summaryrefslogtreecommitdiff
path: root/1628/CH4
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1628/CH4
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1628/CH4')
-rwxr-xr-x1628/CH4/EX4.1/Ex4_1.sce21
-rwxr-xr-x1628/CH4/EX4.10/Ex4_10.sce29
-rwxr-xr-x1628/CH4/EX4.11/Ex4_11.sce23
-rwxr-xr-x1628/CH4/EX4.2/Ex4_2.sce34
-rwxr-xr-x1628/CH4/EX4.3/Ex4_3.sce27
-rwxr-xr-x1628/CH4/EX4.4/Ex4_4.sce23
-rwxr-xr-x1628/CH4/EX4.5/Ex4_5.sce26
-rwxr-xr-x1628/CH4/EX4.6/Ex4_6.sce23
-rwxr-xr-x1628/CH4/EX4.7/Ex4_7.sce25
-rwxr-xr-x1628/CH4/EX4.8/Ex4_8.sce16
-rwxr-xr-x1628/CH4/EX4.9/Ex4_9.sce25
11 files changed, 272 insertions, 0 deletions
diff --git a/1628/CH4/EX4.1/Ex4_1.sce b/1628/CH4/EX4.1/Ex4_1.sce
new file mode 100755
index 000000000..78a0055c2
--- /dev/null
+++ b/1628/CH4/EX4.1/Ex4_1.sce
@@ -0,0 +1,21 @@
+
+ // Examle 4.1
+
+ // Reffer the diagram (4.2a)
+ // Using Superpositon theorem
+
+I=-0.5; // Source current
+I1=I*(0.3/(0.1+0.3)); // When 0.5-A Current source is on { by voltage divider }
+
+V=80*10^-3; // Voltage source
+I2=(V/(0.1+0.3)); // When 80-mV voltage source is on { by ohm's law }
+
+i=I1+I2; // Current in the circuit { by Superpositon theorem }
+disp(' Current in the circuit = '+string(i)+' Amp');
+
+
+
+
+
+ // p 105 4.1
+
diff --git a/1628/CH4/EX4.10/Ex4_10.sce b/1628/CH4/EX4.10/Ex4_10.sce
new file mode 100755
index 000000000..fbc0b8fa7
--- /dev/null
+++ b/1628/CH4/EX4.10/Ex4_10.sce
@@ -0,0 +1,29 @@
+
+ // Examle 4.10
+
+ // From Diagram 4.12
+
+P=25; // Power
+Rl=8; // Load resistance
+Vth=P*4*Rl; // Thevenin's equivalent voltage
+
+ // If Load is Short-ckt (RL=0)
+Vo=0; // Voltage
+IL=1; // load current
+Po1=Vo*IL; // O/p power
+
+ // If Load is Open-ckt ( RL=infinity )
+IL1=0; // Load current
+Vo1=1; // Voltage
+Po2=Vo1*IL1; // O/p power
+
+x=[0 2 4 6 8 16 32 ]; // Diffrent value of RL
+y=[0 16 22.22 24.49 25 22.22 16 ] // Value of Power
+
+plot2d(x,y); // To plot graph
+xlabel('RL (in Ohms )--->'); // For X-Label
+ylabel('Po (in W ---->') // For Y-Label
+
+
+
+ // View p 115 4.10
diff --git a/1628/CH4/EX4.11/Ex4_11.sce b/1628/CH4/EX4.11/Ex4_11.sce
new file mode 100755
index 000000000..96b356d68
--- /dev/null
+++ b/1628/CH4/EX4.11/Ex4_11.sce
@@ -0,0 +1,23 @@
+
+ // Examle 4.11
+
+ // From the diagram (4.14)
+
+Req=2+{(12*4)/(12+4)}+4; // Equivalent resistance (for 4.14a )
+v=36; // Voltage source
+i=v/Req; // Current supply by the voltage source
+I=i*(12/(12+4)); // Current in branch B ==> { by current divider }
+disp(' Current in branch B = '+string(I)+' Amp');
+
+Req1=3+{(12*6)/(12+6)}+1; // Equivalent resistance (for 4.14b )
+i1=v/Req1; // Current supply by the voltage source
+I1=i1*(12/(12+6)); // Current in branch A ==> { by current divider }
+disp(' Current in branch A = '+string(I1)+' Amp');
+
+Rtr=v/I; // Transfer resistance
+disp(' Transfer resistance from Branch A to B = '+string(Rtr)+' Ohm');
+
+
+
+ // p 117 4.11
+
diff --git a/1628/CH4/EX4.2/Ex4_2.sce b/1628/CH4/EX4.2/Ex4_2.sce
new file mode 100755
index 000000000..800cdb97b
--- /dev/null
+++ b/1628/CH4/EX4.2/Ex4_2.sce
@@ -0,0 +1,34 @@
+
+
+ // Examle 4.2
+
+ // Reffer the diagram (4.3)
+ // Using Superpositon theorem
+
+V=10; // Voltage source
+I1=(V/(50+150)); // When 10-V voltage source is on { by ohm's law }
+
+i1=40; // Source current
+I2=i1*(150/(50+150)); // When 40-A Current source is on { by current divider }
+
+i2=-120; // Source current
+I3=i2*(50/(50+150)); // When (-120)-A Current source is on { by current divider }
+
+
+I=I1+I2+I3; // Current in the circuit { by Superpositon theorem }
+disp(' Current in the circuit = '+string(I)+' Amp');
+
+
+
+
+
+ // p 106 4.2
+
+
+
+
+
+
+
+
+
diff --git a/1628/CH4/EX4.3/Ex4_3.sce b/1628/CH4/EX4.3/Ex4_3.sce
new file mode 100755
index 000000000..e616a9549
--- /dev/null
+++ b/1628/CH4/EX4.3/Ex4_3.sce
@@ -0,0 +1,27 @@
+
+
+ // Example 4.3
+
+ // From the diagram 4.5
+ // Using super position theorem
+ // 4-A current source is active
+
+i=4/{1+(2+3)}; // Current
+R=3; // Rsistance of 3 Ohms
+V4=i*R; // Voltage across 3 Ohms resistance in Case-1
+
+ // 5-A current source is active
+i5=5; // 5-A current source
+V5=(-i5)*{1/[1+(2+3)]*3}; // Voltage across 3 Ohms resistance in Case-2
+
+ // 6-V voltage source is active
+i6=6; // 6-A current source
+V6=i6*{3/[1+(2+3)]}; // Voltage across 3 Ohms resistance in Case-3
+
+V=V4+V5+V6; // Voltage across 3 Ohms resistance
+disp(' Voltage across 3 Ohms resistance is = '+string(V)+' Volt');
+
+
+
+
+ // p 106 4.3 \ No newline at end of file
diff --git a/1628/CH4/EX4.4/Ex4_4.sce b/1628/CH4/EX4.4/Ex4_4.sce
new file mode 100755
index 000000000..cf12bfb6c
--- /dev/null
+++ b/1628/CH4/EX4.4/Ex4_4.sce
@@ -0,0 +1,23 @@
+
+
+ // Examle 4.4
+
+ // From the diagram (4.6a)
+ // Using Superpositon theorem
+
+V=10; // Voltage source
+I1=(V/(2+4+6)); // When 10-V voltage source is on { by ohm's law }
+
+ // we have to find Is= ?
+ // When Is-A Current source is on
+ // will have { I2= -(2/3)Is }
+ // given that I1+I2= 0
+ // there for 5/6 - (2/3)Is= 0
+Is=(5*3)/(6*2); // Source current
+disp(' The value of source current (Is) = '+string(Is)+' Amp');
+
+
+
+
+
+ // p 108 4.4
diff --git a/1628/CH4/EX4.5/Ex4_5.sce b/1628/CH4/EX4.5/Ex4_5.sce
new file mode 100755
index 000000000..4e36b7966
--- /dev/null
+++ b/1628/CH4/EX4.5/Ex4_5.sce
@@ -0,0 +1,26 @@
+
+ // Examle 4.5
+
+ // From the diagram (4.8)
+ // Using thevenin's equivalent theorem
+
+V1=50; // Voltage source V1
+V2=10; // Voltage source V2
+I1=(V1-V2)/(10+10+20); // Current through the ckt ( when Current source is off )
+
+i=1.5; // Current source i
+I2=i*(10/(10+(10+20))); // Current through the ckt ( when Current source is active )
+I=I1+I2; // Addition of I1 & I2
+Vth= I*20; // Thevenin's voltage at 20 Ohms R
+
+Rth=(20*(10+10))/(20+(10+10)); // Thevenin's resistance
+
+Vl=Vth*(5/(5+10)); // Voltage across Rl
+disp(' Voltage across olad resistor (Rl) = '+string(Vl)+' Volt');
+
+
+
+
+
+
+ // p 110 4.5
diff --git a/1628/CH4/EX4.6/Ex4_6.sce b/1628/CH4/EX4.6/Ex4_6.sce
new file mode 100755
index 000000000..f5f2a4f15
--- /dev/null
+++ b/1628/CH4/EX4.6/Ex4_6.sce
@@ -0,0 +1,23 @@
+
+ // Examle 4.6
+
+ // From the diagram (3.24a)
+ // Using thevenin's equivalent theorem
+
+Vth=5; // Thevenin's voltage ==> { by Circuit reduction }
+
+Rth=3; // Thevenin's resistance ==> { by Circuit reduction }
+
+Vl=Vth*(3/(3+3)); // Voltage across Rl
+disp(' Voltage across olad resistor (Rl) = '+string(Vl)+' Volt');
+
+
+
+
+
+
+ // p 111 4.6
+
+
+
+
diff --git a/1628/CH4/EX4.7/Ex4_7.sce b/1628/CH4/EX4.7/Ex4_7.sce
new file mode 100755
index 000000000..510ae012e
--- /dev/null
+++ b/1628/CH4/EX4.7/Ex4_7.sce
@@ -0,0 +1,25 @@
+
+ // Examle 4.7
+
+ // From the diagram (4.11a)
+
+ // Using Nortan's equivalent theorem
+
+R1=5; // Resistance R1
+R2=10; // Resistance R2
+V1=10; // Voltage source V1
+I1=V1/R1; // Current I1
+
+V2=5; // Voltage source V2
+I2=V2/R2; // Current I2
+IN=I1+I2; // Nortan's current
+
+RN=(R1*R2)/(R1+R2); // Nortan's resistance
+
+Rl=5; // Load resistance
+Il=IN*(RN/(RN+Rl)); // Load current
+disp(' Load current (Il) = '+string(Il)+' Amp');
+
+
+
+ // p 113 4.7
diff --git a/1628/CH4/EX4.8/Ex4_8.sce b/1628/CH4/EX4.8/Ex4_8.sce
new file mode 100755
index 000000000..67b9a7e6f
--- /dev/null
+++ b/1628/CH4/EX4.8/Ex4_8.sce
@@ -0,0 +1,16 @@
+
+ // Examle 4.8
+
+Voc=12.6; // Voltage of car battery
+Isc=300; // Short-circuit current
+Ro=Voc/Isc; // O/p resistance
+
+ // { P=Vht^2/4Rth } , but here Vth= Voc & Rth= Ro
+Pavl=Voc^2/(4*Ro); // Available power
+disp(' Available power is = '+string(Pavl)+ ' Watt');
+
+
+
+
+
+ // p 114 4.8 \ No newline at end of file
diff --git a/1628/CH4/EX4.9/Ex4_9.sce b/1628/CH4/EX4.9/Ex4_9.sce
new file mode 100755
index 000000000..a82126c38
--- /dev/null
+++ b/1628/CH4/EX4.9/Ex4_9.sce
@@ -0,0 +1,25 @@
+
+ // Examle 4.9
+
+n=8; // No.Of dry cells
+E=1.5; // Emf of cell
+Voc=n*E; // open-circuit Voltage of battery
+r=0.75; // Internal resistance
+Ro=r*n; // O/p resistance
+
+ // ==> { P=Vht^2/4Rth } , but here Vth= Voc & Rth= Ro
+
+Pavl=Voc^2/(4*Ro); // Available power
+disp(' Available power is = '+string(Pavl)+ ' Watt');
+
+
+
+
+
+ // p 115 4.9
+
+
+
+
+
+