diff options
Diffstat (limited to '1979/CH8/EX8.6/Ex8_6.sce')
-rwxr-xr-x | 1979/CH8/EX8.6/Ex8_6.sce | 36 |
1 files changed, 36 insertions, 0 deletions
diff --git a/1979/CH8/EX8.6/Ex8_6.sce b/1979/CH8/EX8.6/Ex8_6.sce new file mode 100755 index 000000000..674109f0a --- /dev/null +++ b/1979/CH8/EX8.6/Ex8_6.sce @@ -0,0 +1,36 @@ +//chapter-8 page 338 example 8.4
+//==============================================================================
+clc;
+clear;
+
+//For a reflex klystron
+n=2;//peak mode value
+V0=500;//beam voltage in V
+Rsh=20000;//Shunt resistance in ohms
+L=0.001;//distance in m
+f=8*10^(9);////Operation frequency in Hz
+V1=200;//microwave gap voltage in V
+x=1.759*10^11;//e/m value in C/kg
+J1=0.582;
+
+//CALCULATION
+disp('Assume the gap transit time and beam loading are neglected');
+w=2*(%pi)*f;//angular frequency in rad
+VR=(V0+((sqrt(8*V0/x)*w*L)/((2*(%pi)*n)-((%pi)/2))));//Repeller voltage in V
+disp('Assuming output coupling coefficient Bo=1');
+I0=(V1/(2*J1*Rsh))/10^(-3);//Beam current necessary to obtain an microwave gap voltafe of 200V in mA
+v0=0.593*10^6*sqrt(V0);//velocity of electron in m/sec
+t0=((w*2*L*v0)/(x*(VR+V0)));//transit angle in rad
+Bi=1;//beam coupling coefficient [assume]
+X=((Bi*V1*t0)/(2*V0));
+disp('Since X=1.51, from graph,J1(X)=0.84');
+XJ1=0.84;
+Eff=((2*(XJ1))/((2*n*(%pi))-((%pi)/2)))*100//Efficiency in %
+
+//OUTPUT
+mprintf('\nRepeller voltage is VR=%3.2f V \nThe dc necessary to give an microwave gap voltafe of 200V is I0=%1.2f mA \nElectronic Efficiency is Eff=%2.2f percentage',VR,I0,Eff);
+
+//=========================END OF PROGRAM===============================
+
+//Note: Check the answer for VR once
+//Correct answer is Repeller voltage is VR=1189.36 V
|