= 1.6*10^-19;// in C
+toh_r= 30;// in ns
+toh_nr= 100;// in ns
+toh= toh_r*toh_nr/(toh_r+toh_nr);
+nita_int= toh/toh_r;
+disp(nita_int,"The internal quantum efficiency is : ")
+Ep= h*c/lamda;// in J
+P= nita_int*Ep*I/e;// in W
+disp(P*10^3,"The optical power generated internally to the LED in mW is : ");
+
+// Note : There is a calculation error in evaluating the value of P so the answer in the book is wrong
diff --git a/2102/CH4/EX4.5/exa_4_5.sce b/2102/CH4/EX4.5/exa_4_5.sce new file mode 100755 index 000000000..165e3b30d --- /dev/null +++ b/2102/CH4/EX4.5/exa_4_5.sce @@ -0,0 +1,11 @@ +// Exa 4.5
+clc;
+clear;
+close;
+// Given data
+// Part (a)
+R= 0.85;// in A/W
+Pop= 1;// in mW
+Ip= R*Pop;// in mA
+disp(Ip,"Part (a) The photocurrent in mA is : ")
+disp("Part (b) If the incident light power is 2mW then it is not proportional to Pop so it can not be found the value of photocurrent")
diff --git a/2102/CH4/EX4.6/exa_4_6.sce b/2102/CH4/EX4.6/exa_4_6.sce new file mode 100755 index 000000000..f9fc0e080 --- /dev/null +++ b/2102/CH4/EX4.6/exa_4_6.sce @@ -0,0 +1,9 @@ +// Exa 4.6
+clc;
+clear;
+close;
+// Given data
+N1= 5.4*10^6;// Number of EHPs generated
+N2= 6*10^6;// Number of incident photons
+nita= N1/N2;
+disp(nita*100,"The quantum efficiency at 1300 nm in % is : ")
diff --git a/2102/CH4/EX4.7/exa_4_7.sce b/2102/CH4/EX4.7/exa_4_7.sce new file mode 100755 index 000000000..07ac1bc0a --- /dev/null +++ b/2102/CH4/EX4.7/exa_4_7.sce @@ -0,0 +1,15 @@ +// Exa 4.7
+clc;
+clear;
+close;
+// Given data
+e= 1.6*10^-19;// in C
+Eg= 0.75*e;// in J
+h= 6.62*10^-34; // in Js
+c= 3*10^8;// in m/s
+n=70/100;
+// Formula Eg= h*c/lamda
+lamda= h*c/Eg;// in m
+lamda=lamda*10^9;// in nm
+R= n*lamda/1248;// in A/W
+disp(R,"Responsivity in A/W is : ")
diff --git a/2102/CH4/EX4.8/exa_4_8.sce b/2102/CH4/EX4.8/exa_4_8.sce new file mode 100755 index 000000000..e9d796115 --- /dev/null +++ b/2102/CH4/EX4.8/exa_4_8.sce @@ -0,0 +1,23 @@ +// Exa 4.8
+clc;
+clear;
+close;
+// Given data
+n=50/100;
+lamda= 900;// in nm
+R= n*lamda/1248;// in A/W
+disp(R,"Responsivity in A/W is : ")
+
+// Part (b)
+Ip= 10^-6;// in A
+Pop= Ip/R;// in W
+disp(Pop,"The received optical power in W is : ")
+
+// Part (c)
+h= 6.62*10^-34; // in Js
+c= 3*10^8;// in m/s
+// Pop= n*h*c/lamda
+n= Pop*lamda*10^-9/(h*c);
+disp(n,"The corresponding number of received photons is : ")
+
+// Note : There is a calculation error in evaluating the value of n (number of received photons) , so the answer in the book is wrong
diff --git a/2102/CH4/EX4.9/exa_4_9.sce b/2102/CH4/EX4.9/exa_4_9.sce new file mode 100755 index 000000000..1410f9128 --- /dev/null +++ b/2102/CH4/EX4.9/exa_4_9.sce @@ -0,0 +1,14 @@ +// Exa 4.9
+clc;
+clear;
+close;
+// Given data
+V=4;// in V
+Vr1= 0.7;// in V
+Vr2= 0.3;// in V
+R1= 4;// in kΩ
+R2= 4;// in kΩ
+I1= (V-Vr1)/R1;// in mA
+I2= (V-Vr2)/R2;// in mA
+disp(I1,"The value of I1 in mA is : ")
+disp(I2,"The value of I2 in mA is : ")
diff --git a/2102/CH5/EX5.1/exa_5_1.sce b/2102/CH5/EX5.1/exa_5_1.sce new file mode 100755 index 000000000..e93207668 --- /dev/null +++ b/2102/CH5/EX5.1/exa_5_1.sce @@ -0,0 +1,15 @@ +// Exa 5.2
+clc;
+clear;
+close;
+// Given data
+C1= 5; // in pF
+C1= C1*10^-12;// in F
+C2= 50; // in pF
+C2= C2*10^-12;// in F
+L= 10;// in mH
+L= L*10^-3;// in H
+TuningRange= 1/(2*%pi*sqrt(L*C1*C2/(C1+C2)));// in Hz
+disp(TuningRange*10^-3,"The tuning range for the circuit in kHz is : ")
+
+// Note : In the book, this example is not solved. Only given data is shown.
diff --git a/2102/CH5/EX5.10/exa_5_10.sce b/2102/CH5/EX5.10/exa_5_10.sce new file mode 100755 index 000000000..38f24831c --- /dev/null +++ b/2102/CH5/EX5.10/exa_5_10.sce @@ -0,0 +1,16 @@ +// Exa 5.10
+clc;
+clear;
+close;
+// Given data
+C1= 4;// in pF
+C2= 60;// in pF
+L=8*10^-3;// in H
+C_Tmin= C1*C1/(C1+C1);// in pF
+C_Tmin= C_Tmin*10^-12;// in F
+C_Tmax= C2*C2/(C2+C2);// in pF
+C_Tmax= C_Tmax*10^-12;// in F
+Fc_max= 1/(2*%pi*sqrt(L*C_Tmin));// in Hz
+Fc_min= 1/(2*%pi*sqrt(L*C_Tmax));// in Hz
+disp(Fc_max*10^-6,"Maximum resonance frequency in MHz is :")
+disp(Fc_min*10^-6,"Minimum resonance frequency in MHz is :")
diff --git a/2102/CH5/EX5.11/exa_5_11.sce b/2102/CH5/EX5.11/exa_5_11.sce new file mode 100755 index 000000000..2bdd32f84 --- /dev/null +++ b/2102/CH5/EX5.11/exa_5_11.sce @@ -0,0 +1,16 @@ +// Exa 5.11
+clc;
+clear;
+close;
+// Given data
+C1= 6;// in pF
+C2= 50;// in pF
+L=12*10^-3;// in H
+C_Tmin= C1*C1/(C1+C1);// in pF
+C_Tmin= C_Tmin*10^-12;// in F
+C_Tmax= C2*C2/(C2+C2);// in pF
+C_Tmax= C_Tmax*10^-12;// in F
+Fc_max= 1/(2*%pi*sqrt(L*C_Tmin));// in Hz
+Fc_min= 1/(2*%pi*sqrt(L*C_Tmax));// in Hz
+disp(Fc_max*10^-6,"Maximum resonance frequency in MHz is :")
+disp(Fc_min*10^-6,"Minimum resonance frequency in MHz is :")
diff --git a/2102/CH5/EX5.2/exa_5_2.sce b/2102/CH5/EX5.2/exa_5_2.sce new file mode 100755 index 000000000..77e33d966 --- /dev/null +++ b/2102/CH5/EX5.2/exa_5_2.sce @@ -0,0 +1,12 @@ +// Exa 5.2
+clc;
+clear;
+close;
+// Given data
+C_T1= 15; // in pF
+Vb1=8;// in V
+Vb2= 12; // in V
+// As C_T proportional to 1/sqrt(Vb), and
+// C_T1/C_T2= sqrt(Vb2/Vb1), so
+C_T2= C_T1*sqrt(Vb1/Vb2);// in pF
+disp(C_T2,"The value of C_T2 in pF is : ")
diff --git a/2102/CH5/EX5.3/exa_5_3.sce b/2102/CH5/EX5.3/exa_5_3.sce new file mode 100755 index 000000000..91b56aa87 --- /dev/null +++ b/2102/CH5/EX5.3/exa_5_3.sce @@ -0,0 +1,11 @@ +// Exa 5.3
+clc;
+clear;
+close;
+// Given data
+epsilon_Ge= 16/(36*%pi*10^-11);// in f/C
+A=10^-12;
+d=2*10^-4;// in cm
+// C_T= epsilon_0*A/d= epsilon_Ge*A/d
+C_T= epsilon_Ge*A/d;//in pF
+disp(C_T,"The space charge capacitance in pF")
diff --git a/2102/CH5/EX5.4/exa_5_4.sce b/2102/CH5/EX5.4/exa_5_4.sce new file mode 100755 index 000000000..348b62fb9 --- /dev/null +++ b/2102/CH5/EX5.4/exa_5_4.sce @@ -0,0 +1,14 @@ +// Exa 5.4
+clc;
+clear;
+close;
+// Given data
+D= 0.102;// in cm
+sigma_P= 0.286;// in Ωcm
+q= 1.6*10^-19;// in C
+miuP= 500;
+Vb= 5+0.35;//in V
+A= %pi*D^2/4;// in cm^2
+N_A= sigma_P/(q*miuP);// at/c
+C_T= 2.92*10^-4*(N_A/Vb)^(1/2)*A;//
+disp(C_T,"The value of transition in pf/cm^2")
diff --git a/2102/CH5/EX5.5/exa_5_5.sce b/2102/CH5/EX5.5/exa_5_5.sce new file mode 100755 index 000000000..1b7c31f04 --- /dev/null +++ b/2102/CH5/EX5.5/exa_5_5.sce @@ -0,0 +1,12 @@ +// Exa 5.5
+clc;
+clear;
+close;
+// Given data
+epsilon= 12/(36*%pi*10^11);// in F/cm (value of epsilon for silicon)
+q= 1.6*10^-19;// in C
+// C_T= epsilon*A/d , where d= 2*epsilon*Vi/(q*NA)^(/2)
+// Hence C_T/A= epsilon/d= sqrt(q*epsilon/2)*sqrt(NA/Vi)
+// Let
+value = sqrt(q*epsilon/2);
+disp("C_T= "+string(value*10^12)+" sqrt(NA/Vi) in pF/cm^2");
diff --git a/2102/CH5/EX5.6/exa_5_6.sce b/2102/CH5/EX5.6/exa_5_6.sce new file mode 100755 index 000000000..5393f7586 --- /dev/null +++ b/2102/CH5/EX5.6/exa_5_6.sce @@ -0,0 +1,14 @@ +// Exa 5.6
+clc;
+clear;
+close;
+// Given data
+V1= 5;// in V
+IncreaseInVolt= 1.5;// in V
+C_T1= 20;// in pF
+// Formula C_T= lamda/sqrt(V)
+lamda= C_T1*sqrt(V1);
+// When
+V2= V1+IncreaseInVolt;// in V
+C_T2= lamda/sqrt(V2);
+disp(C_T1-C_T2,"The decrease in capacitance in pF is : ")
diff --git a/2102/CH5/EX5.7/exa_5_7.sce b/2102/CH5/EX5.7/exa_5_7.sce new file mode 100755 index 000000000..d1cd22e98 --- /dev/null +++ b/2102/CH5/EX5.7/exa_5_7.sce @@ -0,0 +1,11 @@ +// Exa 5.7
+clc;
+clear;
+close;
+// Given data
+Vf= 0.7;// in V
+If= 10;// in mA
+If= If*10^-3;// in A
+toh= 70;// in ns
+Cd= toh*If/Vf;// in nf
+disp(Cd,"Diffusion capacitance for a si diode in nf is :")
diff --git a/2102/CH5/EX5.8/exa_5_8.sce b/2102/CH5/EX5.8/exa_5_8.sce new file mode 100755 index 000000000..69c58aa9e --- /dev/null +++ b/2102/CH5/EX5.8/exa_5_8.sce @@ -0,0 +1,16 @@ +// Exa 5.8
+clc;
+clear;
+close;
+// Given data
+N_A= 4*10^20;// per m^3
+Vi= 0.2;// in V
+q= 1.6*10^-19;
+V= -1;// in V
+A= 0.8*10^-6;/// in m^2
+epsilon_r= 16;
+epsilon_o= 8.854*10^-12;// in F
+epsilon= epsilon_o*epsilon_r;
+d= [2*epsilon*(Vi-V)/(q*N_A)]^(1/2);
+C_T= epsilon*A/d;// in F
+disp(C_T*10^12,"The transition capacitance in pF is :")
diff --git a/2102/CH5/EX5.9/exa_5_9.sce b/2102/CH5/EX5.9/exa_5_9.sce new file mode 100755 index 000000000..f7ca923b8 --- /dev/null +++ b/2102/CH5/EX5.9/exa_5_9.sce @@ -0,0 +1,14 @@ +// Exa 5.9
+clc;
+clear;
+close;
+// Given data
+V1= 5;// in V
+V2 = V1+1;// in V
+C_T1= 20;// in pF
+// C_T2/C_T1 = sqrt(V1/V2)
+C_T2= C_T1* sqrt(V1/V2);
+disp(C_T2,"The capacitance for 1-V increase in bias in pF is : ")
+disp(C_T1-C_T2,"Therefore, the decrease in capacitance in pF is :")
+
+// NOTE: The answer in the book is wrong due to calculation error to evalaute the value of C_T2.
diff --git a/2102/CH6/EX6.1/exa_6_1.sce b/2102/CH6/EX6.1/exa_6_1.sce new file mode 100755 index 000000000..368eb0163 --- /dev/null +++ b/2102/CH6/EX6.1/exa_6_1.sce @@ -0,0 +1,15 @@ +// Exa 6.1
+clc;
+clear;
+close;
+// Given data
+I_DSS= 10;// in mA
+V_P= -4;// in V
+ V_GS=[-4:0.1:0];
+//V_GS= -3;
+I_D= I_DSS*(1-V_GS/V_P)^2
+plot(V_GS,I_D);
+xlabel("V_GS in volts");
+ylabel("I_D in mA")
+title("The transfer curve")
+disp("Curve is shown in figure")
diff --git a/2102/CH6/EX6.10/exa_6_10.sce b/2102/CH6/EX6.10/exa_6_10.sce new file mode 100755 index 000000000..7e1d0ddd9 --- /dev/null +++ b/2102/CH6/EX6.10/exa_6_10.sce @@ -0,0 +1,12 @@ +// Exa 6.10
+clc;
+clear;
+close;
+// Given data
+I_DSS= 10;// in mA
+I_DSS= I_DSS*10^-3;// in A
+gm= 10;// in ms
+gm=gm*10^-3;// in s
+// V_GSoff = V_GS = Vp so , gm = gmo = -2*I_DSS/V_GSSoff
+V_GSoff= -2*I_DSS/gm;// in volt
+disp(V_GSoff,"The value of V_GS(off) in volts is : ")
diff --git a/2102/CH6/EX6.11/exa_6_11.sce b/2102/CH6/EX6.11/exa_6_11.sce new file mode 100755 index 000000000..7fe0b96e7 --- /dev/null +++ b/2102/CH6/EX6.11/exa_6_11.sce @@ -0,0 +1,14 @@ +// Exa 6.11
+clc;
+clear;
+close;
+// Given data
+I_DSS= 10;// in mA
+I_DSS= I_DSS*10^-3;// in A
+V_P= -4;// in V
+V_GS= -2;// in V
+I_DS= I_DSS*(1-V_GS/V_P)^2;// in A
+V_DS= V_P;// in V
+V_DSmin= V_P;// in volt
+disp(I_DS*10^3,"The value of I_DS in mA is : ")
+disp(V_DSmin,"The minimum value of V_DS in volts is : ")
diff --git a/2102/CH6/EX6.12/exa_6_12.sce b/2102/CH6/EX6.12/exa_6_12.sce new file mode 100755 index 000000000..8ce3d0e1d --- /dev/null +++ b/2102/CH6/EX6.12/exa_6_12.sce @@ -0,0 +1,30 @@ +// Exa 6.12
+clc;
+clear;
+close;
+// Given data
+R_G= 1;// in MΩ
+R_G= R_G*10^6;// in Ω
+V_DD= 24;// in V
+R_D= 56;// in kΩ
+R_D=R_D*10^3;// in Ω
+Rs= 4;// kΩ
+Rs= Rs*10^3;// in Ω
+// Part (a)
+I_DSS= 1;// in mA
+I_DSS= I_DSS*10^-3;// in A
+V_P= -1;// in V
+V_D= 10;// in V
+I_D= (V_DD-V_D)/R_D;// in A
+// I_D= I_DSS*(1-V_GS/V_P)^2;// in A
+V_GS= V_P*(1-sqrt(I_D/I_DSS));// in V
+R1= abs(V_GS)/I_D;// in Ω
+disp(R1*10^-3,"The value of R1 in kΩ is : ")
+
+// Part (b)
+gmo= -2*I_DSS/V_P;// A/V
+gm= gmo*(1-(V_GS)/V_P);// A/V;
+Ri= R_G/(1-gm*Rs/(1+gm*Rs)*Rs/(Rs+R1));// in Ω
+disp(Ri*10^-6,"The effective input impedence in MΩ is :")
+
+
diff --git a/2102/CH6/EX6.13/exa_6_13.sce b/2102/CH6/EX6.13/exa_6_13.sce new file mode 100755 index 000000000..de6ac3dfb --- /dev/null +++ b/2102/CH6/EX6.13/exa_6_13.sce @@ -0,0 +1,28 @@ +// Exa 6.13
+clc;
+clear;
+close;
+// Given data
+I_DSS= -4;// in mA
+V_P= 4;// in V
+R1= 1.3*10^6;// in Ω
+R2= 200*10^3;// in Ω
+V_DD= -60;// in V
+R_D= 18;// in kΩ
+R_D= R_D*10^3;// in Ω
+Rs= 4;// in kΩ
+Rs= Rs*10^3;// in Ω
+V_GG= V_DD*R2/(R1+R2);// in V
+R_G= R1*R2/(R1+R2);// in Ω
+// V_GS= V_GG-V_P*I_D
+// I_D= I_DSS*(1-(V_GG-V_P*I_D)/V_P)^2;// in mA or
+// I_D^2*I_DSS + I_D*(2*(1-V_GG/V_P)*I_DSS-1) +((1-V_GG/V_P)^2*I_DSS)
+I_D= [I_DSS (2*(1-V_GG/V_P)*I_DSS-1) ((1-V_GG/V_P)^2*I_DSS)]
+I_D=roots(I_D);
+I_D=I_D(2);// in mA
+I_D=I_D*10^-3;// in A
+V_GS= V_GG-Rs*I_D;// in V
+V_DS= V_DD-I_D*(R_D+Rs);// in V
+disp(I_D*10^3,"The value of I_D in mA is : ")
+disp(V_GS,"The value of V_GS in volts is ")
+disp(V_DS,"The value of V_DS in volts is ")
diff --git a/2102/CH6/EX6.14/exa_6_14.sce b/2102/CH6/EX6.14/exa_6_14.sce new file mode 100755 index 000000000..ad1c260a4 --- /dev/null +++ b/2102/CH6/EX6.14/exa_6_14.sce @@ -0,0 +1,23 @@ +// Exa 6.14
+clc;
+clear;
+close;
+// Given data
+I_DSS= 4;// in mA
+I_DSS= I_DSS*10^-3;// in A
+V_P= -2;// in V
+V_DD= 10;// in V
+V_SS= V_DD;// in V
+V_GS2=0;// in V
+I_D= I_DSS*(1-V_GS2/V_P)^2;// in A
+// since I_D= I_DSS
+V_GS= 0;// in volt
+// Formula V_SS= V_DS-V_GS
+V_DS= V_SS-V_GS;// in volt
+disp(I_D*10^3,"The value of I_D in mA is :")
+disp(V_GS,"The value of V_GS in volt is : ")
+disp(V_DS,"The value of V_DS in volts is :")
+
+if V_DS > V_GS-V_P then
+ disp("The active region operation of the upper JFET is confirmed ")
+end
diff --git a/2102/CH6/EX6.15/exa_6_15.sce b/2102/CH6/EX6.15/exa_6_15.sce new file mode 100755 index 000000000..04ccda31c --- /dev/null +++ b/2102/CH6/EX6.15/exa_6_15.sce @@ -0,0 +1,24 @@ +// Exa 6.15
+clc;
+clear;
+close;
+// Given data
+I_DSS= 16;// in mA
+I_DSS= I_DSS*10^-3;// in A
+V_P= -4;// in V
+V_DD= 18;// in V
+V_GG= 0;// in V
+R_D= 500;// in Ω
+Rs= R_D;// in Ω
+// V_GS= V_GG-V_P*I_D or = I_D= -V_GS/Rs (as V_GSS= 0) (i)
+// I_D= I_DSS*(1-V_GS/V_P)^2 (ii)
+// From (i) and (ii)
+// V_GS^2*(1/V_P^2) + V_GS*(1/(I_DSS*Rs)-2/V_P) +1 =0
+V_GS= [(1/V_P^2) (1/(I_DSS*Rs)-2/V_P) 1]
+V_GS= roots(V_GS);
+V_GS= V_GS(2);// since 0>= V_GS >=-4
+ I_D= I_DSS*(1-V_GS/V_P)^2;// in A
+ V_DS= V_DD-I_D*(R_D+Rs);// in V
+disp(I_D*10^3,"The value of I_D in mA is : ")
+disp(V_GS,"The value of V_GS in volts is : ");
+disp("Since the value of V_DS is greater than the difference of V_GS and V_P, So the saturation region operation is confirmed ");
diff --git a/2102/CH6/EX6.16/exa_6_16.sce b/2102/CH6/EX6.16/exa_6_16.sce new file mode 100755 index 000000000..a3d4af0b1 --- /dev/null +++ b/2102/CH6/EX6.16/exa_6_16.sce @@ -0,0 +1,19 @@ +// Exa 6.16
+clc;
+clear;
+close;
+// Given data
+
+I_DSS= 10;// in mA
+I_DSS= I_DSS*10^-3;// in A
+V_P= -4;// in V
+V_DD= 12;// in V
+V_GG= 0;// in V
+// Part (a) when
+V_GS= -2;// in V
+I_D= I_DSS*(1-V_GS/V_P)^2;// in A
+disp(I_D*10^3,"When V_GS= -2 then, the value of I_D in mA ")
+// Part (b) when
+I_D= 9*10^-3;// in A
+V_GS= V_P*(1-(sqrt(I_D/I_DSS)));// in V
+disp(V_GS,"When I_D = 9 mA, then the value of V_GS in volts is : ")
diff --git a/2102/CH6/EX6.17/exa_6_17.sce b/2102/CH6/EX6.17/exa_6_17.sce new file mode 100755 index 000000000..265020f4b --- /dev/null +++ b/2102/CH6/EX6.17/exa_6_17.sce @@ -0,0 +1,16 @@ +// Exa 6.17
+clc;
+clear;
+close;
+// Given data
+I_DSS= 8.7;// in mA
+I_DSS= I_DSS*10^-3;// in A
+V_P= -3;// in V
+V_GS= -1;// in V
+I_DS= I_DSS*(1-V_GS/V_P)^2;// in A
+disp(I_DS*10^3,"The value of I_DS in mA is : ")
+gmo= -2*I_DSS/V_P*1000;// ms
+gm= gmo*(1-V_GS/V_P); // in ms
+disp(gmo,"The value of gmo in ms is")
+disp(gm,"The value of gm in ms is")
+
diff --git a/2102/CH6/EX6.2/exa_6_2.sce b/2102/CH6/EX6.2/exa_6_2.sce new file mode 100755 index 000000000..3500b7645 --- /dev/null +++ b/2102/CH6/EX6.2/exa_6_2.sce @@ -0,0 +1,14 @@ +// Exa 6.2
+clc;
+clear;
+close;
+// Given data
+I_DSS= 4;// in mA
+V_P= 3;// in V
+ V_GS=[0:0.1:3];
+//V_GS= -3;
+I_D= I_DSS*(1-V_GS/V_P)^2
+plot(V_GS,I_D);
+xlabel("V_GS in volts");
+ylabel("I_D in mA ")
+title("Characteristic curve ")
diff --git a/2102/CH6/EX6.20/exa_6_20.sce b/2102/CH6/EX6.20/exa_6_20.sce new file mode 100755 index 000000000..9aca63958 --- /dev/null +++ b/2102/CH6/EX6.20/exa_6_20.sce @@ -0,0 +1,29 @@ +// Exa 6.20
+clc;
+clear;
+close;
+// Given data
+I_DSS= 6;// in mA
+I_DSS= I_DSS*10^-3;// in A
+V_P= -4.5;// in V
+// Part (i)
+// At V_GS= -2V
+V_GS= -2;// in V
+I_DS= I_DSS*(1-V_GS/V_P)^2;// in A
+disp(I_DS*10^3,"At V_GS= -2V, the value of I_DS in mA is : ")
+// At V_GS= -3.6V
+V_GS= -3.6;// in V
+I_DS= I_DSS*(1-V_GS/V_P)^2;// in A
+disp(I_DS*10^3,"At V_GS= -3.6V, the value of I_DS in mA is : ")
+
+// Part (ii)
+// At I_DS= 3mA
+I_DS= 3*10^-3;// in A
+V_GS= V_P*(1-sqrt(I_DS/I_DSS));
+disp(V_GS,"At I_DS= 3mA, the value of V_GS in volts is :")
+// At I_DS= 5.5mA
+I_DS= 5.5*10^-3;// in A
+V_GS= V_P*(1-sqrt(I_DS/I_DSS));
+disp(V_GS,"At I_DS= 5.5mA, the value of V_GS in volts is :")
+
+// Note: There is calculation error in the second part to find the value of V_GS in both the condition . So the answer in the book is wrong
diff --git a/2102/CH6/EX6.21/exa_6_21.sce b/2102/CH6/EX6.21/exa_6_21.sce new file mode 100755 index 000000000..c7418c882 --- /dev/null +++ b/2102/CH6/EX6.21/exa_6_21.sce @@ -0,0 +1,18 @@ +// Exa 6.21
+clc;
+clear;
+close;
+// Given data
+I_DSS= 10;// in mA
+I_DSS= I_DSS*10^-3;// in A
+V_P= -2;// in V
+// Part (i)
+// At V_GS= 0V
+V_GS= 0;// in V
+r_DS= V_P^2/(2*I_DSS*(V_GS-V_P));// in Ω
+disp(r_DS,"At V_GS=0 , the drain source resistance in Ω is : ")
+// Part (ii)
+// At V_GS= -0.5V
+V_GS= -0.5;// in V
+r_DS= V_P^2/(2*I_DSS*(V_GS-V_P));// in Ω
+disp(r_DS,"At V_GS=-0.5 , the drain source resistance in Ω is : ")
diff --git a/2102/CH6/EX6.22/exa_6_22.sce b/2102/CH6/EX6.22/exa_6_22.sce new file mode 100755 index 000000000..e895a9b46 --- /dev/null +++ b/2102/CH6/EX6.22/exa_6_22.sce @@ -0,0 +1,20 @@ +// Exa 6.22
+clc;
+clear;
+close;
+// Given data
+I_DSS= 12;// in mA
+I_DSS= I_DSS*10^-3;// in A
+V_P= -4;// in V
+R_D= 3;// in kΩ
+R_D= R_D*10^3;// in Ω
+Rs= 0;// in Ω
+V_DD= 15;// in V
+V_GS= -2;// in V
+I_D= I_DSS*(1-V_GS/V_P)^2;// in A
+disp(I_D*10^3,"The value of I_D in mA is :")
+V_DS= -I_D*R_D+V_DD;// in V
+disp(V_DS,"The value of V_DS in volts is :")
+if V_DS>V_GS-V_P then
+ disp("The device is operating in the saturation region")
+end
diff --git a/2102/CH6/EX6.23/exa_6_23.sce b/2102/CH6/EX6.23/exa_6_23.sce new file mode 100755 index 000000000..bdc3012f2 --- /dev/null +++ b/2102/CH6/EX6.23/exa_6_23.sce @@ -0,0 +1,19 @@ +// Exa 6.23
+clc;
+clear;
+close;
+// Given data
+I_DSS= 12;// in mA
+I_DSS= I_DSS*10^-3;// in A
+V_P= -4;// in V
+Rs= 0;// in Ω
+V_DD= 15;// in V
+V_DS= 0.1;// in V
+V_GS= 0;// in V
+if V_DS<V_GS-V_P then
+ disp("The ohmic region is confirmed.")
+I_D= I_DSS*(2*(1-V_GS/V_P)*V_DS/(-V_P)-(V_DS/V_P)^2);// in A
+R_D= (V_DD-V_DS)/I_D;// in Ω
+disp(I_D*10^6,"The value of I_D in µA is :")
+disp(R_D*10^-3,"The value of R_D in kΩ is :")
+end
diff --git a/2102/CH6/EX6.24/exa_6_24.sce b/2102/CH6/EX6.24/exa_6_24.sce new file mode 100755 index 000000000..aa73d79a5 --- /dev/null +++ b/2102/CH6/EX6.24/exa_6_24.sce @@ -0,0 +1,13 @@ +// Exa 6.24
+clc;
+clear;
+close;
+// Given data
+ro=9;// in kΩ
+ro= ro*10^3;// in Ω
+V_P= -6;// in V
+V_GS = -3;// in V
+r= ro/(1-V_GS/V_P)^2;// in Ω
+disp(r*10^-3,"The value of chanel resistance in kΩ is : ")
+
+// Note : The unit of chanel resistance i.e. unit of resistance in the book is wrong . It will be in kΩ not in Ω
diff --git a/2102/CH6/EX6.25/exa_6_25.sce b/2102/CH6/EX6.25/exa_6_25.sce new file mode 100755 index 000000000..932e202ad --- /dev/null +++ b/2102/CH6/EX6.25/exa_6_25.sce @@ -0,0 +1,14 @@ +// Exa 6.25
+clc;
+clear;
+close;
+// Given data
+ro=10;// in kΩ
+ro= ro*10^3;// in Ω
+r=90;// in kΩ
+r= r*10^3;// in Ω
+V_P= 5;// in V
+// r= ro/(1-V_GS/V_P)^2;// in Ω
+V_GS= V_P*(1-sqrt(ro/r));// in V
+disp(V_GS,"The value of V_GS in volts is :")
+
diff --git a/2102/CH6/EX6.26/exa_6_26.sce b/2102/CH6/EX6.26/exa_6_26.sce new file mode 100755 index 000000000..cec9069fe --- /dev/null +++ b/2102/CH6/EX6.26/exa_6_26.sce @@ -0,0 +1,11 @@ +// Exa 6.26
+clc;
+clear;
+close;
+// Given data
+V_P= -5;// in V
+I_D= 4;// in mA
+V_GS= -2;// in V
+// Formula I_D= I_DSS*(1-V_GS/V_P)^2
+I_DSS= I_D/(1-V_GS/V_P)^2;// in mA
+disp(I_DSS,"The value of I_DSS in mA is :")
diff --git a/2102/CH6/EX6.27/exa_6_27.sce b/2102/CH6/EX6.27/exa_6_27.sce new file mode 100755 index 000000000..348db014a --- /dev/null +++ b/2102/CH6/EX6.27/exa_6_27.sce @@ -0,0 +1,13 @@ +// Exa 6.27
+clc;
+clear;
+close;
+// Given data
+I_DSS= 8;// in mA
+V_P= -5;// in V
+V_GS= -2;// in V
+// Formula V_GS+ V_DSmin = V_P
+V_DSmin= abs(V_P-V_GS);// in V
+disp(V_DSmin,"The minimum value of V_DS in volts is :")
+I_DS= I_DSS*(1-V_GS/V_P)^2;// in mA
+disp(I_DS,"The value of I_DS in mA is :")
diff --git a/2102/CH6/EX6.3/exa_6_3.sce b/2102/CH6/EX6.3/exa_6_3.sce new file mode 100755 index 000000000..5501e17b0 --- /dev/null +++ b/2102/CH6/EX6.3/exa_6_3.sce @@ -0,0 +1,19 @@ +// Exa 6.3
+clc;
+clear;
+close;
+// Given data
+I_DSS= 1.65;// in mA
+I_DSS=I_DSS*10^-3;// in A
+V_P= -2;// in V
+I_D= 0.8;// in mA
+I_D=I_D*10^-3;// in A
+V_BB= 24;// in V
+// Part (a)
+V_GS= V_P*(1-sqrt(I_D/I_DSS));// in V
+disp(V_GS,"The value of V_GS in volts is : ")
+
+// Part (b)
+gmo= -2*I_DSS/V_P*10^3;// in ms
+gm= gmo*(1-(V_GS)/V_P);// in ms
+disp(gm,"The value of gm is : ")
diff --git a/2102/CH6/EX6.4/exa_6_4.sce b/2102/CH6/EX6.4/exa_6_4.sce new file mode 100755 index 000000000..d8f21bd75 --- /dev/null +++ b/2102/CH6/EX6.4/exa_6_4.sce @@ -0,0 +1,13 @@ +// Exa 6.4
+clc;
+clear;
+close;
+// Given data
+I_DSS= -40;// in mA
+I_DSS=I_DSS*10^-3;// in A
+V_P= 5;// in V
+I_D= -15;// in mA
+I_D=I_D*10^-3;// in A
+// Formula I_D= I_DSS*(1+V_GS/V_P)
+V_GS= (sqrt(I_D/I_DSS)-1)*V_P;// in volt
+disp(V_GS,"The value of V_GS in volts is : ")
diff --git a/2102/CH6/EX6.5/exa_6_5.sce b/2102/CH6/EX6.5/exa_6_5.sce new file mode 100755 index 000000000..aebd7ffc1 --- /dev/null +++ b/2102/CH6/EX6.5/exa_6_5.sce @@ -0,0 +1,9 @@ +// Exa 6.5
+clc;
+clear;
+close;
+// Given data
+delta_I_D= 1.9-1.0;// in mA
+delta_V_GS= 3.3-3.0;// in V
+gm= delta_I_D/delta_V_GS;//in mA/V
+disp("The value of transconductance is "+string(gm)+" mA/V or "+string(gm*10^3)+" HmV10s")
diff --git a/2102/CH6/EX6.6/exa_6_6.sce b/2102/CH6/EX6.6/exa_6_6.sce new file mode 100755 index 000000000..ec0f32461 --- /dev/null +++ b/2102/CH6/EX6.6/exa_6_6.sce @@ -0,0 +1,24 @@ +// Exa 6.6
+clc;
+clear;
+close;
+// Given data
+I_DSS= 5.6*10^-3;// in A
+V_P= 4;// in volt
+Vi= 10;// in V
+R1= 4.7;// in kΩ
+R1= R1*10^3;// in Ω
+Rs= 10;// in kΩ
+Rs= Rs*10^3;// in Ω
+V1=-24;// in V
+Vs= 12;// in V
+// Appling KVL to the gate source loop, we get, Vs= I_D*Rs-V_GS
+// V_GS= I_D*Rs-Vs (i)
+// I_D= I_DSS*(1-V_GS/V_P)^2 = I_DSS*(1-(I_D*Rs-Vs)/V_P)^2
+I_D= 1.49;// in mA
+I_D= I_D*10^-3;// in A
+V_GS= I_D*Rs-Vs;
+Vo= Vs-I_D*Rs;// in volt
+disp(V_GS,"The value of V_GS in volts is : ")
+disp(Vo,"The value of Vo in volts is : ")
+
diff --git a/2102/CH6/EX6.7/exa_6_7.sce b/2102/CH6/EX6.7/exa_6_7.sce new file mode 100755 index 000000000..821294660 --- /dev/null +++ b/2102/CH6/EX6.7/exa_6_7.sce @@ -0,0 +1,17 @@ +// Exa 6.7
+clc;
+clear;
+close;
+// Given data
+I_D= 5;// in mA
+I_D=I_D*10^-3;// in A
+V_DD= 10;// in V
+R_D= 1;// in kΩ
+R_D= R_D*10^3;// in Ω
+Rs= 500;// in Ω
+Vs= I_D*Rs;// in volt
+V_D= V_DD-I_D*R_D;// in V
+V_DS= V_D-Vs;// in V
+V_GS= -Vs;// in V
+disp(V_DS,"The value of drain-to-source voltage in volts is : ")
+disp(V_GS,"The value of gate-to-sourcce voltage in volts is : ")
diff --git a/2102/CH6/EX6.8/exa_6_8.sce b/2102/CH6/EX6.8/exa_6_8.sce new file mode 100755 index 000000000..2df488756 --- /dev/null +++ b/2102/CH6/EX6.8/exa_6_8.sce @@ -0,0 +1,12 @@ +// Exa 6.8
+clc;
+clear;
+close;
+// Given data
+I_DSS= 20;// in mA
+I_DSS=I_DSS*10^-3;// in A
+gmo= 9.4;// in ms
+gmo=gmo*10^-3;// in s
+// Formula gmo= -2*I_DSS/V_P
+V_P= -2*I_DSS/gmo;// in volts
+disp(V_P,"Pinch off voltage in volts is : ")
diff --git a/2102/CH6/EX6.9/exa_6_9.sce b/2102/CH6/EX6.9/exa_6_9.sce new file mode 100755 index 000000000..9fa8b5622 --- /dev/null +++ b/2102/CH6/EX6.9/exa_6_9.sce @@ -0,0 +1,14 @@ +// Exa 6.9
+clc;
+clear;
+close;
+// Given data
+I_DSS= 10;// in mA
+I_DSS= I_DSS*10^-3;// in A
+I_DS= 2.5;// in mA
+I_DS= I_DS*10^-3;// in A
+V_P= 4.5;// in V
+// Formula I_DS= I_DSS*(1-V_GS/V_P)^2
+V_GS= V_P*(1-sqrt(I_DS/I_DSS));// in volts
+gm= 2*I_DSS/V_P*(1-V_GS/V_P);// in A/V
+disp(gm*10^3,"Transconductance in mA/V is : ")
diff --git a/2102/CH7/EX7.1/exa_7_1.sce b/2102/CH7/EX7.1/exa_7_1.sce new file mode 100755 index 000000000..fff138315 --- /dev/null +++ b/2102/CH7/EX7.1/exa_7_1.sce @@ -0,0 +1,41 @@ +// Exa 7.1
+clc;
+clear;
+close;
+// Given data
+bita= 50;
+R1= 1;// in kΩ
+R1= R1*10^3;//in Ω
+R2= 300;// in Ω
+R3= 360;// in Ω
+R4= 640;// in Ω
+V1= 10;// in V
+V2= 20;// in V
+I_B1=19.2*10^-3;// in A
+I_L= 1;//in A
+V_Z= 5.6;// in V
+V_B= R4*V1/(R3+R4);//in V
+V_BE2= V_B-V_Z;// in V
+V_A= V1-V_BE2;// in V
+disp(V_A,"The value of V_A in volt is : ")
+disp(V_B,"The value of V_B in volt is : ")
+
+// Part (ii)
+I1= V1/(R3+R4);// in A
+//I1= .01*10^-3;// in A
+I2= (V2-V_A)/R2;// in A
+I_C2= I2-I_B1;// in A
+I_B1= (I1+I_L)/(1+bita);// in A
+disp(I_B1*10^3,"The base current of T1 in mA is : ")
+I_C2= I2-I_B1;// in A
+I_E2= I_C2;// in A
+disp(I_E2*10^3,"The emitter current of T2 in mA is : ")
+
+// part (iii)
+I3= (V2-V_Z)/R1;// in A
+I_Z= I3+I_E2;// in A
+disp(I_Z*10^3,"Current through zener diode in mA is : ")
+V_CE= V2-V1;// in V
+I_C1= bita*I_B1;// in A
+T1= V_CE*I_C1;// in W
+disp(T1,"Power dissipation in watt is : ")
diff --git a/2102/CH7/EX7.2/exa_7_2.sce b/2102/CH7/EX7.2/exa_7_2.sce new file mode 100755 index 000000000..408f4b272 --- /dev/null +++ b/2102/CH7/EX7.2/exa_7_2.sce @@ -0,0 +1,51 @@ +// Exa 7.2
+clc;
+clear;
+close;
+// Given data
+bita= 100;
+R1= 1;// in kΩ
+R1= R1*10^3;//in Ω
+R2= 300;// in Ω
+R3= 360;// in Ω
+R4= 640;// in Ω
+V1= 10;// in V
+V2= 20;// in V
+I_B1=19.2*10^-3;// in A
+I_L= 1;//in A
+V_Z= 5.6;// in V
+V_B= R4*V1/(R3+R4);//in V
+V_BE2= V_B-V_Z;// in V
+V_A= V1-V_BE2;// in V
+disp(V_A,"The value of V_A in volt is : ")
+disp(V_B,"The value of V_B in volt is : ")
+
+// Part (ii)
+I1= V1/(R3+R4);// in A
+//I1= .01*10^-3;// in A
+I2= (V2-V_A)/R2;// in A
+I_C2= I2-I_B1;// in A
+I_B1= (I1+I_L)/(1+bita);// in A
+disp(I_B1*10^3,"The base current of T1 in mA is : ")
+I_C2= I2-I_B1;// in A
+I_E2= I_C2;// in A
+disp(I_E2*10^3,"The emitter current of T2 in mA is : ")
+
+// part (iii)
+I3= (V2-V_Z)/R1;// in A
+I_Z= I3+I_E2;// in A
+disp(I_Z*10^3,"Current through zener diode in mA is : ")
+V_CE= V2-V1;// in V
+I_C1= bita*I_B1;// in A
+T1= V_CE*I_C1;// in W
+disp(T1,"Power dissipation in watt is : ")
+
+// Note: In the part (iv), the wrong value of I_B1 and bita is putted, these two value is putted of the Example 7.1
+// (i.e. I_B1= 19.8 mA and bita= 50) whereas in this example the value of bita is given 100 and the value of
+// of I_B1 is calculated as 10 mA. So the answer of the last part of this example is wrong.
+
+
+
+
+
+
diff --git a/2102/CH7/EX7.3/exa_7_3.sce b/2102/CH7/EX7.3/exa_7_3.sce new file mode 100755 index 000000000..8764d5217 --- /dev/null +++ b/2102/CH7/EX7.3/exa_7_3.sce @@ -0,0 +1,54 @@ +// Exa 7.3
+clc;
+clear;
+close;
+// Given data
+bita= 50;
+R1= 1;// in kΩ
+R1= R1*10^3;//in Ω
+R2= 500;// in Ω
+R3= 400;// in Ω
+R4= 600;// in Ω
+V1= 10;// in V
+V2= 20;// in V
+I_B1=19.2*10^-3;// in A
+I_L= 1;//in A
+V_Z= 5;// in V
+V_B= R4*V1/(R3+R4);//in V
+V_BE2= V_B-V_Z;// in V
+V_A= V1-V_BE2;// in V
+disp(V_A,"The value of V_A in volt is : ")
+disp(V_B,"The value of V_B in volt is : ")
+
+// Part (ii)
+I1= V1/(R3+R4);// in A
+//I1= .01*10^-3;// in A
+I2= (V2-V_A)/R2;// in A
+//I2= .042;
+I_C2= I2-I_B1;// in A
+I_B1= (I1+I_L)/(1+bita);// in A
+disp(I_B1*10^3,"The base current of T1 in mA is : ")
+I_C2= I2-I_B1;// in A
+I_E2= I_C2;// in A
+disp(I_E2*10^3,"The emitter current of T2 in mA is : ")
+
+// part (iii)
+I3= (V2-V_Z)/R1;// in A
+I_Z= I3+I_E2;// in A
+disp(I_Z*10^3,"Current through zener diode in mA is : ")
+V_CE= V2-V1;// in V
+I_C1= bita*I_B1;// in A
+T1= V_CE*I_C1;// in W
+disp(T1,"Power dissipation in watt is : ")
+
+// Note: In the book, the evaluated value of emitter current of T2 i.e. I_E2 and current through zener diode i.e I_Z is wrong because
+// there is a calculation error to evaluate the value of I2 ( (20-9)/500 = 42 mA is wrong, correct value is 22 mA)
+
+
+
+
+
+
+
+
+
diff --git a/2102/CH7/EX7.4/exa_7_4.sce b/2102/CH7/EX7.4/exa_7_4.sce new file mode 100755 index 000000000..4f7187f53 --- /dev/null +++ b/2102/CH7/EX7.4/exa_7_4.sce @@ -0,0 +1,13 @@ +// Exa 7.4
+clc;
+clear;
+close;
+// Given data
+Vmin= 2.2;// in V
+Vmax= 4.0;// in V
+I= 11;// in mA
+I= I*10^-3;//in A
+Resistance= Vmin/I;// in Ω
+Current = Vmax/Resistance;// in A
+disp(Resistance,"Resistance in Ω is : ")
+disp(Current*10^3,"Current in mA is : ")
diff --git a/2102/CH7/EX7.5/exa_7_5.sce b/2102/CH7/EX7.5/exa_7_5.sce new file mode 100755 index 000000000..4670706c6 --- /dev/null +++ b/2102/CH7/EX7.5/exa_7_5.sce @@ -0,0 +1,10 @@ +// Exa 7.5
+clc;
+clear;
+close;
+// Given data
+V1= 6.2;// in V
+V2= 0.6;// in V
+V3= 0.6;// in V
+Vout= V1-V2-V3;// in V
+disp(Vout,"The output voltage in volts is : ")
|