From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1979/CH10/EX10.1/Ex10_1.sce | 19 +++++++++++++++++ 1979/CH10/EX10.10/Ex10_10.sce | 17 +++++++++++++++ 1979/CH10/EX10.11/Ex10_11.sce | 21 +++++++++++++++++++ 1979/CH10/EX10.12/Ex10_12.sce | 19 +++++++++++++++++ 1979/CH10/EX10.13/Ex10_13.sce | 16 +++++++++++++++ 1979/CH10/EX10.2/Ex10_2.sce | 16 +++++++++++++++ 1979/CH10/EX10.3/Ex10_3.sce | 24 ++++++++++++++++++++++ 1979/CH10/EX10.4/Ex10_4.sce | 26 +++++++++++++++++++++++ 1979/CH10/EX10.5/Ex10_5.sce | 18 ++++++++++++++++ 1979/CH10/EX10.6/Ex10_6.sce | 24 ++++++++++++++++++++++ 1979/CH10/EX10.7/Ex10_7.sce | 18 ++++++++++++++++ 1979/CH10/EX10.8/Ex10_8.sce | 17 +++++++++++++++ 1979/CH10/EX10.9/Ex10_9.sce | 21 +++++++++++++++++++ 1979/CH11/EX11.1/Ex11_1.sce | 22 ++++++++++++++++++++ 1979/CH11/EX11.2/Ex11_2.sce | 22 ++++++++++++++++++++ 1979/CH11/EX11.3/Ex11_3.sce | 22 ++++++++++++++++++++ 1979/CH11/EX11.4/Ex11_4.sce | 29 ++++++++++++++++++++++++++ 1979/CH11/EX11.5/Ex11_5.sce | 23 +++++++++++++++++++++ 1979/CH11/EX11.6/Ex11_6.sce | 17 +++++++++++++++ 1979/CH3/EX3.1/Ex3_1.sce | 16 +++++++++++++++ 1979/CH3/EX3.10/Ex3_10.sce | 32 +++++++++++++++++++++++++++++ 1979/CH3/EX3.2/Ex3_2.sce | 34 ++++++++++++++++++++++++++++++ 1979/CH3/EX3.3/Ex3_3.sce | 21 +++++++++++++++++++ 1979/CH3/EX3.4/Ex3_4.sce | 30 +++++++++++++++++++++++++++ 1979/CH3/EX3.5/Ex3_5.sce | 21 +++++++++++++++++++ 1979/CH3/EX3.6/Ex3_6.sce | 25 ++++++++++++++++++++++ 1979/CH3/EX3.7/Ex3_7.sce | 21 +++++++++++++++++++ 1979/CH3/EX3.8/Ex3_8.sce | 28 +++++++++++++++++++++++++ 1979/CH3/EX3.9/Ex3_9.sce | 22 ++++++++++++++++++++ 1979/CH4/EX4.1/Ex4_1.sce | 21 +++++++++++++++++++ 1979/CH4/EX4.10/Ex4_10.sce | 22 ++++++++++++++++++++ 1979/CH4/EX4.11/Ex4_11.sce | 40 ++++++++++++++++++++++++++++++++++++ 1979/CH4/EX4.12/Ex4_12.sce | 22 ++++++++++++++++++++ 1979/CH4/EX4.13/Ex4_13.sce | 21 +++++++++++++++++++ 1979/CH4/EX4.14/Ex4_14.sce | 28 +++++++++++++++++++++++++ 1979/CH4/EX4.15/Ex4_15.sce | 22 ++++++++++++++++++++ 1979/CH4/EX4.16/Ex4_16.sce | 24 ++++++++++++++++++++++ 1979/CH4/EX4.17/Ex4_17.sce | 19 +++++++++++++++++ 1979/CH4/EX4.18/Ex4_18.sce | 30 +++++++++++++++++++++++++++ 1979/CH4/EX4.19/Ex4_19.sce | 27 ++++++++++++++++++++++++ 1979/CH4/EX4.2/Ex4_2.sce | 28 +++++++++++++++++++++++++ 1979/CH4/EX4.20/Ex4_20.sce | 27 ++++++++++++++++++++++++ 1979/CH4/EX4.21/Ex4_21.sce | 21 +++++++++++++++++++ 1979/CH4/EX4.22/Ex4_22.sce | 26 +++++++++++++++++++++++ 1979/CH4/EX4.23/Ex4_23.sce | 30 +++++++++++++++++++++++++++ 1979/CH4/EX4.24/Ex4_24.sce | 20 ++++++++++++++++++ 1979/CH4/EX4.3/Ex4_3.sce | 20 ++++++++++++++++++ 1979/CH4/EX4.4/Ex4_4.sce | 18 ++++++++++++++++ 1979/CH4/EX4.5/Ex4_5.sce | 27 ++++++++++++++++++++++++ 1979/CH4/EX4.6/Ex4_6.sce | 30 +++++++++++++++++++++++++++ 1979/CH4/EX4.7/Ex4_7.sce | 27 ++++++++++++++++++++++++ 1979/CH4/EX4.8/Ex4_8.sce | 21 +++++++++++++++++++ 1979/CH4/EX4.9/Ex4_9.sce | 48 +++++++++++++++++++++++++++++++++++++++++++ 1979/CH5/EX5.1/Ex5_1.sce | 23 +++++++++++++++++++++ 1979/CH5/EX5.2/Ex5_2.sce | 24 ++++++++++++++++++++++ 1979/CH5/EX5.3/Ex5_3.sce | 24 ++++++++++++++++++++++ 1979/CH5/EX5.4/Ex5_4.sce | 23 +++++++++++++++++++++ 1979/CH6/EX6.10/Ex6_10.sce | 25 ++++++++++++++++++++++ 1979/CH6/EX6.11/Ex6_11.sce | 13 ++++++++++++ 1979/CH6/EX6.12/Ex6_12.sce | 18 ++++++++++++++++ 1979/CH6/EX6.13/Ex6_13.sce | 20 ++++++++++++++++++ 1979/CH6/EX6.2/Ex6_2.sce | 17 +++++++++++++++ 1979/CH6/EX6.3/Ex6_3.sce | 31 ++++++++++++++++++++++++++++ 1979/CH6/EX6.4/Ex6_4.sce | 17 +++++++++++++++ 1979/CH6/EX6.5/Ex6_5.sce | 17 +++++++++++++++ 1979/CH6/EX6.6/Ex6_6.sce | 24 ++++++++++++++++++++++ 1979/CH6/EX6.7/Ex6_7.sce | 14 +++++++++++++ 1979/CH6/EX6.9/Ex6_9.sce | 25 ++++++++++++++++++++++ 1979/CH7/EX7.1/Ex7_1.sce | 22 ++++++++++++++++++++ 1979/CH7/EX7.2/Ex7_2.sce | 18 ++++++++++++++++ 1979/CH7/EX7.3/Ex7_3.sce | 16 +++++++++++++++ 1979/CH7/EX7.4/Ex7_4.sce | 19 +++++++++++++++++ 1979/CH8/EX8.1/Ex8_1.sce | 30 +++++++++++++++++++++++++++ 1979/CH8/EX8.10/Ex8_10.sce | 34 ++++++++++++++++++++++++++++++ 1979/CH8/EX8.11/Ex8_11.sce | 30 +++++++++++++++++++++++++++ 1979/CH8/EX8.12/Ex8_12.sce | 23 +++++++++++++++++++++ 1979/CH8/EX8.13/Ex8_13.sce | 38 ++++++++++++++++++++++++++++++++++ 1979/CH8/EX8.14/Ex8_14.sce | 21 +++++++++++++++++++ 1979/CH8/EX8.15/Ex8_15.sce | 22 ++++++++++++++++++++ 1979/CH8/EX8.16/Ex8_16.sce | 26 +++++++++++++++++++++++ 1979/CH8/EX8.2/Ex8_2.sce | 23 +++++++++++++++++++++ 1979/CH8/EX8.3/Ex8_3.sce | 22 ++++++++++++++++++++ 1979/CH8/EX8.4/Ex8_4.sce | 39 +++++++++++++++++++++++++++++++++++ 1979/CH8/EX8.5/Ex8_5.sce | 46 +++++++++++++++++++++++++++++++++++++++++ 1979/CH8/EX8.6/Ex8_6.sce | 36 ++++++++++++++++++++++++++++++++ 1979/CH8/EX8.7/Ex8_7.sce | 23 +++++++++++++++++++++ 1979/CH8/EX8.8/Ex8_8.sce | 28 +++++++++++++++++++++++++ 1979/CH8/EX8.9/Ex8_9.sce | 22 ++++++++++++++++++++ 1979/CH9/EX9.1/Ex9_1.sce | 15 ++++++++++++++ 1979/CH9/EX9.10/Ex9_10.sce | 19 +++++++++++++++++ 1979/CH9/EX9.11/Ex9_11.sce | 20 ++++++++++++++++++ 1979/CH9/EX9.12/Ex9_12.sce | 26 +++++++++++++++++++++++ 1979/CH9/EX9.13/Ex9_13.sce | 37 +++++++++++++++++++++++++++++++++ 1979/CH9/EX9.2/Ex9_2.sce | 17 +++++++++++++++ 1979/CH9/EX9.3/Ex9_3.sce | 23 +++++++++++++++++++++ 1979/CH9/EX9.4/Ex9_4.sce | 20 ++++++++++++++++++ 1979/CH9/EX9.5/Ex9_5.sce | 16 +++++++++++++++ 1979/CH9/EX9.6/Ex9_6.sce | 19 +++++++++++++++++ 1979/CH9/EX9.7/Ex9_7.sce | 17 +++++++++++++++ 1979/CH9/EX9.8/Ex9_8.sce | 19 +++++++++++++++++ 1979/CH9/EX9.9/Ex9_9.sce | 22 ++++++++++++++++++++ 101 files changed, 2383 insertions(+) create mode 100755 1979/CH10/EX10.1/Ex10_1.sce create mode 100755 1979/CH10/EX10.10/Ex10_10.sce create mode 100755 1979/CH10/EX10.11/Ex10_11.sce create mode 100755 1979/CH10/EX10.12/Ex10_12.sce create mode 100755 1979/CH10/EX10.13/Ex10_13.sce create mode 100755 1979/CH10/EX10.2/Ex10_2.sce create mode 100755 1979/CH10/EX10.3/Ex10_3.sce create mode 100755 1979/CH10/EX10.4/Ex10_4.sce create mode 100755 1979/CH10/EX10.5/Ex10_5.sce create mode 100755 1979/CH10/EX10.6/Ex10_6.sce create mode 100755 1979/CH10/EX10.7/Ex10_7.sce create mode 100755 1979/CH10/EX10.8/Ex10_8.sce create mode 100755 1979/CH10/EX10.9/Ex10_9.sce create mode 100755 1979/CH11/EX11.1/Ex11_1.sce create mode 100755 1979/CH11/EX11.2/Ex11_2.sce create mode 100755 1979/CH11/EX11.3/Ex11_3.sce create mode 100755 1979/CH11/EX11.4/Ex11_4.sce create mode 100755 1979/CH11/EX11.5/Ex11_5.sce create mode 100755 1979/CH11/EX11.6/Ex11_6.sce create mode 100755 1979/CH3/EX3.1/Ex3_1.sce create mode 100755 1979/CH3/EX3.10/Ex3_10.sce create mode 100755 1979/CH3/EX3.2/Ex3_2.sce create mode 100755 1979/CH3/EX3.3/Ex3_3.sce create mode 100755 1979/CH3/EX3.4/Ex3_4.sce create mode 100755 1979/CH3/EX3.5/Ex3_5.sce create mode 100755 1979/CH3/EX3.6/Ex3_6.sce create mode 100755 1979/CH3/EX3.7/Ex3_7.sce create mode 100755 1979/CH3/EX3.8/Ex3_8.sce create mode 100755 1979/CH3/EX3.9/Ex3_9.sce create mode 100755 1979/CH4/EX4.1/Ex4_1.sce create mode 100755 1979/CH4/EX4.10/Ex4_10.sce create mode 100755 1979/CH4/EX4.11/Ex4_11.sce create mode 100755 1979/CH4/EX4.12/Ex4_12.sce create mode 100755 1979/CH4/EX4.13/Ex4_13.sce create mode 100755 1979/CH4/EX4.14/Ex4_14.sce create mode 100755 1979/CH4/EX4.15/Ex4_15.sce create mode 100755 1979/CH4/EX4.16/Ex4_16.sce create mode 100755 1979/CH4/EX4.17/Ex4_17.sce create mode 100755 1979/CH4/EX4.18/Ex4_18.sce create mode 100755 1979/CH4/EX4.19/Ex4_19.sce create mode 100755 1979/CH4/EX4.2/Ex4_2.sce create mode 100755 1979/CH4/EX4.20/Ex4_20.sce create mode 100755 1979/CH4/EX4.21/Ex4_21.sce create mode 100755 1979/CH4/EX4.22/Ex4_22.sce create mode 100755 1979/CH4/EX4.23/Ex4_23.sce create mode 100755 1979/CH4/EX4.24/Ex4_24.sce create mode 100755 1979/CH4/EX4.3/Ex4_3.sce create mode 100755 1979/CH4/EX4.4/Ex4_4.sce create mode 100755 1979/CH4/EX4.5/Ex4_5.sce create mode 100755 1979/CH4/EX4.6/Ex4_6.sce create mode 100755 1979/CH4/EX4.7/Ex4_7.sce create mode 100755 1979/CH4/EX4.8/Ex4_8.sce create mode 100755 1979/CH4/EX4.9/Ex4_9.sce create mode 100755 1979/CH5/EX5.1/Ex5_1.sce create mode 100755 1979/CH5/EX5.2/Ex5_2.sce create mode 100755 1979/CH5/EX5.3/Ex5_3.sce create mode 100755 1979/CH5/EX5.4/Ex5_4.sce create mode 100755 1979/CH6/EX6.10/Ex6_10.sce create mode 100755 1979/CH6/EX6.11/Ex6_11.sce create mode 100755 1979/CH6/EX6.12/Ex6_12.sce create mode 100755 1979/CH6/EX6.13/Ex6_13.sce create mode 100755 1979/CH6/EX6.2/Ex6_2.sce create mode 100755 1979/CH6/EX6.3/Ex6_3.sce create mode 100755 1979/CH6/EX6.4/Ex6_4.sce create mode 100755 1979/CH6/EX6.5/Ex6_5.sce create mode 100755 1979/CH6/EX6.6/Ex6_6.sce create mode 100755 1979/CH6/EX6.7/Ex6_7.sce create mode 100755 1979/CH6/EX6.9/Ex6_9.sce create mode 100755 1979/CH7/EX7.1/Ex7_1.sce create mode 100755 1979/CH7/EX7.2/Ex7_2.sce create mode 100755 1979/CH7/EX7.3/Ex7_3.sce create mode 100755 1979/CH7/EX7.4/Ex7_4.sce create mode 100755 1979/CH8/EX8.1/Ex8_1.sce create mode 100755 1979/CH8/EX8.10/Ex8_10.sce create mode 100755 1979/CH8/EX8.11/Ex8_11.sce create mode 100755 1979/CH8/EX8.12/Ex8_12.sce create mode 100755 1979/CH8/EX8.13/Ex8_13.sce create mode 100755 1979/CH8/EX8.14/Ex8_14.sce create mode 100755 1979/CH8/EX8.15/Ex8_15.sce create mode 100755 1979/CH8/EX8.16/Ex8_16.sce create mode 100755 1979/CH8/EX8.2/Ex8_2.sce create mode 100755 1979/CH8/EX8.3/Ex8_3.sce create mode 100755 1979/CH8/EX8.4/Ex8_4.sce create mode 100755 1979/CH8/EX8.5/Ex8_5.sce create mode 100755 1979/CH8/EX8.6/Ex8_6.sce create mode 100755 1979/CH8/EX8.7/Ex8_7.sce create mode 100755 1979/CH8/EX8.8/Ex8_8.sce create mode 100755 1979/CH8/EX8.9/Ex8_9.sce create mode 100755 1979/CH9/EX9.1/Ex9_1.sce create mode 100755 1979/CH9/EX9.10/Ex9_10.sce create mode 100755 1979/CH9/EX9.11/Ex9_11.sce create mode 100755 1979/CH9/EX9.12/Ex9_12.sce create mode 100755 1979/CH9/EX9.13/Ex9_13.sce create mode 100755 1979/CH9/EX9.2/Ex9_2.sce create mode 100755 1979/CH9/EX9.3/Ex9_3.sce create mode 100755 1979/CH9/EX9.4/Ex9_4.sce create mode 100755 1979/CH9/EX9.5/Ex9_5.sce create mode 100755 1979/CH9/EX9.6/Ex9_6.sce create mode 100755 1979/CH9/EX9.7/Ex9_7.sce create mode 100755 1979/CH9/EX9.8/Ex9_8.sce create mode 100755 1979/CH9/EX9.9/Ex9_9.sce (limited to '1979') diff --git a/1979/CH10/EX10.1/Ex10_1.sce b/1979/CH10/EX10.1/Ex10_1.sce new file mode 100755 index 000000000..4d17bbc53 --- /dev/null +++ b/1979/CH10/EX10.1/Ex10_1.sce @@ -0,0 +1,19 @@ +//chapter-10 page 486 example 10.1 +//============================================================================== +clc; +clear; + +ht=144;//TV transmitter antenna height in m +hr=25;//TV receiver antenna height in m +//Radio horizon is about 4/3 as far as the optical horizon + +//CALCULATION +dr=4*sqrt(hr);//distance in km +dt=4*sqrt(ht);//Radio Horizon in km +d=dt+dr;//The Maximum distance of Propagation of the TV signal in km + +//OUTPUT +mprintf('\nThe Maximum distance of Propagation of the TV signal is d=%2.0f km \nRadio Horizon is dt=%2.0f km',d,dt); + +//=========================END OF PROGRAM=============================== + diff --git a/1979/CH10/EX10.10/Ex10_10.sce b/1979/CH10/EX10.10/Ex10_10.sce new file mode 100755 index 000000000..60f0eef06 --- /dev/null +++ b/1979/CH10/EX10.10/Ex10_10.sce @@ -0,0 +1,17 @@ +//chapter-10 page 489 example 10.10 +//============================================================================== +clc; +clear; + +//For a parabolic antenna +Gp=1500;//Power gain +w=0.1;//wavelength in m + +//CALCULATION +D=sqrt(Gp)*(w/(%pi));//Diameter of the circular mouth of a parabolic antenna in m +HPBW=58*(w/D);//Half Power BeamWidth of the antenna in deg + +//OUTPUT +mprintf('\nDiameter of the circular mouth of a parabolic antenna is D=%1.4f m \nHalf Power BeamWidth of the antenna is HPBW=%1.3f deg',D,HPBW); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH10/EX10.11/Ex10_11.sce b/1979/CH10/EX10.11/Ex10_11.sce new file mode 100755 index 000000000..bcf82566e --- /dev/null +++ b/1979/CH10/EX10.11/Ex10_11.sce @@ -0,0 +1,21 @@ +//chapter-10 page 490 example 10.11 +//============================================================================== +clc; +clear; + +D=1;//Assume diameter of the parabolic reflectors in the original system in m +w=1;//Assume wavelength in m + +//CALCULATION +D1=2*D;//diameter of the parabolic reflectors in the modified system in m +G=6*(D/w)^2;//gain in original system +G1=6*(D1/w)^2;//gain in modified system +GdB=10*log10(G1/G);//Overall gain that can be expected in dB +GdBo=2*GdB;//Overall gain of the system(combining the two antennas one at the Tx and other at the Rx) in dB + +//OUTPUT +mprintf('\nOverall gain that can be expected is GdB=%1.0f dB \nOverall gain of the system(combining the two antennas one at the Tx and other at the Rx) is GdBo=%1.0f dB',GdB,GdBo); + +//=========================END OF PROGRAM=============================== + +//Note: Check the answer once ..it should be GdB=10log(4)=6 dB and GdBo=12dB diff --git a/1979/CH10/EX10.12/Ex10_12.sce b/1979/CH10/EX10.12/Ex10_12.sce new file mode 100755 index 000000000..cf2eb48a8 --- /dev/null +++ b/1979/CH10/EX10.12/Ex10_12.sce @@ -0,0 +1,19 @@ +//chapter-10 page 490 example 10.12 +//============================================================================== +clc; +clear; + +D=3;//dimension of a paraboloid in m +f=3*10^9;//frequency (S band) in Hz +c=3*10^8;//Velocity of light in m/sec + +//CALCULATION +w=c/f;//wave length in m +BWFN=140*(w/D);//BeamWidth between First Nulls in deg +BWHP=70*(w/D);//BeamWidth between HalfPower points in deg +G=6*(D/w)^2;//Gain of the antenna + +//OUTPUT +mprintf('\nBeamWidth between First Nulls is BWFN=%1.2f deg \nBeamWidth between HalfPower points is BWHP=%1.2f deg \nGain of the Antenna is G=%4.0f ',BWFN,BWHP,G); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH10/EX10.13/Ex10_13.sce b/1979/CH10/EX10.13/Ex10_13.sce new file mode 100755 index 000000000..bf7d8e4a5 --- /dev/null +++ b/1979/CH10/EX10.13/Ex10_13.sce @@ -0,0 +1,16 @@ +//chapter-10 page 490 example 10.13 +//============================================================================== +clc; +clear; + +l=1;//(Assume)-dimension(wavelength) in cm + +//CALCULATION +x=5*l;//given square aperture of an optimum horn antenna as a side dimension in cm +A=x*x;//Area in sq.cm +Gp=4.5*(A/l^2);//Power gain of an optimum horn antenna + +//OUTPUT +mprintf('\nPower gain of an optimum horn antenna is Gp=%3.1f ',Gp); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH10/EX10.2/Ex10_2.sce b/1979/CH10/EX10.2/Ex10_2.sce new file mode 100755 index 000000000..bec58f0a9 --- /dev/null +++ b/1979/CH10/EX10.2/Ex10_2.sce @@ -0,0 +1,16 @@ +//chapter-10 page 486 example 10.2 +//============================================================================== +clc; +clear; + +r=6370*10^3;//radius of the earth in m +x=-0.05*10^(-6);//the gradient of refractive index of air near the ground per m [du/dh] + +//CALCULATION +k=1/(1+(r*x));//The value of the factor by which the horizon distance of a transmitter will be modified + +//OUTPUT +mprintf('\nThe value of the factor by which the horizon distance of a transmitter will be modified is k=%1.4f',k); + +//=========================END OF PROGRAM=================================== + diff --git a/1979/CH10/EX10.3/Ex10_3.sce b/1979/CH10/EX10.3/Ex10_3.sce new file mode 100755 index 000000000..2e48e2fe5 --- /dev/null +++ b/1979/CH10/EX10.3/Ex10_3.sce @@ -0,0 +1,24 @@ +//chapter-10 page 487 example 10.3 +//============================================================================== +clc; +clear; + +//For a microwave LOS link +f=2*10^9;//frequency of operation in Hz +c=3*10^8;//Velocity of light in m/sec +r=50000;//repeater spacing in m +PrdBm=-20;//required carrier power at the receiver i/p to avoid deterioration due to fading and noise in dBm +GtdB=34;//antenna gain of transmitter in dB +GrdB=34;//antenna gain of receiver in dB +LdB=10;//coupling and waveguide loss in transmitter in dB + +//CALULATION +w=c/f;//wavelength in m +x=(w^2)/(4*(%pi)); +y=(4*(%pi)*r^2); +PtdBm=PrdBm+(10*log10(y))-GtdB-(10*log10(x))+LdB-GrdB;//The required Carrier Transmitter power in dBm + +//OUTPUT +mprintf('\nThe required Carrier Transmitter power is PtdBm=%2.1f dBm',PtdBm); + +//=========================END OF PROGRAM=================================== diff --git a/1979/CH10/EX10.4/Ex10_4.sce b/1979/CH10/EX10.4/Ex10_4.sce new file mode 100755 index 000000000..b53ce2bee --- /dev/null +++ b/1979/CH10/EX10.4/Ex10_4.sce @@ -0,0 +1,26 @@ +//chapter-10 page 487 example 10.4 +//============================================================================== +clc; +clear; + +//For a geostationary communication satellite +f=6*10^(9);//uplink frequency in Hz +Pt=1000;//Transmitter power in W +x=36000*10^3;//vertical distance between surface of earth and satellite in m +a=5;//antenna elevation angle in deg +GtdB=60;//antenna gain of transmitter in dB +GrdB=0;//antenna gain of receiver in dB +c=3*10^8;//Velocity of light in m/sec + +//CALCULATION +Gt=10^(GtdB/10);//antenna gain of transmitter +Gr=10^(GrdB/10);//antenna gain of receiver +w=c/f;//wavelength in m +Ar=(w^2)*(Gr/(4*(%pi)));//area in sqm +r=x/(sind(a));//distance between transmitter and receiver in m [From Sine formula and diagram] +Pr=((Pt*Gt*Ar)/(4*(%pi)*r^2))/10^(-12);//The received power at the input of the satellite receiver in pico watts + +//OUTPUT +mprintf('\nThe received power at the input of the satellite receiver is Pr=%1.2f pico watts(pW)',Pr); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH10/EX10.5/Ex10_5.sce b/1979/CH10/EX10.5/Ex10_5.sce new file mode 100755 index 000000000..9a8fd6658 --- /dev/null +++ b/1979/CH10/EX10.5/Ex10_5.sce @@ -0,0 +1,18 @@ +//chapter-10 page 487 example 10.5 +//============================================================================== +clc; +clear; + +x1=35855;//Distance between geostationary orbit to surface of earth in km +x2=6371;//Distance between center of earth to surface of earth in km + +//CALCULATION +x=x1+x2;//distance of satellite from center of earth in km +y=x2*(%pi);//Circumference of half circle arc in km +b=y/x;//Beam angle in rad +Bdeg=(b*180)/(%pi);//Beam angle in deg + +//OUTPUT +mprintf('\nAntenna Beam angle required by a satellite antenna to provide full global coverage from a geostationary orbit is Bdeg=%2.2f deg',Bdeg); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH10/EX10.6/Ex10_6.sce b/1979/CH10/EX10.6/Ex10_6.sce new file mode 100755 index 000000000..a43255849 --- /dev/null +++ b/1979/CH10/EX10.6/Ex10_6.sce @@ -0,0 +1,24 @@ +//chapter-10 page 488 example 10.6 +//============================================================================== +clc; +clear; + +//For a satellite communication system +h=35855;//Distance between geostationary orbit to surface of earth in km +r=6371;//Distance between center of earth to surface of earth in km +a=5;//earth station elevation angle wrt the geostationary satellite in deg +b=5;//angle in deg +c=3*10^5;//Velocity of light in km/sec +b1=90;//angle for vertical transmission in deg +a1=0; + +//CALCULATION +d=(sqrt((r+h)^2-(r*cosd(a))^2))-sind(b);//distance in km +T=2*(d/c);//The round trip time between the earth station and the satellite in sec +d1=(sqrt((r+h)^2-(r*cosd(a))^2))-sind(b);//distance in km +Tv=(2/c)*(d1-r);//The round trip time for vertical transmission between the earth station and the satellite in sec + +//OUTPUT +mprintf('\nThe round trip time between the earth station and the satellite is T=%1.3f sec \nThe round trip time for vertical transmission between the earth station and the satellite is Tv=%1.3f sec',T,Tv); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH10/EX10.7/Ex10_7.sce b/1979/CH10/EX10.7/Ex10_7.sce new file mode 100755 index 000000000..bddf1303c --- /dev/null +++ b/1979/CH10/EX10.7/Ex10_7.sce @@ -0,0 +1,18 @@ +//chapter-10 page 488 example 10.7 +//============================================================================== +clc; +clear; + +Tant=25;//effective noise temperature in K +Tr=75;//receiver noise temperature in K +GdB=45;//Isotropic power gain of the antenna in dB + +//CALCULATION +T=Tant+Tr;//The total noise in K +TdB=10*log10(T);//The total noise in dB +MdB=GdB-TdB;//Figure of merit of earth station in dB + +//OUTPUT +mprintf('\nFigure of merit of earth station is MdB=%2.0f dB',MdB); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH10/EX10.8/Ex10_8.sce b/1979/CH10/EX10.8/Ex10_8.sce new file mode 100755 index 000000000..557b39347 --- /dev/null +++ b/1979/CH10/EX10.8/Ex10_8.sce @@ -0,0 +1,17 @@ +//chapter-10 page 488 example 10.8 +//============================================================================== +clc; +clear; + +//For a Satellite communication link +EIRPdB=55.5;//Satellite ESM in dBW +MdB=35;//G/T ratio of earth station in dB +LfsdB=245.3//Freespace loss in dB + +//CALCULATION +CNRdB=EIRPdB+MdB-LfsdB+228.6;//Carrier to Noise Ratio at the earth station receiver in dB + +//OUTPUT +mprintf('\nCarrier to Noise Ratio at the earth station receiver is CNRdB=%2.1f dB',CNRdB); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH10/EX10.9/Ex10_9.sce b/1979/CH10/EX10.9/Ex10_9.sce new file mode 100755 index 000000000..49119d868 --- /dev/null +++ b/1979/CH10/EX10.9/Ex10_9.sce @@ -0,0 +1,21 @@ +//chapter-10 page 489 example 10.9 +//============================================================================== +clc; +clear; + +D=30;//Diameter of a dish antenna with circular aperture in m +f=4*10^9;//down link frequency in Hz +MdB=20;//G/T ratio of earth station in dB +c=3*10^8;//Velocity of light in m/sec + +//CALCULATION +A=((%pi)/4)*D^2;//area in sqm +w=c/f;//wavelength in m +G=(4*(%pi)*A)/w^2;//Gain +GdB=10*log10(G);//Gain in dB +TsdB=GdB-MdB;//The System Noise Temperature in dB + +//OUTPUT +mprintf('\nThe System Noise Temperature is TsdB=%2.2f dB',TsdB); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH11/EX11.1/Ex11_1.sce b/1979/CH11/EX11.1/Ex11_1.sce new file mode 100755 index 000000000..013678474 --- /dev/null +++ b/1979/CH11/EX11.1/Ex11_1.sce @@ -0,0 +1,22 @@ +//chapter-11 page 504 example 11.1 +//============================================================================== +clc; +clear; + +//For a radar system +Pt=600000;//peak pulse power in W +Smin=10^(-13);//minimum detectable signal in W +Ae=5;//cross sectional area of the radar antenna in sq m +w=0.03;//wavelength in m +s=20;//radar cross sectional area in sq m + +//CALCULATION +Rmax=(((Pt*s*Ae^2)/(4*(%pi)*Smin*w^2))^(1/4))/1000;//Maximum range of a radar system in km +RMax=Rmax/1.853;//In nautical miles; 1 nm=1.853 km + +//OUTPUT +mprintf('\nMaximum range of a radar system is Rmax=%3.3f km',Rmax); +disp('In nautical miles; 1 nm=1.853 km'); +mprintf('\nMaximum range of a radar system in nautical miles is RMax=%3.0f nm',RMax); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH11/EX11.2/Ex11_2.sce b/1979/CH11/EX11.2/Ex11_2.sce new file mode 100755 index 000000000..6ba519ae0 --- /dev/null +++ b/1979/CH11/EX11.2/Ex11_2.sce @@ -0,0 +1,22 @@ +//chapter-11 page 504 example 11.2 +//============================================================================== +clc; +clear; + +//For a radar system +Pt=250000;//peak transmitted power in W +G=2500;//power gain of the antenna +Smin=10^(-14);//minimum detectable signal in W +Ae=10;//cross sectional area of the radar antenna in sq m +f=10*10^9;//frequency of radar in Hz +s=2;//radar cross sectional area in sq m +c=3*10^8;//Velocity of light in m/sec + +//CALCULATION +w=c/f;//wavelength in m +Rmax=(((Pt*G*Ae*s)/(Smin*(4*(%pi))^2))^(1/4))/1000;//Maximum range of a radar system in km + +//OUTPUT +mprintf('\nMaximum range of a radar system is Rmax=%3.2f km',Rmax); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH11/EX11.3/Ex11_3.sce b/1979/CH11/EX11.3/Ex11_3.sce new file mode 100755 index 000000000..053cf7868 --- /dev/null +++ b/1979/CH11/EX11.3/Ex11_3.sce @@ -0,0 +1,22 @@ +//chapter-11 page 504 example 11.3 +//============================================================================== +clc; +clear; + +//For a marine radar system +Pt=250000;//peak transmitted power in W +G=4000;//power gain of the antenna +R=50000;//maximum range of radar in m +Pr=10^(-11);//minimum detectable signal in W +f=10*10^9;//frequency of radar in H +c=3*10^8;//Velocity of light in m/sec + +//CALCULATION +w=c/f;//wavelength in m +Ae=((G*w^2)/(4*(%pi)));//cross sectional area of the radar antenna in sq m +s=((Pr*(4*(%pi)*R^2)^2)/(Pt*G*Ae));//The cross section of the target the radar can sight in sq m + +//OUTPUT +mprintf('\nThe cross section of the target the radar can sight is s=%2.2f sq m',s); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH11/EX11.4/Ex11_4.sce b/1979/CH11/EX11.4/Ex11_4.sce new file mode 100755 index 000000000..6cb3c2a3a --- /dev/null +++ b/1979/CH11/EX11.4/Ex11_4.sce @@ -0,0 +1,29 @@ +//chapter-11 page 505 example 11.4 +//============================================================================== +clc; +clear; + +//For a guided missile tracking radar +Pt=400000;//transmitted power in W +prf=1500;//pulse repitition frequency in pps(pulse per sec) +tw=0.8*10^(-6);//pulse width in sec +c=3*10^8;//Velocity of light in m/sec + +//CALCULATION +Runamb=(c/(2*prf))/1000;//Unambiguous range in km +dc=tw/(1/prf);//Duty cycle +Pav=Pt*dc;//Average power in W +n1=1; +BW1=(n1/tw)/10^6;//Suitable BW in MHz for n=1 +n2=1.4; +BW2=(n2/tw)/10^6;//Suitable BW in MHz for n=1.4 + +//OUTPUT +mprintf('\nUnambiguous range is Runamb=%3.0f km \nDuty cycle is dc=%1.4f \nAverage power is Pav=%3.0f W',Runamb,dc,Pav); +disp('For efficiency n=1,suitable bandwidth in MHz is'); +disp(BW1); +disp('For efficiency n=1.4,suitable bandwidth in MHz is'); +disp(BW2); + +//=========================END OF PROGRAM=============================== + diff --git a/1979/CH11/EX11.5/Ex11_5.sce b/1979/CH11/EX11.5/Ex11_5.sce new file mode 100755 index 000000000..938a93d33 --- /dev/null +++ b/1979/CH11/EX11.5/Ex11_5.sce @@ -0,0 +1,23 @@ +//chapter-11 page 505 example 11.5 +//============================================================================== +clc; +clear; + +//For a military radar +Pt=2500000;//power output in W +f=5*10^9;//frequency of radar in H +c=3*10^8;//Velocity of light in m/sec +D=5;//antenna diameter in m +B=1.6*10^6;//receiver bandwidth in Hz +s=1;//radar cross sectional area in sq m +NF=12;//noise figure in dB + +//CALCULATION +w=c/f;//wavelength in m +F=10^(NF/10);//noise figure +Rmax=(48*((Pt*s*D^4)/(B*(F-1)*w^2))^(1/4));//Maximum detection range in km + +//OUTPUT +mprintf('\nMaximum detection range of a radar is Rmax=%3.0f km',Rmax); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH11/EX11.6/Ex11_6.sce b/1979/CH11/EX11.6/Ex11_6.sce new file mode 100755 index 000000000..06630ef71 --- /dev/null +++ b/1979/CH11/EX11.6/Ex11_6.sce @@ -0,0 +1,17 @@ +//chapter-11 page 506 example 11.6 +//============================================================================== +clc; +clear; + +//For a civilian radar +Rmax=30;//maximum range in kms +x=50; +y=2; +disp('Maximum range with an equivalent echoing area of 50 times in kms is'); +R=Rmax*x^(1/4); +disp(R); +disp('Range would be increased if Tx power is doubled by a factor of'); +f=y^(1/4); +disp(f); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH3/EX3.1/Ex3_1.sce b/1979/CH3/EX3.1/Ex3_1.sce new file mode 100755 index 000000000..2754d90c8 --- /dev/null +++ b/1979/CH3/EX3.1/Ex3_1.sce @@ -0,0 +1,16 @@ +//chapter-3 page 47 example 3.1 +//============================================================================= +clc; +clear; + +Z0=100;//Characteristic Impedance in ohms +S=5;//Voltage Standing Wave Ratio(VSWR) + +//CALCULATION +Zm=Z0*S;//Termainating impedance at a max of the voltage standing wave +Zl=Zm;//Loading Impedance + +//OUTPUT +mprintf('Terminating impedance at a maximum of the voltage standing wave is Zl= %3.0f ohms',Zl); + +//====================END OF PROGRAM======================================== diff --git a/1979/CH3/EX3.10/Ex3_10.sce b/1979/CH3/EX3.10/Ex3_10.sce new file mode 100755 index 000000000..1ab5f7d4a --- /dev/null +++ b/1979/CH3/EX3.10/Ex3_10.sce @@ -0,0 +1,32 @@ +//chapter-3 page 52 example 3.10 +//============================================================================== +clc; +clear; + +f=1000;//Frequency in Hz +l=10000;//Length of open wire transmission line in met +z1=2930;//Magnitude of a short circuit impedance in ohms +p1=26;//Phase of a short circuit impedance in deg +z2=260;//Magnitude of a open circuit impedance in ohms +p2=-32;//Phase of a open circuit impedance in deg +//CALCULATIONS +Zsc=((z1*cosd(p1))+((%i)*(z1*sind(p1)))); +Zoc=((z2*cosd(p2))+((%i)*(z2*sind(p2)))); +Z0=sqrt(Zsc*Zoc);//Characteristic Impedance in ohms +disp('Characteristic Impedance in ohms is'); +[ro,theta]=polar(Z0) +disp(ro); +disp(theta*180/%pi); +g=((1/l)*(atanh(sqrt(Zsc/Zoc))));//Propagation Constant +disp(g) +b=imag(g);//Phase Constant +w=2*f*(%pi);//Angular Frequency in rad/sec +Vp=w/b;//Phase Velocity in m/sec +disp(Vp) +//OUTPUT +mprintf('\nPhase Velocity is Vp=%5.2f m/sec',Vp); + +//=========================END OF PROGRAM============================================================== + + +//Note: Check the calculation once diff --git a/1979/CH3/EX3.2/Ex3_2.sce b/1979/CH3/EX3.2/Ex3_2.sce new file mode 100755 index 000000000..99a444fc7 --- /dev/null +++ b/1979/CH3/EX3.2/Ex3_2.sce @@ -0,0 +1,34 @@ +//chapter-3 page 48 example 3.3 +//============================================================================== +clc; +clear; + +R=8;//Resistance of a transmission line in ohm/km +L=0.002;//Inductance of a transmission line in henry/km +C=0.002*(10^(-6));//Capacitance of a transmission line in Farads +G=0.07*(10^(-6));//Conductance of a transmission line in siemens/km +f=2000;//Frequency in Hz +w=2*(%pi)*f;//Angular Frequency in rad/sec +Vs=2;//Input Voltage in volts +l=500;//Length of Transmission line in km + +//CALCULATIONS +Z0=sqrt((R+(w*L*(%i)))/(G+(w*C*(%i))));//Characteristic Impedance +x=real(Z0); +y=imag(Z0); +disp('Characteristic Impedance in ohms is'); +disp(Z0); +g=sqrt((R+(w*L*(%i)))*(G+(w*C*(%i))));//Propagation Constant +a=real(g);//Attenuation Constant in NP/km +b=imag(g);//Phase Constant in rad/km +Is=Vs/Z0; +I0=Is*exp(-(g*l));//Load current +m=sqrt((real(I0))^2+(imag(I0)^2)); +P=(m^2)*x;//Power delivered to the load in watts + +//OUTPUT +mprintf('\nAttenuation Constant is a=%1.6f NP/km \nPhase Constant is b=%1.6f rad/km \nPower delivered to the load is P=%1.6f watts',a,b,P); + +//===============END OF PROGRAM================================ + + diff --git a/1979/CH3/EX3.3/Ex3_3.sce b/1979/CH3/EX3.3/Ex3_3.sce new file mode 100755 index 000000000..f45127e75 --- /dev/null +++ b/1979/CH3/EX3.3/Ex3_3.sce @@ -0,0 +1,21 @@ +//chapter-3 page 48 example 3.3 +//============================================================================== +clc; +clear; + +w=4*(%pi);//Angular Frequency in rad/sec +b=0.02543;//Phase Constant in rad/km + +//CALCULATION +Vp=w/b;//Phase Velocity in km/sec + +//OUTPUT +mprintf('Phase Velocity is Vp=%3.2f km/sec',Vp); + +//=========END OF PROGRAM========================= + +//NOTE:CHECK THE CALCULATION PART GIVEN IN THE TEXTBOOK + //GIVEN ANSWER 494.22 KM/SEC + //GETTING ANSWER 494.16 KM/SEC + + diff --git a/1979/CH3/EX3.4/Ex3_4.sce b/1979/CH3/EX3.4/Ex3_4.sce new file mode 100755 index 000000000..f4e952645 --- /dev/null +++ b/1979/CH3/EX3.4/Ex3_4.sce @@ -0,0 +1,30 @@ +//chapter-3 page 48 example 3.4 +//============================================================================== +clc; +clear; + +f=37.5*10^6;//Frequency in Hz +c=3*10^8;//Velocity of Light in m/sec +l1=10;//Length of line in met +Vg=200;//Generator Voltage in volts(rms) +Zint=200;//Internal Resistance of Generator in ohms +Z0=200;//Characteristic Impedance in ohms +Zl=100;//Load impedance in ohms + +//CALCULATIONS +w=c/f;//Wave Length in met +b=2*(%pi)/w; +l1=(5/4)*w;//For Lossless Line +Zi=Z0*((Zl+(Z0*(%i)*tan(b*l1)))/(Z0+(Zl*(%i)*tan(b*l1))));//Input Impedance at Generator end +Vs=Vg*(Zi/(Zi+Z0));//Voltage in line in volts +Is=Vg/(Zi+Z0);//Current in Line drawn from Generator in amps +Ps=Vs*Is;//Power drawn in line +Pl=Ps;//For Lossless Lines Power delivered to load is equal to the Power drawn in line +Il=sqrt((Pl/Zl));//Current flowing in the load +m=real(Il);//Magnitude of Current flowing in the load +p=imag(Il);//Phase of Current flowing in the load + +//CALCULATIONS +mprintf('\nCurrent drawn from Generator is Is=%1.3f amps \nMagnitude of Current flowing in the load is m=%1.3f \nPhase of Current flowing in the load is p=%2.2f deg \nPower delivered to load is Pl=%2.2f watts',Is,m,p,Pl); + +//=========================END OF PROGRAM============================================================== diff --git a/1979/CH3/EX3.5/Ex3_5.sce b/1979/CH3/EX3.5/Ex3_5.sce new file mode 100755 index 000000000..d5b6c59c9 --- /dev/null +++ b/1979/CH3/EX3.5/Ex3_5.sce @@ -0,0 +1,21 @@ +//chapter-3 page 50 example 3.5 +//============================================================================== +clc; +clear; + +Z0=50;//Characteristic Impedance in ohms +f=300*10^6;//Frequency in Hz +Zl=50+(50*(%i));//Terminating load impedance in ohms +w=((3*10^8)/f);//Wave Length + +//CALCULATIONS +p=((Zl-Z0)/(Zl+Z0));//Reflection Coefficient(Complex Form) +y=real(p); +z=imag(p); +x=sqrt(y^2+z^2);//Reflection Coefficient Value +s=((1+x)/(1-x));//Voltage Standing Wave Ratio(VSWR) + +//OUTPUT +mprintf('\nReflection Coefficient is x=%1.4f \nVoltage Standing Wave Ratio(VSWR) is s=%1.2f',x,s); + +//===================END OF PROGRAM===================================== diff --git a/1979/CH3/EX3.6/Ex3_6.sce b/1979/CH3/EX3.6/Ex3_6.sce new file mode 100755 index 000000000..eaaaad3b6 --- /dev/null +++ b/1979/CH3/EX3.6/Ex3_6.sce @@ -0,0 +1,25 @@ +//chapter-3 page 50 example 3.6 +//============================================================================== +clc; +clear; + +Zl=100;//Pure Load resistance of a dipole antenna in ohms +Z0=600;//Characteristic Impedance of a wire feeder in ohms +f=100*10^6;//Frequency in Hz +c=3*10^8;//Velocity of Light in m/sec + +//CALCULATIONS +w=c/f;//Wave Length in met +l=((w/(2*(%pi)))*atan(sqrt(Zl/Z0)));//The position of the Stub in met +x=atand(sqrt((Zl*Z0))/(Zl-Z0)); +y=180+x;//In Degrees +l1=((w/(2*(%pi)))*y);//Length of Short Circuited Stub in met +l0=l1*((%pi)/180); + +//OUTPUTS +mprintf('\nThe Point of Attachment is l=%1.3f met \nLength of SC Stub is l1=%1.2f met',l,l0); + +//=========================END OF PROGRAM============================================================== + + + diff --git a/1979/CH3/EX3.7/Ex3_7.sce b/1979/CH3/EX3.7/Ex3_7.sce new file mode 100755 index 000000000..e83a90230 --- /dev/null +++ b/1979/CH3/EX3.7/Ex3_7.sce @@ -0,0 +1,21 @@ +//chapter-3 page 50 example 3.7 +//============================================================================== +clc; +clear; + +Z0=50;//Characteristic Impedance in ohms +S=3.2;//Voltage Standing Wave Ratio(VSWR) + +//It is possible to measure the load impedance if the line is assumed lossless,by measuring the VSWR,wavelength and the distance from the load to the nearest voltage minimum +//CALCULATIONS +w=1;//Assume Wavelength in met +Xmin=0.23*w;//Distance from the load to the nearest voltage minimum in met +b=(2*(%pi))/w; +Zl=Z0*((1-(S*(%i)*tan(b*Xmin)))/(S-((%i)*tan(b*Xmin))));//Load impedance in ohms +disp('Load impedance in ohms is'); +disp(Zl); + + +//=========================END OF PROGRAM=================================================== + +//Note: Check the answer given in Text book once. I think it is wrong in text book.. diff --git a/1979/CH3/EX3.8/Ex3_8.sce b/1979/CH3/EX3.8/Ex3_8.sce new file mode 100755 index 000000000..43424a3d3 --- /dev/null +++ b/1979/CH3/EX3.8/Ex3_8.sce @@ -0,0 +1,28 @@ +//chapter-3 page 51 example 3.8 +//============================================================================== +clc; +clear; + +Z0=50;//Characteristic Impedance in ohms +Zl=100;//Load impedance in ohms +f=300*10^3;//Frequency in Hz +Pl=0.05;//Load Power in watts +c=3*10^8;//Velocity of Light in m/sec + +//CALCULATIONS +w=c/f;//Wave Length in met +p=((Zl-Z0)/(Zl+Z0));//Reflection Coefficient +S=((1+p)/(1-p));//Voltage Standing Wave Ratio(VSWR) + +//Since Zl>Z0, first Vmax is located at the load and first Vmin is located at Wavelength/4 +x1max=0;//Position of first Vmax (located at the load) from load in met +x1min=w/4;//Position of first Vmin from load in met +Vmax=sqrt(Pl*Zl);//Value of maximum voltage in volts +Vmin=Vmax/S;//Value of minimum voltage in volts +Zmax=Z0*S;//Impedance at Vmax in ohms +Zmin=Z0/S;//Impedance at Vmin in ohms + +//OUTPUTS +mprintf('\nVoltage Standing Wave Ratio(VSWR) is S=%1.0f \nPosition of first Vmax from load is x1max=%d met (located at the load) \nPosition of first Vmin from load is x1min=%3.0f met \nValue of maximum voltage is Vmax=%1.2f volts \nValue of minimum voltage is Vmin=%1.2f volts \nImpedance at Vmax is Zmax=%3.0f ohms \nImpedance at Vmin is Zmin=%2.0f ohms',S,x1max,x1min,Vmax,Vmin,Zmax,Zmin); + +//=========================END OF PROGRAM============================================================== diff --git a/1979/CH3/EX3.9/Ex3_9.sce b/1979/CH3/EX3.9/Ex3_9.sce new file mode 100755 index 000000000..f4b7eaa82 --- /dev/null +++ b/1979/CH3/EX3.9/Ex3_9.sce @@ -0,0 +1,22 @@ +//chapter-3 page 52 example 3.9 +//============================================================================== +clc; +clear; + +Z0=600;//Characteristic Impedance in ohms +Zs=50;//Generator impedance in ohms +l=200;//Length of transmission line in met +Zl=500;//Load impedance in ohms + +//CALCULATIONS +p=((Zl-Z0)/(Zl+Z0));//Reflection Coefficient +x=abs(p); +Lr=10*log10(1/(1-x^2));//Reflection loss in dB +La=0;//Since the line is lossless,attenuation loss is zero dB +Lt=La+Lr;//Transmission loss in dB +Lrt=10*log10(x);//Return loss in dB + +//OUTPUT +mprintf('\nReflection loss is Lr=%1.3f dB \nTransmission loss is Lt=%1.3f dB \nReturn loss is Lrt=%2.3f dB',Lr,Lt,Lrt); + +//=========================END OF PROGRAM============================================================== diff --git a/1979/CH4/EX4.1/Ex4_1.sce b/1979/CH4/EX4.1/Ex4_1.sce new file mode 100755 index 000000000..471712d5b --- /dev/null +++ b/1979/CH4/EX4.1/Ex4_1.sce @@ -0,0 +1,21 @@ +//chapter-4 page 141 example 4.1 +//============================================================================== +clc; +clear; + +d=0.0049;//Diameter of inner conductor in met +D=0.0110;//Inner Diameter of outer conductor in met +er=2.3;//Polyethylene dielectric +c=3*10^8;//Velocity of Light in m/sec + +//CALCULATIONS +x=log(D/d); +L=(2*10^(-1)*x);//Inductance per unit lengths in microH/m +C=(55.56*(er/x));//The Capacitance per unit lengths in picoF/m +R0=(x*(60/sqrt(er)));//The Characteristic Impedance in ohms +V=(c/sqrt(er))/(10^3);//The Velocity of propagation in Km/s + +//OUTPUT +mprintf('\nInductance per unit lengths is L=%1.5f microH/m \nThe Capacitance per unit lengths is C=%2.2f picoF/m \nThe Characteristic Impedance is R0=%2.2f ohms \nThe Velocity of propagation is V=%6.2f Km/s',L,C,R0,V); + + //=========================END OF PROGRAM=================================================== diff --git a/1979/CH4/EX4.10/Ex4_10.sce b/1979/CH4/EX4.10/Ex4_10.sce new file mode 100755 index 000000000..470752df3 --- /dev/null +++ b/1979/CH4/EX4.10/Ex4_10.sce @@ -0,0 +1,22 @@ +//chapter-4 page 148 example 4.10 +//============================================================================== +clc; +clear; + +//For an air filled circular Waveguide in the dominant mode +c=3*10^10;//Velocity of Light in cm/sec +disp('For an air filled circular Waveguide TE11 is the dominant mode ie propagated'); +wc=10;//cutoff wave length in cm + +//CALCULATION +r=((1.841*wc)/(2*(%pi)));//radius of circular Waveguide in cm +A=(%pi)*r^2;//Cross sectional area of the guide in sq.cms +fc=(c/wc)/10^9;//Cutoff frequency for TE11 mode in GHz +disp('Cutoff frequency for TE11 mode in GHz is'); +disp(fc); +disp('Frequncy above 3GHz can be propagated through the waveguide'); + +//OUTPUT +mprintf('\nCross sectional area of the guide is A=%2.2f sq.cms',A); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH4/EX4.11/Ex4_11.sce b/1979/CH4/EX4.11/Ex4_11.sce new file mode 100755 index 000000000..708fe09e1 --- /dev/null +++ b/1979/CH4/EX4.11/Ex4_11.sce @@ -0,0 +1,40 @@ +//chapter-4 page 149 example 4.11 +//============================================================================== +clc; +clear; + +//For a rectangular waveguide +f=5*10^9;//frequency in Hz +c=3*10^10;//Velocity of Light in cm/sec +a=4;//Length of Rectangular Waveguide in cm +b=3;//Width of Rectangular Waveguide in cm + +//CALCULATION +disp('The condition for the wave to propagate along a guide is that wc>w0.'); +w0=c/f;//free space wavelength in cm +disp('Free space wavelength w0 in cm is'); +disp(w0); +disp('For TE waves, wc=(2ab/sqrt((mb)^2+(na)^2))'); +disp('For TE01 waves'); +m1=0; +n1=1; +wc1=((2*a*b)/(sqrt((m1*b)^2+(n1*a)^2)));//Cutoff wavelength for TE01 mode in cm +disp('Cutoff wavelength for TE01 mode in cm is'); +disp(wc1); +disp('Since wc for TE01=6cm is not greater than w0 TE01,will not propagate for TE01 mode.'); +disp('For TE10 waves'); +m2=1; +n2=0; +wc2=((2*a*b)/(sqrt((m2*b)^2+(n2*a)^2)));//Cutoff wavelength for TE10 mode in cm +disp('Cutoff wavelength for TE10 mode in cm is'); +disp(wc2); +disp('Since wc TE10 > w0 TE10 is a possible mode.'); +disp('For TE11 waves'); +m3=1; +n3=1; +wc3=((2*a*b)/(sqrt((m3*b)^2+(n3*a)^2)));//Cutoff wavelength for TE11 mode in cm +disp('Cutoff wavelength for TE11 mode in cm is'); +disp(wc3); +disp('As wc TE11 < w0 TE11 does not propagate.'); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH4/EX4.12/Ex4_12.sce b/1979/CH4/EX4.12/Ex4_12.sce new file mode 100755 index 000000000..5dbc4df62 --- /dev/null +++ b/1979/CH4/EX4.12/Ex4_12.sce @@ -0,0 +1,22 @@ +//chapter-4 page 149 example 4.12 +//============================================================================== +clc; +clear; + +//For an air filled circular Waveguide in the dominant mode +D=4;//Inner diameter of an air filled circular Waveguide in cm +c=3*10^10;//Velocity of Light in cm/sec + +//CALCULATION +disp('The dominant mode in the circular waveguide would be like TE11,wc is maximum'); +r=D/2;//radius in cm +wc=((2*(%pi)*r)/1.841);//Cutoff wavelength in cms +fc=(c/wc)/10^9;//Cutoff frequency in GHz +mprintf('\nCutoff wavelength is wc=%1.4f cms \nCutoff frequency is fc=%1.3f GHz',wc,fc); +disp('Since cut-off frequency is 4.395 GHz,frequencies higher than fc will be propagated.Assume a signal of frequency of 5 GHz is being propagated'); +f=5*10^9;//frequency of signal in Hz +w0=(c/f);//free space wavelength in cm +wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in cm +mprintf('\nWave length in the guide is wg=%2.2f cm',wg); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH4/EX4.13/Ex4_13.sce b/1979/CH4/EX4.13/Ex4_13.sce new file mode 100755 index 000000000..260c41fb0 --- /dev/null +++ b/1979/CH4/EX4.13/Ex4_13.sce @@ -0,0 +1,21 @@ +//chapter-4 page 150 example 4.13 +//============================================================================== +clc; +clear; + +//For a rectangular waveguide in TE10 mode +a=6;//Length of Rectangular Waveguide in cm +b=4;//Width of Rectangular Waveguide in cm +c=3*10^10;//Velocity of Light in cm/sec +x=4.55;//distance between maximum and minimum in cm + +//CALCULATIONS +wc=2*a;//Cutoff wavelength for a TE10 mode in cms +wg=4*x;//Guide Wavelength in cm +w0=(wg/sqrt(1+(wg/wc)^2));////Free space wavelength in cm +f=(c/w0)/10^9;//Frequency of the wave in GHz + +//OUTPUT +mprintf('\nFrequency of the wave is f=%1.3f GHz',f); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH4/EX4.14/Ex4_14.sce b/1979/CH4/EX4.14/Ex4_14.sce new file mode 100755 index 000000000..f864aa803 --- /dev/null +++ b/1979/CH4/EX4.14/Ex4_14.sce @@ -0,0 +1,28 @@ +//chapter-4 page 151 example 4.14 +//============================================================================== +clc; +clear; + +//For a rectangular waveguide +b=2.5;//Length of Rectangular Waveguide in cm +a=5;//breadth of Rectangular Waveguide in cm +c=3*10^10;//Velocity of Light in cm/sec +w0=4.5;//Free space wavelength in cm + +//CALCULATION +disp('For a TE10 mode which is the dominant mode'); +wc=2*a;//Cutoff wavelength in cm +wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in cm +Vp=(c/sqrt(1-(w0/wc)^2))/10^10;//Phase Velocity in 10^10 cm/sec +B=((2*(%pi)*sqrt(wc^2-w0^2))/(w0*wc));//Phase constant in radians + +//OUTPUT +mprintf('\nGuide wavelength is wg=%1.5f cm \nPhase constant is B=%1.3f radians \nPhase Velocity is Vp=%1.2f *10^10 cm/sec',wg,B,Vp); + +//=========================END OF PROGRAM=========================================== + +//Note: Check the answers once +//Correct answers are +//Guide wavelength is wg=5.03903 cm +//Phase constant is B=1.247 radians +//Phase Velocity is Vp=3.36 *10^10 cm/sec diff --git a/1979/CH4/EX4.15/Ex4_15.sce b/1979/CH4/EX4.15/Ex4_15.sce new file mode 100755 index 000000000..83c723a82 --- /dev/null +++ b/1979/CH4/EX4.15/Ex4_15.sce @@ -0,0 +1,22 @@ +//chapter-4 page 152 example 4.15 +//============================================================================== +clc; +clear; + +wcTE10=16;//Critical wavelength of TE10 mode in cm +wcTM11=7.16;//Critical wavelength of TM11 mode in cm +wcTM21=5.6;//Critical wavelength of TM21 mode in cm +disp('For any wave to be propagated, the condition to be met is wc>wo'); +wo1=10;//Free space wavelength in cm +wo2=5;//Free space wavelength in cm +disp('Critical wavelength of TE10 mode in cm is'); +disp(wcTE10); +disp('Critical wavelength of TM11 mode in cm is'); +disp(wcTM11); +disp('Critical wavelength of TM21 mode in cm is'); +disp(wcTM21); +disp('For wo1=10cm,The mode that propagates only TE10.Because wcTE10>wo1 and all other modes that is TM11 TM21 donot propagate'); +disp('For wo2=5cm'); +disp('wcTE10>wo2, so TE10 mode propagates'); +disp('wcTM11>wo2, so TE11 mode propagates'); +disp('wcTE21>wo2, so TE21 mode propagates'); diff --git a/1979/CH4/EX4.16/Ex4_16.sce b/1979/CH4/EX4.16/Ex4_16.sce new file mode 100755 index 000000000..2f18b002c --- /dev/null +++ b/1979/CH4/EX4.16/Ex4_16.sce @@ -0,0 +1,24 @@ +//chapter-4 page 152 example 4.16 +//============================================================================== +clc; +clear; + +n=120*(%pi);//Intrinsic Impedance +a=3;//Length of Rectangular Waveguide in cm +b=2;//Width of Rectangular Waveguide in cm +f=10^10;//Frequency in Hz +c=3*10^10;//Velocity of Light in cm/sec + +//CALCULATION +wc=((2*a*b)/sqrt(a^2+b^2));//Cutoff wavelength in TM11 mode in cms +w0=(c/f);//Free space wavelength in cms +ZTM=(n*sqrt(1-(w0/wc)^2));//Characteristic Wave Impedance in ohms + +//OUTPUT +mprintf('\nCharacteristic Wave Impedance is ZTM=%2.3f ohms',ZTM); + + +//=========================END OF PROGRAM================================= + +//Note: Check the given answer once it is wrong + //currect answer is 163.242 ohms diff --git a/1979/CH4/EX4.17/Ex4_17.sce b/1979/CH4/EX4.17/Ex4_17.sce new file mode 100755 index 000000000..c16d1c601 --- /dev/null +++ b/1979/CH4/EX4.17/Ex4_17.sce @@ -0,0 +1,19 @@ +//chapter-4 page 152 example 4.17 +//============================================================================== +clc; +clear; + +c=3*10^10;//Velocity of Light in cm/sec +f=6*10^9;//Frequency in Hz + +//CALCULATION +fc=(0.8*f);//Given Cutoff frequency for TE11 mode in Hz +wc=(c/fc);//Cutoff wavelength in cms +D=((1.841*wc)/(%pi));//Diameter of waveguide in cm +w0=(c/f);//Free space wavelength in cm +wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in cm + +//OUTPUT +mprintf('\nDiameter of the waveguide is D=%1.4f cm \nGuide wavelength is wg=%1.3f cm',D,wg); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH4/EX4.18/Ex4_18.sce b/1979/CH4/EX4.18/Ex4_18.sce new file mode 100755 index 000000000..0aee3acdf --- /dev/null +++ b/1979/CH4/EX4.18/Ex4_18.sce @@ -0,0 +1,30 @@ +//chapter-4 page 153 example 4.18 +//============================================================================== +clc; +clear; + +//For a TE10 mode +a=1.5;//Length of an air filled square Waveguide in m +b=1;//breadth of an air filled square Waveguide in cm +c=3*10^10;//Velocity of Light in cm/sec +f=6*10^9;//Impressed Frequency in Hz +er=4;//dielectric constant + +//CALCULATION +wc=2*a;//Cutoff wavelength in cm +fc=(c/wc)/10^9;//Cutoff frequency in GHz +disp('Cutoff frequency in GHz is'); +disp(fc); +disp('The impressed frequency of 6 GHz is less than the Cutoff frequency and hence the signal will not pass through the guide'); +w=(c/f);//Wavelength in cm +disp('Alternatively, the wavelength of the impressed signal in cm is'); +disp(w); +wair=w; +disp('which is longer than the cutoff wavelength (3cm) and hence no propagation of the wave'); +w1=wair/sqrt(er);//Wavelength in cm +disp('If the waveguide is loaded with dielectric of er=4, then the wavelength in cm is'); +disp(w1); +disp('which is lessthan wair'); +disp('Now the signal with 6 GHz frequency will pass through the dielectric loaded waveguide'); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH4/EX4.19/Ex4_19.sce b/1979/CH4/EX4.19/Ex4_19.sce new file mode 100755 index 000000000..f742c4d70 --- /dev/null +++ b/1979/CH4/EX4.19/Ex4_19.sce @@ -0,0 +1,27 @@ +//chapter-4 page 153 example 4.19 +//============================================================================== +clc; +clear; + +a=0.015;//Length of hollow Rectangular Waveguide in m +b=1;//breadth of hollow Rectangular Waveguide in cm +f=6*10^9;//Frequency in Hz in TE10 mode +c=3*10^8;//Velocity of Light in m/sec +m=1;//Value of m in TE10 mode +n=0;//Value of n in TE10 mode +u=4*(%pi)*10^(-7);//Permeability in free space in Henry +e=8.854*10^(-12);//Permittivity in free space in F/m + +//CALCULATION +wc=2*a;//Cutoff wavelength for TE10 mode in m +fc=c/wc;//Cutoff frequency in Hz +w=2*(%pi)*f;//Angular frequency in rad/sec + +//So 6GHz signal will not pass through waveguide but will get attenuated +A=(sqrt((m*(%pi)/a)^2+(n*(%pi)/b)^2-(w^2*u*e)));//Attenuation in NP/m +AdB=A*(20/log(10));//Attenuation in dB/m + +//OUTPUT +mprintf('\Amount of Attenuation is A=%3.1f NP/m \nAttenuation is AdB=%4.2f dB/m',A,AdB); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH4/EX4.2/Ex4_2.sce b/1979/CH4/EX4.2/Ex4_2.sce new file mode 100755 index 000000000..cade93e14 --- /dev/null +++ b/1979/CH4/EX4.2/Ex4_2.sce @@ -0,0 +1,28 @@ +//chapter-4 page 142 example 4.2 +//============================================================================== +clc; +clear; + +R=0.05;//Resistance in ohm/m +L=0.16173*10^(-6);//Inductance per unit lengths in H/m +C=0.15802*10^(-6);//The Capacitance per unit lengths in F/m +V=197814.14;//The Velocity of propagation in Km/s +l=50;//Length of Coaxial Line in met +Pin=480;//Input Power to the System in watts +f=3*10^9;//Frequency in Hz +c=3*10^5;//Velocity of Light in Km/sec +e0=8.854*10^(-12);//Permittivity in free space in F/m + +//CALCULATIONS +Z0=sqrt(L/C); +A=(R/(2*Z0));//Attenuation Constant in NP/m +w=(2*(%pi)*f);//Angular Frequency in rad/sec +B=(w*sqrt(L*C));//Phase Constant in rad/m +Vp=(1/sqrt(L*C))/(10^3);//Phase Velocity in Km/s +er=(((c/V)^2)/e0);//Relative Permittivity +Pl=(2*Pin*l);//Power Loss in watts + +//OUTPUT +mprintf('\nAttenuation Constant is A=%1.4f NP/m \nPhase Constant is B=%4.3f rad/m \nPhase Velocity is Vp=%4.3f Km/s \nRelative Permittivity is er=%12.2f \nPower Loss is Pl=%5.0f watts',A,B,Vp,er,Pl); + +//=========================END OF PROGRAM=========================================== diff --git a/1979/CH4/EX4.20/Ex4_20.sce b/1979/CH4/EX4.20/Ex4_20.sce new file mode 100755 index 000000000..bc0369323 --- /dev/null +++ b/1979/CH4/EX4.20/Ex4_20.sce @@ -0,0 +1,27 @@ +//chapter-4 page 154 example 4.20 +//============================================================================== +clc; +clear; + +a=3;//Length of Rectangular Waveguide in cm +b=1;//Width of Rectangular Waveguide in cm +f=9*10^9;//Frequency in Hz in TE10 mode +c=3*10^10;//Velocity of Light in cm/sec +Emax=3000;//Max potential gradient in V/cm + +//CALCULATION +w0=(c/f);//Free space wavelength in cms +disp('Free space Wavelength in cm is'); +disp(w0); +wc=2*a;//Cutoff wavelength in TE10 mode in cms +wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in cms +disp('Guide Wavelength in cm is'); +disp(wg); +P=((6.63*10^(-4))*(Emax^2)*a*b*(w0/wg))/1000;//Power handling capability of the waveguide in kW + +//OUTPUT +mprintf('\nPower handling capability of the waveguide is P=%2.3f kW',P); + + +//=========================END OF PROGRAM================================= + diff --git a/1979/CH4/EX4.21/Ex4_21.sce b/1979/CH4/EX4.21/Ex4_21.sce new file mode 100755 index 000000000..e47f9c088 --- /dev/null +++ b/1979/CH4/EX4.21/Ex4_21.sce @@ -0,0 +1,21 @@ +//chapter-4 page 154 example 4.21 +//============================================================================== +clc; +clear; + +d=5;//Internal Diameter of circular waveguide in cm +f=9*10^9;//Frequency in Hz in TE11 mode +c=3*10^10;//Velocity of Light in cm/sec +Emax=300;//Max field strength in V/cm + +//CALCULATION +w0=(c/f);//Free space wavelength in cms +wc=((d*(%pi))/1.841);//Cutoff wavelength in TE11 mode in cms +wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in cms +Pmax=(0.498*(Emax^2)*(d^2)*(w0/wg))/1000;//Maximum power in kWatts + +//OUTPUT +mprintf('\nMaximum power is Pmax=%4.2f kWatts',Pmax); + + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH4/EX4.22/Ex4_22.sce b/1979/CH4/EX4.22/Ex4_22.sce new file mode 100755 index 000000000..7aca58dc4 --- /dev/null +++ b/1979/CH4/EX4.22/Ex4_22.sce @@ -0,0 +1,26 @@ +//chapter-4 page 155 example 4.22 +//============================================================================== +clc; +clear; + +//For an air filled square waveguide +a=0.01;//Length of an air filled square Waveguide in m +b=0.01;//breadth of an air filled square Waveguide in m +c=3*10^8;//Velocity of Light in m/sec +f=30*10^9;//Frequency in Hz in TE11 mode +Pmax=746;//Max power =1 horsepower in W +n=120*(%pi);//Impedance of freespace in ohms + +//CALCULATION +w0=(c/f);//Free space wavelength in m +wc=2*a;//Cutoff wavelength in m +ZTE=(n/sqrt(1-(w0/wc)^2));//Impedance in ohms +Emax=(sqrt((Pmax*4*ZTE)/(a*b)))/1000;//The Peak value of Electric field occuring in the guide in kV/m +//From P=(1/2)*Integration(Re(E*H))da +//and Pmax=(1/(4*ZTE))*Emax^2*a*b + +//OUTPUT +mprintf('\nThe Peak value of Electric field occuring in the guide is Emax=%3.2f kV/m',Emax); + +//=========================END OF PROGRAM=============================== + diff --git a/1979/CH4/EX4.23/Ex4_23.sce b/1979/CH4/EX4.23/Ex4_23.sce new file mode 100755 index 000000000..1b775bfbf --- /dev/null +++ b/1979/CH4/EX4.23/Ex4_23.sce @@ -0,0 +1,30 @@ +//chapter-4 page 156 example 4.23 +//============================================================================== +clc; +clear; + +//For an air filled rectangular waveguide +a=0.023;//Length of an air filled Rectangular Waveguide in m +b=0.01;//breadth of an air filled Rectangular Waveguide in m +c=3*10^8;//Velocity of Light in m/sec +f=9.375*10^9;//Frequency in Hz in TE11 mode +w0=0.01;//Free space wavelength in m +wc=0.02;//Cutoff wavelength in m +Pmax=746;//Max power =1 horsepower in W + +//CALCULATION +wo=(c/f);//Free space wavelength in cm +Pbd=(597*a*b*sqrt(1-(wo/(2*a))^2));//The breakdown power for the dominant mode ie TE11 in W +wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in m +Emax=(sqrt((Pmax*wg)/(6.63*10^(-4)*w0)))/1000;//Max electric field in kV/m + +//OUTPUT +mprintf('\nThe breakdown power for the dominant mode ie TE11 is Pbd=%1.5f W \nMax electric field is Emax=%1.4f kV/m',Pbd,Emax); + +//=========================END OF PROGRAM=========================================== + + +//Note: Check the answers once +//Correct answers are +//The breakdown power for the dominant mode ie TE11 is Pbd=0.09864 W +//Max electric field is Emax=1.1398 kV/m diff --git a/1979/CH4/EX4.24/Ex4_24.sce b/1979/CH4/EX4.24/Ex4_24.sce new file mode 100755 index 000000000..4f0916763 --- /dev/null +++ b/1979/CH4/EX4.24/Ex4_24.sce @@ -0,0 +1,20 @@ +//chapter-4 page 156 example 4.24 +//============================================================================== +clc; +clear; + +a=2.5;//Radius of circular waveguide in cm +d=5;//Internal Diameter of circular waveguide in cm +f=9*10^9;//Frequency in Hz in TE11 mode +c=3*10^10;//Velocity of Light in cm/sec + +//CALCULATION +w0=(c/f);//Free space wavelength in cms +wc=((d*(%pi))/1.841);//Cutoff wavelength in TE11 mode in cms +fc=(c/wc);//Cutoff frequency in Hz +Pbd=(1790*(a^2)*sqrt(1-(fc/f)^2))/1000;//Breakdown Power in TE11 mode in kW + +//OUTPUT +mprintf('\nBreakdown Power in TE11 mode is Pbd=%5.3f kW',Pbd); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH4/EX4.3/Ex4_3.sce b/1979/CH4/EX4.3/Ex4_3.sce new file mode 100755 index 000000000..88358a739 --- /dev/null +++ b/1979/CH4/EX4.3/Ex4_3.sce @@ -0,0 +1,20 @@ +//chapter-4 page 142 example 4.3 +//============================================================================== +clc; +clear; + +//For an air filled coaxial cable +f=9.375*10^9;//operating frequency in Hz +c=3*10^10;//Velocity of Light in cm/sec +disp('Assuming a ratio of (b/a)=2.3 and (b+a)<(w/pi) to exclude higher order modes and a dominant mode propagating'); +a=0.36432;//length of coaxial cable in cm +x=2.3;//ratio of b/a + +//CALCULATION +w0=(c/f);//free space wavelength in cm +Pbd=(3600*(a^2)*log(x));//Breakdown power of a coaxial cable in kW + +//OUTPUT +mprintf('\nBreakdown power of a coaxial cable is Pbd=%3.0f kW',Pbd); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH4/EX4.4/Ex4_4.sce b/1979/CH4/EX4.4/Ex4_4.sce new file mode 100755 index 000000000..1f25e38aa --- /dev/null +++ b/1979/CH4/EX4.4/Ex4_4.sce @@ -0,0 +1,18 @@ +//chapter-4 page 142 example 4.4 +//============================================================================== +clc; +clear; + +b=0.3175;//Distance between ground planes of strip line in cm +d=0.0539;//Diameter of circular conductor in cm +er=2.32;//Dielectric Constant +c=3*10^8;//Velocity of Light in m/sec + +//CALCULATION +Z0=((60/sqrt(er))*log((4*b)/(d*(%pi))));//Characteristic Impedance in ohms +V=(c/sqrt(er))/(10^3);//The Velocity of propagation in Km/s + +//OUTPUT +mprintf('\nCharacteristic Impedance is Z0=%2.2f ohms \nThe Velocity of propagation is V=%5.2f Km/s',Z0,V); + +//=========================END OF PROGRAM=================================================== diff --git a/1979/CH4/EX4.5/Ex4_5.sce b/1979/CH4/EX4.5/Ex4_5.sce new file mode 100755 index 000000000..bd8263990 --- /dev/null +++ b/1979/CH4/EX4.5/Ex4_5.sce @@ -0,0 +1,27 @@ +//chapter-4 page 143 example 4.5 +//============================================================================== +clc; +clear; + +//For a microstrip transmission line +er=9.7;//relative dielectric constant of an alumina substrate +x1=0.5;//w/h ratio in first transmission line +x2=5;//w/h ratio in second transmission line +c=3*10^8;//Velocity of Light in m/sec + +//CALCULATION +disp('For case1: w/h=0.5'); +disp('Since x1=0.5<1, for this we use high impedance analysis'); +Eeff1=(((er+1)/2)+((er-1)/2)*(1/((sqrt(1+(12/x1)))+(0.04*(1-x1)^2))));//Effective dielectric constant +Zo1=((60/sqrt(Eeff1))*log((8/x1)+(x1/4)));//Characteristic impedance in ohms +V1=(c/sqrt(Eeff1))/10^8;//Velocity of propagation in 10^8 m/sec +mprintf('\nEffective dielectric constant is Eeff1=%1.2f \nCharacteristic impedance is Zo1=%2.2f ohms \nVelocity of propagation is V1=%1.1f *10^8 m/sec',Eeff1,Zo1,V1); + +disp('For case2: w/h=5'); +disp('here x2>1'); +Eeff2=(((er+1)/2)+((er-1)/2)*(1/(sqrt(1+(12/x2)))));//Effective dielectric constant +Zo2=((120*(%pi)/sqrt(Eeff2))*(1/(x2+1.393+(0.667*log(1.444+x2)))));//Characteristic impedance in ohms +V2=(c/sqrt(Eeff2))/10^8;//Velocity of propagation in 10^8 m/sec +mprintf('\nEffective dielectric constant is Eeff2=%1.2f \nCharacteristic impedance is Zo2=%2.2f ohms \nVelocity of propagation is V2=%1.2f *10^8 m/sec',Eeff2,Zo2,V2); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH4/EX4.6/Ex4_6.sce b/1979/CH4/EX4.6/Ex4_6.sce new file mode 100755 index 000000000..d88170f5d --- /dev/null +++ b/1979/CH4/EX4.6/Ex4_6.sce @@ -0,0 +1,30 @@ +//chapter-4 page 144 example 4.6 +//============================================================================== +clc; +clear; + +//To calculate the ratio of circular waveguide cross-sectional area to the rectangular waveguide cross section +disp('Assuming that both these waveguides have similar or equal cutoff frequencies/wavelengths'); + +disp('Case1: When TE wave is propagated'); +disp('For standard rectangular waveguides a=2b and For TE11 dominant mode in circular waveguide wc1=(2(pi)r)/1.841'); +disp('where r is the radius of the circular waveguide and wc1 is the cutoff wavelength for circular waveguide'); +disp('It is given wc1=wc2 where wc2 is the cutoff wavelength for rectangular waveguide'); +disp('For TE10(dominant mode) of propagation in rectangular waveguide wc2=2a'); +disp('Since wc2=(2ab)/(sqrt((mb)^2+(nb)^2)) as m=1;n=0 for TE10 wc2=2ab/b=2a'); +disp('By equating wc1=wc2, we get a=1.70645r'); +disp('For a standard waveguide a=2b therefore, b=a/2'); +disp('Now the area of rectangular waveguide=a*b=a*a/2=1.70645r*1.70645r/2=1.456r^2'); +disp('Area of rectangular waveguide=1.456r^2 ,Area of circular waveguide=(pi)*r^2'); +disp('Ratio of area of circular to area of rectangular waveguide=(Area of circular waveguide/Area of rectangular waveguide)=(pi*r^2)/(1.456r^2)=2.1576873=2.2'); +disp('This clearly shows that the space occupied by a rectangular waveguide system is less compared to that for a circular waveguide system.Hence circular waveguides are not preferred in some applications'); + +disp('Case2: When TM wave is propagated'); +disp('For TM01 mode wc1=(2*pi*r)/(Pnm)min=(2*pi*r)/Pnm=(2*pi*r)/2.405 where r is the radius of circular waveguide wc1=2.6155r'); +disp('Now if wc2 is the wavelength for TM11 wave propagating in a standard rectangular waveguide wc2=wc1 but wc2=(2ab)/sqrt(a^2+b^2)'); +disp('For standard waveguides,we know a=2b, wc2=(2*2b*b)/sqrt(4b^2+b^2)=(4b^2)/sqrt(5b^2)=4b/sqrt(5)'); +disp('By equating wc1=wc2, we get 2.6155r=4b/sqrt(5)=>b=1.4621r'); +disp('Area of rectangular waveguide=b*b=b^2 but b=1.4621r, so Area of rectangular waveguide=(1.4621r)^2=2.132r^2 and Area of circular waveguide= pi*r^2'); +disp('Ratio of area of circular to area of rectangular waveguide=(Area of circular waveguide/Area of rectangular waveguide)=(pi*r^2)/(2.132r^2)=1.5'); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH4/EX4.7/Ex4_7.sce b/1979/CH4/EX4.7/Ex4_7.sce new file mode 100755 index 000000000..8e7fc58eb --- /dev/null +++ b/1979/CH4/EX4.7/Ex4_7.sce @@ -0,0 +1,27 @@ +//chapter-4 page 146 example 4.7 +//============================================================================== +clc; +clear; + +//For a rectangular waveguide +disp('For a rectangular waveguide the dominant mode is the TE10 mode.TE10 mode can propagate at a lower frequency'); +f=9*10^9;//frequency in Hz +wg=4;//guide wavelength in cm +c=3*10^10;//Velocity of Light in cm/sec +disp('For TE10 mode wc=2a'); + +//CALCULATION +w0=(c/f);//free space wavelength in cm +wc=(w0/sqrt(1-(w0/wg)^2));//Cutoff wavelength for TE10 mode in cm +disp('Free space wavelength w0 in cm is'); +disp(w0); +disp('Cutoff wavelength wc in cm is'); +disp(wc); +disp('Since wc>w0, the wave propagates'); +a=(wc/2);//length of the guide in cm +b=(wc/4);//breadth of the guide in cm + +//OUTPUT +mprintf('\nlength of the guide is a=%1.0f cm \nbreadth of the guide is b=%1.1f cm',a,b); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH4/EX4.8/Ex4_8.sce b/1979/CH4/EX4.8/Ex4_8.sce new file mode 100755 index 000000000..850d61c5a --- /dev/null +++ b/1979/CH4/EX4.8/Ex4_8.sce @@ -0,0 +1,21 @@ +//chapter-4 page 147 example 4.8 +//============================================================================== +clc; +clear; + +a=10;//breadth of a rectangular waveguide in cm +f=2.5*10^9;//Frequency in Hz in TE10 mode +c=3*10^10;//Velocity of Light in cm/sec + +//CALCULATION +wc=2*a;//Cutoff wavelength for TE10 mode in cm +w0=(c/f);//Free space wavelength in cm +x=sqrt(1-(w0/wc)^2); +wg=(w0/x);//Guide wavelength in cm +Vp=(c/x)/10^5;//Phase Velocity in Km/sec +Vg=((c^2)/Vp)/10^10;//Group Velocity in Km/sec + +//OUTPUT +mprintf('\nCutoff wavelength for TE10 mode is wc=%2.0f cm \nGuide wavelength is wg=%2.0f cm \nPhase Velocity is Vp=%7.2f Km/sec \nGroup Velocity is Vg=%6.2f Km/sec',wc,wg,Vp,Vg); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH4/EX4.9/Ex4_9.sce b/1979/CH4/EX4.9/Ex4_9.sce new file mode 100755 index 000000000..59db7cd15 --- /dev/null +++ b/1979/CH4/EX4.9/Ex4_9.sce @@ -0,0 +1,48 @@ +//chapter-4 page 147 example 4.9 +//============================================================================== +clc; +clear; + +f=8.6*10^9;//frequency in Hz +c=3*10^10;//Velocity of Light in cm/sec +a=2.5;//Length of a Waveguide in cm +b=1;//Width of a Waveguide in cm + +//CALCULATION +disp('The condition for the wave to propagate along a guide is that wc>w0.'); +w0=c/f;//free space wavelength in cm +disp('Free space wavelength w0 in cm is'); +disp(w0); +disp('For TE waves, wc=(2ab/sqrt((mb)^2+(na)^2))'); +disp('For TE01 waves'); +m1=0; +n1=1; +wc1=((2*a*b)/(sqrt((m1*b)^2+(n1*a)^2)));//Cutoff wavelength for TE01 mode in cm +disp('Cutoff wavelength for TE01 mode in cm is'); +disp(wc1); +disp('Since wc for TE01=2cm is not greater than w0 TE01,will not propagate for TE01 mode.'); +disp('For TE10 waves'); +m2=1; +n2=0; +wc2=((2*a*b)/(sqrt((m2*b)^2+(n2*a)^2)));//Cutoff wavelength for TE10 mode in cm +disp('Cutoff wavelength for TE10 mode in cm is'); +disp(wc2); +disp('Since wc TE10 > w0 TE10 is a possible mode.'); +fc=(c/wc2)/10^9;//Cutoff frequency in GHz +disp('For TE11 and TM11 waves'); +m3=1; +n3=1; +wc3=((2*a*b)/(sqrt((m3*b)^2+(n3*a)^2)));//Cutoff wavelength for TE11 mode in cm +disp('Cutoff wavelength for TE11 and TM11 modes in cm is'); +disp(wc3); +disp('As wc for TE11 and TM11 is < w0 both TE11 and TM11 do not propagate as higher modes.'); +wg=(w0/sqrt(1-(w0/wc2)^2));//Guide wavelength in cm +disp('From the above analysis we conclude that only TE10 mode is possible'); + +//OUTPUT +mprintf('\nCutoff frequency is fc=%1.0f GHz \nGuide wavelength is wg=%1.3f cm',fc,wg); + +//=========================END OF PROGRAM=============================== + + + diff --git a/1979/CH5/EX5.1/Ex5_1.sce b/1979/CH5/EX5.1/Ex5_1.sce new file mode 100755 index 000000000..f08cac594 --- /dev/null +++ b/1979/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,23 @@ +//chapter-5 page 174 example 5.1 +//============================================================================== +clc; +clear; + +//For a circular waveguide +a=3;//radius in cm +f0=10*10^9;//resonant frequency of a circular resonator in Hz +disp('Given the mode of operator is TM011 so here n=0,m=1,p=1'); +c=3*10^10;//Velocity of light in cm/sec +m=1; +n=0; +p=1; +Pnm=2.405;//dominant mode value[TM01] + +//CALCULATION +d=((p*(%pi))/(sqrt((2*(%pi)*f0/c)^2-(Pnm/a)^2)));//The minimum distance between the two end plates in cms + +//OUTPUT +mprintf('\nThe minimum distance between the two end plates of a circular waveguide is d=%1.2f cms',d); + +//=========================END OF PROGRAM=============================== + diff --git a/1979/CH5/EX5.2/Ex5_2.sce b/1979/CH5/EX5.2/Ex5_2.sce new file mode 100755 index 000000000..ace8ad6c1 --- /dev/null +++ b/1979/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,24 @@ +//chapter-5 page 174 example 5.2 +//============================================================================== +clc; +clear; + +//For a rectangular cavity resonator +a=2;//breadth in cm +b=1;//height in cm +l=3;//length of rectangular waveguide in cm +disp('Lowest resonant frequency is obtained for the dominant mode TE10[f=c/w where w increases as f decreases. In dominant mode wc is maximum]'); +disp('So the dominant mode is TE101 so here m=1,n=0,p=1'); +c=3*10^10;//Velocity of light in cm/sec +m=1; +n=0; +p=1; + +//CALCULATION +f0=((c/2)*sqrt((m/a)^2+(n/b)^2+(p/l)^2))/10^9;//The resonant frequency of a rectangular cavity resonator in GHz + +//OUTPUT +mprintf('\nThe resonant frequency of a rectangular cavity resonator is f0=%1.0f GHz',f0); + +//=========================END OF PROGRAM=============================== + diff --git a/1979/CH5/EX5.3/Ex5_3.sce b/1979/CH5/EX5.3/Ex5_3.sce new file mode 100755 index 000000000..6d64c7c4a --- /dev/null +++ b/1979/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,24 @@ +//chapter-5 page 175 example 5.3 +//============================================================================== +clc; +clear; + +//For a circular resonator +D=12.5;//diameter in cm +l=5;//length of circular waveguide in cm +disp('Given the mode of operator is TM012 so here n=0,m=1,p=2'); +c=3*10^10;//Velocity of light in cm/sec +m=1; +n=0; +p=2; +Pnm=2.405;//dominant mode value[TM01] + +//CALCULATION +a=D/2;//radius in cm +f0=((c/(2*(%pi)))*sqrt((Pnm/a)^2+((p*(%pi))/l)^2))/10^9;//The resonant frequency of a circular resonator in GHz + +//OUTPUT +mprintf('\nThe resonant frequency of a circular resonator is f0=%1.2f GHz',f0); + +//=========================END OF PROGRAM=============================== + diff --git a/1979/CH5/EX5.4/Ex5_4.sce b/1979/CH5/EX5.4/Ex5_4.sce new file mode 100755 index 000000000..6a4fe44a4 --- /dev/null +++ b/1979/CH5/EX5.4/Ex5_4.sce @@ -0,0 +1,23 @@ +//chapter-5 page 175 example 5.4 +//============================================================================== +clc; +clear; + +//For a circular resonator +a=3;//radius in cm +b=2;//dimension in cm +l=4;//length of circular waveguide in cm +disp('Given the mode of operator is TE101 so here m=1,n=0,p=1'); +c=3*10^10;//Velocity of light in cm/sec +m=1; +n=0; +p=1; + +//CALCULATION +f0=((c/2)*sqrt((m/a)^2+(n/b)^2+(p/l)^2))/10^9;//The resonant frequency of a circular resonator in GHz + +//OUTPUT +mprintf('\nThe resonant frequency of a circular resonator is f0=%1.2f GHz',f0); + +//=========================END OF PROGRAM=============================== + diff --git a/1979/CH6/EX6.10/Ex6_10.sce b/1979/CH6/EX6.10/Ex6_10.sce new file mode 100755 index 000000000..380c464fe --- /dev/null +++ b/1979/CH6/EX6.10/Ex6_10.sce @@ -0,0 +1,25 @@ +//Chapter-6, Example 6.10, Page 242 +//============================================================================= + +clc ; +clear; +close; +In_loss =0.5; // i n s e r t i o n l o s s ( i n dB) +C =20; //coupling coefficient i n dB +D =35; //directivity i n dB +Pi_Pf =10^( C /10) ; +Pi =90; // i n Watts +Pf=Pi/ Pi_Pf ; +Pf_Pb =10^( D /10) ; +Pb=Pf/ Pf_Pb ; +P_rec =(Pi -Pf -Pb); //Power r e c e i v e d ( i n Watts ) +P_rec_dB =10* log (Pi/ P_rec )/log (10) ; +P_rec_eff = P_rec_dB - In_loss ; // E f f e c t i v e power r e c e i v e d ( i n dB) +disp ( Pf , 'Output power through coupled port ( i n Watts)=' ); +disp ( Pb , 'Output power through isolated port ( i n Watts)=' ); +disp ( P_rec_dB , ' Power r e c e i v e d ( i n dB)=' ); +disp ( P_rec_eff , ' E f f e c t i v e power r e c e i v e d ( i n dB)=' ); + + +//=================================END OF PROGRAM============================== + diff --git a/1979/CH6/EX6.11/Ex6_11.sce b/1979/CH6/EX6.11/Ex6_11.sce new file mode 100755 index 000000000..6e4d5f4c8 --- /dev/null +++ b/1979/CH6/EX6.11/Ex6_11.sce @@ -0,0 +1,13 @@ +//Chapter-6, Example 6.11, Page 242 +//============================================================================= +clc; +//Calculations +S13=0.1*(cos(90*%pi/180)+(%i)*sin(90*%pi/180));//conversion from polar to rectangular +S13=abs(S13); +C=-20*log10(S13);//coupling coefficient in dB +S14=0.05*(cos(90*%pi/180)+(%i)*sin(90*%pi/180));//conversion from polar to rectangular +S14=abs(S14); +D=20*log10(S13/S14);//directivity in dB +I=-20*log10(S14);//isolation in dB +mprintf("Thus coupling,directivity and isolation are %1.0f dB,%1.2f dB and %2.2f dB respetively ",C,D,I); +//=================================END OF PROGRAM============================== diff --git a/1979/CH6/EX6.12/Ex6_12.sce b/1979/CH6/EX6.12/Ex6_12.sce new file mode 100755 index 000000000..66ecb934e --- /dev/null +++ b/1979/CH6/EX6.12/Ex6_12.sce @@ -0,0 +1,18 @@ +//chapter-6 page 244 example 6.12 +//============================================================================== +clc; +clear; + +x=3.5;//distance between two minimas in cm +y=0.25;//distance between twice minimum power points in cm + +//CALCULATION +wg=2*x;//guided wavelength in cm +S=(wg/(y*(%pi)));//Voltage Standing Wave Ratio(VSWR) + +//OUTPUT +mprintf('\nVoltage Standing Wave Ratio(VSWR) is S=%1.4f',S); + +//=========================END OF PROGRAM=============================== + + diff --git a/1979/CH6/EX6.13/Ex6_13.sce b/1979/CH6/EX6.13/Ex6_13.sce new file mode 100755 index 000000000..3d866e2a0 --- /dev/null +++ b/1979/CH6/EX6.13/Ex6_13.sce @@ -0,0 +1,20 @@ +//chapter-6 page 244 example 6.13 +//============================================================================== +clc; +clear; + +wg=7.2;//guide wavelength in cm +x=10.5;//Position of reference null without the waveguide component in cm +y=9.3;//Position of reference null with the waveguide component in cm + +//CALCULATION +z=x-y;//Path difference introduced due to the component in cm +p=(2*(%pi)*(z/wg));//Phase difference introduced in rad +Pd=(p*180)/(%pi);//Phase shift introduced in deg + +//OUTPUT +mprintf('\nPhase shift introduced is Pd=%2.0f deg',Pd); + +//=========================END OF PROGRAM=============================== + + diff --git a/1979/CH6/EX6.2/Ex6_2.sce b/1979/CH6/EX6.2/Ex6_2.sce new file mode 100755 index 000000000..459d64ded --- /dev/null +++ b/1979/CH6/EX6.2/Ex6_2.sce @@ -0,0 +1,17 @@ +//Chapter-6, Example 6.2, Page 234 +//============================================================================= +//Input parameters +//[s]=[0,(0.3+(%i)*(0.4));(0.3+(%i)*(0.4)),0];//scattering matrix of a two port +//Calculations +//to find l such that S12 and S21 will be real when port1 is shifted lm to the left +//let port 1 be shifted by phi1 degree to the left and port2 position be remained unchanged i.e.,phi2=delta +//Then [phi]=[e^-(j*phi1),0;0,1] +//[S']=[phi]*[s]*[phi] +//for S12 and S21 to be real +phi1=53.13;//in degrees +phi1=phi1*(%pi/180);//phi in radians +b=34.3;//measured in rad/m +l=(phi1)/b;//distance of shift in m +//Output +mprintf("distance that the position of part1 should be shifted to the left so that S21 and S12 will be real numbers is %1.4f m",l) +//=================================END OF PROGRAM============================== diff --git a/1979/CH6/EX6.3/Ex6_3.sce b/1979/CH6/EX6.3/Ex6_3.sce new file mode 100755 index 000000000..525354412 --- /dev/null +++ b/1979/CH6/EX6.3/Ex6_3.sce @@ -0,0 +1,31 @@ +//Chapter-6, Example 6.3, Page 236 +//============================================================================= +clc; +//Input parameters +D=30;//directivity in dB +VSWR=1;//VSWR at each port under matched conditions +C=10;//coupling factor +//Calculations +S41=sqrt(0.1); +S14=S41;//under matched and lossless conditions +S31=sqrt(((S41)^2)/(10)^(D/10)); +S13=S31; +S11=(VSWR-1)/(VSWR+1); +S22=S11; +S33=S22; +S44=S33; +//let input power is given at port1 +//p1=p2+P3+p4 +S21=sqrt(1-(S41)^2-(S31)^2); +S12=S21; +S34=sqrt((0.5)*(1+(S12)^2-0.1-0.0001)); +S43=S34 +S23=sqrt(1-10^-4-(S34)^2) +S32=S23; +S24=sqrt(1-0.1-(S34)^2) +S42=S24; +[S]=[S11,S12,S13,S14;S21,S22,S23,S24;S31,S32,S33,S34;S41,S42,S43,S44]; +//Output +mprintf("The scattering matrix is"); +disp([S]) +//=================================END OF PROGRAM============================== diff --git a/1979/CH6/EX6.4/Ex6_4.sce b/1979/CH6/EX6.4/Ex6_4.sce new file mode 100755 index 000000000..ed7cb0f4c --- /dev/null +++ b/1979/CH6/EX6.4/Ex6_4.sce @@ -0,0 +1,17 @@ +//Chapter-6, Example 6.4, Page 238 +//============================================================================= +clc; +//Input parameters +a1=32*10^-3;//power in watts +a2=0; +a3=0; +//Calculations +[S]=[0.5,-0.5,0.707;-0.5,0.5,0.707;0.707,0.707,0];//S-matrix for H-plane tee +//[B]=[b1,b2,b3] +[B]=[S].*[a1,0,0;0,0,0;0,0,0]; +b1=(0.5)^2*a1;//power at port 1 +b2=(-0.5)^2*a1;//power at port 2 +b3=(0.707)^2*a1;//power at port 3 +//Output +mprintf("Thus b1,b2,b3 are %g W,%g W,%g W respectively",b1,b2,b3); +//=================================END OF PROGRAM============================== diff --git a/1979/CH6/EX6.5/Ex6_5.sce b/1979/CH6/EX6.5/Ex6_5.sce new file mode 100755 index 000000000..edb2b5a72 --- /dev/null +++ b/1979/CH6/EX6.5/Ex6_5.sce @@ -0,0 +1,17 @@ +//Chapter-6, Example 6.5, Page 239 +//============================================================================= +clc; +//Input parameters +[S]=[0.5,-0.5,0.707;-0.5,0.5,0.707;0.707,0.707,0]; +R1=60;//load at port1 in ohms +R2=75;//load at port2 in ohms +R3=50;//characteristic impedance in ohms +P3=20*10^-3;//power at port 3 in Watts +//calculations +p1=(R1-R3)/(R1+R3); +p2=(R2-R3)/(R2+R3); +P1=0.5*P3*(1-(p1)^2);//power delivered to the port1 in Watts +P2=0.5*P3*(1-(p2)^2);//power delivered to the port2 in Watts +//Output +mprintf("Thus power delivered to the port1 and port2 are %g W,%g W respectively",P1,P2); +//=================================END OF PROGRAM============================== diff --git a/1979/CH6/EX6.6/Ex6_6.sce b/1979/CH6/EX6.6/Ex6_6.sce new file mode 100755 index 000000000..650b53097 --- /dev/null +++ b/1979/CH6/EX6.6/Ex6_6.sce @@ -0,0 +1,24 @@ +//Chapter-6, Example 6.6, Page 239 +//============================================================================= +clc; +//Input parameters +p1=0.5;//reflection coefficient at port 1 +p2=0.6;//reflection coefficient at port 2 +p3=1;//reflection coefficient at port 3 +p4=0.8;//reflection coefficient at port 4 +//[S]=[0,0,0.707,0.707;0,0,0.5,-0.707;0.707,0.707,0,0;-0.707,0.707,0,0];//S matrix of magic Tee +//solving for b1,b2,b3,b4 we get it as +//calculations +b1=0.6566; +b2=0.7576; +b3=0.6536; +b4=0.0893; +P1=(b1)^2;//power at port1 in watts +disp(P1); +P2=(b2)^2;//power at port2 in watts +disp(P2); +P3=(b3)^2;//power at port3 in watts +disp(P3); +P4=(b4)^2;//power at port4 in watts +disp(P4); +//=================================END OF PROGRAM============================== diff --git a/1979/CH6/EX6.7/Ex6_7.sce b/1979/CH6/EX6.7/Ex6_7.sce new file mode 100755 index 000000000..82ae0dd7a --- /dev/null +++ b/1979/CH6/EX6.7/Ex6_7.sce @@ -0,0 +1,14 @@ +//Chapter-6, Example 6.7, Page 240 +//============================================================================= +clc; +//Input parameters +ins=0.5;//insertion loss in db +iso=30;//isolation loss in db +//Calculations +S21=10^-(ins/20);//insertion loss=0.5=-20*log[S21] +S12=10^-(iso/20);//isolation loss=30=-20*log[s12] +S11=0; +S22=0; +[S]=[S11,S12;S21,S22]; +disp(S); +//=================================END OF PROGRAM============================== diff --git a/1979/CH6/EX6.9/Ex6_9.sce b/1979/CH6/EX6.9/Ex6_9.sce new file mode 100755 index 000000000..60d0aba7a --- /dev/null +++ b/1979/CH6/EX6.9/Ex6_9.sce @@ -0,0 +1,25 @@ +//Chapter-6, Example 6.9, Page 241 +//============================================================================= +clc; +//Input parameters +ins=0.5;//insertion loss in db +iso=20;//isolation loss in db +S=2;//VSWR +//Calculations +S21=10^-(ins/20);//insertion loss=0.5=-20*log[S21] +S13=S21; +S32=S13; +S12=10^-(iso/20);//isolation loss=30=-20*log[s12] +S23=S12; +S31=S23; +p=(S-1)/(S+1); +S11=p; +S22=p; +S33=p; +[S]=[S11,S12,S13;S21,S22,S23;S31,S32,S33]; +disp(S); +//for a perfectly matched,non-reciprocal,lossless 3-port circulator,[S] is given by +//[S]=[0,0,S13;S21,0,0;,0,S32,0] +//i.e.,S13=S21=S32=1 +//[S]=[0,0,1;1,0,0;0,1,0] +//=================================END OF PROGRAM============================== diff --git a/1979/CH7/EX7.1/Ex7_1.sce b/1979/CH7/EX7.1/Ex7_1.sce new file mode 100755 index 000000000..6b9dfd5c8 --- /dev/null +++ b/1979/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,22 @@ +//chapter-7 page 278 example 7.1 +//============================================================================== +clc; +clear; + +a=4;//Length of Waveguide in cm +b=2.5;//breadth Waveguide in cm +f=10^10;//Frequency in Hz +x=0.1;//distance between twice minimum power points in cm +c=3*10^10;//Velocity of Light in cm/sec + +//CALCULATION +wc=2*a;//Cutoff wavelength in TE10 mode in cms +w0=(c/f);//Free space wavelength in cms +wg=(w0/sqrt(1-(w0/wc)^2));//Guide wavelength in cms +S=(wg/(x*(%pi)));//Voltage Standing Wave Ratio(VSWR) for double minimum method + +//OUTPUT +mprintf('\nFor double minimum method, Voltage Standing Wave Ratio(VSWR) is S=%2.1f',S); + +//=========================END OF PROGRAM=============================== + diff --git a/1979/CH7/EX7.2/Ex7_2.sce b/1979/CH7/EX7.2/Ex7_2.sce new file mode 100755 index 000000000..7eedffde2 --- /dev/null +++ b/1979/CH7/EX7.2/Ex7_2.sce @@ -0,0 +1,18 @@ +//chapter-7 page 279 example 7.2 +//============================================================================== +clc; +clear; + +x=3;//O/P incident power from first directional coupler in mW +y=0.1;//O/P reflected power from second directional coupler in mW + +//CALCULATION +Pi=x*100;//Incident Power in mW +Pr=y*100;//Reflected Power in mW +p=sqrt(Pr/Pi);//Reflection Coefficient +S=((1+p)/(1-p));//Voltage Standing Wave Ratio(VSWR) + +//OUTPUT +mprintf('\nVoltage Standing Wave Ratio(VSWR)in the main waveguide is S=%1.2f \nReflected Power is Pr=%2.0f mW',S,Pr); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH7/EX7.3/Ex7_3.sce b/1979/CH7/EX7.3/Ex7_3.sce new file mode 100755 index 000000000..d14bc60e5 --- /dev/null +++ b/1979/CH7/EX7.3/Ex7_3.sce @@ -0,0 +1,16 @@ +//chapter-7 page 279 example 7.3 +//============================================================================== +clc; +clear; + +Pi=2.5;//Incident Power from one directional coupler in mW +Pr=0.15;//Reflected Power from other directional coupler in mW + +//CALCULATION +p=sqrt(Pr/Pi);//Reflection Coefficient +S=((1+p)/(1-p));//Voltage Standing Wave Ratio(VSWR) + +//OUTPUT +mprintf('\nVoltage Standing Wave Ratio(VSWR)in the waveguide is S=%1.2f',S); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH7/EX7.4/Ex7_4.sce b/1979/CH7/EX7.4/Ex7_4.sce new file mode 100755 index 000000000..e8b8162ce --- /dev/null +++ b/1979/CH7/EX7.4/Ex7_4.sce @@ -0,0 +1,19 @@ +//chapter-7 page 279 example 7.4 +//============================================================================== +clc; +clear; + +S=2;//Voltage Standing Wave Ratio(VSWR) +C=30;//Coupling Power of a Directional Coupler in dB +Pf=4.5;//Coupler Incident Sampling Power in mW + +//CALCULATION +p=((S-1)/(S+1));//Reflection Coefficient +Pi=Pf*10^(C/10);//Incident Power in mW [From C=10log(Pi/Pf)] +Pr=(Pi*(p^2))/10^3;//Reflected Power in W [From p=sqrt(Pr/Pi)] + +//OUTPUT +mprintf('\nValue of Reflected Power is Pr=%1.2f W',Pr); + +//=========================END OF PROGRAM=============================== + diff --git a/1979/CH8/EX8.1/Ex8_1.sce b/1979/CH8/EX8.1/Ex8_1.sce new file mode 100755 index 000000000..243464784 --- /dev/null +++ b/1979/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,30 @@ +//chapter-8 page 336 example 8.1 +//============================================================================== +clc; +clear; + +//For a four cavity Klystron +V0=14500;//Beam voltage in V +I=1.4;//Beam current in A +f=10^10;//Operation frequency in Hz +p0=10^(-6);//dc electron charge density in C/m^3 +p=10^(-8);//RF charge density in C/m^3 +V=10^5;//Velocity perturbations in m/sec +e0=8.854*10^(-12);//Permittivity of free space in F/m +R=0.4; + +//CALCULATION +v0=(0.593*10^6*sqrt(V0))/10^8;//The dc electron velocity in 10^8 m/sec +w=2*(%pi)*f;//angular frequency in rad/sec +v=v0*10^8; +c=(w/v);//The dc Phase Constant +wp=(sqrt(1.759*10^11*(p0/e0)))/10^8;//The Plasma Frequency in 10^8 rad/sec +wp1=wp*10^8; +wq=(R*wp1)/10^8;//The Reduced Plasma Frequency in 10^8 rad/sec +J0=p0*v;//The dc beam current density in A/sqm +J=(p*v)+(p0*V);//The instantaneous beam current density in A/sqm + +//OUTPUT +mprintf('\nThe dc electron velocity is v0=%2.3f *10^8 m/sec \nThe dc Phase Constant is c=%1.2f rad/sec\nThe Plasma Frequency is wp=%1.2f *10^8 rad/sec \nThe Reduced Plasma Frequency is wq=%1.3f *10^8 rad/sec \nThe dc beam current density is J0=%2.1f A/sqm \nThe instantaneous beam current density is J=%1.3f A/sqm',v0,c,wp,wq,J0,J); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH8/EX8.10/Ex8_10.sce b/1979/CH8/EX8.10/Ex8_10.sce new file mode 100755 index 000000000..4b969701e --- /dev/null +++ b/1979/CH8/EX8.10/Ex8_10.sce @@ -0,0 +1,34 @@ +//chapter-8 page 344 example 8.10 +//============================================================================== +clc; +clear; + +//For a 2 cavity klystron amplifier +V0=900;//Beam voltage in V +I0=0.03;//Beam current in A +f=8*10^9;//frequency in Hz +d=0.001;//gap spacing in either cavity in m +L=0.04;//spacing between centers of cavities in m +Rsh=40000;//Effective shunt impedance in ohms +y=0.582;//value of J1(X) +X=1.841; + +//CALCULATION +v0=(0.593*sqrt(V0)*10^6)/10^7;//The electron velocity in 10^7 m/sec +v=v0*10^7; +t0=(d/v)/10^(-10);//Transit time in 10^(-10) sec +t=t0*10^(-10); +a=2*(%pi)*f*t;//Gap transit angle in rad +Bi=(sin(a/2))/(a/2);//Beam coupling coefficient +Bo=Bi; +to=(2*(%pi)*f*L)/v;//dc transit angle in rad +disp('For maximum outout voltage,V2 J1(X)=0.582,X=1.841'); +V1=((2*V0*X)/(Bo*to))//The input voltage for maximum output voltage in V +Ro=(V0/I0); +Av=((Bo^2*to*y*Rsh)/(Ro*X));//Voltage gain +AvdB=10*log10(Av);//Voltage gain in dB + +//OUTPUT +mprintf('\nThe electron velocity is v0=%1.1f *10^7 m/sec \nThe dc electron Transit time is t0=%1.2f *10^(-10) sec \nThe input voltage for maximum output voltage is V1=%2.2f V \nVoltage gain is Av=%2.2f \nVoltage gain in dB is AvdB=%2.2f dB',v0,t0,V1,Av,AvdB); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH8/EX8.11/Ex8_11.sce b/1979/CH8/EX8.11/Ex8_11.sce new file mode 100755 index 000000000..90f6dd50c --- /dev/null +++ b/1979/CH8/EX8.11/Ex8_11.sce @@ -0,0 +1,30 @@ +//chapter-8 page 345 example 8.11 +//============================================================================== +clc; +clear; + +//For a four cavity Klystron +V0=20000;//Beam voltage in V +I=2;//Beam current in A +f=9*10^9;//Operation frequency in Hz +p0=10^(-6);//dc electron charge density in C/m^3 +p=10^(-8);//RF charge density in C/m^3 +V=10^5;//Velocity perturbations in m/sec +e0=8.854*10^(-12);//Permittivity of free space in F/m +R=0.5; + +//CALCULATION +v0=(0.593*10^6*sqrt(V0))/1000;//The dc electron velocity in Km/sec +w=2*(%pi)*f;//angular frequency in rad/sec +v=v0*1000; +c=(w/v);//The dc Phase Constant +wp=(sqrt(1.759*10^11*(p0/e0)))/10^8;//The Plasma Frequency in 10^8 rad/sec +wp1=wp*10^8; +wq=(R*wp1)/10^8;//The Reduced Plasma Frequency in 10^8 rad/sec +J0=p0*v;//The dc beam current density in A/sqm +J=(p*v)-(p0*V);//The instantaneous beam current density in A/sqm + +//OUTPUT +mprintf('\nThe dc electron velocity is v0=%4.2f Km/sec \nThe dc Phase Constant is c=%3.2f rad/sec\nThe Plasma Frequency is wp=%1.2f *10^8 rad/sec \nThe Reduced Plasma Frequency is wq=%1.3f *10^8 rad/sec \nThe dc beam current density is J0=%2.2f A/sqm \nThe instantaneous beam current density is J=%1.4f A/sqm',v0,c,wp,wq,J0,J); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH8/EX8.12/Ex8_12.sce b/1979/CH8/EX8.12/Ex8_12.sce new file mode 100755 index 000000000..d2b9f5d61 --- /dev/null +++ b/1979/CH8/EX8.12/Ex8_12.sce @@ -0,0 +1,23 @@ +//chapter-8 page 345 example 8.12 +//============================================================================== +clc; +clear; + +//For a reflex klystron +f=5*10^9;//Frequency of operation in hz +V0=1000;//anode voltage in V +d=0.002;//cavity gap in m +Vr=-500;//repeller voltage in V + +//CALCULATION +N=7/4;//mode value +VR=abs(Vr); +L=(((VR+V0)*N)/(6.74*10^(-6)*f*sqrt(V0)))/10^(-3);//Optimum length of the drift region in mm +u=5.93*10^5*sqrt(V0);// in m/sec +w=2*(%pi)*f;//angular frequency in rad +Tg=(w*d)/u;//Gap transit angle in rad + +//OUTPUT +mprintf('\nOptimum length of the drift region is L=%1.3f mm \nGap transit angle is Tg=%1.3f rad',L,Tg); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH8/EX8.13/Ex8_13.sce b/1979/CH8/EX8.13/Ex8_13.sce new file mode 100755 index 000000000..a8ea2a049 --- /dev/null +++ b/1979/CH8/EX8.13/Ex8_13.sce @@ -0,0 +1,38 @@ +//chapter-8 page 346 example 8.13 +//============================================================================== +clc; +clear; + +//For a 2 cavity klystron amplifier +V0=1200;//Beam voltage in V +I0=0.03;//Beam current in A +f=10*10^9;//frequency in Hz +d=0.001;//gap spacing in either cavity in m +L=0.04;//spacing between centers of cavities in m +Rsh=40000;//Effective shunt impedance in ohms +J1=0.582;//value of J1(X) +X=1.841;//bunching parameter + +//CALCULATION +v0=0.593*10^6*sqrt(V0);//velocity of reference electron in m/sec +w=2*(%pi)*f;//angular frequency in rad +a=w*L/v0;//transit angle without RF voltage in rad +tg=a*d/L;//average gap transit angle in rad +Bi=(sin(tg/2))/(tg/2);//beam coupling coefficient +V1max=((2*X*V0)/(Bi*a));//Input RF voltage for Maximum output voltage in V +B0=Bi;//output cavity coupling coefficient +V2=2*B0*I0*J1*Rsh;//in V +Av=V2/V1max;//Voltage gain +AvdB=20*log10(Av);//Voltage gain in dB +n=0.58*(V2/V0)*100;//Maximum efficiency in % + +//OUTPUT +mprintf('\nInput RF voltage for Maximum output voltage is V1max=%2.2f V \nThe Voltage gain is AvdB=%2.2f dB \nMaximum efficiency is I0=%2.2f percentage',V1max,AvdB,n); + +//=========================END OF PROGRAM=============================== + +//Note: Check the answers once +//There are slight changes in values +//Input RF voltage for Maximum output voltage is V1max=55.28 V +//The Voltage gain is AvdB=24.35 dB +//Maximum efficiency is I0=44.11 percentage diff --git a/1979/CH8/EX8.14/Ex8_14.sce b/1979/CH8/EX8.14/Ex8_14.sce new file mode 100755 index 000000000..affc75d02 --- /dev/null +++ b/1979/CH8/EX8.14/Ex8_14.sce @@ -0,0 +1,21 @@ +//chapter-8 page 347 example 8.14 +//============================================================================== +clc; +clear; + +//For aa X-band cylindrical magnetron +a=0.04;//inner radius in m +b=0.08;//outer radius in m +B=0.01;//magnetic flux density in Wb/sqm +x=1.759*10^11;//Value of e/m in C/kg +V=30000;//beam voltage in V + +//CALCULATION +w=(x*B)/10^9;//Cyclotron angular frequency in 10^9 rad/sec +VHC=((x/8)*(B^2)*(b^2)*(1-(a/b)^2)^2)/1000;//Hull cut-off voltage in kV +Bc=((sqrt(8*(V/x)))/(b*(1-(a/b)^2)))*1000;//Cut-off magnetic flux density in mWb/sqm + +//OUTPUT +mprintf('\nCyclotron angular frequency is w=%1.3f *10^9 rad/sec \nHull cut-off voltage is VHC=%1.4f kV \nCut-off magnetic flux density is Bc=%2.3f mWb/sqm',w,VHC,Bc); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH8/EX8.15/Ex8_15.sce b/1979/CH8/EX8.15/Ex8_15.sce new file mode 100755 index 000000000..a8027ea46 --- /dev/null +++ b/1979/CH8/EX8.15/Ex8_15.sce @@ -0,0 +1,22 @@ +//chapter-8 page 348 example 8.15 +//============================================================================== +clc; +clear; + +//For a reflex klystron +n=2;//peak mode value +V0=280;//beam voltage in V +I0=0.022;//beam current in A +Vs=30;//signal voltage in V +J1=1.25;//bessel coefficient for n=2 + +//CALCULATION +Pdc=V0*I0;//The input power in watts +Pac=((2*Pdc*J1)/((2*n*(%pi))-((%pi)/2)));//The output power in watts +n=(Pac/Pdc)*100;//Efficiency in percentage + +//OUTPUT +mprintf('\nThe input power is Pdc=%1.2f watts \nThe output power is Pac=%1.1f watts \nEfficiency is n=%2.2f percentage',Pdc,Pac,n); + +//=========================END OF PROGRAM=============================== + diff --git a/1979/CH8/EX8.16/Ex8_16.sce b/1979/CH8/EX8.16/Ex8_16.sce new file mode 100755 index 000000000..82584ea01 --- /dev/null +++ b/1979/CH8/EX8.16/Ex8_16.sce @@ -0,0 +1,26 @@ +//chapter-8 page 348 example 8.16 +//============================================================================== +clc; +clear; + +//For a reflex klystron +n=2;//peak mode value +V0=300;//beam voltage in V +Rsh=20000;//Shunt resistance in ohms +L=0.001;//distance in m +J1=0.582;//bessel coefficient value [JI(X')] +f=8*10^(9);////Operation frequency in Hz +V1=200;//RF gap voltage in V +x=1.759*10^11;//e/m value in C/kg + +//CALCULATION +disp('Assume the gap transit time and beam loading are neglected'); +w=2*(%pi)*f;//angular frequency in rad +VR=(V0+((sqrt(8*V0/x)*w*L)/((2*(%pi)*n)-((%pi)/2))));//Repeller voltage in V +disp('Assuming output coupling coefficient Bo=1'); +I0=(V1/(2*J1*Rsh))/10^(-3);//Beam current necessary to obtain an RF gap voltafe of 200V in mA + +//OUTPUT +mprintf('\nThe Repeller voltage is VR=%3.2f V \nBeam current necessary to obtain an RF gap voltafe of 200V is I0=%1.2f mA',VR,I0); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH8/EX8.2/Ex8_2.sce b/1979/CH8/EX8.2/Ex8_2.sce new file mode 100755 index 000000000..a5161598c --- /dev/null +++ b/1979/CH8/EX8.2/Ex8_2.sce @@ -0,0 +1,23 @@ +//chapter-8 page 337 example 8.2 +//============================================================================== +clc; +clear; + +//For a 2 cavity klystron amplifier +Av=15;//Voltage gain in dB +Pin=0.005;//I/P power in W +Rin=30000;//Rsh of i/p cavity in ohms +R0=40000;//Rsh of o/p cavity in ohms +Rl=40000;//load impedance in ohms +R=20000;//Parallel resistance of R0 and Rl (R0//Rl) in ohms + +//CALCULATION +Vin=sqrt(Pin*Rin);//The input rms voltage in V [From Pin=Vin^2/Rin] +V0=Vin*10^(Av/20);//The output rms voltage in V [From Av=20log(V0/Vin)] +P0=(V0^2)/R;//The Power delivered to the load in W + +//OUTPUT +mprintf('\nThe input rms voltage is Vin=%2.2f V \nThe output rms voltage is V0=%2.2f V \nThe Power delivered to the load is P0=%1.4f W',Vin,V0,P0); + +//=========================END OF PROGRAM=============================== + diff --git a/1979/CH8/EX8.3/Ex8_3.sce b/1979/CH8/EX8.3/Ex8_3.sce new file mode 100755 index 000000000..c753d178e --- /dev/null +++ b/1979/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,22 @@ +//chapter-8 page 338 example 8.3 +//============================================================================== +clc; +clear; + +//For a reflex klystron +n=2;//peak mode value +V0=300;//beam voltage in V +I0=0.02;//beam current in A +Vs=40;//signal voltage in V +J1=1.25;//bessel coefficient for n=2 + +//CALCULATION +Pdc=V0*I0;//The input power in watts +Pac=((2*Pdc*J1)/((2*n*(%pi))-((%pi)/2)));//The output power in watts +n=(Pac/Pdc)*100;//Efficiency in percentage + +//OUTPUT +mprintf('\nThe input power is Pdc=%1.0f watts \nThe output power is Pac=%1.2f watts \nEfficiency is n=%2.1f percentage',Pdc,Pac,n); + +//=========================END OF PROGRAM=============================== + diff --git a/1979/CH8/EX8.4/Ex8_4.sce b/1979/CH8/EX8.4/Ex8_4.sce new file mode 100755 index 000000000..ff1facd17 --- /dev/null +++ b/1979/CH8/EX8.4/Ex8_4.sce @@ -0,0 +1,39 @@ +//chapter-8 page 338 example 8.4 +//============================================================================== +clc; +clear; + +//For a 2 cavity klystron amplifier +V0=900;//Beam voltage in V +I0=0.03;//Beam current in A +f=8*10^9;//frequency in Hz +d=0.001;//gap spacing in either cavity in m +L=0.04;//spacing between centers of cavities in m +Rsh=49000;//Effective shunt impedance in ohms +J1=0.582;//value of J1(X) +X=1.841;//bunching parameter + +//CALCULATION +v0=(0.593*10^6*sqrt(V0))/10^6;//velocity of electron in 10^6 m/sec +w=2*(%pi)*f;//angular frequency in rad +v=v0*10^6; +T0=(L/v)/10^(-8);//dc transit time of electrons in 10^(-8) sec +a=w*T0*10^(-8);//transit angle in rad +tg=w*d/v;//average gap transit angle in rad +Tg=tg*(180/(%pi)); +Bi=(sind(Tg/2))/(tg/2);//beam coupling coefficient +Bo=Bi;//output cavity coupling coefficient +V1max=((3.68*V0)/(Bi*a));//Input voltage for Maximum output voltage in V +R0=V0/I0;//impedance in ohms +Av=(Bo^2*a*Rsh*J1)/(R0*X);//Voltage gain +AvdB=20*log10(Av);//Voltage gain in dB + +//OUTPUT +mprintf('\nVelocity of electron is v0=%2.2f *10^6 m/sec \nThe dc transit time of electrons is T0=%1.3f *10^(-8) sec \nInput voltage for Maximum output voltage is V1max=%2.3f V \nVoltage gain is Av=%2.2f \nThe Voltage gain in dB is AvdB=%2.2f dB',v0,T0,V1max,Av,AvdB); + +//=========================END OF PROGRAM=============================== + +//Note: Check the calculation given in text book for voltage gain Rsh=49 kohms +//but, taken as 40 kohms +//correct answers areVoltage gain is Av=28.52 +//The Voltage gain in dB is AvdB=29.10 dB diff --git a/1979/CH8/EX8.5/Ex8_5.sce b/1979/CH8/EX8.5/Ex8_5.sce new file mode 100755 index 000000000..f340cd8b4 --- /dev/null +++ b/1979/CH8/EX8.5/Ex8_5.sce @@ -0,0 +1,46 @@ +//chapter-8 page 339 example 8.5 +//============================================================================== +clc; +clear; + +//For a 2 cavity klystron amplifier +V0=1200;//Beam voltage in V +I0=0.028;//Beam current in A +f=8*10^9;//frequency in Hz +d=0.001;//gap spacing in either cavity in m +L=0.04;//spacing between centers of cavities in m +Rsh=40000;//Effective shunt impedance in ohms +J1=0.582;//value of J1(X) +X=1.841;//bunching parameter + +//CALCULATION +w=2*(%pi)*f;//angular frequency in rad +v0=0.593*10^6*sqrt(V0);//velocity of electron in m/sec +Vomax=((3.68*V0*v0)/(w*L));//max output power in V +tg=(w*d)/v0;//avg gap transit angle in rad +Tg=tg*(180/(%pi)); +Bi=(sind(Tg/2))/(tg/2);//beam coupling coefficient +Bo=Bi;//output cavity coupling coefficient +Vimax=Vomax/Bi;//The input microwave voltage in order to generate maximum output voltage in V +t0=w*L/v0;//transit angle in rad +R0=V0/I0;//impedance in ohms +Av=((Bo^2*J1*t0*Rsh)/(R0*X));//Voltage gain +I2=2*I0*J1; +V2=Bo*I2*Rsh; +disp('neglecting beam loading'); +Eff=0.58*(V2/V0)*100;//Efficiency in % +G0=1/R0; +GB=(G0/2)*(Bo*(Bo-cos(Tg/2)));//Beam loading conductance in mhos +RB=(1/GB)/1000;//Beam loading resistance in Kohms +disp('Beam loading resistance in Kohms is'); +disp(RB); +disp('The value 73 kohms is very much comparable to Rsh and cannot be neglected because Tg is quite high'); + +//OUTPUT +mprintf('\nThe input microwave voltage in order to generate maximum output voltage is Vimax=%2.2f V \nThe voltage gain is Av=%2.2f percentage \nBeam loading conductance is GB=%1.10f mhos',Vimax,Av,GB); + +//=========================END OF PROGRAM=============================== + + + + diff --git a/1979/CH8/EX8.6/Ex8_6.sce b/1979/CH8/EX8.6/Ex8_6.sce new file mode 100755 index 000000000..674109f0a --- /dev/null +++ b/1979/CH8/EX8.6/Ex8_6.sce @@ -0,0 +1,36 @@ +//chapter-8 page 338 example 8.4 +//============================================================================== +clc; +clear; + +//For a reflex klystron +n=2;//peak mode value +V0=500;//beam voltage in V +Rsh=20000;//Shunt resistance in ohms +L=0.001;//distance in m +f=8*10^(9);////Operation frequency in Hz +V1=200;//microwave gap voltage in V +x=1.759*10^11;//e/m value in C/kg +J1=0.582; + +//CALCULATION +disp('Assume the gap transit time and beam loading are neglected'); +w=2*(%pi)*f;//angular frequency in rad +VR=(V0+((sqrt(8*V0/x)*w*L)/((2*(%pi)*n)-((%pi)/2))));//Repeller voltage in V +disp('Assuming output coupling coefficient Bo=1'); +I0=(V1/(2*J1*Rsh))/10^(-3);//Beam current necessary to obtain an microwave gap voltafe of 200V in mA +v0=0.593*10^6*sqrt(V0);//velocity of electron in m/sec +t0=((w*2*L*v0)/(x*(VR+V0)));//transit angle in rad +Bi=1;//beam coupling coefficient [assume] +X=((Bi*V1*t0)/(2*V0)); +disp('Since X=1.51, from graph,J1(X)=0.84'); +XJ1=0.84; +Eff=((2*(XJ1))/((2*n*(%pi))-((%pi)/2)))*100//Efficiency in % + +//OUTPUT +mprintf('\nRepeller voltage is VR=%3.2f V \nThe dc necessary to give an microwave gap voltafe of 200V is I0=%1.2f mA \nElectronic Efficiency is Eff=%2.2f percentage',VR,I0,Eff); + +//=========================END OF PROGRAM=============================== + +//Note: Check the answer for VR once +//Correct answer is Repeller voltage is VR=1189.36 V diff --git a/1979/CH8/EX8.7/Ex8_7.sce b/1979/CH8/EX8.7/Ex8_7.sce new file mode 100755 index 000000000..f8ff43668 --- /dev/null +++ b/1979/CH8/EX8.7/Ex8_7.sce @@ -0,0 +1,23 @@ +//chapter-8 page 342 example 8.7 +//============================================================================== +clc; +clear; + +//For a reflex klystron +n=1;//mode value +Pi=0.04;//the dc input power in W +x=0.278;//ratio of V1 over V0 + +//CALCULATION +X=x*3*(%pi)/4; +J1=0.3205;//bessel coefficient value [JI(X')] +ef=((2*X*J1)/((2*(%pi)*n)-((%pi)/2)))*100;//Efficiency of the reflex klystron in % +Pout=((ef/100)*Pi)/10^(-3);//Total power output in mW +p=20;//percentage of the power delivered by the electron beam dissipated in the cavity walls +Pd=Pout*(100-p)/100;//Power delivered to load in mW + +//OUTPUT +mprintf('\nEfficiency of the reflex klystron is ef=%1.2f percentage\nTotal power output is Pout=%1.3f mW \nIf the 20 percentage of the power delivered by the electron beam is dissipated in the cavity walls then the Power delivered to load is Pd=%1.2f mW',ef,Pout,Pd); + +//=========================END OF PROGRAM=============================== + diff --git a/1979/CH8/EX8.8/Ex8_8.sce b/1979/CH8/EX8.8/Ex8_8.sce new file mode 100755 index 000000000..a514bcc90 --- /dev/null +++ b/1979/CH8/EX8.8/Ex8_8.sce @@ -0,0 +1,28 @@ +//chapter-8 page 342 example 8.8 +//============================================================================== +clc; +clear; + +//For a circular magnetron +a=0.15;//inner radius in m +b=0.45;//outer radius in m +B=1.2*10^(-3);//magnetic flux density in Wb/sqm +x=1.759*10^11;//Value of e/m in C/kg +V=6000;//beam voltage in V + +//CALCULATION +V0=((x/8)*(B^2)*(b^2)*(1-(a/b)^2)^2)/1000;//Hull cut-off voltage in kV +Bc=((sqrt(8*(V/x)))/(b*(1-(a/b)^2)))*1000;//Cut-off magnetic flux density in mWb/sqm +fc=((x*B)/(2*(%pi)))/10^9;//Cyclotron frequency in GHz + +//OUTPUT +mprintf('\nHull cut-off voltage is V0=%2.3f kV\nCut-off magnetic flux density is Bc=%1.6f mWb/sqm \nCyclotron frequency is fc=%1.4f GHz',V0,Bc,fc); + +//=========================END OF PROGRAM=============================== + + +//Check the answers once +//Correct answers are +//Hull cut-off voltage is V0=5.066 kV +//Cut-off magnetic flux density is Bc=1.305953 mWb/sqm +//Cyclotron frequency is fc=0.0336 GHz diff --git a/1979/CH8/EX8.9/Ex8_9.sce b/1979/CH8/EX8.9/Ex8_9.sce new file mode 100755 index 000000000..e159f61d5 --- /dev/null +++ b/1979/CH8/EX8.9/Ex8_9.sce @@ -0,0 +1,22 @@ +//chapter-8 page 343 example 8.9 +//============================================================================== +clc; +clear; + +//For a helical TWT +c=3*10^8;//Velocity of light in m/sec +d=0.002;//diameter in m +x=5000;//no.of turns per m +m=9.1*10^(-31);//mass of an electron in kg +e=1.6*10^(-19);//charge of an electron in C + +//CALCULATION +y=(%pi)*d;//circumference in m +p=1/x;//pitch in m +Vp=(c*p)/y;//Axial phase velocity in m/sec +V0=((m*Vp^2)/(2*e));//The Anode voltage at which the TWT can be operated for useful gain in V + +//OUTPUT +mprintf('\nAxial phase velocity is Vp=%6.2f m/sec \nThe Anode voltage at which the TWT can be operated for useful gain is V0=%2.2f V',Vp,V0); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH9/EX9.1/Ex9_1.sce b/1979/CH9/EX9.1/Ex9_1.sce new file mode 100755 index 000000000..bc548009f --- /dev/null +++ b/1979/CH9/EX9.1/Ex9_1.sce @@ -0,0 +1,15 @@ +//chapter-9 page 411 example 9.1 +//============================================================================== +clc; +clear; + +L=2*10^(-6);//Drift Length of a IMPATT diode in m +Vd=(10^7)*(10^(-2));//Drift Velocity for Siin m/sec + +//CALCULATION +f=(Vd/(2*L))/10^9;//Operating Frequency in GHz + +//OUTPUT +mprintf('\nOperating Frequency of the IMPATT diode is f=%2.0f GHz',f); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH9/EX9.10/Ex9_10.sce b/1979/CH9/EX9.10/Ex9_10.sce new file mode 100755 index 000000000..bfacb2d9e --- /dev/null +++ b/1979/CH9/EX9.10/Ex9_10.sce @@ -0,0 +1,19 @@ +//chapter-9 page 413 example 9.10 +//============================================================================== +clc; +clear; + +//For an IMPATT diode +L=2*10^(-6);//Drift Length in m +Vd=10^5;//Carrier Drift Velocity (Assume/Consider) in m/sec + +//CALCULATION +t=(L/Vd)/10^(-9);//Drift Time of the Carrier in nano sec [From f=(1/2t)=(Vd/2L)] +t1=t*10^(-9); +f=(1/(2*t1))/10^9;//Operating Frequency of the diode in GHz + +//OUTPUT +mprintf('\nDrift Time of the Carrier is t=%1.2f nano sec \nOperating Frequency of the diode is f=%2.0f GHz',t,f); + +//=========================END OF PROGRAM=============================== + diff --git a/1979/CH9/EX9.11/Ex9_11.sce b/1979/CH9/EX9.11/Ex9_11.sce new file mode 100755 index 000000000..7f7048a59 --- /dev/null +++ b/1979/CH9/EX9.11/Ex9_11.sce @@ -0,0 +1,20 @@ +//chapter-9 page 413 example 9.11 +//============================================================================== +clc; +clear; + +//For an M-Si-M Basitt diode +er=11.8;//Relative dielectric constant of Si +e0=8.854*10^(-12);//Permittivity of freespace in F/m +N=3*10^(21);//Donor Concentration per m^3 +L=6.2*10^(-6);//Si Length in m +q=1.6*10^(-19);//Charge of an Electron in C + +//CALCULATION +Vbd=((q*N*L^2)/(er*e0));//Breakdown Voltage in V +Ebd=(Vbd/L)/10^3;//Breakdown Electric Field in kV/m + +//OUTPUT +mprintf('\nBreakdown Voltage is Vbd=%3.1f V \nBreakdown Electric Field is Ebd=%5.0f kV/m',Vbd,Ebd); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH9/EX9.12/Ex9_12.sce b/1979/CH9/EX9.12/Ex9_12.sce new file mode 100755 index 000000000..d48e4ae82 --- /dev/null +++ b/1979/CH9/EX9.12/Ex9_12.sce @@ -0,0 +1,26 @@ +//chapter-9 page 413 example 9.12 +//============================================================================== +clc; +clear; + +//For an upconverter parametric amplifier +rQ=8;//figure of merit for a diode nonlinear capacitor +r=0.2; +y=8;//ratio of output frequency over signal frequency (f0/fs) +Td=300;//Diode Temperature in K +T0=300;//Ambient Temperature in K + +//CALCULATION +X=((rQ)^2)/y; +G=((y*X)/(1+sqrt(1+X))^2);//Max power gain +GdB=10*log10(G);//Maximum Power Gain in dB +F=(1+((2*Td/T0)*((1/rQ)+(1/rQ)^2)));//Noise Figure +FdB=10*log10(F);//Noise Figure in dB +BW=2*r*sqrt(y);//Bandwidth + +//OUTPUT +mprintf('\nMaximum Power Gain is GdB=%1.2f dB\nNoise Figure is FdB=%1.2f dB \nBandWidth is BW=%1.2f',GdB,FdB,BW); + +//=========================END OF PROGRAM=============================== + + diff --git a/1979/CH9/EX9.13/Ex9_13.sce b/1979/CH9/EX9.13/Ex9_13.sce new file mode 100755 index 000000000..76fdfb76d --- /dev/null +++ b/1979/CH9/EX9.13/Ex9_13.sce @@ -0,0 +1,37 @@ +//chapter-9 page 414 example 9.13 +//============================================================================== +clc; +clear; + +//For a negative resistance parametric amplifier +fs=2*10^9;//Signal Frequency in Hz +fp=12*10^9;//pump Frequency in Hz +fi=10*10^9;//idler Frequency in Hz +fd=5*10^9;//Frequency in Hz +Ri=1000;//o/p resistance of idler generator in ohms +Rg=1000;//o/p resistance of signal generator in ohms +RTs=1000;//total series resistance at fs in ohms +RTi=1000;//total series resistance at fi in ohms +r=0.35; +rQ=10;//figure of merit +Td=300;//Avg Diode Temperature in K +T0=300;//Ambient Temperature in K +C=0.01*10^(-12);//Capacitance in F + +//CALCULATION +ws=2*(%pi)*fs; +wi=2*(%pi)*fi; +R=((r^2)/(ws*wi*RTi*C^2));//Equivalent noise resistance in ohms +a=(R/RTs); +G=((4*fi*a*Rg*Ri)/(fs*RTs*RTi*(1-a)^2));//Gain +GdB=10*log10(G);//Gain in dB +F=(1+((2*Td/T0)*((1/rQ)+(1/rQ)^2)));//Noise Figure +FdB=10*log10(F);//Noise Figure in dB +BW=((r/2)*(sqrt(fd/(fs*G)))); + +//OUTPUT +mprintf('\nEquivalent noise resistance is R=%4.1f ohms\nGain is GdB=%2.1f dB\nNoise Figure is FdB=%1.2f dB \nBandWidth is BW=%1.3f',R,GdB,FdB,BW); + +//=========================END OF PROGRAM=============================== + +//Note: Check the Bandwidth answer is once It should be 0.027 diff --git a/1979/CH9/EX9.2/Ex9_2.sce b/1979/CH9/EX9.2/Ex9_2.sce new file mode 100755 index 000000000..393603fad --- /dev/null +++ b/1979/CH9/EX9.2/Ex9_2.sce @@ -0,0 +1,17 @@ +//chapter-9 page 411 example 9.2 +//============================================================================== +clc; +clear; + +L=75*10^(-6);//Device Length in m +V=25;//Voltage Pulse Amplified in V +f=10*10^9;//Operating Frequency in Hz + +//CALCULATION +Eth=(V/L)/10^5;//Threshold Electric Field in kV/cm + +//OUTPUT +mprintf('\nThreshold Electric Field is Eth=%1.2f kV/cm',Eth); + +//=========================END OF PROGRAM=============================== + diff --git a/1979/CH9/EX9.3/Ex9_3.sce b/1979/CH9/EX9.3/Ex9_3.sce new file mode 100755 index 000000000..3cdb1e290 --- /dev/null +++ b/1979/CH9/EX9.3/Ex9_3.sce @@ -0,0 +1,23 @@ +//chapter-9 page 411 example 9.3 +//============================================================================== +clc; +clear; + +fs=2*10^9;//Signal Frequency in Hz +fp=12*10^9//Pump Frequency in Hz +Ri=16;//O/P resistance of signal generator in ohms +Rs=1000;//On types resistance of signal generator in ohms + +//CALCULATION +P=10*log10((fp-fs)/fs);//Power gain in dB +Pusb=10*log10((fp+fs)/fs);//Power gain as USB converter in dB + +//OUTPUT +mprintf('\nPower gain is P=%1.2f dB \nPower gain as USB converter is Pusb=%1.2f dB',P,Pusb); + +//=========================END OF PROGRAM=============================== + + +//Note: Answer given in textbook is wrong Check it once.. +//Correct answers are Power gain is P=6.99 dB +// Power gain as USB converter is Pusb=8.45 dB diff --git a/1979/CH9/EX9.4/Ex9_4.sce b/1979/CH9/EX9.4/Ex9_4.sce new file mode 100755 index 000000000..496733d30 --- /dev/null +++ b/1979/CH9/EX9.4/Ex9_4.sce @@ -0,0 +1,20 @@ +//chapter-9 page 411 example 9.4 +//============================================================================== +clc; +clear; + +es=12.5;//Relative Dielectric constant +e0=8.854*10^(-12);//Permittivity in Free Space in F/m +N=3.2*10^22;//Donor Concentration per m^3 +L=8*10^(-6);//Length of Si BARITT diode in m +q=1.6*10^(-19);//Charge of an Electron in C + +//CALCULATION +Vc=((q*N*L^2)/(2*es*e0))/10^3;//Critical Voltage in kV +Vbd=2*Vc;//Breakdown Voltage in kV +Ebd=(Vbd/L)/100;//Breakdown Electric Field in kV/cm + +//OUTPUT +mprintf('\nCritical Voltage is Vc=%1.2f kV \nBreakdown Voltage is Vbd=%1.2f kV \nBreakdown Electric Field is Ebd=%6.2f kV/cm',Vc,Vbd,Ebd); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH9/EX9.5/Ex9_5.sce b/1979/CH9/EX9.5/Ex9_5.sce new file mode 100755 index 000000000..a63317867 --- /dev/null +++ b/1979/CH9/EX9.5/Ex9_5.sce @@ -0,0 +1,16 @@ +//chapter-9 page 412 example 9.5 +//============================================================================== +clc; +clear; + +J=33000;//Current density in A/sqcm +Na=2.5*10^16;//Doping Concentation in TRAPATT diode per cubic cm +q=1.6*10^(-19);//Charge of an Electron in C + +//CALCULATION +Vz=(J/(q*Na))/10^5;//Avalanche Zone Velocity in Km/sec + +//OUTPUT +mprintf('\nAvalanche Zone Velocity is Vz=%2.1f Km/sec',Vz); + +//=========================END OF PROGRAM=============================== diff --git a/1979/CH9/EX9.6/Ex9_6.sce b/1979/CH9/EX9.6/Ex9_6.sce new file mode 100755 index 000000000..663f23577 --- /dev/null +++ b/1979/CH9/EX9.6/Ex9_6.sce @@ -0,0 +1,19 @@ +//chapter-9 page 412 example 9.6 +//============================================================================== +clc; +clear; + +//For an IMPATT diode power amplifier +Rd=25;//Negative Resistance in ohms +Rl=50;//Load Resistance in ohms + +//CALCULATION +x=abs(Rd); +G=((-x-Rl)/(-x+Rl))^2;//Power gain of an IMPATT diode + +//OUTPUT +mprintf('\nPower gain of an IMPATT diode is G=%1.0f',G); + +//=========================END OF PROGRAM=============================== + + diff --git a/1979/CH9/EX9.7/Ex9_7.sce b/1979/CH9/EX9.7/Ex9_7.sce new file mode 100755 index 000000000..fd7d34a47 --- /dev/null +++ b/1979/CH9/EX9.7/Ex9_7.sce @@ -0,0 +1,17 @@ +//chapter-9 page 412 example 9.7 +//============================================================================== +clc; +clear; + +//For a Gunn Diode +L=5*10^(-4);//Drift Length in cm +Vg=3300;//Voltage gradient in V/cm [Vg>3.3 kV/cm] + +//CALCULATION +Vmin=Vg*L;//Minimum Voltage needed to initiate Gunn effect in volts + +//OUTPUT +mprintf('\nMinimum Voltage needed to initiate Gunn effect is Vmin=%1.2f volts',Vmin); + +//=========================END OF PROGRAM=============================== + diff --git a/1979/CH9/EX9.8/Ex9_8.sce b/1979/CH9/EX9.8/Ex9_8.sce new file mode 100755 index 000000000..b975d7cd3 --- /dev/null +++ b/1979/CH9/EX9.8/Ex9_8.sce @@ -0,0 +1,19 @@ +//chapter-9 page 412 example 9.8 +//============================================================================== +clc; +clear; + +//For a Gunn Diode +L=20*10^(-4);//Active Length in cm +Vd=2*10^7;//Drift Velocity of Electrons in cm/sec +Ec=3.3*10^3;//Criticl Field for GaAs in V/cm + +//CALCULATION +fn=(Vd/L)/10^9;//Natural(Rational) Frequency in GHz +Vc=L*Ec;//Critical Voltage of the diode in volts + +//OUTPUT +mprintf('\nNatural(Rational) Frequency is fn=%2.0f GHz \nCritical Voltage of the diode is Vc=%1.1f volts',fn,Vc); + +//=========================END OF PROGRAM=============================== + diff --git a/1979/CH9/EX9.9/Ex9_9.sce b/1979/CH9/EX9.9/Ex9_9.sce new file mode 100755 index 000000000..13b06996a --- /dev/null +++ b/1979/CH9/EX9.9/Ex9_9.sce @@ -0,0 +1,22 @@ +//chapter-9 page 412 example 9.9 +//============================================================================== +clc; +clear; + +//For an IMPATT diode +Lp=0.5*10^(-9);//Inductance in Henry +Cj=0.5*10^(-12);//Capacitance in Farad +Ip=0.8;//RF peak current in A +Rl=2;//Load Resistance in ohms +Vbd=100;//Breakdown Voltage in V +Ib=0.1;//dc Bias current in A + +//CALCULATION +f=(1/(2*(%pi)*sqrt(Lp*Cj)))/10^9;//Resonant Frequency in GHz +n=((Rl*Ip^2)/(2*Vbd*Ib))*100;//Efficiency in Percentage + +//OUTPUT +mprintf('\nResonant Frequency is f=%2.0f GHz \nEfficiency is n=%1.1f percentage',f,n); + +//=========================END OF PROGRAM=============================== + -- cgit