diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1979 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1979')
101 files changed, 2383 insertions, 0 deletions
diff --git a/1979/CH10/EX10.1/Ex10_1.sce b/1979/CH10/EX10.1/Ex10_1.sce new file mode 100755 index 000000000..4d17bbc53 --- /dev/null +++ b/1979/CH10/EX10.1/Ex10_1.sce @@ -0,0 +1,19 @@ +//chapter-10 page 486 example 10.1
+//==============================================================================
+clc;
+clear;
+
+ht=144;//TV transmitter antenna height in m
+hr=25;//TV receiver antenna height in m
+//Radio horizon is about 4/3 as far as the optical horizon
+
+//CALCULATION
+dr=4*sqrt(hr);//distance in km
+dt=4*sqrt(ht);//Radio Horizon in km
+d=dt+dr;//The Maximum distance of Propagation of the TV signal in km
+
+//OUTPUT
+mprintf('\nThe Maximum distance of Propagation of the TV signal is d=%2.0f km \nRadio Horizon is dt=%2.0f km',d,dt);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH10/EX10.10/Ex10_10.sce b/1979/CH10/EX10.10/Ex10_10.sce new file mode 100755 index 000000000..60f0eef06 --- /dev/null +++ b/1979/CH10/EX10.10/Ex10_10.sce @@ -0,0 +1,17 @@ +//chapter-10 page 489 example 10.10
+//==============================================================================
+clc;
+clear;
+
+//For a parabolic antenna
+Gp=1500;//Power gain
+w=0.1;//wavelength in m
+
+//CALCULATION
+D=sqrt(Gp)*(w/(%pi));//Diameter of the circular mouth of a parabolic antenna in m
+HPBW=58*(w/D);//Half Power BeamWidth of the antenna in deg
+
+//OUTPUT
+mprintf('\nDiameter of the circular mouth of a parabolic antenna is D=%1.4f m \nHalf Power BeamWidth of the antenna is HPBW=%1.3f deg',D,HPBW);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH10/EX10.11/Ex10_11.sce b/1979/CH10/EX10.11/Ex10_11.sce new file mode 100755 index 000000000..bcf82566e --- /dev/null +++ b/1979/CH10/EX10.11/Ex10_11.sce @@ -0,0 +1,21 @@ +//chapter-10 page 490 example 10.11
+//==============================================================================
+clc;
+clear;
+
+D=1;//Assume diameter of the parabolic reflectors in the original system in m
+w=1;//Assume wavelength in m
+
+//CALCULATION
+D1=2*D;//diameter of the parabolic reflectors in the modified system in m
+G=6*(D/w)^2;//gain in original system
+G1=6*(D1/w)^2;//gain in modified system
+GdB=10*log10(G1/G);//Overall gain that can be expected in dB
+GdBo=2*GdB;//Overall gain of the system(combining the two antennas one at the Tx and other at the Rx) in dB
+
+//OUTPUT
+mprintf('\nOverall gain that can be expected is GdB=%1.0f dB \nOverall gain of the system(combining the two antennas one at the Tx and other at the Rx) is GdBo=%1.0f dB',GdB,GdBo);
+
+//=========================END OF PROGRAM===============================
+
+//Note: Check the answer once ..it should be GdB=10log(4)=6 dB and GdBo=12dB
diff --git a/1979/CH10/EX10.12/Ex10_12.sce b/1979/CH10/EX10.12/Ex10_12.sce new file mode 100755 index 000000000..cf2eb48a8 --- /dev/null +++ b/1979/CH10/EX10.12/Ex10_12.sce @@ -0,0 +1,19 @@ +//chapter-10 page 490 example 10.12
+//==============================================================================
+clc;
+clear;
+
+D=3;//dimension of a paraboloid in m
+f=3*10^9;//frequency (S band) in Hz
+c=3*10^8;//Velocity of light in m/sec
+
+//CALCULATION
+w=c/f;//wave length in m
+BWFN=140*(w/D);//BeamWidth between First Nulls in deg
+BWHP=70*(w/D);//BeamWidth between HalfPower points in deg
+G=6*(D/w)^2;//Gain of the antenna
+
+//OUTPUT
+mprintf('\nBeamWidth between First Nulls is BWFN=%1.2f deg \nBeamWidth between HalfPower points is BWHP=%1.2f deg \nGain of the Antenna is G=%4.0f ',BWFN,BWHP,G);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH10/EX10.13/Ex10_13.sce b/1979/CH10/EX10.13/Ex10_13.sce new file mode 100755 index 000000000..bf7d8e4a5 --- /dev/null +++ b/1979/CH10/EX10.13/Ex10_13.sce @@ -0,0 +1,16 @@ +//chapter-10 page 490 example 10.13
+//==============================================================================
+clc;
+clear;
+
+l=1;//(Assume)-dimension(wavelength) in cm
+
+//CALCULATION
+x=5*l;//given square aperture of an optimum horn antenna as a side dimension in cm
+A=x*x;//Area in sq.cm
+Gp=4.5*(A/l^2);//Power gain of an optimum horn antenna
+
+//OUTPUT
+mprintf('\nPower gain of an optimum horn antenna is Gp=%3.1f ',Gp);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH10/EX10.2/Ex10_2.sce b/1979/CH10/EX10.2/Ex10_2.sce new file mode 100755 index 000000000..bec58f0a9 --- /dev/null +++ b/1979/CH10/EX10.2/Ex10_2.sce @@ -0,0 +1,16 @@ +//chapter-10 page 486 example 10.2
+//==============================================================================
+clc;
+clear;
+
+r=6370*10^3;//radius of the earth in m
+x=-0.05*10^(-6);//the gradient of refractive index of air near the ground per m [du/dh]
+
+//CALCULATION
+k=1/(1+(r*x));//The value of the factor by which the horizon distance of a transmitter will be modified
+
+//OUTPUT
+mprintf('\nThe value of the factor by which the horizon distance of a transmitter will be modified is k=%1.4f',k);
+
+//=========================END OF PROGRAM===================================
+
diff --git a/1979/CH10/EX10.3/Ex10_3.sce b/1979/CH10/EX10.3/Ex10_3.sce new file mode 100755 index 000000000..2e48e2fe5 --- /dev/null +++ b/1979/CH10/EX10.3/Ex10_3.sce @@ -0,0 +1,24 @@ +//chapter-10 page 487 example 10.3
+//==============================================================================
+clc;
+clear;
+
+//For a microwave LOS link
+f=2*10^9;//frequency of operation in Hz
+c=3*10^8;//Velocity of light in m/sec
+r=50000;//repeater spacing in m
+PrdBm=-20;//required carrier power at the receiver i/p to avoid deterioration due to fading and noise in dBm
+GtdB=34;//antenna gain of transmitter in dB
+GrdB=34;//antenna gain of receiver in dB
+LdB=10;//coupling and waveguide loss in transmitter in dB
+
+//CALULATION
+w=c/f;//wavelength in m
+x=(w^2)/(4*(%pi));
+y=(4*(%pi)*r^2);
+PtdBm=PrdBm+(10*log10(y))-GtdB-(10*log10(x))+LdB-GrdB;//The required Carrier Transmitter power in dBm
+
+//OUTPUT
+mprintf('\nThe required Carrier Transmitter power is PtdBm=%2.1f dBm',PtdBm);
+
+//=========================END OF PROGRAM===================================
diff --git a/1979/CH10/EX10.4/Ex10_4.sce b/1979/CH10/EX10.4/Ex10_4.sce new file mode 100755 index 000000000..b53ce2bee --- /dev/null +++ b/1979/CH10/EX10.4/Ex10_4.sce @@ -0,0 +1,26 @@ +//chapter-10 page 487 example 10.4
+//==============================================================================
+clc;
+clear;
+
+//For a geostationary communication satellite
+f=6*10^(9);//uplink frequency in Hz
+Pt=1000;//Transmitter power in W
+x=36000*10^3;//vertical distance between surface of earth and satellite in m
+a=5;//antenna elevation angle in deg
+GtdB=60;//antenna gain of transmitter in dB
+GrdB=0;//antenna gain of receiver in dB
+c=3*10^8;//Velocity of light in m/sec
+
+//CALCULATION
+Gt=10^(GtdB/10);//antenna gain of transmitter
+Gr=10^(GrdB/10);//antenna gain of receiver
+w=c/f;//wavelength in m
+Ar=(w^2)*(Gr/(4*(%pi)));//area in sqm
+r=x/(sind(a));//distance between transmitter and receiver in m [From Sine formula and diagram]
+Pr=((Pt*Gt*Ar)/(4*(%pi)*r^2))/10^(-12);//The received power at the input of the satellite receiver in pico watts
+
+//OUTPUT
+mprintf('\nThe received power at the input of the satellite receiver is Pr=%1.2f pico watts(pW)',Pr);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH10/EX10.5/Ex10_5.sce b/1979/CH10/EX10.5/Ex10_5.sce new file mode 100755 index 000000000..9a8fd6658 --- /dev/null +++ b/1979/CH10/EX10.5/Ex10_5.sce @@ -0,0 +1,18 @@ +//chapter-10 page 487 example 10.5
+//==============================================================================
+clc;
+clear;
+
+x1=35855;//Distance between geostationary orbit to surface of earth in km
+x2=6371;//Distance between center of earth to surface of earth in km
+
+//CALCULATION
+x=x1+x2;//distance of satellite from center of earth in km
+y=x2*(%pi);//Circumference of half circle arc in km
+b=y/x;//Beam angle in rad
+Bdeg=(b*180)/(%pi);//Beam angle in deg
+
+//OUTPUT
+mprintf('\nAntenna Beam angle required by a satellite antenna to provide full global coverage from a geostationary orbit is Bdeg=%2.2f deg',Bdeg);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH10/EX10.6/Ex10_6.sce b/1979/CH10/EX10.6/Ex10_6.sce new file mode 100755 index 000000000..a43255849 --- /dev/null +++ b/1979/CH10/EX10.6/Ex10_6.sce @@ -0,0 +1,24 @@ +//chapter-10 page 488 example 10.6
+//==============================================================================
+clc;
+clear;
+
+//For a satellite communication system
+h=35855;//Distance between geostationary orbit to surface of earth in km
+r=6371;//Distance between center of earth to surface of earth in km
+a=5;//earth station elevation angle wrt the geostationary satellite in deg
+b=5;//angle in deg
+c=3*10^5;//Velocity of light in km/sec
+b1=90;//angle for vertical transmission in deg
+a1=0;
+
+//CALCULATION
+d=(sqrt((r+h)^2-(r*cosd(a))^2))-sind(b);//distance in km
+T=2*(d/c);//The round trip time between the earth station and the satellite in sec
+d1=(sqrt((r+h)^2-(r*cosd(a))^2))-sind(b);//distance in km
+Tv=(2/c)*(d1-r);//The round trip time for vertical transmission between the earth station and the satellite in sec
+
+//OUTPUT
+mprintf('\nThe round trip time between the earth station and the satellite is T=%1.3f sec \nThe round trip time for vertical transmission between the earth station and the satellite is Tv=%1.3f sec',T,Tv);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH10/EX10.7/Ex10_7.sce b/1979/CH10/EX10.7/Ex10_7.sce new file mode 100755 index 000000000..bddf1303c --- /dev/null +++ b/1979/CH10/EX10.7/Ex10_7.sce @@ -0,0 +1,18 @@ +//chapter-10 page 488 example 10.7
+//==============================================================================
+clc;
+clear;
+
+Tant=25;//effective noise temperature in K
+Tr=75;//receiver noise temperature in K
+GdB=45;//Isotropic power gain of the antenna in dB
+
+//CALCULATION
+T=Tant+Tr;//The total noise in K
+TdB=10*log10(T);//The total noise in dB
+MdB=GdB-TdB;//Figure of merit of earth station in dB
+
+//OUTPUT
+mprintf('\nFigure of merit of earth station is MdB=%2.0f dB',MdB);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH10/EX10.8/Ex10_8.sce b/1979/CH10/EX10.8/Ex10_8.sce new file mode 100755 index 000000000..557b39347 --- /dev/null +++ b/1979/CH10/EX10.8/Ex10_8.sce @@ -0,0 +1,17 @@ +//chapter-10 page 488 example 10.8
+//==============================================================================
+clc;
+clear;
+
+//For a Satellite communication link
+EIRPdB=55.5;//Satellite ESM in dBW
+MdB=35;//G/T ratio of earth station in dB
+LfsdB=245.3//Freespace loss in dB
+
+//CALCULATION
+CNRdB=EIRPdB+MdB-LfsdB+228.6;//Carrier to Noise Ratio at the earth station receiver in dB
+
+//OUTPUT
+mprintf('\nCarrier to Noise Ratio at the earth station receiver is CNRdB=%2.1f dB',CNRdB);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH10/EX10.9/Ex10_9.sce b/1979/CH10/EX10.9/Ex10_9.sce new file mode 100755 index 000000000..49119d868 --- /dev/null +++ b/1979/CH10/EX10.9/Ex10_9.sce @@ -0,0 +1,21 @@ +//chapter-10 page 489 example 10.9
+//==============================================================================
+clc;
+clear;
+
+D=30;//Diameter of a dish antenna with circular aperture in m
+f=4*10^9;//down link frequency in Hz
+MdB=20;//G/T ratio of earth station in dB
+c=3*10^8;//Velocity of light in m/sec
+
+//CALCULATION
+A=((%pi)/4)*D^2;//area in sqm
+w=c/f;//wavelength in m
+G=(4*(%pi)*A)/w^2;//Gain
+GdB=10*log10(G);//Gain in dB
+TsdB=GdB-MdB;//The System Noise Temperature in dB
+
+//OUTPUT
+mprintf('\nThe System Noise Temperature is TsdB=%2.2f dB',TsdB);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH11/EX11.1/Ex11_1.sce b/1979/CH11/EX11.1/Ex11_1.sce new file mode 100755 index 000000000..013678474 --- /dev/null +++ b/1979/CH11/EX11.1/Ex11_1.sce @@ -0,0 +1,22 @@ +//chapter-11 page 504 example 11.1
+//==============================================================================
+clc;
+clear;
+
+//For a radar system
+Pt=600000;//peak pulse power in W
+Smin=10^(-13);//minimum detectable signal in W
+Ae=5;//cross sectional area of the radar antenna in sq m
+w=0.03;//wavelength in m
+s=20;//radar cross sectional area in sq m
+
+//CALCULATION
+Rmax=(((Pt*s*Ae^2)/(4*(%pi)*Smin*w^2))^(1/4))/1000;//Maximum range of a radar system in km
+RMax=Rmax/1.853;//In nautical miles; 1 nm=1.853 km
+
+//OUTPUT
+mprintf('\nMaximum range of a radar system is Rmax=%3.3f km',Rmax);
+disp('In nautical miles; 1 nm=1.853 km');
+mprintf('\nMaximum range of a radar system in nautical miles is RMax=%3.0f nm',RMax);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH11/EX11.2/Ex11_2.sce b/1979/CH11/EX11.2/Ex11_2.sce new file mode 100755 index 000000000..6ba519ae0 --- /dev/null +++ b/1979/CH11/EX11.2/Ex11_2.sce @@ -0,0 +1,22 @@ +//chapter-11 page 504 example 11.2
+//==============================================================================
+clc;
+clear;
+
+//For a radar system
+Pt=250000;//peak transmitted power in W
+G=2500;//power gain of the antenna
+Smin=10^(-14);//minimum detectable signal in W
+Ae=10;//cross sectional area of the radar antenna in sq m
+f=10*10^9;//frequency of radar in Hz
+s=2;//radar cross sectional area in sq m
+c=3*10^8;//Velocity of light in m/sec
+
+//CALCULATION
+w=c/f;//wavelength in m
+Rmax=(((Pt*G*Ae*s)/(Smin*(4*(%pi))^2))^(1/4))/1000;//Maximum range of a radar system in km
+
+//OUTPUT
+mprintf('\nMaximum range of a radar system is Rmax=%3.2f km',Rmax);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH11/EX11.3/Ex11_3.sce b/1979/CH11/EX11.3/Ex11_3.sce new file mode 100755 index 000000000..053cf7868 --- /dev/null +++ b/1979/CH11/EX11.3/Ex11_3.sce @@ -0,0 +1,22 @@ +//chapter-11 page 504 example 11.3
+//==============================================================================
+clc;
+clear;
+
+//For a marine radar system
+Pt=250000;//peak transmitted power in W
+G=4000;//power gain of the antenna
+R=50000;//maximum range of radar in m
+Pr=10^(-11);//minimum detectable signal in W
+f=10*10^9;//frequency of radar in H
+c=3*10^8;//Velocity of light in m/sec
+
+//CALCULATION
+w=c/f;//wavelength in m
+Ae=((G*w^2)/(4*(%pi)));//cross sectional area of the radar antenna in sq m
+s=((Pr*(4*(%pi)*R^2)^2)/(Pt*G*Ae));//The cross section of the target the radar can sight in sq m
+
+//OUTPUT
+mprintf('\nThe cross section of the target the radar can sight is s=%2.2f sq m',s);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH11/EX11.4/Ex11_4.sce b/1979/CH11/EX11.4/Ex11_4.sce new file mode 100755 index 000000000..6cb3c2a3a --- /dev/null +++ b/1979/CH11/EX11.4/Ex11_4.sce @@ -0,0 +1,29 @@ +//chapter-11 page 505 example 11.4
+//==============================================================================
+clc;
+clear;
+
+//For a guided missile tracking radar
+Pt=400000;//transmitted power in W
+prf=1500;//pulse repitition frequency in pps(pulse per sec)
+tw=0.8*10^(-6);//pulse width in sec
+c=3*10^8;//Velocity of light in m/sec
+
+//CALCULATION
+Runamb=(c/(2*prf))/1000;//Unambiguous range in km
+dc=tw/(1/prf);//Duty cycle
+Pav=Pt*dc;//Average power in W
+n1=1;
+BW1=(n1/tw)/10^6;//Suitable BW in MHz for n=1
+n2=1.4;
+BW2=(n2/tw)/10^6;//Suitable BW in MHz for n=1.4
+
+//OUTPUT
+mprintf('\nUnambiguous range is Runamb=%3.0f km \nDuty cycle is dc=%1.4f \nAverage power is Pav=%3.0f W',Runamb,dc,Pav);
+disp('For efficiency n=1,suitable bandwidth in MHz is');
+disp(BW1);
+disp('For efficiency n=1.4,suitable bandwidth in MHz is');
+disp(BW2);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH11/EX11.5/Ex11_5.sce b/1979/CH11/EX11.5/Ex11_5.sce new file mode 100755 index 000000000..938a93d33 --- /dev/null +++ b/1979/CH11/EX11.5/Ex11_5.sce @@ -0,0 +1,23 @@ +//chapter-11 page 505 example 11.5
+//==============================================================================
+clc;
+clear;
+
+//For a military radar
+Pt=2500000;//power output in W
+f=5*10^9;//frequency of radar in H
+c=3*10^8;//Velocity of light in m/sec
+D=5;//antenna diameter in m
+B=1.6*10^6;//receiver bandwidth in Hz
+s=1;//radar cross sectional area in sq m
+NF=12;//noise figure in dB
+
+//CALCULATION
+w=c/f;//wavelength in m
+F=10^(NF/10);//noise figure
+Rmax=(48*((Pt*s*D^4)/(B*(F-1)*w^2))^(1/4));//Maximum detection range in km
+
+//OUTPUT
+mprintf('\nMaximum detection range of a radar is Rmax=%3.0f km',Rmax);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH11/EX11.6/Ex11_6.sce b/1979/CH11/EX11.6/Ex11_6.sce new file mode 100755 index 000000000..06630ef71 --- /dev/null +++ b/1979/CH11/EX11.6/Ex11_6.sce @@ -0,0 +1,17 @@ +//chapter-11 page 506 example 11.6
+//==============================================================================
+clc;
+clear;
+
+//For a civilian radar
+Rmax=30;//maximum range in kms
+x=50;
+y=2;
+disp('Maximum range with an equivalent echoing area of 50 times in kms is');
+R=Rmax*x^(1/4);
+disp(R);
+disp('Range would be increased if Tx power is doubled by a factor of');
+f=y^(1/4);
+disp(f);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH3/EX3.1/Ex3_1.sce b/1979/CH3/EX3.1/Ex3_1.sce new file mode 100755 index 000000000..2754d90c8 --- /dev/null +++ b/1979/CH3/EX3.1/Ex3_1.sce @@ -0,0 +1,16 @@ +//chapter-3 page 47 example 3.1
+//=============================================================================
+clc;
+clear;
+
+Z0=100;//Characteristic Impedance in ohms
+S=5;//Voltage Standing Wave Ratio(VSWR)
+
+//CALCULATION
+Zm=Z0*S;//Termainating impedance at a max of the voltage standing wave
+Zl=Zm;//Loading Impedance
+
+//OUTPUT
+mprintf('Terminating impedance at a maximum of the voltage standing wave is Zl= %3.0f ohms',Zl);
+
+//====================END OF PROGRAM========================================
diff --git a/1979/CH3/EX3.10/Ex3_10.sce b/1979/CH3/EX3.10/Ex3_10.sce new file mode 100755 index 000000000..1ab5f7d4a --- /dev/null +++ b/1979/CH3/EX3.10/Ex3_10.sce @@ -0,0 +1,32 @@ +//chapter-3 page 52 example 3.10
+//==============================================================================
+clc;
+clear;
+
+f=1000;//Frequency in Hz
+l=10000;//Length of open wire transmission line in met
+z1=2930;//Magnitude of a short circuit impedance in ohms
+p1=26;//Phase of a short circuit impedance in deg
+z2=260;//Magnitude of a open circuit impedance in ohms
+p2=-32;//Phase of a open circuit impedance in deg
+//CALCULATIONS
+Zsc=((z1*cosd(p1))+((%i)*(z1*sind(p1))));
+Zoc=((z2*cosd(p2))+((%i)*(z2*sind(p2))));
+Z0=sqrt(Zsc*Zoc);//Characteristic Impedance in ohms
+disp('Characteristic Impedance in ohms is');
+[ro,theta]=polar(Z0)
+disp(ro);
+disp(theta*180/%pi);
+g=((1/l)*(atanh(sqrt(Zsc/Zoc))));//Propagation Constant
+disp(g)
+b=imag(g);//Phase Constant
+w=2*f*(%pi);//Angular Frequency in rad/sec
+Vp=w/b;//Phase Velocity in m/sec
+disp(Vp)
+//OUTPUT
+mprintf('\nPhase Velocity is Vp=%5.2f m/sec',Vp);
+
+//=========================END OF PROGRAM==============================================================
+
+
+//Note: Check the calculation once
diff --git a/1979/CH3/EX3.2/Ex3_2.sce b/1979/CH3/EX3.2/Ex3_2.sce new file mode 100755 index 000000000..99a444fc7 --- /dev/null +++ b/1979/CH3/EX3.2/Ex3_2.sce @@ -0,0 +1,34 @@ +//chapter-3 page 48 example 3.3
+//==============================================================================
+clc;
+clear;
+
+R=8;//Resistance of a transmission line in ohm/km
+L=0.002;//Inductance of a transmission line in henry/km
+C=0.002*(10^(-6));//Capacitance of a transmission line in Farads
+G=0.07*(10^(-6));//Conductance of a transmission line in siemens/km
+f=2000;//Frequency in Hz
+w=2*(%pi)*f;//Angular Frequency in rad/sec
+Vs=2;//Input Voltage in volts
+l=500;//Length of Transmission line in km
+
+//CALCULATIONS
+Z0=sqrt((R+(w*L*(%i)))/(G+(w*C*(%i))));//Characteristic Impedance
+x=real(Z0);
+y=imag(Z0);
+disp('Characteristic Impedance in ohms is');
+disp(Z0);
+g=sqrt((R+(w*L*(%i)))*(G+(w*C*(%i))));//Propagation Constant
+a=real(g);//Attenuation Constant in NP/km
+b=imag(g);//Phase Constant in rad/km
+Is=Vs/Z0;
+I0=Is*exp(-(g*l));//Load current
+m=sqrt((real(I0))^2+(imag(I0)^2));
+P=(m^2)*x;//Power delivered to the load in watts
+
+//OUTPUT
+mprintf('\nAttenuation Constant is a=%1.6f NP/km \nPhase Constant is b=%1.6f rad/km \nPower delivered to the load is P=%1.6f watts',a,b,P);
+
+//===============END OF PROGRAM================================
+
+
diff --git a/1979/CH3/EX3.3/Ex3_3.sce b/1979/CH3/EX3.3/Ex3_3.sce new file mode 100755 index 000000000..f45127e75 --- /dev/null +++ b/1979/CH3/EX3.3/Ex3_3.sce @@ -0,0 +1,21 @@ +//chapter-3 page 48 example 3.3
+//==============================================================================
+clc;
+clear;
+
+w=4*(%pi);//Angular Frequency in rad/sec
+b=0.02543;//Phase Constant in rad/km
+
+//CALCULATION
+Vp=w/b;//Phase Velocity in km/sec
+
+//OUTPUT
+mprintf('Phase Velocity is Vp=%3.2f km/sec',Vp);
+
+//=========END OF PROGRAM=========================
+
+//NOTE:CHECK THE CALCULATION PART GIVEN IN THE TEXTBOOK
+ //GIVEN ANSWER 494.22 KM/SEC
+ //GETTING ANSWER 494.16 KM/SEC
+
+
diff --git a/1979/CH3/EX3.4/Ex3_4.sce b/1979/CH3/EX3.4/Ex3_4.sce new file mode 100755 index 000000000..f4e952645 --- /dev/null +++ b/1979/CH3/EX3.4/Ex3_4.sce @@ -0,0 +1,30 @@ +//chapter-3 page 48 example 3.4
+//==============================================================================
+clc;
+clear;
+
+f=37.5*10^6;//Frequency in Hz
+c=3*10^8;//Velocity of Light in m/sec
+l1=10;//Length of line in met
+Vg=200;//Generator Voltage in volts(rms)
+Zint=200;//Internal Resistance of Generator in ohms
+Z0=200;//Characteristic Impedance in ohms
+Zl=100;//Load impedance in ohms
+
+//CALCULATIONS
+w=c/f;//Wave Length in met
+b=2*(%pi)/w;
+l1=(5/4)*w;//For Lossless Line
+Zi=Z0*((Zl+(Z0*(%i)*tan(b*l1)))/(Z0+(Zl*(%i)*tan(b*l1))));//Input Impedance at Generator end
+Vs=Vg*(Zi/(Zi+Z0));//Voltage in line in volts
+Is=Vg/(Zi+Z0);//Current in Line drawn from Generator in amps
+Ps=Vs*Is;//Power drawn in line
+Pl=Ps;//For Lossless Lines Power delivered to load is equal to the Power drawn in line
+Il=sqrt((Pl/Zl));//Current flowing in the load
+m=real(Il);//Magnitude of Current flowing in the load
+p=imag(Il);//Phase of Current flowing in the load
+
+//CALCULATIONS
+mprintf('\nCurrent drawn from Generator is Is=%1.3f amps \nMagnitude of Current flowing in the load is m=%1.3f \nPhase of Current flowing in the load is p=%2.2f deg \nPower delivered to load is Pl=%2.2f watts',Is,m,p,Pl);
+
+//=========================END OF PROGRAM==============================================================
diff --git a/1979/CH3/EX3.5/Ex3_5.sce b/1979/CH3/EX3.5/Ex3_5.sce new file mode 100755 index 000000000..d5b6c59c9 --- /dev/null +++ b/1979/CH3/EX3.5/Ex3_5.sce @@ -0,0 +1,21 @@ +//chapter-3 page 50 example 3.5
+//==============================================================================
+clc;
+clear;
+
+Z0=50;//Characteristic Impedance in ohms
+f=300*10^6;//Frequency in Hz
+Zl=50+(50*(%i));//Terminating load impedance in ohms
+w=((3*10^8)/f);//Wave Length
+
+//CALCULATIONS
+p=((Zl-Z0)/(Zl+Z0));//Reflection Coefficient(Complex Form)
+y=real(p);
+z=imag(p);
+x=sqrt(y^2+z^2);//Reflection Coefficient Value
+s=((1+x)/(1-x));//Voltage Standing Wave Ratio(VSWR)
+
+//OUTPUT
+mprintf('\nReflection Coefficient is x=%1.4f \nVoltage Standing Wave Ratio(VSWR) is s=%1.2f',x,s);
+
+//===================END OF PROGRAM=====================================
diff --git a/1979/CH3/EX3.6/Ex3_6.sce b/1979/CH3/EX3.6/Ex3_6.sce new file mode 100755 index 000000000..eaaaad3b6 --- /dev/null +++ b/1979/CH3/EX3.6/Ex3_6.sce @@ -0,0 +1,25 @@ +//chapter-3 page 50 example 3.6
+//==============================================================================
+clc;
+clear;
+
+Zl=100;//Pure Load resistance of a dipole antenna in ohms
+Z0=600;//Characteristic Impedance of a wire feeder in ohms
+f=100*10^6;//Frequency in Hz
+c=3*10^8;//Velocity of Light in m/sec
+
+//CALCULATIONS
+w=c/f;//Wave Length in met
+l=((w/(2*(%pi)))*atan(sqrt(Zl/Z0)));//The position of the Stub in met
+x=atand(sqrt((Zl*Z0))/(Zl-Z0));
+y=180+x;//In Degrees
+l1=((w/(2*(%pi)))*y);//Length of Short Circuited Stub in met
+l0=l1*((%pi)/180);
+
+//OUTPUTS
+mprintf('\nThe Point of Attachment is l=%1.3f met \nLength of SC Stub is l1=%1.2f met',l,l0);
+
+//=========================END OF PROGRAM==============================================================
+
+
+
diff --git a/1979/CH3/EX3.7/Ex3_7.sce b/1979/CH3/EX3.7/Ex3_7.sce new file mode 100755 index 000000000..e83a90230 --- /dev/null +++ b/1979/CH3/EX3.7/Ex3_7.sce @@ -0,0 +1,21 @@ +//chapter-3 page 50 example 3.7
+//==============================================================================
+clc;
+clear;
+
+Z0=50;//Characteristic Impedance in ohms
+S=3.2;//Voltage Standing Wave Ratio(VSWR)
+
+//It is possible to measure the load impedance if the line is assumed lossless,by measuring the VSWR,wavelength and the distance from the load to the nearest voltage minimum
+//CALCULATIONS
+w=1;//Assume Wavelength in met
+Xmin=0.23*w;//Distance from the load to the nearest voltage minimum in met
+b=(2*(%pi))/w;
+Zl=Z0*((1-(S*(%i)*tan(b*Xmin)))/(S-((%i)*tan(b*Xmin))));//Load impedance in ohms
+disp('Load impedance in ohms is');
+disp(Zl);
+
+
+//=========================END OF PROGRAM===================================================
+
+//Note: Check the answer given in Text book once. I think it is wrong in text book..
diff --git a/1979/CH3/EX3.8/Ex3_8.sce b/1979/CH3/EX3.8/Ex3_8.sce new file mode 100755 index 000000000..43424a3d3 --- /dev/null +++ b/1979/CH3/EX3.8/Ex3_8.sce @@ -0,0 +1,28 @@ +//chapter-3 page 51 example 3.8
+//==============================================================================
+clc;
+clear;
+
+Z0=50;//Characteristic Impedance in ohms
+Zl=100;//Load impedance in ohms
+f=300*10^3;//Frequency in Hz
+Pl=0.05;//Load Power in watts
+c=3*10^8;//Velocity of Light in m/sec
+
+//CALCULATIONS
+w=c/f;//Wave Length in met
+p=((Zl-Z0)/(Zl+Z0));//Reflection Coefficient
+S=((1+p)/(1-p));//Voltage Standing Wave Ratio(VSWR)
+
+//Since Zl>Z0, first Vmax is located at the load and first Vmin is located at Wavelength/4
+x1max=0;//Position of first Vmax (located at the load) from load in met
+x1min=w/4;//Position of first Vmin from load in met
+Vmax=sqrt(Pl*Zl);//Value of maximum voltage in volts
+Vmin=Vmax/S;//Value of minimum voltage in volts
+Zmax=Z0*S;//Impedance at Vmax in ohms
+Zmin=Z0/S;//Impedance at Vmin in ohms
+
+//OUTPUTS
+mprintf('\nVoltage Standing Wave Ratio(VSWR) is S=%1.0f \nPosition of first Vmax from load is x1max=%d met (located at the load) \nPosition of first Vmin from load is x1min=%3.0f met \nValue of maximum voltage is Vmax=%1.2f volts \nValue of minimum voltage is Vmin=%1.2f volts \nImpedance at Vmax is Zmax=%3.0f ohms \nImpedance at Vmin is Zmin=%2.0f ohms',S,x1max,x1min,Vmax,Vmin,Zmax,Zmin);
+
+//=========================END OF PROGRAM==============================================================
diff --git a/1979/CH3/EX3.9/Ex3_9.sce b/1979/CH3/EX3.9/Ex3_9.sce new file mode 100755 index 000000000..f4b7eaa82 --- /dev/null +++ b/1979/CH3/EX3.9/Ex3_9.sce @@ -0,0 +1,22 @@ +//chapter-3 page 52 example 3.9
+//==============================================================================
+clc;
+clear;
+
+Z0=600;//Characteristic Impedance in ohms
+Zs=50;//Generator impedance in ohms
+l=200;//Length of transmission line in met
+Zl=500;//Load impedance in ohms
+
+//CALCULATIONS
+p=((Zl-Z0)/(Zl+Z0));//Reflection Coefficient
+x=abs(p);
+Lr=10*log10(1/(1-x^2));//Reflection loss in dB
+La=0;//Since the line is lossless,attenuation loss is zero dB
+Lt=La+Lr;//Transmission loss in dB
+Lrt=10*log10(x);//Return loss in dB
+
+//OUTPUT
+mprintf('\nReflection loss is Lr=%1.3f dB \nTransmission loss is Lt=%1.3f dB \nReturn loss is Lrt=%2.3f dB',Lr,Lt,Lrt);
+
+//=========================END OF PROGRAM==============================================================
diff --git a/1979/CH4/EX4.1/Ex4_1.sce b/1979/CH4/EX4.1/Ex4_1.sce new file mode 100755 index 000000000..471712d5b --- /dev/null +++ b/1979/CH4/EX4.1/Ex4_1.sce @@ -0,0 +1,21 @@ +//chapter-4 page 141 example 4.1
+//==============================================================================
+clc;
+clear;
+
+d=0.0049;//Diameter of inner conductor in met
+D=0.0110;//Inner Diameter of outer conductor in met
+er=2.3;//Polyethylene dielectric
+c=3*10^8;//Velocity of Light in m/sec
+
+//CALCULATIONS
+x=log(D/d);
+L=(2*10^(-1)*x);//Inductance per unit lengths in microH/m
+C=(55.56*(er/x));//The Capacitance per unit lengths in picoF/m
+R0=(x*(60/sqrt(er)));//The Characteristic Impedance in ohms
+V=(c/sqrt(er))/(10^3);//The Velocity of propagation in Km/s
+
+//OUTPUT
+mprintf('\nInductance per unit lengths is L=%1.5f microH/m \nThe Capacitance per unit lengths is C=%2.2f picoF/m \nThe Characteristic Impedance is R0=%2.2f ohms \nThe Velocity of propagation is V=%6.2f Km/s',L,C,R0,V);
+
+ //=========================END OF PROGRAM===================================================
diff --git a/1979/CH4/EX4.10/Ex4_10.sce b/1979/CH4/EX4.10/Ex4_10.sce new file mode 100755 index 000000000..470752df3 --- /dev/null +++ b/1979/CH4/EX4.10/Ex4_10.sce @@ -0,0 +1,22 @@ +//chapter-4 page 148 example 4.10
+//==============================================================================
+clc;
+clear;
+
+//For an air filled circular Waveguide in the dominant mode
+c=3*10^10;//Velocity of Light in cm/sec
+disp('For an air filled circular Waveguide TE11 is the dominant mode ie propagated');
+wc=10;//cutoff wave length in cm
+
+//CALCULATION
+r=((1.841*wc)/(2*(%pi)));//radius of circular Waveguide in cm
+A=(%pi)*r^2;//Cross sectional area of the guide in sq.cms
+fc=(c/wc)/10^9;//Cutoff frequency for TE11 mode in GHz
+disp('Cutoff frequency for TE11 mode in GHz is');
+disp(fc);
+disp('Frequncy above 3GHz can be propagated through the waveguide');
+
+//OUTPUT
+mprintf('\nCross sectional area of the guide is A=%2.2f sq.cms',A);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.11/Ex4_11.sce b/1979/CH4/EX4.11/Ex4_11.sce new file mode 100755 index 000000000..708fe09e1 --- /dev/null +++ b/1979/CH4/EX4.11/Ex4_11.sce @@ -0,0 +1,40 @@ +//chapter-4 page 149 example 4.11
+//==============================================================================
+clc;
+clear;
+
+//For a rectangular waveguide
+f=5*10^9;//frequency in Hz
+c=3*10^10;//Velocity of Light in cm/sec
+a=4;//Length of Rectangular Waveguide in cm
+b=3;//Width of Rectangular Waveguide in cm
+
+//CALCULATION
+disp('The condition for the wave to propagate along a guide is that wc>w0.');
+w0=c/f;//free space wavelength in cm
+disp('Free space wavelength w0 in cm is');
+disp(w0);
+disp('For TE waves, wc=(2ab/sqrt((mb)^2+(na)^2))');
+disp('For TE01 waves');
+m1=0;
+n1=1;
+wc1=((2*a*b)/(sqrt((m1*b)^2+(n1*a)^2)));//Cutoff wavelength for TE01 mode in cm
+disp('Cutoff wavelength for TE01 mode in cm is');
+disp(wc1);
+disp('Since wc for TE01=6cm is not greater than w0 TE01,will not propagate for TE01 mode.');
+disp('For TE10 waves');
+m2=1;
+n2=0;
+wc2=((2*a*b)/(sqrt((m2*b)^2+(n2*a)^2)));//Cutoff wavelength for TE10 mode in cm
+disp('Cutoff wavelength for TE10 mode in cm is');
+disp(wc2);
+disp('Since wc TE10 > w0 TE10 is a possible mode.');
+disp('For TE11 waves');
+m3=1;
+n3=1;
+wc3=((2*a*b)/(sqrt((m3*b)^2+(n3*a)^2)));//Cutoff wavelength for TE11 mode in cm
+disp('Cutoff wavelength for TE11 mode in cm is');
+disp(wc3);
+disp('As wc TE11 < w0 TE11 does not propagate.');
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.12/Ex4_12.sce b/1979/CH4/EX4.12/Ex4_12.sce new file mode 100755 index 000000000..5dbc4df62 --- /dev/null +++ b/1979/CH4/EX4.12/Ex4_12.sce @@ -0,0 +1,22 @@ +//chapter-4 page 149 example 4.12
+//==============================================================================
+clc;
+clear;
+
+//For an air filled circular Waveguide in the dominant mode
+D=4;//Inner diameter of an air filled circular Waveguide in cm
+c=3*10^10;//Velocity of Light in cm/sec
+
+//CALCULATION
+disp('The dominant mode in the circular waveguide would be like TE11,wc is maximum');
+r=D/2;//radius in cm
+wc=((2*(%pi)*r)/1.841);//Cutoff wavelength in cms
+fc=(c/wc)/10^9;//Cutoff frequency in GHz
+mprintf('\nCutoff wavelength is wc=%1.4f cms \nCutoff frequency is fc=%1.3f GHz',wc,fc);
+disp('Since cut-off frequency is 4.395 GHz,frequencies higher than fc will be propagated.Assume a signal of frequency of 5 GHz is being propagated');
+f=5*10^9;//frequency of signal in Hz
+w0=(c/f);//free space wavelength in cm
+wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in cm
+mprintf('\nWave length in the guide is wg=%2.2f cm',wg);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.13/Ex4_13.sce b/1979/CH4/EX4.13/Ex4_13.sce new file mode 100755 index 000000000..260c41fb0 --- /dev/null +++ b/1979/CH4/EX4.13/Ex4_13.sce @@ -0,0 +1,21 @@ +//chapter-4 page 150 example 4.13
+//==============================================================================
+clc;
+clear;
+
+//For a rectangular waveguide in TE10 mode
+a=6;//Length of Rectangular Waveguide in cm
+b=4;//Width of Rectangular Waveguide in cm
+c=3*10^10;//Velocity of Light in cm/sec
+x=4.55;//distance between maximum and minimum in cm
+
+//CALCULATIONS
+wc=2*a;//Cutoff wavelength for a TE10 mode in cms
+wg=4*x;//Guide Wavelength in cm
+w0=(wg/sqrt(1+(wg/wc)^2));////Free space wavelength in cm
+f=(c/w0)/10^9;//Frequency of the wave in GHz
+
+//OUTPUT
+mprintf('\nFrequency of the wave is f=%1.3f GHz',f);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.14/Ex4_14.sce b/1979/CH4/EX4.14/Ex4_14.sce new file mode 100755 index 000000000..f864aa803 --- /dev/null +++ b/1979/CH4/EX4.14/Ex4_14.sce @@ -0,0 +1,28 @@ +//chapter-4 page 151 example 4.14
+//==============================================================================
+clc;
+clear;
+
+//For a rectangular waveguide
+b=2.5;//Length of Rectangular Waveguide in cm
+a=5;//breadth of Rectangular Waveguide in cm
+c=3*10^10;//Velocity of Light in cm/sec
+w0=4.5;//Free space wavelength in cm
+
+//CALCULATION
+disp('For a TE10 mode which is the dominant mode');
+wc=2*a;//Cutoff wavelength in cm
+wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in cm
+Vp=(c/sqrt(1-(w0/wc)^2))/10^10;//Phase Velocity in 10^10 cm/sec
+B=((2*(%pi)*sqrt(wc^2-w0^2))/(w0*wc));//Phase constant in radians
+
+//OUTPUT
+mprintf('\nGuide wavelength is wg=%1.5f cm \nPhase constant is B=%1.3f radians \nPhase Velocity is Vp=%1.2f *10^10 cm/sec',wg,B,Vp);
+
+//=========================END OF PROGRAM===========================================
+
+//Note: Check the answers once
+//Correct answers are
+//Guide wavelength is wg=5.03903 cm
+//Phase constant is B=1.247 radians
+//Phase Velocity is Vp=3.36 *10^10 cm/sec
diff --git a/1979/CH4/EX4.15/Ex4_15.sce b/1979/CH4/EX4.15/Ex4_15.sce new file mode 100755 index 000000000..83c723a82 --- /dev/null +++ b/1979/CH4/EX4.15/Ex4_15.sce @@ -0,0 +1,22 @@ +//chapter-4 page 152 example 4.15
+//==============================================================================
+clc;
+clear;
+
+wcTE10=16;//Critical wavelength of TE10 mode in cm
+wcTM11=7.16;//Critical wavelength of TM11 mode in cm
+wcTM21=5.6;//Critical wavelength of TM21 mode in cm
+disp('For any wave to be propagated, the condition to be met is wc>wo');
+wo1=10;//Free space wavelength in cm
+wo2=5;//Free space wavelength in cm
+disp('Critical wavelength of TE10 mode in cm is');
+disp(wcTE10);
+disp('Critical wavelength of TM11 mode in cm is');
+disp(wcTM11);
+disp('Critical wavelength of TM21 mode in cm is');
+disp(wcTM21);
+disp('For wo1=10cm,The mode that propagates only TE10.Because wcTE10>wo1 and all other modes that is TM11 TM21 donot propagate');
+disp('For wo2=5cm');
+disp('wcTE10>wo2, so TE10 mode propagates');
+disp('wcTM11>wo2, so TE11 mode propagates');
+disp('wcTE21>wo2, so TE21 mode propagates');
diff --git a/1979/CH4/EX4.16/Ex4_16.sce b/1979/CH4/EX4.16/Ex4_16.sce new file mode 100755 index 000000000..2f18b002c --- /dev/null +++ b/1979/CH4/EX4.16/Ex4_16.sce @@ -0,0 +1,24 @@ +//chapter-4 page 152 example 4.16
+//==============================================================================
+clc;
+clear;
+
+n=120*(%pi);//Intrinsic Impedance
+a=3;//Length of Rectangular Waveguide in cm
+b=2;//Width of Rectangular Waveguide in cm
+f=10^10;//Frequency in Hz
+c=3*10^10;//Velocity of Light in cm/sec
+
+//CALCULATION
+wc=((2*a*b)/sqrt(a^2+b^2));//Cutoff wavelength in TM11 mode in cms
+w0=(c/f);//Free space wavelength in cms
+ZTM=(n*sqrt(1-(w0/wc)^2));//Characteristic Wave Impedance in ohms
+
+//OUTPUT
+mprintf('\nCharacteristic Wave Impedance is ZTM=%2.3f ohms',ZTM);
+
+
+//=========================END OF PROGRAM=================================
+
+//Note: Check the given answer once it is wrong
+ //currect answer is 163.242 ohms
diff --git a/1979/CH4/EX4.17/Ex4_17.sce b/1979/CH4/EX4.17/Ex4_17.sce new file mode 100755 index 000000000..c16d1c601 --- /dev/null +++ b/1979/CH4/EX4.17/Ex4_17.sce @@ -0,0 +1,19 @@ +//chapter-4 page 152 example 4.17
+//==============================================================================
+clc;
+clear;
+
+c=3*10^10;//Velocity of Light in cm/sec
+f=6*10^9;//Frequency in Hz
+
+//CALCULATION
+fc=(0.8*f);//Given Cutoff frequency for TE11 mode in Hz
+wc=(c/fc);//Cutoff wavelength in cms
+D=((1.841*wc)/(%pi));//Diameter of waveguide in cm
+w0=(c/f);//Free space wavelength in cm
+wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in cm
+
+//OUTPUT
+mprintf('\nDiameter of the waveguide is D=%1.4f cm \nGuide wavelength is wg=%1.3f cm',D,wg);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.18/Ex4_18.sce b/1979/CH4/EX4.18/Ex4_18.sce new file mode 100755 index 000000000..0aee3acdf --- /dev/null +++ b/1979/CH4/EX4.18/Ex4_18.sce @@ -0,0 +1,30 @@ +//chapter-4 page 153 example 4.18
+//==============================================================================
+clc;
+clear;
+
+//For a TE10 mode
+a=1.5;//Length of an air filled square Waveguide in m
+b=1;//breadth of an air filled square Waveguide in cm
+c=3*10^10;//Velocity of Light in cm/sec
+f=6*10^9;//Impressed Frequency in Hz
+er=4;//dielectric constant
+
+//CALCULATION
+wc=2*a;//Cutoff wavelength in cm
+fc=(c/wc)/10^9;//Cutoff frequency in GHz
+disp('Cutoff frequency in GHz is');
+disp(fc);
+disp('The impressed frequency of 6 GHz is less than the Cutoff frequency and hence the signal will not pass through the guide');
+w=(c/f);//Wavelength in cm
+disp('Alternatively, the wavelength of the impressed signal in cm is');
+disp(w);
+wair=w;
+disp('which is longer than the cutoff wavelength (3cm) and hence no propagation of the wave');
+w1=wair/sqrt(er);//Wavelength in cm
+disp('If the waveguide is loaded with dielectric of er=4, then the wavelength in cm is');
+disp(w1);
+disp('which is lessthan wair');
+disp('Now the signal with 6 GHz frequency will pass through the dielectric loaded waveguide');
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.19/Ex4_19.sce b/1979/CH4/EX4.19/Ex4_19.sce new file mode 100755 index 000000000..f742c4d70 --- /dev/null +++ b/1979/CH4/EX4.19/Ex4_19.sce @@ -0,0 +1,27 @@ +//chapter-4 page 153 example 4.19
+//==============================================================================
+clc;
+clear;
+
+a=0.015;//Length of hollow Rectangular Waveguide in m
+b=1;//breadth of hollow Rectangular Waveguide in cm
+f=6*10^9;//Frequency in Hz in TE10 mode
+c=3*10^8;//Velocity of Light in m/sec
+m=1;//Value of m in TE10 mode
+n=0;//Value of n in TE10 mode
+u=4*(%pi)*10^(-7);//Permeability in free space in Henry
+e=8.854*10^(-12);//Permittivity in free space in F/m
+
+//CALCULATION
+wc=2*a;//Cutoff wavelength for TE10 mode in m
+fc=c/wc;//Cutoff frequency in Hz
+w=2*(%pi)*f;//Angular frequency in rad/sec
+
+//So 6GHz signal will not pass through waveguide but will get attenuated
+A=(sqrt((m*(%pi)/a)^2+(n*(%pi)/b)^2-(w^2*u*e)));//Attenuation in NP/m
+AdB=A*(20/log(10));//Attenuation in dB/m
+
+//OUTPUT
+mprintf('\Amount of Attenuation is A=%3.1f NP/m \nAttenuation is AdB=%4.2f dB/m',A,AdB);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.2/Ex4_2.sce b/1979/CH4/EX4.2/Ex4_2.sce new file mode 100755 index 000000000..cade93e14 --- /dev/null +++ b/1979/CH4/EX4.2/Ex4_2.sce @@ -0,0 +1,28 @@ +//chapter-4 page 142 example 4.2
+//==============================================================================
+clc;
+clear;
+
+R=0.05;//Resistance in ohm/m
+L=0.16173*10^(-6);//Inductance per unit lengths in H/m
+C=0.15802*10^(-6);//The Capacitance per unit lengths in F/m
+V=197814.14;//The Velocity of propagation in Km/s
+l=50;//Length of Coaxial Line in met
+Pin=480;//Input Power to the System in watts
+f=3*10^9;//Frequency in Hz
+c=3*10^5;//Velocity of Light in Km/sec
+e0=8.854*10^(-12);//Permittivity in free space in F/m
+
+//CALCULATIONS
+Z0=sqrt(L/C);
+A=(R/(2*Z0));//Attenuation Constant in NP/m
+w=(2*(%pi)*f);//Angular Frequency in rad/sec
+B=(w*sqrt(L*C));//Phase Constant in rad/m
+Vp=(1/sqrt(L*C))/(10^3);//Phase Velocity in Km/s
+er=(((c/V)^2)/e0);//Relative Permittivity
+Pl=(2*Pin*l);//Power Loss in watts
+
+//OUTPUT
+mprintf('\nAttenuation Constant is A=%1.4f NP/m \nPhase Constant is B=%4.3f rad/m \nPhase Velocity is Vp=%4.3f Km/s \nRelative Permittivity is er=%12.2f \nPower Loss is Pl=%5.0f watts',A,B,Vp,er,Pl);
+
+//=========================END OF PROGRAM===========================================
diff --git a/1979/CH4/EX4.20/Ex4_20.sce b/1979/CH4/EX4.20/Ex4_20.sce new file mode 100755 index 000000000..bc0369323 --- /dev/null +++ b/1979/CH4/EX4.20/Ex4_20.sce @@ -0,0 +1,27 @@ +//chapter-4 page 154 example 4.20
+//==============================================================================
+clc;
+clear;
+
+a=3;//Length of Rectangular Waveguide in cm
+b=1;//Width of Rectangular Waveguide in cm
+f=9*10^9;//Frequency in Hz in TE10 mode
+c=3*10^10;//Velocity of Light in cm/sec
+Emax=3000;//Max potential gradient in V/cm
+
+//CALCULATION
+w0=(c/f);//Free space wavelength in cms
+disp('Free space Wavelength in cm is');
+disp(w0);
+wc=2*a;//Cutoff wavelength in TE10 mode in cms
+wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in cms
+disp('Guide Wavelength in cm is');
+disp(wg);
+P=((6.63*10^(-4))*(Emax^2)*a*b*(w0/wg))/1000;//Power handling capability of the waveguide in kW
+
+//OUTPUT
+mprintf('\nPower handling capability of the waveguide is P=%2.3f kW',P);
+
+
+//=========================END OF PROGRAM=================================
+
diff --git a/1979/CH4/EX4.21/Ex4_21.sce b/1979/CH4/EX4.21/Ex4_21.sce new file mode 100755 index 000000000..e47f9c088 --- /dev/null +++ b/1979/CH4/EX4.21/Ex4_21.sce @@ -0,0 +1,21 @@ +//chapter-4 page 154 example 4.21
+//==============================================================================
+clc;
+clear;
+
+d=5;//Internal Diameter of circular waveguide in cm
+f=9*10^9;//Frequency in Hz in TE11 mode
+c=3*10^10;//Velocity of Light in cm/sec
+Emax=300;//Max field strength in V/cm
+
+//CALCULATION
+w0=(c/f);//Free space wavelength in cms
+wc=((d*(%pi))/1.841);//Cutoff wavelength in TE11 mode in cms
+wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in cms
+Pmax=(0.498*(Emax^2)*(d^2)*(w0/wg))/1000;//Maximum power in kWatts
+
+//OUTPUT
+mprintf('\nMaximum power is Pmax=%4.2f kWatts',Pmax);
+
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.22/Ex4_22.sce b/1979/CH4/EX4.22/Ex4_22.sce new file mode 100755 index 000000000..7aca58dc4 --- /dev/null +++ b/1979/CH4/EX4.22/Ex4_22.sce @@ -0,0 +1,26 @@ +//chapter-4 page 155 example 4.22
+//==============================================================================
+clc;
+clear;
+
+//For an air filled square waveguide
+a=0.01;//Length of an air filled square Waveguide in m
+b=0.01;//breadth of an air filled square Waveguide in m
+c=3*10^8;//Velocity of Light in m/sec
+f=30*10^9;//Frequency in Hz in TE11 mode
+Pmax=746;//Max power =1 horsepower in W
+n=120*(%pi);//Impedance of freespace in ohms
+
+//CALCULATION
+w0=(c/f);//Free space wavelength in m
+wc=2*a;//Cutoff wavelength in m
+ZTE=(n/sqrt(1-(w0/wc)^2));//Impedance in ohms
+Emax=(sqrt((Pmax*4*ZTE)/(a*b)))/1000;//The Peak value of Electric field occuring in the guide in kV/m
+//From P=(1/2)*Integration(Re(E*H))da
+//and Pmax=(1/(4*ZTE))*Emax^2*a*b
+
+//OUTPUT
+mprintf('\nThe Peak value of Electric field occuring in the guide is Emax=%3.2f kV/m',Emax);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH4/EX4.23/Ex4_23.sce b/1979/CH4/EX4.23/Ex4_23.sce new file mode 100755 index 000000000..1b775bfbf --- /dev/null +++ b/1979/CH4/EX4.23/Ex4_23.sce @@ -0,0 +1,30 @@ +//chapter-4 page 156 example 4.23
+//==============================================================================
+clc;
+clear;
+
+//For an air filled rectangular waveguide
+a=0.023;//Length of an air filled Rectangular Waveguide in m
+b=0.01;//breadth of an air filled Rectangular Waveguide in m
+c=3*10^8;//Velocity of Light in m/sec
+f=9.375*10^9;//Frequency in Hz in TE11 mode
+w0=0.01;//Free space wavelength in m
+wc=0.02;//Cutoff wavelength in m
+Pmax=746;//Max power =1 horsepower in W
+
+//CALCULATION
+wo=(c/f);//Free space wavelength in cm
+Pbd=(597*a*b*sqrt(1-(wo/(2*a))^2));//The breakdown power for the dominant mode ie TE11 in W
+wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in m
+Emax=(sqrt((Pmax*wg)/(6.63*10^(-4)*w0)))/1000;//Max electric field in kV/m
+
+//OUTPUT
+mprintf('\nThe breakdown power for the dominant mode ie TE11 is Pbd=%1.5f W \nMax electric field is Emax=%1.4f kV/m',Pbd,Emax);
+
+//=========================END OF PROGRAM===========================================
+
+
+//Note: Check the answers once
+//Correct answers are
+//The breakdown power for the dominant mode ie TE11 is Pbd=0.09864 W
+//Max electric field is Emax=1.1398 kV/m
diff --git a/1979/CH4/EX4.24/Ex4_24.sce b/1979/CH4/EX4.24/Ex4_24.sce new file mode 100755 index 000000000..4f0916763 --- /dev/null +++ b/1979/CH4/EX4.24/Ex4_24.sce @@ -0,0 +1,20 @@ +//chapter-4 page 156 example 4.24
+//==============================================================================
+clc;
+clear;
+
+a=2.5;//Radius of circular waveguide in cm
+d=5;//Internal Diameter of circular waveguide in cm
+f=9*10^9;//Frequency in Hz in TE11 mode
+c=3*10^10;//Velocity of Light in cm/sec
+
+//CALCULATION
+w0=(c/f);//Free space wavelength in cms
+wc=((d*(%pi))/1.841);//Cutoff wavelength in TE11 mode in cms
+fc=(c/wc);//Cutoff frequency in Hz
+Pbd=(1790*(a^2)*sqrt(1-(fc/f)^2))/1000;//Breakdown Power in TE11 mode in kW
+
+//OUTPUT
+mprintf('\nBreakdown Power in TE11 mode is Pbd=%5.3f kW',Pbd);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.3/Ex4_3.sce b/1979/CH4/EX4.3/Ex4_3.sce new file mode 100755 index 000000000..88358a739 --- /dev/null +++ b/1979/CH4/EX4.3/Ex4_3.sce @@ -0,0 +1,20 @@ +//chapter-4 page 142 example 4.3
+//==============================================================================
+clc;
+clear;
+
+//For an air filled coaxial cable
+f=9.375*10^9;//operating frequency in Hz
+c=3*10^10;//Velocity of Light in cm/sec
+disp('Assuming a ratio of (b/a)=2.3 and (b+a)<(w/pi) to exclude higher order modes and a dominant mode propagating');
+a=0.36432;//length of coaxial cable in cm
+x=2.3;//ratio of b/a
+
+//CALCULATION
+w0=(c/f);//free space wavelength in cm
+Pbd=(3600*(a^2)*log(x));//Breakdown power of a coaxial cable in kW
+
+//OUTPUT
+mprintf('\nBreakdown power of a coaxial cable is Pbd=%3.0f kW',Pbd);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.4/Ex4_4.sce b/1979/CH4/EX4.4/Ex4_4.sce new file mode 100755 index 000000000..1f25e38aa --- /dev/null +++ b/1979/CH4/EX4.4/Ex4_4.sce @@ -0,0 +1,18 @@ +//chapter-4 page 142 example 4.4
+//==============================================================================
+clc;
+clear;
+
+b=0.3175;//Distance between ground planes of strip line in cm
+d=0.0539;//Diameter of circular conductor in cm
+er=2.32;//Dielectric Constant
+c=3*10^8;//Velocity of Light in m/sec
+
+//CALCULATION
+Z0=((60/sqrt(er))*log((4*b)/(d*(%pi))));//Characteristic Impedance in ohms
+V=(c/sqrt(er))/(10^3);//The Velocity of propagation in Km/s
+
+//OUTPUT
+mprintf('\nCharacteristic Impedance is Z0=%2.2f ohms \nThe Velocity of propagation is V=%5.2f Km/s',Z0,V);
+
+//=========================END OF PROGRAM===================================================
diff --git a/1979/CH4/EX4.5/Ex4_5.sce b/1979/CH4/EX4.5/Ex4_5.sce new file mode 100755 index 000000000..bd8263990 --- /dev/null +++ b/1979/CH4/EX4.5/Ex4_5.sce @@ -0,0 +1,27 @@ +//chapter-4 page 143 example 4.5
+//==============================================================================
+clc;
+clear;
+
+//For a microstrip transmission line
+er=9.7;//relative dielectric constant of an alumina substrate
+x1=0.5;//w/h ratio in first transmission line
+x2=5;//w/h ratio in second transmission line
+c=3*10^8;//Velocity of Light in m/sec
+
+//CALCULATION
+disp('For case1: w/h=0.5');
+disp('Since x1=0.5<1, for this we use high impedance analysis');
+Eeff1=(((er+1)/2)+((er-1)/2)*(1/((sqrt(1+(12/x1)))+(0.04*(1-x1)^2))));//Effective dielectric constant
+Zo1=((60/sqrt(Eeff1))*log((8/x1)+(x1/4)));//Characteristic impedance in ohms
+V1=(c/sqrt(Eeff1))/10^8;//Velocity of propagation in 10^8 m/sec
+mprintf('\nEffective dielectric constant is Eeff1=%1.2f \nCharacteristic impedance is Zo1=%2.2f ohms \nVelocity of propagation is V1=%1.1f *10^8 m/sec',Eeff1,Zo1,V1);
+
+disp('For case2: w/h=5');
+disp('here x2>1');
+Eeff2=(((er+1)/2)+((er-1)/2)*(1/(sqrt(1+(12/x2)))));//Effective dielectric constant
+Zo2=((120*(%pi)/sqrt(Eeff2))*(1/(x2+1.393+(0.667*log(1.444+x2)))));//Characteristic impedance in ohms
+V2=(c/sqrt(Eeff2))/10^8;//Velocity of propagation in 10^8 m/sec
+mprintf('\nEffective dielectric constant is Eeff2=%1.2f \nCharacteristic impedance is Zo2=%2.2f ohms \nVelocity of propagation is V2=%1.2f *10^8 m/sec',Eeff2,Zo2,V2);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.6/Ex4_6.sce b/1979/CH4/EX4.6/Ex4_6.sce new file mode 100755 index 000000000..d88170f5d --- /dev/null +++ b/1979/CH4/EX4.6/Ex4_6.sce @@ -0,0 +1,30 @@ +//chapter-4 page 144 example 4.6
+//==============================================================================
+clc;
+clear;
+
+//To calculate the ratio of circular waveguide cross-sectional area to the rectangular waveguide cross section
+disp('Assuming that both these waveguides have similar or equal cutoff frequencies/wavelengths');
+
+disp('Case1: When TE wave is propagated');
+disp('For standard rectangular waveguides a=2b and For TE11 dominant mode in circular waveguide wc1=(2(pi)r)/1.841');
+disp('where r is the radius of the circular waveguide and wc1 is the cutoff wavelength for circular waveguide');
+disp('It is given wc1=wc2 where wc2 is the cutoff wavelength for rectangular waveguide');
+disp('For TE10(dominant mode) of propagation in rectangular waveguide wc2=2a');
+disp('Since wc2=(2ab)/(sqrt((mb)^2+(nb)^2)) as m=1;n=0 for TE10 wc2=2ab/b=2a');
+disp('By equating wc1=wc2, we get a=1.70645r');
+disp('For a standard waveguide a=2b therefore, b=a/2');
+disp('Now the area of rectangular waveguide=a*b=a*a/2=1.70645r*1.70645r/2=1.456r^2');
+disp('Area of rectangular waveguide=1.456r^2 ,Area of circular waveguide=(pi)*r^2');
+disp('Ratio of area of circular to area of rectangular waveguide=(Area of circular waveguide/Area of rectangular waveguide)=(pi*r^2)/(1.456r^2)=2.1576873=2.2');
+disp('This clearly shows that the space occupied by a rectangular waveguide system is less compared to that for a circular waveguide system.Hence circular waveguides are not preferred in some applications');
+
+disp('Case2: When TM wave is propagated');
+disp('For TM01 mode wc1=(2*pi*r)/(Pnm)min=(2*pi*r)/Pnm=(2*pi*r)/2.405 where r is the radius of circular waveguide wc1=2.6155r');
+disp('Now if wc2 is the wavelength for TM11 wave propagating in a standard rectangular waveguide wc2=wc1 but wc2=(2ab)/sqrt(a^2+b^2)');
+disp('For standard waveguides,we know a=2b, wc2=(2*2b*b)/sqrt(4b^2+b^2)=(4b^2)/sqrt(5b^2)=4b/sqrt(5)');
+disp('By equating wc1=wc2, we get 2.6155r=4b/sqrt(5)=>b=1.4621r');
+disp('Area of rectangular waveguide=b*b=b^2 but b=1.4621r, so Area of rectangular waveguide=(1.4621r)^2=2.132r^2 and Area of circular waveguide= pi*r^2');
+disp('Ratio of area of circular to area of rectangular waveguide=(Area of circular waveguide/Area of rectangular waveguide)=(pi*r^2)/(2.132r^2)=1.5');
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.7/Ex4_7.sce b/1979/CH4/EX4.7/Ex4_7.sce new file mode 100755 index 000000000..8e7fc58eb --- /dev/null +++ b/1979/CH4/EX4.7/Ex4_7.sce @@ -0,0 +1,27 @@ +//chapter-4 page 146 example 4.7
+//==============================================================================
+clc;
+clear;
+
+//For a rectangular waveguide
+disp('For a rectangular waveguide the dominant mode is the TE10 mode.TE10 mode can propagate at a lower frequency');
+f=9*10^9;//frequency in Hz
+wg=4;//guide wavelength in cm
+c=3*10^10;//Velocity of Light in cm/sec
+disp('For TE10 mode wc=2a');
+
+//CALCULATION
+w0=(c/f);//free space wavelength in cm
+wc=(w0/sqrt(1-(w0/wg)^2));//Cutoff wavelength for TE10 mode in cm
+disp('Free space wavelength w0 in cm is');
+disp(w0);
+disp('Cutoff wavelength wc in cm is');
+disp(wc);
+disp('Since wc>w0, the wave propagates');
+a=(wc/2);//length of the guide in cm
+b=(wc/4);//breadth of the guide in cm
+
+//OUTPUT
+mprintf('\nlength of the guide is a=%1.0f cm \nbreadth of the guide is b=%1.1f cm',a,b);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.8/Ex4_8.sce b/1979/CH4/EX4.8/Ex4_8.sce new file mode 100755 index 000000000..850d61c5a --- /dev/null +++ b/1979/CH4/EX4.8/Ex4_8.sce @@ -0,0 +1,21 @@ +//chapter-4 page 147 example 4.8
+//==============================================================================
+clc;
+clear;
+
+a=10;//breadth of a rectangular waveguide in cm
+f=2.5*10^9;//Frequency in Hz in TE10 mode
+c=3*10^10;//Velocity of Light in cm/sec
+
+//CALCULATION
+wc=2*a;//Cutoff wavelength for TE10 mode in cm
+w0=(c/f);//Free space wavelength in cm
+x=sqrt(1-(w0/wc)^2);
+wg=(w0/x);//Guide wavelength in cm
+Vp=(c/x)/10^5;//Phase Velocity in Km/sec
+Vg=((c^2)/Vp)/10^10;//Group Velocity in Km/sec
+
+//OUTPUT
+mprintf('\nCutoff wavelength for TE10 mode is wc=%2.0f cm \nGuide wavelength is wg=%2.0f cm \nPhase Velocity is Vp=%7.2f Km/sec \nGroup Velocity is Vg=%6.2f Km/sec',wc,wg,Vp,Vg);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH4/EX4.9/Ex4_9.sce b/1979/CH4/EX4.9/Ex4_9.sce new file mode 100755 index 000000000..59db7cd15 --- /dev/null +++ b/1979/CH4/EX4.9/Ex4_9.sce @@ -0,0 +1,48 @@ +//chapter-4 page 147 example 4.9
+//==============================================================================
+clc;
+clear;
+
+f=8.6*10^9;//frequency in Hz
+c=3*10^10;//Velocity of Light in cm/sec
+a=2.5;//Length of a Waveguide in cm
+b=1;//Width of a Waveguide in cm
+
+//CALCULATION
+disp('The condition for the wave to propagate along a guide is that wc>w0.');
+w0=c/f;//free space wavelength in cm
+disp('Free space wavelength w0 in cm is');
+disp(w0);
+disp('For TE waves, wc=(2ab/sqrt((mb)^2+(na)^2))');
+disp('For TE01 waves');
+m1=0;
+n1=1;
+wc1=((2*a*b)/(sqrt((m1*b)^2+(n1*a)^2)));//Cutoff wavelength for TE01 mode in cm
+disp('Cutoff wavelength for TE01 mode in cm is');
+disp(wc1);
+disp('Since wc for TE01=2cm is not greater than w0 TE01,will not propagate for TE01 mode.');
+disp('For TE10 waves');
+m2=1;
+n2=0;
+wc2=((2*a*b)/(sqrt((m2*b)^2+(n2*a)^2)));//Cutoff wavelength for TE10 mode in cm
+disp('Cutoff wavelength for TE10 mode in cm is');
+disp(wc2);
+disp('Since wc TE10 > w0 TE10 is a possible mode.');
+fc=(c/wc2)/10^9;//Cutoff frequency in GHz
+disp('For TE11 and TM11 waves');
+m3=1;
+n3=1;
+wc3=((2*a*b)/(sqrt((m3*b)^2+(n3*a)^2)));//Cutoff wavelength for TE11 mode in cm
+disp('Cutoff wavelength for TE11 and TM11 modes in cm is');
+disp(wc3);
+disp('As wc for TE11 and TM11 is < w0 both TE11 and TM11 do not propagate as higher modes.');
+wg=(w0/sqrt(1-(w0/wc2)^2));//Guide wavelength in cm
+disp('From the above analysis we conclude that only TE10 mode is possible');
+
+//OUTPUT
+mprintf('\nCutoff frequency is fc=%1.0f GHz \nGuide wavelength is wg=%1.3f cm',fc,wg);
+
+//=========================END OF PROGRAM===============================
+
+
+
diff --git a/1979/CH5/EX5.1/Ex5_1.sce b/1979/CH5/EX5.1/Ex5_1.sce new file mode 100755 index 000000000..f08cac594 --- /dev/null +++ b/1979/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,23 @@ +//chapter-5 page 174 example 5.1
+//==============================================================================
+clc;
+clear;
+
+//For a circular waveguide
+a=3;//radius in cm
+f0=10*10^9;//resonant frequency of a circular resonator in Hz
+disp('Given the mode of operator is TM011 so here n=0,m=1,p=1');
+c=3*10^10;//Velocity of light in cm/sec
+m=1;
+n=0;
+p=1;
+Pnm=2.405;//dominant mode value[TM01]
+
+//CALCULATION
+d=((p*(%pi))/(sqrt((2*(%pi)*f0/c)^2-(Pnm/a)^2)));//The minimum distance between the two end plates in cms
+
+//OUTPUT
+mprintf('\nThe minimum distance between the two end plates of a circular waveguide is d=%1.2f cms',d);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH5/EX5.2/Ex5_2.sce b/1979/CH5/EX5.2/Ex5_2.sce new file mode 100755 index 000000000..ace8ad6c1 --- /dev/null +++ b/1979/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,24 @@ +//chapter-5 page 174 example 5.2
+//==============================================================================
+clc;
+clear;
+
+//For a rectangular cavity resonator
+a=2;//breadth in cm
+b=1;//height in cm
+l=3;//length of rectangular waveguide in cm
+disp('Lowest resonant frequency is obtained for the dominant mode TE10[f=c/w where w increases as f decreases. In dominant mode wc is maximum]');
+disp('So the dominant mode is TE101 so here m=1,n=0,p=1');
+c=3*10^10;//Velocity of light in cm/sec
+m=1;
+n=0;
+p=1;
+
+//CALCULATION
+f0=((c/2)*sqrt((m/a)^2+(n/b)^2+(p/l)^2))/10^9;//The resonant frequency of a rectangular cavity resonator in GHz
+
+//OUTPUT
+mprintf('\nThe resonant frequency of a rectangular cavity resonator is f0=%1.0f GHz',f0);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH5/EX5.3/Ex5_3.sce b/1979/CH5/EX5.3/Ex5_3.sce new file mode 100755 index 000000000..6d64c7c4a --- /dev/null +++ b/1979/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,24 @@ +//chapter-5 page 175 example 5.3
+//==============================================================================
+clc;
+clear;
+
+//For a circular resonator
+D=12.5;//diameter in cm
+l=5;//length of circular waveguide in cm
+disp('Given the mode of operator is TM012 so here n=0,m=1,p=2');
+c=3*10^10;//Velocity of light in cm/sec
+m=1;
+n=0;
+p=2;
+Pnm=2.405;//dominant mode value[TM01]
+
+//CALCULATION
+a=D/2;//radius in cm
+f0=((c/(2*(%pi)))*sqrt((Pnm/a)^2+((p*(%pi))/l)^2))/10^9;//The resonant frequency of a circular resonator in GHz
+
+//OUTPUT
+mprintf('\nThe resonant frequency of a circular resonator is f0=%1.2f GHz',f0);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH5/EX5.4/Ex5_4.sce b/1979/CH5/EX5.4/Ex5_4.sce new file mode 100755 index 000000000..6a4fe44a4 --- /dev/null +++ b/1979/CH5/EX5.4/Ex5_4.sce @@ -0,0 +1,23 @@ +//chapter-5 page 175 example 5.4
+//==============================================================================
+clc;
+clear;
+
+//For a circular resonator
+a=3;//radius in cm
+b=2;//dimension in cm
+l=4;//length of circular waveguide in cm
+disp('Given the mode of operator is TE101 so here m=1,n=0,p=1');
+c=3*10^10;//Velocity of light in cm/sec
+m=1;
+n=0;
+p=1;
+
+//CALCULATION
+f0=((c/2)*sqrt((m/a)^2+(n/b)^2+(p/l)^2))/10^9;//The resonant frequency of a circular resonator in GHz
+
+//OUTPUT
+mprintf('\nThe resonant frequency of a circular resonator is f0=%1.2f GHz',f0);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH6/EX6.10/Ex6_10.sce b/1979/CH6/EX6.10/Ex6_10.sce new file mode 100755 index 000000000..380c464fe --- /dev/null +++ b/1979/CH6/EX6.10/Ex6_10.sce @@ -0,0 +1,25 @@ +//Chapter-6, Example 6.10, Page 242
+//=============================================================================
+
+clc ;
+clear;
+close;
+In_loss =0.5; // i n s e r t i o n l o s s ( i n dB)
+C =20; //coupling coefficient i n dB
+D =35; //directivity i n dB
+Pi_Pf =10^( C /10) ;
+Pi =90; // i n Watts
+Pf=Pi/ Pi_Pf ;
+Pf_Pb =10^( D /10) ;
+Pb=Pf/ Pf_Pb ;
+P_rec =(Pi -Pf -Pb); //Power r e c e i v e d ( i n Watts )
+P_rec_dB =10* log (Pi/ P_rec )/log (10) ;
+P_rec_eff = P_rec_dB - In_loss ; // E f f e c t i v e power r e c e i v e d ( i n dB)
+disp ( Pf , 'Output power through coupled port ( i n Watts)=' );
+disp ( Pb , 'Output power through isolated port ( i n Watts)=' );
+disp ( P_rec_dB , ' Power r e c e i v e d ( i n dB)=' );
+disp ( P_rec_eff , ' E f f e c t i v e power r e c e i v e d ( i n dB)=' );
+
+
+//=================================END OF PROGRAM==============================
+
diff --git a/1979/CH6/EX6.11/Ex6_11.sce b/1979/CH6/EX6.11/Ex6_11.sce new file mode 100755 index 000000000..6e4d5f4c8 --- /dev/null +++ b/1979/CH6/EX6.11/Ex6_11.sce @@ -0,0 +1,13 @@ +//Chapter-6, Example 6.11, Page 242
+//=============================================================================
+clc;
+//Calculations
+S13=0.1*(cos(90*%pi/180)+(%i)*sin(90*%pi/180));//conversion from polar to rectangular
+S13=abs(S13);
+C=-20*log10(S13);//coupling coefficient in dB
+S14=0.05*(cos(90*%pi/180)+(%i)*sin(90*%pi/180));//conversion from polar to rectangular
+S14=abs(S14);
+D=20*log10(S13/S14);//directivity in dB
+I=-20*log10(S14);//isolation in dB
+mprintf("Thus coupling,directivity and isolation are %1.0f dB,%1.2f dB and %2.2f dB respetively ",C,D,I);
+//=================================END OF PROGRAM==============================
diff --git a/1979/CH6/EX6.12/Ex6_12.sce b/1979/CH6/EX6.12/Ex6_12.sce new file mode 100755 index 000000000..66ecb934e --- /dev/null +++ b/1979/CH6/EX6.12/Ex6_12.sce @@ -0,0 +1,18 @@ +//chapter-6 page 244 example 6.12
+//==============================================================================
+clc;
+clear;
+
+x=3.5;//distance between two minimas in cm
+y=0.25;//distance between twice minimum power points in cm
+
+//CALCULATION
+wg=2*x;//guided wavelength in cm
+S=(wg/(y*(%pi)));//Voltage Standing Wave Ratio(VSWR)
+
+//OUTPUT
+mprintf('\nVoltage Standing Wave Ratio(VSWR) is S=%1.4f',S);
+
+//=========================END OF PROGRAM===============================
+
+
diff --git a/1979/CH6/EX6.13/Ex6_13.sce b/1979/CH6/EX6.13/Ex6_13.sce new file mode 100755 index 000000000..3d866e2a0 --- /dev/null +++ b/1979/CH6/EX6.13/Ex6_13.sce @@ -0,0 +1,20 @@ +//chapter-6 page 244 example 6.13
+//==============================================================================
+clc;
+clear;
+
+wg=7.2;//guide wavelength in cm
+x=10.5;//Position of reference null without the waveguide component in cm
+y=9.3;//Position of reference null with the waveguide component in cm
+
+//CALCULATION
+z=x-y;//Path difference introduced due to the component in cm
+p=(2*(%pi)*(z/wg));//Phase difference introduced in rad
+Pd=(p*180)/(%pi);//Phase shift introduced in deg
+
+//OUTPUT
+mprintf('\nPhase shift introduced is Pd=%2.0f deg',Pd);
+
+//=========================END OF PROGRAM===============================
+
+
diff --git a/1979/CH6/EX6.2/Ex6_2.sce b/1979/CH6/EX6.2/Ex6_2.sce new file mode 100755 index 000000000..459d64ded --- /dev/null +++ b/1979/CH6/EX6.2/Ex6_2.sce @@ -0,0 +1,17 @@ +//Chapter-6, Example 6.2, Page 234
+//=============================================================================
+//Input parameters
+//[s]=[0,(0.3+(%i)*(0.4));(0.3+(%i)*(0.4)),0];//scattering matrix of a two port
+//Calculations
+//to find l such that S12 and S21 will be real when port1 is shifted lm to the left
+//let port 1 be shifted by phi1 degree to the left and port2 position be remained unchanged i.e.,phi2=delta
+//Then [phi]=[e^-(j*phi1),0;0,1]
+//[S']=[phi]*[s]*[phi]
+//for S12 and S21 to be real
+phi1=53.13;//in degrees
+phi1=phi1*(%pi/180);//phi in radians
+b=34.3;//measured in rad/m
+l=(phi1)/b;//distance of shift in m
+//Output
+mprintf("distance that the position of part1 should be shifted to the left so that S21 and S12 will be real numbers is %1.4f m",l)
+//=================================END OF PROGRAM==============================
diff --git a/1979/CH6/EX6.3/Ex6_3.sce b/1979/CH6/EX6.3/Ex6_3.sce new file mode 100755 index 000000000..525354412 --- /dev/null +++ b/1979/CH6/EX6.3/Ex6_3.sce @@ -0,0 +1,31 @@ +//Chapter-6, Example 6.3, Page 236
+//=============================================================================
+clc;
+//Input parameters
+D=30;//directivity in dB
+VSWR=1;//VSWR at each port under matched conditions
+C=10;//coupling factor
+//Calculations
+S41=sqrt(0.1);
+S14=S41;//under matched and lossless conditions
+S31=sqrt(((S41)^2)/(10)^(D/10));
+S13=S31;
+S11=(VSWR-1)/(VSWR+1);
+S22=S11;
+S33=S22;
+S44=S33;
+//let input power is given at port1
+//p1=p2+P3+p4
+S21=sqrt(1-(S41)^2-(S31)^2);
+S12=S21;
+S34=sqrt((0.5)*(1+(S12)^2-0.1-0.0001));
+S43=S34
+S23=sqrt(1-10^-4-(S34)^2)
+S32=S23;
+S24=sqrt(1-0.1-(S34)^2)
+S42=S24;
+[S]=[S11,S12,S13,S14;S21,S22,S23,S24;S31,S32,S33,S34;S41,S42,S43,S44];
+//Output
+mprintf("The scattering matrix is");
+disp([S])
+//=================================END OF PROGRAM==============================
diff --git a/1979/CH6/EX6.4/Ex6_4.sce b/1979/CH6/EX6.4/Ex6_4.sce new file mode 100755 index 000000000..ed7cb0f4c --- /dev/null +++ b/1979/CH6/EX6.4/Ex6_4.sce @@ -0,0 +1,17 @@ +//Chapter-6, Example 6.4, Page 238
+//=============================================================================
+clc;
+//Input parameters
+a1=32*10^-3;//power in watts
+a2=0;
+a3=0;
+//Calculations
+[S]=[0.5,-0.5,0.707;-0.5,0.5,0.707;0.707,0.707,0];//S-matrix for H-plane tee
+//[B]=[b1,b2,b3]
+[B]=[S].*[a1,0,0;0,0,0;0,0,0];
+b1=(0.5)^2*a1;//power at port 1
+b2=(-0.5)^2*a1;//power at port 2
+b3=(0.707)^2*a1;//power at port 3
+//Output
+mprintf("Thus b1,b2,b3 are %g W,%g W,%g W respectively",b1,b2,b3);
+//=================================END OF PROGRAM==============================
diff --git a/1979/CH6/EX6.5/Ex6_5.sce b/1979/CH6/EX6.5/Ex6_5.sce new file mode 100755 index 000000000..edb2b5a72 --- /dev/null +++ b/1979/CH6/EX6.5/Ex6_5.sce @@ -0,0 +1,17 @@ +//Chapter-6, Example 6.5, Page 239
+//=============================================================================
+clc;
+//Input parameters
+[S]=[0.5,-0.5,0.707;-0.5,0.5,0.707;0.707,0.707,0];
+R1=60;//load at port1 in ohms
+R2=75;//load at port2 in ohms
+R3=50;//characteristic impedance in ohms
+P3=20*10^-3;//power at port 3 in Watts
+//calculations
+p1=(R1-R3)/(R1+R3);
+p2=(R2-R3)/(R2+R3);
+P1=0.5*P3*(1-(p1)^2);//power delivered to the port1 in Watts
+P2=0.5*P3*(1-(p2)^2);//power delivered to the port2 in Watts
+//Output
+mprintf("Thus power delivered to the port1 and port2 are %g W,%g W respectively",P1,P2);
+//=================================END OF PROGRAM==============================
diff --git a/1979/CH6/EX6.6/Ex6_6.sce b/1979/CH6/EX6.6/Ex6_6.sce new file mode 100755 index 000000000..650b53097 --- /dev/null +++ b/1979/CH6/EX6.6/Ex6_6.sce @@ -0,0 +1,24 @@ +//Chapter-6, Example 6.6, Page 239
+//=============================================================================
+clc;
+//Input parameters
+p1=0.5;//reflection coefficient at port 1
+p2=0.6;//reflection coefficient at port 2
+p3=1;//reflection coefficient at port 3
+p4=0.8;//reflection coefficient at port 4
+//[S]=[0,0,0.707,0.707;0,0,0.5,-0.707;0.707,0.707,0,0;-0.707,0.707,0,0];//S matrix of magic Tee
+//solving for b1,b2,b3,b4 we get it as
+//calculations
+b1=0.6566;
+b2=0.7576;
+b3=0.6536;
+b4=0.0893;
+P1=(b1)^2;//power at port1 in watts
+disp(P1);
+P2=(b2)^2;//power at port2 in watts
+disp(P2);
+P3=(b3)^2;//power at port3 in watts
+disp(P3);
+P4=(b4)^2;//power at port4 in watts
+disp(P4);
+//=================================END OF PROGRAM==============================
diff --git a/1979/CH6/EX6.7/Ex6_7.sce b/1979/CH6/EX6.7/Ex6_7.sce new file mode 100755 index 000000000..82ae0dd7a --- /dev/null +++ b/1979/CH6/EX6.7/Ex6_7.sce @@ -0,0 +1,14 @@ +//Chapter-6, Example 6.7, Page 240
+//=============================================================================
+clc;
+//Input parameters
+ins=0.5;//insertion loss in db
+iso=30;//isolation loss in db
+//Calculations
+S21=10^-(ins/20);//insertion loss=0.5=-20*log[S21]
+S12=10^-(iso/20);//isolation loss=30=-20*log[s12]
+S11=0;
+S22=0;
+[S]=[S11,S12;S21,S22];
+disp(S);
+//=================================END OF PROGRAM==============================
diff --git a/1979/CH6/EX6.9/Ex6_9.sce b/1979/CH6/EX6.9/Ex6_9.sce new file mode 100755 index 000000000..60d0aba7a --- /dev/null +++ b/1979/CH6/EX6.9/Ex6_9.sce @@ -0,0 +1,25 @@ +//Chapter-6, Example 6.9, Page 241
+//=============================================================================
+clc;
+//Input parameters
+ins=0.5;//insertion loss in db
+iso=20;//isolation loss in db
+S=2;//VSWR
+//Calculations
+S21=10^-(ins/20);//insertion loss=0.5=-20*log[S21]
+S13=S21;
+S32=S13;
+S12=10^-(iso/20);//isolation loss=30=-20*log[s12]
+S23=S12;
+S31=S23;
+p=(S-1)/(S+1);
+S11=p;
+S22=p;
+S33=p;
+[S]=[S11,S12,S13;S21,S22,S23;S31,S32,S33];
+disp(S);
+//for a perfectly matched,non-reciprocal,lossless 3-port circulator,[S] is given by
+//[S]=[0,0,S13;S21,0,0;,0,S32,0]
+//i.e.,S13=S21=S32=1
+//[S]=[0,0,1;1,0,0;0,1,0]
+//=================================END OF PROGRAM==============================
diff --git a/1979/CH7/EX7.1/Ex7_1.sce b/1979/CH7/EX7.1/Ex7_1.sce new file mode 100755 index 000000000..6b9dfd5c8 --- /dev/null +++ b/1979/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,22 @@ +//chapter-7 page 278 example 7.1
+//==============================================================================
+clc;
+clear;
+
+a=4;//Length of Waveguide in cm
+b=2.5;//breadth Waveguide in cm
+f=10^10;//Frequency in Hz
+x=0.1;//distance between twice minimum power points in cm
+c=3*10^10;//Velocity of Light in cm/sec
+
+//CALCULATION
+wc=2*a;//Cutoff wavelength in TE10 mode in cms
+w0=(c/f);//Free space wavelength in cms
+wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in cms
+S=(wg/(x*(%pi)));//Voltage Standing Wave Ratio(VSWR) for double minimum method
+
+//OUTPUT
+mprintf('\nFor double minimum method, Voltage Standing Wave Ratio(VSWR) is S=%2.1f',S);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH7/EX7.2/Ex7_2.sce b/1979/CH7/EX7.2/Ex7_2.sce new file mode 100755 index 000000000..7eedffde2 --- /dev/null +++ b/1979/CH7/EX7.2/Ex7_2.sce @@ -0,0 +1,18 @@ +//chapter-7 page 279 example 7.2
+//==============================================================================
+clc;
+clear;
+
+x=3;//O/P incident power from first directional coupler in mW
+y=0.1;//O/P reflected power from second directional coupler in mW
+
+//CALCULATION
+Pi=x*100;//Incident Power in mW
+Pr=y*100;//Reflected Power in mW
+p=sqrt(Pr/Pi);//Reflection Coefficient
+S=((1+p)/(1-p));//Voltage Standing Wave Ratio(VSWR)
+
+//OUTPUT
+mprintf('\nVoltage Standing Wave Ratio(VSWR)in the main waveguide is S=%1.2f \nReflected Power is Pr=%2.0f mW',S,Pr);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH7/EX7.3/Ex7_3.sce b/1979/CH7/EX7.3/Ex7_3.sce new file mode 100755 index 000000000..d14bc60e5 --- /dev/null +++ b/1979/CH7/EX7.3/Ex7_3.sce @@ -0,0 +1,16 @@ +//chapter-7 page 279 example 7.3
+//==============================================================================
+clc;
+clear;
+
+Pi=2.5;//Incident Power from one directional coupler in mW
+Pr=0.15;//Reflected Power from other directional coupler in mW
+
+//CALCULATION
+p=sqrt(Pr/Pi);//Reflection Coefficient
+S=((1+p)/(1-p));//Voltage Standing Wave Ratio(VSWR)
+
+//OUTPUT
+mprintf('\nVoltage Standing Wave Ratio(VSWR)in the waveguide is S=%1.2f',S);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH7/EX7.4/Ex7_4.sce b/1979/CH7/EX7.4/Ex7_4.sce new file mode 100755 index 000000000..e8b8162ce --- /dev/null +++ b/1979/CH7/EX7.4/Ex7_4.sce @@ -0,0 +1,19 @@ +//chapter-7 page 279 example 7.4
+//==============================================================================
+clc;
+clear;
+
+S=2;//Voltage Standing Wave Ratio(VSWR)
+C=30;//Coupling Power of a Directional Coupler in dB
+Pf=4.5;//Coupler Incident Sampling Power in mW
+
+//CALCULATION
+p=((S-1)/(S+1));//Reflection Coefficient
+Pi=Pf*10^(C/10);//Incident Power in mW [From C=10log(Pi/Pf)]
+Pr=(Pi*(p^2))/10^3;//Reflected Power in W [From p=sqrt(Pr/Pi)]
+
+//OUTPUT
+mprintf('\nValue of Reflected Power is Pr=%1.2f W',Pr);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH8/EX8.1/Ex8_1.sce b/1979/CH8/EX8.1/Ex8_1.sce new file mode 100755 index 000000000..243464784 --- /dev/null +++ b/1979/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,30 @@ +//chapter-8 page 336 example 8.1
+//==============================================================================
+clc;
+clear;
+
+//For a four cavity Klystron
+V0=14500;//Beam voltage in V
+I=1.4;//Beam current in A
+f=10^10;//Operation frequency in Hz
+p0=10^(-6);//dc electron charge density in C/m^3
+p=10^(-8);//RF charge density in C/m^3
+V=10^5;//Velocity perturbations in m/sec
+e0=8.854*10^(-12);//Permittivity of free space in F/m
+R=0.4;
+
+//CALCULATION
+v0=(0.593*10^6*sqrt(V0))/10^8;//The dc electron velocity in 10^8 m/sec
+w=2*(%pi)*f;//angular frequency in rad/sec
+v=v0*10^8;
+c=(w/v);//The dc Phase Constant
+wp=(sqrt(1.759*10^11*(p0/e0)))/10^8;//The Plasma Frequency in 10^8 rad/sec
+wp1=wp*10^8;
+wq=(R*wp1)/10^8;//The Reduced Plasma Frequency in 10^8 rad/sec
+J0=p0*v;//The dc beam current density in A/sqm
+J=(p*v)+(p0*V);//The instantaneous beam current density in A/sqm
+
+//OUTPUT
+mprintf('\nThe dc electron velocity is v0=%2.3f *10^8 m/sec \nThe dc Phase Constant is c=%1.2f rad/sec\nThe Plasma Frequency is wp=%1.2f *10^8 rad/sec \nThe Reduced Plasma Frequency is wq=%1.3f *10^8 rad/sec \nThe dc beam current density is J0=%2.1f A/sqm \nThe instantaneous beam current density is J=%1.3f A/sqm',v0,c,wp,wq,J0,J);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH8/EX8.10/Ex8_10.sce b/1979/CH8/EX8.10/Ex8_10.sce new file mode 100755 index 000000000..4b969701e --- /dev/null +++ b/1979/CH8/EX8.10/Ex8_10.sce @@ -0,0 +1,34 @@ +//chapter-8 page 344 example 8.10
+//==============================================================================
+clc;
+clear;
+
+//For a 2 cavity klystron amplifier
+V0=900;//Beam voltage in V
+I0=0.03;//Beam current in A
+f=8*10^9;//frequency in Hz
+d=0.001;//gap spacing in either cavity in m
+L=0.04;//spacing between centers of cavities in m
+Rsh=40000;//Effective shunt impedance in ohms
+y=0.582;//value of J1(X)
+X=1.841;
+
+//CALCULATION
+v0=(0.593*sqrt(V0)*10^6)/10^7;//The electron velocity in 10^7 m/sec
+v=v0*10^7;
+t0=(d/v)/10^(-10);//Transit time in 10^(-10) sec
+t=t0*10^(-10);
+a=2*(%pi)*f*t;//Gap transit angle in rad
+Bi=(sin(a/2))/(a/2);//Beam coupling coefficient
+Bo=Bi;
+to=(2*(%pi)*f*L)/v;//dc transit angle in rad
+disp('For maximum outout voltage,V2 J1(X)=0.582,X=1.841');
+V1=((2*V0*X)/(Bo*to))//The input voltage for maximum output voltage in V
+Ro=(V0/I0);
+Av=((Bo^2*to*y*Rsh)/(Ro*X));//Voltage gain
+AvdB=10*log10(Av);//Voltage gain in dB
+
+//OUTPUT
+mprintf('\nThe electron velocity is v0=%1.1f *10^7 m/sec \nThe dc electron Transit time is t0=%1.2f *10^(-10) sec \nThe input voltage for maximum output voltage is V1=%2.2f V \nVoltage gain is Av=%2.2f \nVoltage gain in dB is AvdB=%2.2f dB',v0,t0,V1,Av,AvdB);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH8/EX8.11/Ex8_11.sce b/1979/CH8/EX8.11/Ex8_11.sce new file mode 100755 index 000000000..90f6dd50c --- /dev/null +++ b/1979/CH8/EX8.11/Ex8_11.sce @@ -0,0 +1,30 @@ +//chapter-8 page 345 example 8.11
+//==============================================================================
+clc;
+clear;
+
+//For a four cavity Klystron
+V0=20000;//Beam voltage in V
+I=2;//Beam current in A
+f=9*10^9;//Operation frequency in Hz
+p0=10^(-6);//dc electron charge density in C/m^3
+p=10^(-8);//RF charge density in C/m^3
+V=10^5;//Velocity perturbations in m/sec
+e0=8.854*10^(-12);//Permittivity of free space in F/m
+R=0.5;
+
+//CALCULATION
+v0=(0.593*10^6*sqrt(V0))/1000;//The dc electron velocity in Km/sec
+w=2*(%pi)*f;//angular frequency in rad/sec
+v=v0*1000;
+c=(w/v);//The dc Phase Constant
+wp=(sqrt(1.759*10^11*(p0/e0)))/10^8;//The Plasma Frequency in 10^8 rad/sec
+wp1=wp*10^8;
+wq=(R*wp1)/10^8;//The Reduced Plasma Frequency in 10^8 rad/sec
+J0=p0*v;//The dc beam current density in A/sqm
+J=(p*v)-(p0*V);//The instantaneous beam current density in A/sqm
+
+//OUTPUT
+mprintf('\nThe dc electron velocity is v0=%4.2f Km/sec \nThe dc Phase Constant is c=%3.2f rad/sec\nThe Plasma Frequency is wp=%1.2f *10^8 rad/sec \nThe Reduced Plasma Frequency is wq=%1.3f *10^8 rad/sec \nThe dc beam current density is J0=%2.2f A/sqm \nThe instantaneous beam current density is J=%1.4f A/sqm',v0,c,wp,wq,J0,J);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH8/EX8.12/Ex8_12.sce b/1979/CH8/EX8.12/Ex8_12.sce new file mode 100755 index 000000000..d2b9f5d61 --- /dev/null +++ b/1979/CH8/EX8.12/Ex8_12.sce @@ -0,0 +1,23 @@ +//chapter-8 page 345 example 8.12
+//==============================================================================
+clc;
+clear;
+
+//For a reflex klystron
+f=5*10^9;//Frequency of operation in hz
+V0=1000;//anode voltage in V
+d=0.002;//cavity gap in m
+Vr=-500;//repeller voltage in V
+
+//CALCULATION
+N=7/4;//mode value
+VR=abs(Vr);
+L=(((VR+V0)*N)/(6.74*10^(-6)*f*sqrt(V0)))/10^(-3);//Optimum length of the drift region in mm
+u=5.93*10^5*sqrt(V0);// in m/sec
+w=2*(%pi)*f;//angular frequency in rad
+Tg=(w*d)/u;//Gap transit angle in rad
+
+//OUTPUT
+mprintf('\nOptimum length of the drift region is L=%1.3f mm \nGap transit angle is Tg=%1.3f rad',L,Tg);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH8/EX8.13/Ex8_13.sce b/1979/CH8/EX8.13/Ex8_13.sce new file mode 100755 index 000000000..a8ea2a049 --- /dev/null +++ b/1979/CH8/EX8.13/Ex8_13.sce @@ -0,0 +1,38 @@ +//chapter-8 page 346 example 8.13
+//==============================================================================
+clc;
+clear;
+
+//For a 2 cavity klystron amplifier
+V0=1200;//Beam voltage in V
+I0=0.03;//Beam current in A
+f=10*10^9;//frequency in Hz
+d=0.001;//gap spacing in either cavity in m
+L=0.04;//spacing between centers of cavities in m
+Rsh=40000;//Effective shunt impedance in ohms
+J1=0.582;//value of J1(X)
+X=1.841;//bunching parameter
+
+//CALCULATION
+v0=0.593*10^6*sqrt(V0);//velocity of reference electron in m/sec
+w=2*(%pi)*f;//angular frequency in rad
+a=w*L/v0;//transit angle without RF voltage in rad
+tg=a*d/L;//average gap transit angle in rad
+Bi=(sin(tg/2))/(tg/2);//beam coupling coefficient
+V1max=((2*X*V0)/(Bi*a));//Input RF voltage for Maximum output voltage in V
+B0=Bi;//output cavity coupling coefficient
+V2=2*B0*I0*J1*Rsh;//in V
+Av=V2/V1max;//Voltage gain
+AvdB=20*log10(Av);//Voltage gain in dB
+n=0.58*(V2/V0)*100;//Maximum efficiency in %
+
+//OUTPUT
+mprintf('\nInput RF voltage for Maximum output voltage is V1max=%2.2f V \nThe Voltage gain is AvdB=%2.2f dB \nMaximum efficiency is I0=%2.2f percentage',V1max,AvdB,n);
+
+//=========================END OF PROGRAM===============================
+
+//Note: Check the answers once
+//There are slight changes in values
+//Input RF voltage for Maximum output voltage is V1max=55.28 V
+//The Voltage gain is AvdB=24.35 dB
+//Maximum efficiency is I0=44.11 percentage
diff --git a/1979/CH8/EX8.14/Ex8_14.sce b/1979/CH8/EX8.14/Ex8_14.sce new file mode 100755 index 000000000..affc75d02 --- /dev/null +++ b/1979/CH8/EX8.14/Ex8_14.sce @@ -0,0 +1,21 @@ +//chapter-8 page 347 example 8.14
+//==============================================================================
+clc;
+clear;
+
+//For aa X-band cylindrical magnetron
+a=0.04;//inner radius in m
+b=0.08;//outer radius in m
+B=0.01;//magnetic flux density in Wb/sqm
+x=1.759*10^11;//Value of e/m in C/kg
+V=30000;//beam voltage in V
+
+//CALCULATION
+w=(x*B)/10^9;//Cyclotron angular frequency in 10^9 rad/sec
+VHC=((x/8)*(B^2)*(b^2)*(1-(a/b)^2)^2)/1000;//Hull cut-off voltage in kV
+Bc=((sqrt(8*(V/x)))/(b*(1-(a/b)^2)))*1000;//Cut-off magnetic flux density in mWb/sqm
+
+//OUTPUT
+mprintf('\nCyclotron angular frequency is w=%1.3f *10^9 rad/sec \nHull cut-off voltage is VHC=%1.4f kV \nCut-off magnetic flux density is Bc=%2.3f mWb/sqm',w,VHC,Bc);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH8/EX8.15/Ex8_15.sce b/1979/CH8/EX8.15/Ex8_15.sce new file mode 100755 index 000000000..a8027ea46 --- /dev/null +++ b/1979/CH8/EX8.15/Ex8_15.sce @@ -0,0 +1,22 @@ +//chapter-8 page 348 example 8.15
+//==============================================================================
+clc;
+clear;
+
+//For a reflex klystron
+n=2;//peak mode value
+V0=280;//beam voltage in V
+I0=0.022;//beam current in A
+Vs=30;//signal voltage in V
+J1=1.25;//bessel coefficient for n=2
+
+//CALCULATION
+Pdc=V0*I0;//The input power in watts
+Pac=((2*Pdc*J1)/((2*n*(%pi))-((%pi)/2)));//The output power in watts
+n=(Pac/Pdc)*100;//Efficiency in percentage
+
+//OUTPUT
+mprintf('\nThe input power is Pdc=%1.2f watts \nThe output power is Pac=%1.1f watts \nEfficiency is n=%2.2f percentage',Pdc,Pac,n);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH8/EX8.16/Ex8_16.sce b/1979/CH8/EX8.16/Ex8_16.sce new file mode 100755 index 000000000..82584ea01 --- /dev/null +++ b/1979/CH8/EX8.16/Ex8_16.sce @@ -0,0 +1,26 @@ +//chapter-8 page 348 example 8.16
+//==============================================================================
+clc;
+clear;
+
+//For a reflex klystron
+n=2;//peak mode value
+V0=300;//beam voltage in V
+Rsh=20000;//Shunt resistance in ohms
+L=0.001;//distance in m
+J1=0.582;//bessel coefficient value [JI(X')]
+f=8*10^(9);////Operation frequency in Hz
+V1=200;//RF gap voltage in V
+x=1.759*10^11;//e/m value in C/kg
+
+//CALCULATION
+disp('Assume the gap transit time and beam loading are neglected');
+w=2*(%pi)*f;//angular frequency in rad
+VR=(V0+((sqrt(8*V0/x)*w*L)/((2*(%pi)*n)-((%pi)/2))));//Repeller voltage in V
+disp('Assuming output coupling coefficient Bo=1');
+I0=(V1/(2*J1*Rsh))/10^(-3);//Beam current necessary to obtain an RF gap voltafe of 200V in mA
+
+//OUTPUT
+mprintf('\nThe Repeller voltage is VR=%3.2f V \nBeam current necessary to obtain an RF gap voltafe of 200V is I0=%1.2f mA',VR,I0);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH8/EX8.2/Ex8_2.sce b/1979/CH8/EX8.2/Ex8_2.sce new file mode 100755 index 000000000..a5161598c --- /dev/null +++ b/1979/CH8/EX8.2/Ex8_2.sce @@ -0,0 +1,23 @@ +//chapter-8 page 337 example 8.2
+//==============================================================================
+clc;
+clear;
+
+//For a 2 cavity klystron amplifier
+Av=15;//Voltage gain in dB
+Pin=0.005;//I/P power in W
+Rin=30000;//Rsh of i/p cavity in ohms
+R0=40000;//Rsh of o/p cavity in ohms
+Rl=40000;//load impedance in ohms
+R=20000;//Parallel resistance of R0 and Rl (R0//Rl) in ohms
+
+//CALCULATION
+Vin=sqrt(Pin*Rin);//The input rms voltage in V [From Pin=Vin^2/Rin]
+V0=Vin*10^(Av/20);//The output rms voltage in V [From Av=20log(V0/Vin)]
+P0=(V0^2)/R;//The Power delivered to the load in W
+
+//OUTPUT
+mprintf('\nThe input rms voltage is Vin=%2.2f V \nThe output rms voltage is V0=%2.2f V \nThe Power delivered to the load is P0=%1.4f W',Vin,V0,P0);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH8/EX8.3/Ex8_3.sce b/1979/CH8/EX8.3/Ex8_3.sce new file mode 100755 index 000000000..c753d178e --- /dev/null +++ b/1979/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,22 @@ +//chapter-8 page 338 example 8.3
+//==============================================================================
+clc;
+clear;
+
+//For a reflex klystron
+n=2;//peak mode value
+V0=300;//beam voltage in V
+I0=0.02;//beam current in A
+Vs=40;//signal voltage in V
+J1=1.25;//bessel coefficient for n=2
+
+//CALCULATION
+Pdc=V0*I0;//The input power in watts
+Pac=((2*Pdc*J1)/((2*n*(%pi))-((%pi)/2)));//The output power in watts
+n=(Pac/Pdc)*100;//Efficiency in percentage
+
+//OUTPUT
+mprintf('\nThe input power is Pdc=%1.0f watts \nThe output power is Pac=%1.2f watts \nEfficiency is n=%2.1f percentage',Pdc,Pac,n);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH8/EX8.4/Ex8_4.sce b/1979/CH8/EX8.4/Ex8_4.sce new file mode 100755 index 000000000..ff1facd17 --- /dev/null +++ b/1979/CH8/EX8.4/Ex8_4.sce @@ -0,0 +1,39 @@ +//chapter-8 page 338 example 8.4
+//==============================================================================
+clc;
+clear;
+
+//For a 2 cavity klystron amplifier
+V0=900;//Beam voltage in V
+I0=0.03;//Beam current in A
+f=8*10^9;//frequency in Hz
+d=0.001;//gap spacing in either cavity in m
+L=0.04;//spacing between centers of cavities in m
+Rsh=49000;//Effective shunt impedance in ohms
+J1=0.582;//value of J1(X)
+X=1.841;//bunching parameter
+
+//CALCULATION
+v0=(0.593*10^6*sqrt(V0))/10^6;//velocity of electron in 10^6 m/sec
+w=2*(%pi)*f;//angular frequency in rad
+v=v0*10^6;
+T0=(L/v)/10^(-8);//dc transit time of electrons in 10^(-8) sec
+a=w*T0*10^(-8);//transit angle in rad
+tg=w*d/v;//average gap transit angle in rad
+Tg=tg*(180/(%pi));
+Bi=(sind(Tg/2))/(tg/2);//beam coupling coefficient
+Bo=Bi;//output cavity coupling coefficient
+V1max=((3.68*V0)/(Bi*a));//Input voltage for Maximum output voltage in V
+R0=V0/I0;//impedance in ohms
+Av=(Bo^2*a*Rsh*J1)/(R0*X);//Voltage gain
+AvdB=20*log10(Av);//Voltage gain in dB
+
+//OUTPUT
+mprintf('\nVelocity of electron is v0=%2.2f *10^6 m/sec \nThe dc transit time of electrons is T0=%1.3f *10^(-8) sec \nInput voltage for Maximum output voltage is V1max=%2.3f V \nVoltage gain is Av=%2.2f \nThe Voltage gain in dB is AvdB=%2.2f dB',v0,T0,V1max,Av,AvdB);
+
+//=========================END OF PROGRAM===============================
+
+//Note: Check the calculation given in text book for voltage gain Rsh=49 kohms
+//but, taken as 40 kohms
+//correct answers areVoltage gain is Av=28.52
+//The Voltage gain in dB is AvdB=29.10 dB
diff --git a/1979/CH8/EX8.5/Ex8_5.sce b/1979/CH8/EX8.5/Ex8_5.sce new file mode 100755 index 000000000..f340cd8b4 --- /dev/null +++ b/1979/CH8/EX8.5/Ex8_5.sce @@ -0,0 +1,46 @@ +//chapter-8 page 339 example 8.5
+//==============================================================================
+clc;
+clear;
+
+//For a 2 cavity klystron amplifier
+V0=1200;//Beam voltage in V
+I0=0.028;//Beam current in A
+f=8*10^9;//frequency in Hz
+d=0.001;//gap spacing in either cavity in m
+L=0.04;//spacing between centers of cavities in m
+Rsh=40000;//Effective shunt impedance in ohms
+J1=0.582;//value of J1(X)
+X=1.841;//bunching parameter
+
+//CALCULATION
+w=2*(%pi)*f;//angular frequency in rad
+v0=0.593*10^6*sqrt(V0);//velocity of electron in m/sec
+Vomax=((3.68*V0*v0)/(w*L));//max output power in V
+tg=(w*d)/v0;//avg gap transit angle in rad
+Tg=tg*(180/(%pi));
+Bi=(sind(Tg/2))/(tg/2);//beam coupling coefficient
+Bo=Bi;//output cavity coupling coefficient
+Vimax=Vomax/Bi;//The input microwave voltage in order to generate maximum output voltage in V
+t0=w*L/v0;//transit angle in rad
+R0=V0/I0;//impedance in ohms
+Av=((Bo^2*J1*t0*Rsh)/(R0*X));//Voltage gain
+I2=2*I0*J1;
+V2=Bo*I2*Rsh;
+disp('neglecting beam loading');
+Eff=0.58*(V2/V0)*100;//Efficiency in %
+G0=1/R0;
+GB=(G0/2)*(Bo*(Bo-cos(Tg/2)));//Beam loading conductance in mhos
+RB=(1/GB)/1000;//Beam loading resistance in Kohms
+disp('Beam loading resistance in Kohms is');
+disp(RB);
+disp('The value 73 kohms is very much comparable to Rsh and cannot be neglected because Tg is quite high');
+
+//OUTPUT
+mprintf('\nThe input microwave voltage in order to generate maximum output voltage is Vimax=%2.2f V \nThe voltage gain is Av=%2.2f percentage \nBeam loading conductance is GB=%1.10f mhos',Vimax,Av,GB);
+
+//=========================END OF PROGRAM===============================
+
+
+
+
diff --git a/1979/CH8/EX8.6/Ex8_6.sce b/1979/CH8/EX8.6/Ex8_6.sce new file mode 100755 index 000000000..674109f0a --- /dev/null +++ b/1979/CH8/EX8.6/Ex8_6.sce @@ -0,0 +1,36 @@ +//chapter-8 page 338 example 8.4
+//==============================================================================
+clc;
+clear;
+
+//For a reflex klystron
+n=2;//peak mode value
+V0=500;//beam voltage in V
+Rsh=20000;//Shunt resistance in ohms
+L=0.001;//distance in m
+f=8*10^(9);////Operation frequency in Hz
+V1=200;//microwave gap voltage in V
+x=1.759*10^11;//e/m value in C/kg
+J1=0.582;
+
+//CALCULATION
+disp('Assume the gap transit time and beam loading are neglected');
+w=2*(%pi)*f;//angular frequency in rad
+VR=(V0+((sqrt(8*V0/x)*w*L)/((2*(%pi)*n)-((%pi)/2))));//Repeller voltage in V
+disp('Assuming output coupling coefficient Bo=1');
+I0=(V1/(2*J1*Rsh))/10^(-3);//Beam current necessary to obtain an microwave gap voltafe of 200V in mA
+v0=0.593*10^6*sqrt(V0);//velocity of electron in m/sec
+t0=((w*2*L*v0)/(x*(VR+V0)));//transit angle in rad
+Bi=1;//beam coupling coefficient [assume]
+X=((Bi*V1*t0)/(2*V0));
+disp('Since X=1.51, from graph,J1(X)=0.84');
+XJ1=0.84;
+Eff=((2*(XJ1))/((2*n*(%pi))-((%pi)/2)))*100//Efficiency in %
+
+//OUTPUT
+mprintf('\nRepeller voltage is VR=%3.2f V \nThe dc necessary to give an microwave gap voltafe of 200V is I0=%1.2f mA \nElectronic Efficiency is Eff=%2.2f percentage',VR,I0,Eff);
+
+//=========================END OF PROGRAM===============================
+
+//Note: Check the answer for VR once
+//Correct answer is Repeller voltage is VR=1189.36 V
diff --git a/1979/CH8/EX8.7/Ex8_7.sce b/1979/CH8/EX8.7/Ex8_7.sce new file mode 100755 index 000000000..f8ff43668 --- /dev/null +++ b/1979/CH8/EX8.7/Ex8_7.sce @@ -0,0 +1,23 @@ +//chapter-8 page 342 example 8.7
+//==============================================================================
+clc;
+clear;
+
+//For a reflex klystron
+n=1;//mode value
+Pi=0.04;//the dc input power in W
+x=0.278;//ratio of V1 over V0
+
+//CALCULATION
+X=x*3*(%pi)/4;
+J1=0.3205;//bessel coefficient value [JI(X')]
+ef=((2*X*J1)/((2*(%pi)*n)-((%pi)/2)))*100;//Efficiency of the reflex klystron in %
+Pout=((ef/100)*Pi)/10^(-3);//Total power output in mW
+p=20;//percentage of the power delivered by the electron beam dissipated in the cavity walls
+Pd=Pout*(100-p)/100;//Power delivered to load in mW
+
+//OUTPUT
+mprintf('\nEfficiency of the reflex klystron is ef=%1.2f percentage\nTotal power output is Pout=%1.3f mW \nIf the 20 percentage of the power delivered by the electron beam is dissipated in the cavity walls then the Power delivered to load is Pd=%1.2f mW',ef,Pout,Pd);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH8/EX8.8/Ex8_8.sce b/1979/CH8/EX8.8/Ex8_8.sce new file mode 100755 index 000000000..a514bcc90 --- /dev/null +++ b/1979/CH8/EX8.8/Ex8_8.sce @@ -0,0 +1,28 @@ +//chapter-8 page 342 example 8.8
+//==============================================================================
+clc;
+clear;
+
+//For a circular magnetron
+a=0.15;//inner radius in m
+b=0.45;//outer radius in m
+B=1.2*10^(-3);//magnetic flux density in Wb/sqm
+x=1.759*10^11;//Value of e/m in C/kg
+V=6000;//beam voltage in V
+
+//CALCULATION
+V0=((x/8)*(B^2)*(b^2)*(1-(a/b)^2)^2)/1000;//Hull cut-off voltage in kV
+Bc=((sqrt(8*(V/x)))/(b*(1-(a/b)^2)))*1000;//Cut-off magnetic flux density in mWb/sqm
+fc=((x*B)/(2*(%pi)))/10^9;//Cyclotron frequency in GHz
+
+//OUTPUT
+mprintf('\nHull cut-off voltage is V0=%2.3f kV\nCut-off magnetic flux density is Bc=%1.6f mWb/sqm \nCyclotron frequency is fc=%1.4f GHz',V0,Bc,fc);
+
+//=========================END OF PROGRAM===============================
+
+
+//Check the answers once
+//Correct answers are
+//Hull cut-off voltage is V0=5.066 kV
+//Cut-off magnetic flux density is Bc=1.305953 mWb/sqm
+//Cyclotron frequency is fc=0.0336 GHz
diff --git a/1979/CH8/EX8.9/Ex8_9.sce b/1979/CH8/EX8.9/Ex8_9.sce new file mode 100755 index 000000000..e159f61d5 --- /dev/null +++ b/1979/CH8/EX8.9/Ex8_9.sce @@ -0,0 +1,22 @@ +//chapter-8 page 343 example 8.9
+//==============================================================================
+clc;
+clear;
+
+//For a helical TWT
+c=3*10^8;//Velocity of light in m/sec
+d=0.002;//diameter in m
+x=5000;//no.of turns per m
+m=9.1*10^(-31);//mass of an electron in kg
+e=1.6*10^(-19);//charge of an electron in C
+
+//CALCULATION
+y=(%pi)*d;//circumference in m
+p=1/x;//pitch in m
+Vp=(c*p)/y;//Axial phase velocity in m/sec
+V0=((m*Vp^2)/(2*e));//The Anode voltage at which the TWT can be operated for useful gain in V
+
+//OUTPUT
+mprintf('\nAxial phase velocity is Vp=%6.2f m/sec \nThe Anode voltage at which the TWT can be operated for useful gain is V0=%2.2f V',Vp,V0);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH9/EX9.1/Ex9_1.sce b/1979/CH9/EX9.1/Ex9_1.sce new file mode 100755 index 000000000..bc548009f --- /dev/null +++ b/1979/CH9/EX9.1/Ex9_1.sce @@ -0,0 +1,15 @@ +//chapter-9 page 411 example 9.1
+//==============================================================================
+clc;
+clear;
+
+L=2*10^(-6);//Drift Length of a IMPATT diode in m
+Vd=(10^7)*(10^(-2));//Drift Velocity for Siin m/sec
+
+//CALCULATION
+f=(Vd/(2*L))/10^9;//Operating Frequency in GHz
+
+//OUTPUT
+mprintf('\nOperating Frequency of the IMPATT diode is f=%2.0f GHz',f);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH9/EX9.10/Ex9_10.sce b/1979/CH9/EX9.10/Ex9_10.sce new file mode 100755 index 000000000..bfacb2d9e --- /dev/null +++ b/1979/CH9/EX9.10/Ex9_10.sce @@ -0,0 +1,19 @@ +//chapter-9 page 413 example 9.10
+//==============================================================================
+clc;
+clear;
+
+//For an IMPATT diode
+L=2*10^(-6);//Drift Length in m
+Vd=10^5;//Carrier Drift Velocity (Assume/Consider) in m/sec
+
+//CALCULATION
+t=(L/Vd)/10^(-9);//Drift Time of the Carrier in nano sec [From f=(1/2t)=(Vd/2L)]
+t1=t*10^(-9);
+f=(1/(2*t1))/10^9;//Operating Frequency of the diode in GHz
+
+//OUTPUT
+mprintf('\nDrift Time of the Carrier is t=%1.2f nano sec \nOperating Frequency of the diode is f=%2.0f GHz',t,f);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH9/EX9.11/Ex9_11.sce b/1979/CH9/EX9.11/Ex9_11.sce new file mode 100755 index 000000000..7f7048a59 --- /dev/null +++ b/1979/CH9/EX9.11/Ex9_11.sce @@ -0,0 +1,20 @@ +//chapter-9 page 413 example 9.11
+//==============================================================================
+clc;
+clear;
+
+//For an M-Si-M Basitt diode
+er=11.8;//Relative dielectric constant of Si
+e0=8.854*10^(-12);//Permittivity of freespace in F/m
+N=3*10^(21);//Donor Concentration per m^3
+L=6.2*10^(-6);//Si Length in m
+q=1.6*10^(-19);//Charge of an Electron in C
+
+//CALCULATION
+Vbd=((q*N*L^2)/(er*e0));//Breakdown Voltage in V
+Ebd=(Vbd/L)/10^3;//Breakdown Electric Field in kV/m
+
+//OUTPUT
+mprintf('\nBreakdown Voltage is Vbd=%3.1f V \nBreakdown Electric Field is Ebd=%5.0f kV/m',Vbd,Ebd);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH9/EX9.12/Ex9_12.sce b/1979/CH9/EX9.12/Ex9_12.sce new file mode 100755 index 000000000..d48e4ae82 --- /dev/null +++ b/1979/CH9/EX9.12/Ex9_12.sce @@ -0,0 +1,26 @@ +//chapter-9 page 413 example 9.12
+//==============================================================================
+clc;
+clear;
+
+//For an upconverter parametric amplifier
+rQ=8;//figure of merit for a diode nonlinear capacitor
+r=0.2;
+y=8;//ratio of output frequency over signal frequency (f0/fs)
+Td=300;//Diode Temperature in K
+T0=300;//Ambient Temperature in K
+
+//CALCULATION
+X=((rQ)^2)/y;
+G=((y*X)/(1+sqrt(1+X))^2);//Max power gain
+GdB=10*log10(G);//Maximum Power Gain in dB
+F=(1+((2*Td/T0)*((1/rQ)+(1/rQ)^2)));//Noise Figure
+FdB=10*log10(F);//Noise Figure in dB
+BW=2*r*sqrt(y);//Bandwidth
+
+//OUTPUT
+mprintf('\nMaximum Power Gain is GdB=%1.2f dB\nNoise Figure is FdB=%1.2f dB \nBandWidth is BW=%1.2f',GdB,FdB,BW);
+
+//=========================END OF PROGRAM===============================
+
+
diff --git a/1979/CH9/EX9.13/Ex9_13.sce b/1979/CH9/EX9.13/Ex9_13.sce new file mode 100755 index 000000000..76fdfb76d --- /dev/null +++ b/1979/CH9/EX9.13/Ex9_13.sce @@ -0,0 +1,37 @@ +//chapter-9 page 414 example 9.13
+//==============================================================================
+clc;
+clear;
+
+//For a negative resistance parametric amplifier
+fs=2*10^9;//Signal Frequency in Hz
+fp=12*10^9;//pump Frequency in Hz
+fi=10*10^9;//idler Frequency in Hz
+fd=5*10^9;//Frequency in Hz
+Ri=1000;//o/p resistance of idler generator in ohms
+Rg=1000;//o/p resistance of signal generator in ohms
+RTs=1000;//total series resistance at fs in ohms
+RTi=1000;//total series resistance at fi in ohms
+r=0.35;
+rQ=10;//figure of merit
+Td=300;//Avg Diode Temperature in K
+T0=300;//Ambient Temperature in K
+C=0.01*10^(-12);//Capacitance in F
+
+//CALCULATION
+ws=2*(%pi)*fs;
+wi=2*(%pi)*fi;
+R=((r^2)/(ws*wi*RTi*C^2));//Equivalent noise resistance in ohms
+a=(R/RTs);
+G=((4*fi*a*Rg*Ri)/(fs*RTs*RTi*(1-a)^2));//Gain
+GdB=10*log10(G);//Gain in dB
+F=(1+((2*Td/T0)*((1/rQ)+(1/rQ)^2)));//Noise Figure
+FdB=10*log10(F);//Noise Figure in dB
+BW=((r/2)*(sqrt(fd/(fs*G))));
+
+//OUTPUT
+mprintf('\nEquivalent noise resistance is R=%4.1f ohms\nGain is GdB=%2.1f dB\nNoise Figure is FdB=%1.2f dB \nBandWidth is BW=%1.3f',R,GdB,FdB,BW);
+
+//=========================END OF PROGRAM===============================
+
+//Note: Check the Bandwidth answer is once It should be 0.027
diff --git a/1979/CH9/EX9.2/Ex9_2.sce b/1979/CH9/EX9.2/Ex9_2.sce new file mode 100755 index 000000000..393603fad --- /dev/null +++ b/1979/CH9/EX9.2/Ex9_2.sce @@ -0,0 +1,17 @@ +//chapter-9 page 411 example 9.2
+//==============================================================================
+clc;
+clear;
+
+L=75*10^(-6);//Device Length in m
+V=25;//Voltage Pulse Amplified in V
+f=10*10^9;//Operating Frequency in Hz
+
+//CALCULATION
+Eth=(V/L)/10^5;//Threshold Electric Field in kV/cm
+
+//OUTPUT
+mprintf('\nThreshold Electric Field is Eth=%1.2f kV/cm',Eth);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH9/EX9.3/Ex9_3.sce b/1979/CH9/EX9.3/Ex9_3.sce new file mode 100755 index 000000000..3cdb1e290 --- /dev/null +++ b/1979/CH9/EX9.3/Ex9_3.sce @@ -0,0 +1,23 @@ +//chapter-9 page 411 example 9.3
+//==============================================================================
+clc;
+clear;
+
+fs=2*10^9;//Signal Frequency in Hz
+fp=12*10^9//Pump Frequency in Hz
+Ri=16;//O/P resistance of signal generator in ohms
+Rs=1000;//On types resistance of signal generator in ohms
+
+//CALCULATION
+P=10*log10((fp-fs)/fs);//Power gain in dB
+Pusb=10*log10((fp+fs)/fs);//Power gain as USB converter in dB
+
+//OUTPUT
+mprintf('\nPower gain is P=%1.2f dB \nPower gain as USB converter is Pusb=%1.2f dB',P,Pusb);
+
+//=========================END OF PROGRAM===============================
+
+
+//Note: Answer given in textbook is wrong Check it once..
+//Correct answers are Power gain is P=6.99 dB
+// Power gain as USB converter is Pusb=8.45 dB
diff --git a/1979/CH9/EX9.4/Ex9_4.sce b/1979/CH9/EX9.4/Ex9_4.sce new file mode 100755 index 000000000..496733d30 --- /dev/null +++ b/1979/CH9/EX9.4/Ex9_4.sce @@ -0,0 +1,20 @@ +//chapter-9 page 411 example 9.4
+//==============================================================================
+clc;
+clear;
+
+es=12.5;//Relative Dielectric constant
+e0=8.854*10^(-12);//Permittivity in Free Space in F/m
+N=3.2*10^22;//Donor Concentration per m^3
+L=8*10^(-6);//Length of Si BARITT diode in m
+q=1.6*10^(-19);//Charge of an Electron in C
+
+//CALCULATION
+Vc=((q*N*L^2)/(2*es*e0))/10^3;//Critical Voltage in kV
+Vbd=2*Vc;//Breakdown Voltage in kV
+Ebd=(Vbd/L)/100;//Breakdown Electric Field in kV/cm
+
+//OUTPUT
+mprintf('\nCritical Voltage is Vc=%1.2f kV \nBreakdown Voltage is Vbd=%1.2f kV \nBreakdown Electric Field is Ebd=%6.2f kV/cm',Vc,Vbd,Ebd);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH9/EX9.5/Ex9_5.sce b/1979/CH9/EX9.5/Ex9_5.sce new file mode 100755 index 000000000..a63317867 --- /dev/null +++ b/1979/CH9/EX9.5/Ex9_5.sce @@ -0,0 +1,16 @@ +//chapter-9 page 412 example 9.5
+//==============================================================================
+clc;
+clear;
+
+J=33000;//Current density in A/sqcm
+Na=2.5*10^16;//Doping Concentation in TRAPATT diode per cubic cm
+q=1.6*10^(-19);//Charge of an Electron in C
+
+//CALCULATION
+Vz=(J/(q*Na))/10^5;//Avalanche Zone Velocity in Km/sec
+
+//OUTPUT
+mprintf('\nAvalanche Zone Velocity is Vz=%2.1f Km/sec',Vz);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH9/EX9.6/Ex9_6.sce b/1979/CH9/EX9.6/Ex9_6.sce new file mode 100755 index 000000000..663f23577 --- /dev/null +++ b/1979/CH9/EX9.6/Ex9_6.sce @@ -0,0 +1,19 @@ +//chapter-9 page 412 example 9.6
+//==============================================================================
+clc;
+clear;
+
+//For an IMPATT diode power amplifier
+Rd=25;//Negative Resistance in ohms
+Rl=50;//Load Resistance in ohms
+
+//CALCULATION
+x=abs(Rd);
+G=((-x-Rl)/(-x+Rl))^2;//Power gain of an IMPATT diode
+
+//OUTPUT
+mprintf('\nPower gain of an IMPATT diode is G=%1.0f',G);
+
+//=========================END OF PROGRAM===============================
+
+
diff --git a/1979/CH9/EX9.7/Ex9_7.sce b/1979/CH9/EX9.7/Ex9_7.sce new file mode 100755 index 000000000..fd7d34a47 --- /dev/null +++ b/1979/CH9/EX9.7/Ex9_7.sce @@ -0,0 +1,17 @@ +//chapter-9 page 412 example 9.7
+//==============================================================================
+clc;
+clear;
+
+//For a Gunn Diode
+L=5*10^(-4);//Drift Length in cm
+Vg=3300;//Voltage gradient in V/cm [Vg>3.3 kV/cm]
+
+//CALCULATION
+Vmin=Vg*L;//Minimum Voltage needed to initiate Gunn effect in volts
+
+//OUTPUT
+mprintf('\nMinimum Voltage needed to initiate Gunn effect is Vmin=%1.2f volts',Vmin);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH9/EX9.8/Ex9_8.sce b/1979/CH9/EX9.8/Ex9_8.sce new file mode 100755 index 000000000..b975d7cd3 --- /dev/null +++ b/1979/CH9/EX9.8/Ex9_8.sce @@ -0,0 +1,19 @@ +//chapter-9 page 412 example 9.8
+//==============================================================================
+clc;
+clear;
+
+//For a Gunn Diode
+L=20*10^(-4);//Active Length in cm
+Vd=2*10^7;//Drift Velocity of Electrons in cm/sec
+Ec=3.3*10^3;//Criticl Field for GaAs in V/cm
+
+//CALCULATION
+fn=(Vd/L)/10^9;//Natural(Rational) Frequency in GHz
+Vc=L*Ec;//Critical Voltage of the diode in volts
+
+//OUTPUT
+mprintf('\nNatural(Rational) Frequency is fn=%2.0f GHz \nCritical Voltage of the diode is Vc=%1.1f volts',fn,Vc);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH9/EX9.9/Ex9_9.sce b/1979/CH9/EX9.9/Ex9_9.sce new file mode 100755 index 000000000..13b06996a --- /dev/null +++ b/1979/CH9/EX9.9/Ex9_9.sce @@ -0,0 +1,22 @@ +//chapter-9 page 412 example 9.9
+//==============================================================================
+clc;
+clear;
+
+//For an IMPATT diode
+Lp=0.5*10^(-9);//Inductance in Henry
+Cj=0.5*10^(-12);//Capacitance in Farad
+Ip=0.8;//RF peak current in A
+Rl=2;//Load Resistance in ohms
+Vbd=100;//Breakdown Voltage in V
+Ib=0.1;//dc Bias current in A
+
+//CALCULATION
+f=(1/(2*(%pi)*sqrt(Lp*Cj)))/10^9;//Resonant Frequency in GHz
+n=((Rl*Ip^2)/(2*Vbd*Ib))*100;//Efficiency in Percentage
+
+//OUTPUT
+mprintf('\nResonant Frequency is f=%2.0f GHz \nEfficiency is n=%1.1f percentage',f,n);
+
+//=========================END OF PROGRAM===============================
+
|