summaryrefslogtreecommitdiff
path: root/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla
diff options
context:
space:
mode:
authorThomas Stephen Lee2015-08-28 16:53:23 +0530
committerThomas Stephen Lee2015-08-28 16:53:23 +0530
commitdb0855dbeb41ecb8a51dde8587d43e5d7e83620f (patch)
treeb95975d958cba9af36cb1680e3f77205354f6512 /ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla
parent5a86a20b9de487553d4ef88719fb0fd76a5dd6a7 (diff)
downloadPython-Textbook-Companions-db0855dbeb41ecb8a51dde8587d43e5d7e83620f.tar.gz
Python-Textbook-Companions-db0855dbeb41ecb8a51dde8587d43e5d7e83620f.tar.bz2
Python-Textbook-Companions-db0855dbeb41ecb8a51dde8587d43e5d7e83620f.zip
add books
Diffstat (limited to 'ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla')
-rwxr-xr-xELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1.ipynb829
-rwxr-xr-xELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10.ipynb325
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10_1.ipynb316
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10_2.ipynb316
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10_3.ipynb316
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10_4.ipynb316
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10_5.ipynb316
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_1.ipynb811
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_2.ipynb811
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_3.ipynb811
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_4.ipynb811
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_5.ipynb811
-rwxr-xr-xELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2.ipynb281
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2_(1).ipynb272
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2_1.ipynb281
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2_2.ipynb272
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2_3.ipynb272
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2_4.ipynb272
-rwxr-xr-xELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3.ipynb889
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3_1.ipynb880
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3_2.ipynb880
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3_3.ipynb882
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3_4.ipynb882
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3_5.ipynb882
-rwxr-xr-xELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4.ipynb750
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4_1.ipynb732
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4_2.ipynb732
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4_3.ipynb732
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4_4.ipynb732
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4_5.ipynb732
-rwxr-xr-xELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5.ipynb1642
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5_1.ipynb1615
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5_2.ipynb1615
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5_3.ipynb1615
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5_4.ipynb1615
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5_5.ipynb1615
-rwxr-xr-xELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6.ipynb714
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6_1.ipynb714
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6_2.ipynb714
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6_3.ipynb705
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6_4.ipynb705
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6_5.ipynb705
-rwxr-xr-xELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7.ipynb637
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7_(1).ipynb619
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7_1.ipynb619
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7_2.ipynb619
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7_3.ipynb619
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7_4.ipynb619
-rwxr-xr-xELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8.ipynb918
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8_1.ipynb909
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8_2.ipynb909
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8_3.ipynb909
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8_4.ipynb909
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8_5.ipynb909
-rwxr-xr-xELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9.ipynb206
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9_1.ipynb188
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9_2.ipynb188
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9_3.ipynb188
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9_4.ipynb188
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9_5.ipynb188
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/README.txt10
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter4.pngbin0 -> 187249 bytes
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter4_1.pngbin0 -> 187249 bytes
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter4_2.pngbin0 -> 187249 bytes
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter8.pngbin0 -> 196118 bytes
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter8_1.pngbin0 -> 196118 bytes
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter8_2.pngbin0 -> 196118 bytes
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter9.pngbin0 -> 183091 bytes
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter9_1.pngbin0 -> 183091 bytes
-rw-r--r--ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter9_2.pngbin0 -> 183091 bytes
70 files changed, 42469 insertions, 0 deletions
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1.ipynb
new file mode 100755
index 00000000..b3b1bd27
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1.ipynb
@@ -0,0 +1,829 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 1:Crystal Structure,Bonding and Defects in solids"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 1.1,Page No:1.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lattice Constant a = 4.00 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "p = 6250; # Density of crystal in kg/m**3\n",
+ "N = 6.023*10**26; #Avagadros number in atoms/kilomole\n",
+ "M = 60.2; #molecular weight per mole\n",
+ "n = 4; #No. of atoms per unit cell for FCC\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "a = ((n*M)/float(N*p))**(1/float(3)); #Lattice Constant Å\n",
+ "\n",
+ "#result\n",
+ "\n",
+ "print'Lattice Constant a = %3.2f'%(a*10**10),'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 1.2,Page No:1.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "d100 = 6.30 Å\n",
+ "d110 = 4.45 Å\n",
+ "d111 = 3.64 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h1 = 1; #miller indice\n",
+ "k1 = 1; # miller indice\n",
+ "l1 = 1; # miller indice\n",
+ "h0 = 0; # miller indice\n",
+ "k0 = 0; # miller indice\n",
+ "l0 = 0; # miller indice\n",
+ "p = 1980; # Density of KCl in kg/m**3\n",
+ "N = 6.023*10**26; # Avagadros number in atoms/kilomole\n",
+ "M = 74.5; # molecular weight of KCl\n",
+ "n = 4; # No. of atoms per unit cell for FCC\n",
+ "\n",
+ "# calculations\n",
+ "a = ((n*M)/float(N*p))**(1/float(3));\n",
+ "\n",
+ "#dhkl = a/math.sqrt((h**2)+(k**2)+(l**2)); #interplanar distance\n",
+ "d100 = a/math.sqrt((h1**2)+(k0**2)+(l0**2)); # interplanar distance\n",
+ "d110 = a/math.sqrt((h1**2)+(k1**2)+(l0**2)); # interplanar distance\n",
+ "d111 = a/math.sqrt((h1**2)+(k1**2)+(l1**2)); # interplanar distance\n",
+ "\n",
+ "# Output\n",
+ "print'd100 = %3.2f'%(d100*10**10),'Å';\n",
+ "print'd110 = %3.2f'%(d110*10**10),'Å';\n",
+ "print'd111 = %3.2f'%(d111*10**10),'Å';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 1.3,Page No:1.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 1 4 2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 4; #miller indices\n",
+ "k = 1; #miller indices\n",
+ "l = 2; #miller indices\n",
+ " \n",
+ "#calculation\n",
+ "d = fractions.gcd(h,k);\n",
+ "lcm = (h*k)/float(d);\n",
+ "e = fractions.gcd(lcm,l);\n",
+ "lc = (lcm*l)/float(e); #finding lcm\n",
+ "h1 =1/float(h); \n",
+ "k1 =1/float(k);\n",
+ "l1 =1/float(l);\n",
+ "a = h1*lc; #miller indices\n",
+ "b = k1*lc; #miller indices\n",
+ "c = l1*lc; #miller indices\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d '%a,'%d'%b,'%d'%c;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 1.4,Page No:1.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 4 3 6\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are 3a,4b,2c\n",
+ "#from the law of rational indices\n",
+ "#3a:4b:2c=a/h:b/k:c/l\n",
+ "\n",
+ "#Variable Declaration\n",
+ "h1 = 3; #miller indices\n",
+ "k1 = 4; #miller indices\n",
+ "l1 = 2; #miller indices\n",
+ " \n",
+ "#calculation\n",
+ "d = fractions.gcd(h1,k1);\n",
+ "lcm = (h1*k1)/float(d);\n",
+ "e = fractions.gcd(lcm,l1);\n",
+ "lc = (lcm*l1)/float(e); #finding lcm\n",
+ "\n",
+ "h = lc*1/float(h1); #miller indices \n",
+ "k = lc*1/float(k1); #miller indices\n",
+ "l= lc*1/float(l1); #miller indices\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d'%h,'%d'%k,'%d'%l;\n",
+ " \n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 1.5,Page No:1.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 6 3 -4\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are a,2b,-3c/2\n",
+ "#from the law of rational indices\n",
+ "#a:2b:-3c/2=a/h:b/k:c/l\n",
+ "\n",
+ "\n",
+ "#variable declaration\n",
+ "h1 = 1; #miller indices\n",
+ "k1 = 2; #miller indices\n",
+ "l1 = 3; #miller indices \n",
+ "\n",
+ "#calculation\n",
+ "d = fractions.gcd(h1,k1);\n",
+ "lcm = (h1*k1)/float(d);\n",
+ "e = fractions.gcd(lcm,l1);\n",
+ "lc = (lcm*l1)/float(e);\n",
+ "h2 = 1;\n",
+ "k2 = 1/float(k1);\n",
+ "l2 = -2/float(l1)\n",
+ "h = h2*lc; #miller indices \n",
+ "k = (k2)*(lc); #miller indices \n",
+ "l = (l2)*(lc); #miller indices \n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %3.0f'%h,'%3.0f'%k,'%3.0f'%l;\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 1.6,Page No:1.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 1 1 2\n",
+ "Note:printing mistake of miller indices in textbook \n",
+ "\n",
+ "\n",
+ "miller indices = 1 2 0\n",
+ "\n",
+ "miller indices = 1 2 1\n",
+ "Note:calculation mistake in textbook\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are 3a,3b,2c\n",
+ "#from the law of rational indices\n",
+ "#3a:3b:2c=a/h:b/k:c/l\n",
+ "#variable declaration\n",
+ "a = 4;\n",
+ "b = 4;\n",
+ "c = 2;\n",
+ "a1 = 2;\n",
+ "b1 = 1;\n",
+ "c1 = 1;\n",
+ "a3 = 1;\n",
+ "b3 = 1;\n",
+ "c3 = 1;\n",
+ "h12 = 1/float(2); #miller indices\n",
+ "k12 = 1; #miller indices\n",
+ "#l12 = 1/math.inf; #miller indices\n",
+ "l12 =0;\n",
+ "h13 = 1; #miller indices\n",
+ "k13 = 2; #miller indices\n",
+ "l13 = 1; #miller indices\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "d = fractions.gcd(a,b);\n",
+ "lcm = (a*b)/float(d);\n",
+ "e = fractions.gcd(lcm,c);\n",
+ "lc = (lcm*c)/float(e); #finding lcm \n",
+ "h1 = 1/float(4); #miller indices\n",
+ "k1 = 1/float(4); #miller indices\n",
+ "l1 = 1/float(2); #miller indices\n",
+ "h = h1*(lc); #miller indices\n",
+ "k = (k1)*(lc); #miller indices\n",
+ "l = (l1)*(lc); #miller indices\n",
+ "\n",
+ "d = fractions.gcd(a1,b1);\n",
+ "lcm = (a1*b1)/float(d);\n",
+ "e = fractions.gcd(lcm,c1);\n",
+ "lc1 = (lcm*c1)/float(e);\n",
+ "# 1/%inf = 0 ; (1/2 1/1 0/1) hence lcm is taken for [2 1 1]\n",
+ "h3 = h12*(lc1); #miller indices\n",
+ "k3 = (k12)*(lc1); #miller indices\n",
+ "l3 = (l12)*(lc1); #miller indices\n",
+ "\n",
+ "\n",
+ "d = fractions.gcd(a3,b3);\n",
+ "lcm = (a3*b3)/float(d);\n",
+ "e = fractions.gcd(lcm,c3);\n",
+ "lc2 = (lcm*c3)/float(e);\n",
+ "h4 = h13*(lc2); #miller indices\n",
+ "k4 = k13*(lc2); #miller indices\n",
+ "l4 = l13*(lc2); #miller indices\n",
+ "\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d'%h,'%d'%k,'%d'%l;\n",
+ "print'Note:printing mistake of miller indices in textbook \\n';\n",
+ "print'\\nmiller indices = %d'%h3,'%d'%k3,'%d'%l3;\n",
+ "print'\\nmiller indices = %d'%h4,'%d'%k4,'%d'%lc2;\n",
+ "print'Note:calculation mistake in textbook\\n';\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#Example 1.7,Page No:1.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "d100 = 1.00 a\n",
+ "d111 = 0.58 a\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 1; #miller indices\n",
+ "k = 0; #miller indices\n",
+ "l = 0; #miller indices\n",
+ "h1 = 1; #miller indices\n",
+ "k1 = 1; #miller indices\n",
+ "l1 = 1; #miller indices\n",
+ "\n",
+ "#calculations\n",
+ "d100 = 1/float(math.sqrt((h**2)+(k**2)+(l**2)));\n",
+ "d111 = 1/float(math.sqrt((h1**2)+(k1**2)+(l1**2)));\n",
+ "\n",
+ "#result\n",
+ "print'd100 = %3.2f a'%d100;\n",
+ "print'd111 = %3.2f a'%d111;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 1.8,Page No:1.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 2 1 0\n",
+ "interplanar distance is =4.47 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are a,2b,-3c/2\n",
+ "#from the law of rational indices\n",
+ "#a:2b:-3c/2=a/h:b/k:c/l\n",
+ "\n",
+ "\n",
+ "#variable declaration\n",
+ "h1 = 1;\n",
+ "k1 = 2;\n",
+ "l1 = 1;\n",
+ "a = 10*10**-9; \n",
+ "\n",
+ "#calculation\n",
+ "h12 = 1; #miller indices\n",
+ "k12 = 1/float(k1); #miller indices\n",
+ "l12 = 0; #miller indices\n",
+ "\n",
+ "#1/%inf = 0 ; (1/2 1/1 0/1) hence lcm is taken for [2 1 1]\n",
+ "d = fractions.gcd(h1,k1);\n",
+ "lcm = (h1*k1)/float(d);\n",
+ "e = fractions.gcd(lcm,l1);\n",
+ "lc = (lcm*l1)/float(e);\n",
+ "h = h12*(lcm); #miller indices\n",
+ "k = (k12)*(lcm); #miller indices\n",
+ "l = (l12)*(lcm); #miller indices\n",
+ "d = a/float(((h**2)+(k**2)+(l**2))**(1/float(2)));\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d'%h,'%d'%k,'%d'%l;\n",
+ "print'interplanar distance is =%3.2f'%(d*10**9),'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#Example 1.9,Page No:1.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "inter planar spacing =1.32e-10 m/n\n",
+ "Note : calculation mistake in textbook in calculating in dhkl,r value istaken as 0.125*10**-9 instead of 0.175*10**-9 \n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable Declaration\n",
+ "\n",
+ "r = 0.175*10**-9; #radius in m\n",
+ "h = 2; #miller indices\n",
+ "k = 3; #miller indices\n",
+ "l = 1; #miller indices\n",
+ "\n",
+ "#calculation\n",
+ "a = (4*r)/math.sqrt(2);\n",
+ "dhkl = a/float(math.sqrt((h**2)+(k**2)+(l**2)));\n",
+ " \n",
+ "#result\n",
+ "print'inter planar spacing =%3.2e'%dhkl,'m/n';\n",
+ "print'Note : calculation mistake in textbook in calculating in dhkl,r value istaken as 0.125*10**-9 instead of 0.175*10**-9 ';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#Example 1.10,Page No:1.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "distance between two atoms =1.732 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "a = 4; #lattice constant in Å\n",
+ "\n",
+ "#calculation\n",
+ "d = (math.sqrt(3)*a)/float(4); #distance between two atoms in Å\n",
+ " \n",
+ "#result\n",
+ "print'distance between two atoms =%3.3f'%d,'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "#Example 1.11,Page No:1.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength=0.431 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 1.41; #lattice constant in Å\n",
+ "theta = 8.8; # angle in degrees\n",
+ "n = 1;\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "lamda = (2*d*(math.sin(theta*math.pi/float(180))))/float(n); #wavelength in Å\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'wavelength=%3.3f'%lamda,'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#Example 1.12,Page No:1.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength =0.7822 Å\n",
+ "glancing angle =18.2 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "d = 2.5; #spacing in angstroms\n",
+ "theta = 9; #glancing angle in degrees\n",
+ "n1 = 1;\n",
+ "n2 = 2;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "lamda = (2*math.sin(theta*(math.pi/180))*d); #wavelength Å\n",
+ "theta = math.asin((2*lamda)/float(2*d)); #glancing angle in °\n",
+ "\n",
+ "#result\n",
+ "print'wavelength =%3.4f'%lamda,'Å';\n",
+ "print'glancing angle =%3.1f'%(theta*(180/math.pi)),'°';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#Example 1.13,Page No:1.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice constant=1.15 Å\n",
+ "note:printing mistake in textbook in calculation part,n value is printed as 2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "lamda = 2; #wavelength in angstroms\n",
+ "theta1 = 60; #angle in degrees\n",
+ "n = 1;\n",
+ " \n",
+ "#formula\n",
+ "#2*d*math.sin(theta)=n*lamda\n",
+ "#calculation\n",
+ "d = (n*lamda)/(2*math.sin(theta1*math.pi/float(180))); #lattice constant in Å\n",
+ "\n",
+ "#result\n",
+ "print'lattice constant=%3.2f'%d,'Å';\n",
+ "print'note:printing mistake in textbook in calculation part,n value is printed as 2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#Example 1.14,Page No:1.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "angle=37.32 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "lamda = 1.4*10**-10; #wavelength in angstroms\n",
+ "a = 2*10**-10; #lattice parameter in angstroms\n",
+ "h = 1; #miller indices\n",
+ "k = 1; #miller indices\n",
+ "l = 1; #miller indices\n",
+ "n = 1;\n",
+ "#formula\n",
+ "#2*d*math.sin(theta)=n*lamda\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "dhkl = a/float(math.sqrt((h**2)+(k**2)+(l**2))); #inter planar spacing\n",
+ "theta = math.asin((n*lamda)/float(2*dhkl)); #angle in °\n",
+ "\n",
+ "#result\n",
+ "print'angle=%3.2f'%(theta*(180/float(math.pi))),'°';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#Example 1.15,Page No:1.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of neutron =7.33e+02 m/n\n",
+ " Note:calculation mistake in text book in calculating wavelength \n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variabledeclaration\n",
+ "d = 3.84 *10**-10; #spacing between planes in m\n",
+ "theta = 45; #glancing angle in degrees\n",
+ "m = 1.67*10**-27; #mass ef electron\n",
+ "h = 6.62*10**-34; #planck's constant\n",
+ "n = 1; #braggg reflextion \n",
+ "v = 5.41*10**-10;\n",
+ " \n",
+ "#calculation\n",
+ "#lamda = 2*d*(1/math.sqrt(2));\n",
+ "lamda = (n*h)/float(m*v); #wavelength of neutron\n",
+ "\n",
+ "#result\n",
+ "print'wavelength of neutron =%3.2e'%lamda,'m/n';\n",
+ "print' Note:calculation mistake in text book in calculating wavelength ';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#Example 1.16,Page No:1.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice parameter = 2 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "m = 9.1*10**-31; # mass of electron in kilograms\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "n = 1; #bragg's reflection\n",
+ "h1 = 6.62*10**-34; #planck's constant J.s\n",
+ "n = 1; #bragg reflecton \n",
+ "V = 200; #voltage in V\n",
+ "theta = 22; #observed reflection\n",
+ " \n",
+ "#calculation\n",
+ "\n",
+ "lamda = h1/math.sqrt(2*m*e*V);\n",
+ "dhkl = (n*lamda)/float(2*math.sin(theta*math.pi/180));\n",
+ "a = dhkl*math.sqrt(3); #lattice parameter in Å\n",
+ " \n",
+ "#result\n",
+ " \n",
+ "print'lattice parameter =%3.0f'%(a*10**10),'Å';"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10.ipynb
new file mode 100755
index 00000000..c6f2d5ac
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10.ipynb
@@ -0,0 +1,325 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10:Optical Properties of Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 10.1,Page No:10.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Wavelength of the photon = 6211 Å\n",
+ " The colour of the photon is red\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "E2 = 5.56*10**-19; # Higher Energy level in J\n",
+ "E1 = 2.36*10**-19; # Lower Energy level in J\n",
+ "h = 6.626*10**-34; # plancks constant in J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "\n",
+ "# Calculations\n",
+ "dE = E2 - E1; # Energy difference in J\n",
+ "lamda = (h*c)/float(dE); # wavelength in m\n",
+ " \n",
+ "\n",
+ "# Result\n",
+ "\n",
+ "print'Wavelength of the photon = %d'%(lamda*10**10),'Å';\n",
+ "print' The colour of the photon is red';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 10.2,Page No:10.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Maximum Wavelength for which diamond is opaque is Imax = 2219 Å\n",
+ "\n",
+ " Note: Imax is wrongly printed as 220 Å in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "E = 5.6; # bandgap in eV\n",
+ "e = 1.6*10**-19; # charge of electron coulombs\n",
+ "\n",
+ "# Calculations\n",
+ "lamda = (h*c)/float(E*e) # wavelength in m\n",
+ "\n",
+ "#output\n",
+ "print'Maximum Wavelength for which diamond is opaque is Imax = %d '%(lamda*10**10),'Å';\n",
+ "print'\\n Note: Imax is wrongly printed as 220 Å in textbook';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 10.3,Page No:10.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy of radiation = 2.0719 eV\n",
+ "Rate of energy gap varies with addition of GaP is 0.00830 eV/mol %\n",
+ "mol percent to be added to get an energy gap of 2.0719 eV is 78.54 mol %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant\n",
+ "c = 3*10**8; # velocity of light\n",
+ "lamda = 0.6*10**-6; # wavelength in m\n",
+ "e = 1.6*10**-19; # charge of electron\n",
+ "EGap = 2.25; # energy in eV\n",
+ "EGas = 1.42; # energy in eV\n",
+ "\n",
+ "#Calculations\n",
+ "E = (h*c)/float(lamda*e); # Energy in eV\n",
+ "p_change = (EGap - EGas)/float(100); #rate of energy gap\n",
+ "x = (E-EGas)/float(p_change); #mol % of GaP to be added to get an energy gap of E\n",
+ "\n",
+ "# Result\n",
+ "print'Energy of radiation = %3.4f'%E,'eV';\n",
+ "print'Rate of energy gap varies with addition of GaP is %3.5f'%p_change,'eV/mol %';\n",
+ "print'mol percent to be added to get an energy gap of %3.4f'%E,'eV','is %3.2f'%x,'mol %';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 10.4,Page No:10.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy of the metastable state E3 = 2.2e-19 J\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; #plancks constant in J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "lamda = 1.1*10**-6; # wavelength in m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "E2 = 0.4*10**-19; # energy level in joules\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "E3 = E2 + ((h*c)/float(lamda)); #energy in J\n",
+ "\n",
+ "#Result\n",
+ "print'Energy of the metastable state E3 = %3.1e'%E3,'J';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 10.5,Page No:10.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Number of Optical modes = 15\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "L = 1.5; #length in m\n",
+ "n = 1.0204; # refractive index \n",
+ "BW = 1.5*10**9; # Bandwidth in Hz\n",
+ "\n",
+ "# Calculations\n",
+ "dV = c/float(2*L*n); #frequency in Hz\n",
+ "N = BW/float(dV); # Number of optical nodes\n",
+ "\n",
+ "# Result\n",
+ "print'Number of Optical modes = % d'%N;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 10.6,Page No:10.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Numerical aperture = 0.248\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n1 = 1.55; # refractive index of core\n",
+ "n2 = 1.53; # refractive index of cladding\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "NA = math.sqrt(n1**2 - n2**2);\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print'Numerical aperture = %3.3f'%NA;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 10.7,Page No:10.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For angles above 48.75° ,there will be total internal reflection in water\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n1 = 1.33; #refractive index of water\n",
+ "n2 = 1; # refractive index of air\n",
+ "\n",
+ "# Calculations\n",
+ "theta_c = math.asin((n2/n1))\n",
+ "theta_c_deg = theta_c*(180/float(math.pi)); # radian to degree conversion\n",
+ "\n",
+ "# Result\n",
+ "print'For angles above %3.2f° ,there will be total internal reflection in water'%theta_c_deg ;\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10_1.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10_1.ipynb
new file mode 100644
index 00000000..1bf81061
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10_1.ipynb
@@ -0,0 +1,316 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10:Optical Properties of Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1,Page No:10.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Wavelength of the photon = 6211 Å\n",
+ " The colour of the photon is red\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "E2 = 5.56*10**-19; # Higher Energy level in J\n",
+ "E1 = 2.36*10**-19; # Lower Energy level in J\n",
+ "h = 6.626*10**-34; # plancks constant in J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "\n",
+ "# Calculations\n",
+ "dE = E2 - E1; # Energy difference in J\n",
+ "lamda = (h*c)/float(dE); # wavelength in m\n",
+ " \n",
+ "\n",
+ "# Result\n",
+ "\n",
+ "print'Wavelength of the photon = %d'%(lamda*10**10),'Å';\n",
+ "print' The colour of the photon is red';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2,Page No:10.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Maximum Wavelength for which diamond is opaque is Imax = 2219 Å\n",
+ "\n",
+ " Note: Imax is wrongly printed as 220 Å in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "E = 5.6; # bandgap in eV\n",
+ "e = 1.6*10**-19; # charge of electron coulombs\n",
+ "\n",
+ "# Calculations\n",
+ "lamda = (h*c)/float(E*e) # wavelength in m\n",
+ "\n",
+ "#output\n",
+ "print'Maximum Wavelength for which diamond is opaque is Imax = %d '%(lamda*10**10),'Å';\n",
+ "print'\\n Note: Imax is wrongly printed as 220 Å in textbook';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.3,Page No:10.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy of radiation = 2.0719 eV\n",
+ "Rate of energy gap varies with addition of GaP is 0.00830 eV/mol %\n",
+ "mol percent to be added to get an energy gap of 2.0719 eV is 78.54 mol %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant\n",
+ "c = 3*10**8; # velocity of light\n",
+ "lamda = 0.6*10**-6; # wavelength in m\n",
+ "e = 1.6*10**-19; # charge of electron\n",
+ "EGap = 2.25; # energy in eV\n",
+ "EGas = 1.42; # energy in eV\n",
+ "\n",
+ "#Calculations\n",
+ "E = (h*c)/float(lamda*e); # Energy in eV\n",
+ "p_change = (EGap - EGas)/float(100); #rate of energy gap\n",
+ "x = (E-EGas)/float(p_change); #mol % of GaP to be added to get an energy gap of E\n",
+ "\n",
+ "# Result\n",
+ "print'Energy of radiation = %3.4f'%E,'eV';\n",
+ "print'Rate of energy gap varies with addition of GaP is %3.5f'%p_change,'eV/mol %';\n",
+ "print'mol percent to be added to get an energy gap of %3.4f'%E,'eV','is %3.2f'%x,'mol %';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4,Page No:10.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy of the metastable state E3 = 2.2e-19 J\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; #plancks constant in J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "lamda = 1.1*10**-6; # wavelength in m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "E2 = 0.4*10**-19; # energy level in joules\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "E3 = E2 + ((h*c)/float(lamda)); #energy in J\n",
+ "\n",
+ "#Result\n",
+ "print'Energy of the metastable state E3 = %3.1e'%E3,'J';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.5,Page No:10.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Number of Optical modes = 15\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "L = 1.5; #length in m\n",
+ "n = 1.0204; # refractive index \n",
+ "BW = 1.5*10**9; # Bandwidth in Hz\n",
+ "\n",
+ "# Calculations\n",
+ "dV = c/float(2*L*n); #frequency in Hz\n",
+ "N = BW/float(dV); # Number of optical nodes\n",
+ "\n",
+ "# Result\n",
+ "print'Number of Optical modes = % d'%N;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.6,Page No:10.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Numerical aperture = 0.248\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n1 = 1.55; # refractive index of core\n",
+ "n2 = 1.53; # refractive index of cladding\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "NA = math.sqrt(n1**2 - n2**2);\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print'Numerical aperture = %3.3f'%NA;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.7,Page No:10.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For angles above 48.75° ,there will be total internal reflection in water\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n1 = 1.33; #refractive index of water\n",
+ "n2 = 1; # refractive index of air\n",
+ "\n",
+ "# Calculations\n",
+ "theta_c = math.asin((n2/n1))\n",
+ "theta_c_deg = theta_c*(180/float(math.pi)); # radian to degree conversion\n",
+ "\n",
+ "# Result\n",
+ "print'For angles above %3.2f° ,there will be total internal reflection in water'%theta_c_deg ;\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10_2.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10_2.ipynb
new file mode 100644
index 00000000..1bf81061
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10_2.ipynb
@@ -0,0 +1,316 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10:Optical Properties of Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1,Page No:10.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Wavelength of the photon = 6211 Å\n",
+ " The colour of the photon is red\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "E2 = 5.56*10**-19; # Higher Energy level in J\n",
+ "E1 = 2.36*10**-19; # Lower Energy level in J\n",
+ "h = 6.626*10**-34; # plancks constant in J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "\n",
+ "# Calculations\n",
+ "dE = E2 - E1; # Energy difference in J\n",
+ "lamda = (h*c)/float(dE); # wavelength in m\n",
+ " \n",
+ "\n",
+ "# Result\n",
+ "\n",
+ "print'Wavelength of the photon = %d'%(lamda*10**10),'Å';\n",
+ "print' The colour of the photon is red';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2,Page No:10.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Maximum Wavelength for which diamond is opaque is Imax = 2219 Å\n",
+ "\n",
+ " Note: Imax is wrongly printed as 220 Å in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "E = 5.6; # bandgap in eV\n",
+ "e = 1.6*10**-19; # charge of electron coulombs\n",
+ "\n",
+ "# Calculations\n",
+ "lamda = (h*c)/float(E*e) # wavelength in m\n",
+ "\n",
+ "#output\n",
+ "print'Maximum Wavelength for which diamond is opaque is Imax = %d '%(lamda*10**10),'Å';\n",
+ "print'\\n Note: Imax is wrongly printed as 220 Å in textbook';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.3,Page No:10.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy of radiation = 2.0719 eV\n",
+ "Rate of energy gap varies with addition of GaP is 0.00830 eV/mol %\n",
+ "mol percent to be added to get an energy gap of 2.0719 eV is 78.54 mol %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant\n",
+ "c = 3*10**8; # velocity of light\n",
+ "lamda = 0.6*10**-6; # wavelength in m\n",
+ "e = 1.6*10**-19; # charge of electron\n",
+ "EGap = 2.25; # energy in eV\n",
+ "EGas = 1.42; # energy in eV\n",
+ "\n",
+ "#Calculations\n",
+ "E = (h*c)/float(lamda*e); # Energy in eV\n",
+ "p_change = (EGap - EGas)/float(100); #rate of energy gap\n",
+ "x = (E-EGas)/float(p_change); #mol % of GaP to be added to get an energy gap of E\n",
+ "\n",
+ "# Result\n",
+ "print'Energy of radiation = %3.4f'%E,'eV';\n",
+ "print'Rate of energy gap varies with addition of GaP is %3.5f'%p_change,'eV/mol %';\n",
+ "print'mol percent to be added to get an energy gap of %3.4f'%E,'eV','is %3.2f'%x,'mol %';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4,Page No:10.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy of the metastable state E3 = 2.2e-19 J\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; #plancks constant in J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "lamda = 1.1*10**-6; # wavelength in m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "E2 = 0.4*10**-19; # energy level in joules\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "E3 = E2 + ((h*c)/float(lamda)); #energy in J\n",
+ "\n",
+ "#Result\n",
+ "print'Energy of the metastable state E3 = %3.1e'%E3,'J';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.5,Page No:10.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Number of Optical modes = 15\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "L = 1.5; #length in m\n",
+ "n = 1.0204; # refractive index \n",
+ "BW = 1.5*10**9; # Bandwidth in Hz\n",
+ "\n",
+ "# Calculations\n",
+ "dV = c/float(2*L*n); #frequency in Hz\n",
+ "N = BW/float(dV); # Number of optical nodes\n",
+ "\n",
+ "# Result\n",
+ "print'Number of Optical modes = % d'%N;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.6,Page No:10.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Numerical aperture = 0.248\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n1 = 1.55; # refractive index of core\n",
+ "n2 = 1.53; # refractive index of cladding\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "NA = math.sqrt(n1**2 - n2**2);\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print'Numerical aperture = %3.3f'%NA;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.7,Page No:10.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For angles above 48.75° ,there will be total internal reflection in water\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n1 = 1.33; #refractive index of water\n",
+ "n2 = 1; # refractive index of air\n",
+ "\n",
+ "# Calculations\n",
+ "theta_c = math.asin((n2/n1))\n",
+ "theta_c_deg = theta_c*(180/float(math.pi)); # radian to degree conversion\n",
+ "\n",
+ "# Result\n",
+ "print'For angles above %3.2f° ,there will be total internal reflection in water'%theta_c_deg ;\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10_3.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10_3.ipynb
new file mode 100644
index 00000000..1bf81061
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10_3.ipynb
@@ -0,0 +1,316 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10:Optical Properties of Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1,Page No:10.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Wavelength of the photon = 6211 Å\n",
+ " The colour of the photon is red\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "E2 = 5.56*10**-19; # Higher Energy level in J\n",
+ "E1 = 2.36*10**-19; # Lower Energy level in J\n",
+ "h = 6.626*10**-34; # plancks constant in J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "\n",
+ "# Calculations\n",
+ "dE = E2 - E1; # Energy difference in J\n",
+ "lamda = (h*c)/float(dE); # wavelength in m\n",
+ " \n",
+ "\n",
+ "# Result\n",
+ "\n",
+ "print'Wavelength of the photon = %d'%(lamda*10**10),'Å';\n",
+ "print' The colour of the photon is red';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2,Page No:10.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Maximum Wavelength for which diamond is opaque is Imax = 2219 Å\n",
+ "\n",
+ " Note: Imax is wrongly printed as 220 Å in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "E = 5.6; # bandgap in eV\n",
+ "e = 1.6*10**-19; # charge of electron coulombs\n",
+ "\n",
+ "# Calculations\n",
+ "lamda = (h*c)/float(E*e) # wavelength in m\n",
+ "\n",
+ "#output\n",
+ "print'Maximum Wavelength for which diamond is opaque is Imax = %d '%(lamda*10**10),'Å';\n",
+ "print'\\n Note: Imax is wrongly printed as 220 Å in textbook';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.3,Page No:10.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy of radiation = 2.0719 eV\n",
+ "Rate of energy gap varies with addition of GaP is 0.00830 eV/mol %\n",
+ "mol percent to be added to get an energy gap of 2.0719 eV is 78.54 mol %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant\n",
+ "c = 3*10**8; # velocity of light\n",
+ "lamda = 0.6*10**-6; # wavelength in m\n",
+ "e = 1.6*10**-19; # charge of electron\n",
+ "EGap = 2.25; # energy in eV\n",
+ "EGas = 1.42; # energy in eV\n",
+ "\n",
+ "#Calculations\n",
+ "E = (h*c)/float(lamda*e); # Energy in eV\n",
+ "p_change = (EGap - EGas)/float(100); #rate of energy gap\n",
+ "x = (E-EGas)/float(p_change); #mol % of GaP to be added to get an energy gap of E\n",
+ "\n",
+ "# Result\n",
+ "print'Energy of radiation = %3.4f'%E,'eV';\n",
+ "print'Rate of energy gap varies with addition of GaP is %3.5f'%p_change,'eV/mol %';\n",
+ "print'mol percent to be added to get an energy gap of %3.4f'%E,'eV','is %3.2f'%x,'mol %';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4,Page No:10.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy of the metastable state E3 = 2.2e-19 J\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; #plancks constant in J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "lamda = 1.1*10**-6; # wavelength in m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "E2 = 0.4*10**-19; # energy level in joules\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "E3 = E2 + ((h*c)/float(lamda)); #energy in J\n",
+ "\n",
+ "#Result\n",
+ "print'Energy of the metastable state E3 = %3.1e'%E3,'J';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.5,Page No:10.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Number of Optical modes = 15\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "L = 1.5; #length in m\n",
+ "n = 1.0204; # refractive index \n",
+ "BW = 1.5*10**9; # Bandwidth in Hz\n",
+ "\n",
+ "# Calculations\n",
+ "dV = c/float(2*L*n); #frequency in Hz\n",
+ "N = BW/float(dV); # Number of optical nodes\n",
+ "\n",
+ "# Result\n",
+ "print'Number of Optical modes = % d'%N;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.6,Page No:10.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Numerical aperture = 0.248\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n1 = 1.55; # refractive index of core\n",
+ "n2 = 1.53; # refractive index of cladding\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "NA = math.sqrt(n1**2 - n2**2);\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print'Numerical aperture = %3.3f'%NA;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.7,Page No:10.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For angles above 48.75° ,there will be total internal reflection in water\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n1 = 1.33; #refractive index of water\n",
+ "n2 = 1; # refractive index of air\n",
+ "\n",
+ "# Calculations\n",
+ "theta_c = math.asin((n2/n1))\n",
+ "theta_c_deg = theta_c*(180/float(math.pi)); # radian to degree conversion\n",
+ "\n",
+ "# Result\n",
+ "print'For angles above %3.2f° ,there will be total internal reflection in water'%theta_c_deg ;\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10_4.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10_4.ipynb
new file mode 100644
index 00000000..1bf81061
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10_4.ipynb
@@ -0,0 +1,316 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10:Optical Properties of Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1,Page No:10.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Wavelength of the photon = 6211 Å\n",
+ " The colour of the photon is red\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "E2 = 5.56*10**-19; # Higher Energy level in J\n",
+ "E1 = 2.36*10**-19; # Lower Energy level in J\n",
+ "h = 6.626*10**-34; # plancks constant in J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "\n",
+ "# Calculations\n",
+ "dE = E2 - E1; # Energy difference in J\n",
+ "lamda = (h*c)/float(dE); # wavelength in m\n",
+ " \n",
+ "\n",
+ "# Result\n",
+ "\n",
+ "print'Wavelength of the photon = %d'%(lamda*10**10),'Å';\n",
+ "print' The colour of the photon is red';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2,Page No:10.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Maximum Wavelength for which diamond is opaque is Imax = 2219 Å\n",
+ "\n",
+ " Note: Imax is wrongly printed as 220 Å in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "E = 5.6; # bandgap in eV\n",
+ "e = 1.6*10**-19; # charge of electron coulombs\n",
+ "\n",
+ "# Calculations\n",
+ "lamda = (h*c)/float(E*e) # wavelength in m\n",
+ "\n",
+ "#output\n",
+ "print'Maximum Wavelength for which diamond is opaque is Imax = %d '%(lamda*10**10),'Å';\n",
+ "print'\\n Note: Imax is wrongly printed as 220 Å in textbook';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.3,Page No:10.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy of radiation = 2.0719 eV\n",
+ "Rate of energy gap varies with addition of GaP is 0.00830 eV/mol %\n",
+ "mol percent to be added to get an energy gap of 2.0719 eV is 78.54 mol %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant\n",
+ "c = 3*10**8; # velocity of light\n",
+ "lamda = 0.6*10**-6; # wavelength in m\n",
+ "e = 1.6*10**-19; # charge of electron\n",
+ "EGap = 2.25; # energy in eV\n",
+ "EGas = 1.42; # energy in eV\n",
+ "\n",
+ "#Calculations\n",
+ "E = (h*c)/float(lamda*e); # Energy in eV\n",
+ "p_change = (EGap - EGas)/float(100); #rate of energy gap\n",
+ "x = (E-EGas)/float(p_change); #mol % of GaP to be added to get an energy gap of E\n",
+ "\n",
+ "# Result\n",
+ "print'Energy of radiation = %3.4f'%E,'eV';\n",
+ "print'Rate of energy gap varies with addition of GaP is %3.5f'%p_change,'eV/mol %';\n",
+ "print'mol percent to be added to get an energy gap of %3.4f'%E,'eV','is %3.2f'%x,'mol %';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4,Page No:10.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy of the metastable state E3 = 2.2e-19 J\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; #plancks constant in J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "lamda = 1.1*10**-6; # wavelength in m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "E2 = 0.4*10**-19; # energy level in joules\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "E3 = E2 + ((h*c)/float(lamda)); #energy in J\n",
+ "\n",
+ "#Result\n",
+ "print'Energy of the metastable state E3 = %3.1e'%E3,'J';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.5,Page No:10.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Number of Optical modes = 15\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "L = 1.5; #length in m\n",
+ "n = 1.0204; # refractive index \n",
+ "BW = 1.5*10**9; # Bandwidth in Hz\n",
+ "\n",
+ "# Calculations\n",
+ "dV = c/float(2*L*n); #frequency in Hz\n",
+ "N = BW/float(dV); # Number of optical nodes\n",
+ "\n",
+ "# Result\n",
+ "print'Number of Optical modes = % d'%N;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.6,Page No:10.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Numerical aperture = 0.248\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n1 = 1.55; # refractive index of core\n",
+ "n2 = 1.53; # refractive index of cladding\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "NA = math.sqrt(n1**2 - n2**2);\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print'Numerical aperture = %3.3f'%NA;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.7,Page No:10.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For angles above 48.75° ,there will be total internal reflection in water\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n1 = 1.33; #refractive index of water\n",
+ "n2 = 1; # refractive index of air\n",
+ "\n",
+ "# Calculations\n",
+ "theta_c = math.asin((n2/n1))\n",
+ "theta_c_deg = theta_c*(180/float(math.pi)); # radian to degree conversion\n",
+ "\n",
+ "# Result\n",
+ "print'For angles above %3.2f° ,there will be total internal reflection in water'%theta_c_deg ;\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10_5.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10_5.ipynb
new file mode 100644
index 00000000..1bf81061
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter10_5.ipynb
@@ -0,0 +1,316 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10:Optical Properties of Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1,Page No:10.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Wavelength of the photon = 6211 Å\n",
+ " The colour of the photon is red\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "E2 = 5.56*10**-19; # Higher Energy level in J\n",
+ "E1 = 2.36*10**-19; # Lower Energy level in J\n",
+ "h = 6.626*10**-34; # plancks constant in J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "\n",
+ "# Calculations\n",
+ "dE = E2 - E1; # Energy difference in J\n",
+ "lamda = (h*c)/float(dE); # wavelength in m\n",
+ " \n",
+ "\n",
+ "# Result\n",
+ "\n",
+ "print'Wavelength of the photon = %d'%(lamda*10**10),'Å';\n",
+ "print' The colour of the photon is red';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2,Page No:10.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Maximum Wavelength for which diamond is opaque is Imax = 2219 Å\n",
+ "\n",
+ " Note: Imax is wrongly printed as 220 Å in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "E = 5.6; # bandgap in eV\n",
+ "e = 1.6*10**-19; # charge of electron coulombs\n",
+ "\n",
+ "# Calculations\n",
+ "lamda = (h*c)/float(E*e) # wavelength in m\n",
+ "\n",
+ "#output\n",
+ "print'Maximum Wavelength for which diamond is opaque is Imax = %d '%(lamda*10**10),'Å';\n",
+ "print'\\n Note: Imax is wrongly printed as 220 Å in textbook';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.3,Page No:10.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy of radiation = 2.0719 eV\n",
+ "Rate of energy gap varies with addition of GaP is 0.00830 eV/mol %\n",
+ "mol percent to be added to get an energy gap of 2.0719 eV is 78.54 mol %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant\n",
+ "c = 3*10**8; # velocity of light\n",
+ "lamda = 0.6*10**-6; # wavelength in m\n",
+ "e = 1.6*10**-19; # charge of electron\n",
+ "EGap = 2.25; # energy in eV\n",
+ "EGas = 1.42; # energy in eV\n",
+ "\n",
+ "#Calculations\n",
+ "E = (h*c)/float(lamda*e); # Energy in eV\n",
+ "p_change = (EGap - EGas)/float(100); #rate of energy gap\n",
+ "x = (E-EGas)/float(p_change); #mol % of GaP to be added to get an energy gap of E\n",
+ "\n",
+ "# Result\n",
+ "print'Energy of radiation = %3.4f'%E,'eV';\n",
+ "print'Rate of energy gap varies with addition of GaP is %3.5f'%p_change,'eV/mol %';\n",
+ "print'mol percent to be added to get an energy gap of %3.4f'%E,'eV','is %3.2f'%x,'mol %';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4,Page No:10.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy of the metastable state E3 = 2.2e-19 J\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; #plancks constant in J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "lamda = 1.1*10**-6; # wavelength in m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "E2 = 0.4*10**-19; # energy level in joules\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "E3 = E2 + ((h*c)/float(lamda)); #energy in J\n",
+ "\n",
+ "#Result\n",
+ "print'Energy of the metastable state E3 = %3.1e'%E3,'J';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.5,Page No:10.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Number of Optical modes = 15\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "L = 1.5; #length in m\n",
+ "n = 1.0204; # refractive index \n",
+ "BW = 1.5*10**9; # Bandwidth in Hz\n",
+ "\n",
+ "# Calculations\n",
+ "dV = c/float(2*L*n); #frequency in Hz\n",
+ "N = BW/float(dV); # Number of optical nodes\n",
+ "\n",
+ "# Result\n",
+ "print'Number of Optical modes = % d'%N;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.6,Page No:10.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Numerical aperture = 0.248\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n1 = 1.55; # refractive index of core\n",
+ "n2 = 1.53; # refractive index of cladding\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "NA = math.sqrt(n1**2 - n2**2);\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print'Numerical aperture = %3.3f'%NA;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.7,Page No:10.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For angles above 48.75° ,there will be total internal reflection in water\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n1 = 1.33; #refractive index of water\n",
+ "n2 = 1; # refractive index of air\n",
+ "\n",
+ "# Calculations\n",
+ "theta_c = math.asin((n2/n1))\n",
+ "theta_c_deg = theta_c*(180/float(math.pi)); # radian to degree conversion\n",
+ "\n",
+ "# Result\n",
+ "print'For angles above %3.2f° ,there will be total internal reflection in water'%theta_c_deg ;\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_1.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_1.ipynb
new file mode 100644
index 00000000..51ab5318
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_1.ipynb
@@ -0,0 +1,811 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 1:Crystal Structure,Bonding and Defects in solids"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 1.1,Page No:1.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lattice Constant a = 4.00 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "p = 6250; # Density of crystal in kg/m**3\n",
+ "N = 6.023*10**26; #Avagadros number in atoms/kilomole\n",
+ "M = 60.2; #molecular weight per mole\n",
+ "n = 4; #No. of atoms per unit cell for FCC\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "a = ((n*M)/float(N*p))**(1/float(3)); #Lattice Constant Å\n",
+ "\n",
+ "#result\n",
+ "\n",
+ "print'Lattice Constant a = %3.2f'%(a*10**10),'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2,Page No:1.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "d100 = 6.30 Å\n",
+ "d110 = 4.45 Å\n",
+ "d111 = 3.64 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h1 = 1; #miller indice\n",
+ "k1 = 1; # miller indice\n",
+ "l1 = 1; # miller indice\n",
+ "h0 = 0; # miller indice\n",
+ "k0 = 0; # miller indice\n",
+ "l0 = 0; # miller indice\n",
+ "p = 1980; # Density of KCl in kg/m**3\n",
+ "N = 6.023*10**26; # Avagadros number in atoms/kilomole\n",
+ "M = 74.5; # molecular weight of KCl\n",
+ "n = 4; # No. of atoms per unit cell for FCC\n",
+ "\n",
+ "# calculations\n",
+ "a = ((n*M)/float(N*p))**(1/float(3));\n",
+ "\n",
+ "#dhkl = a/math.sqrt((h**2)+(k**2)+(l**2)); #interplanar distance\n",
+ "d100 = a/math.sqrt((h1**2)+(k0**2)+(l0**2)); # interplanar distance\n",
+ "d110 = a/math.sqrt((h1**2)+(k1**2)+(l0**2)); # interplanar distance\n",
+ "d111 = a/math.sqrt((h1**2)+(k1**2)+(l1**2)); # interplanar distance\n",
+ "\n",
+ "# Output\n",
+ "print'd100 = %3.2f'%(d100*10**10),'Å';\n",
+ "print'd110 = %3.2f'%(d110*10**10),'Å';\n",
+ "print'd111 = %3.2f'%(d111*10**10),'Å';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3,Page No:1.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 1 4 2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 4; #miller indices\n",
+ "k = 1; #miller indices\n",
+ "l = 2; #miller indices\n",
+ " \n",
+ "#calculation\n",
+ "d = fractions.gcd(h,k);\n",
+ "lcm = (h*k)/float(d);\n",
+ "e = fractions.gcd(lcm,l);\n",
+ "lc = (lcm*l)/float(e); #finding lcm\n",
+ "h1 =1/float(h); \n",
+ "k1 =1/float(k);\n",
+ "l1 =1/float(l);\n",
+ "a = h1*lc; #miller indices\n",
+ "b = k1*lc; #miller indices\n",
+ "c = l1*lc; #miller indices\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d '%a,'%d'%b,'%d'%c;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4,Page No:1.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 4 3 6\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are 3a,4b,2c\n",
+ "#from the law of rational indices\n",
+ "#3a:4b:2c=a/h:b/k:c/l\n",
+ "\n",
+ "#Variable Declaration\n",
+ "h1 = 3; #miller indices\n",
+ "k1 = 4; #miller indices\n",
+ "l1 = 2; #miller indices\n",
+ " \n",
+ "#calculation\n",
+ "d = fractions.gcd(h1,k1);\n",
+ "lcm = (h1*k1)/float(d);\n",
+ "e = fractions.gcd(lcm,l1);\n",
+ "lc = (lcm*l1)/float(e); #finding lcm\n",
+ "\n",
+ "h = lc*1/float(h1); #miller indices \n",
+ "k = lc*1/float(k1); #miller indices\n",
+ "l= lc*1/float(l1); #miller indices\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d'%h,'%d'%k,'%d'%l;\n",
+ " \n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5,Page No:1.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 6 3 -4\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are a,2b,-3c/2\n",
+ "#from the law of rational indices\n",
+ "#a:2b:-3c/2=a/h:b/k:c/l\n",
+ "\n",
+ "\n",
+ "#variable declaration\n",
+ "h1 = 1; #miller indices\n",
+ "k1 = 2; #miller indices\n",
+ "l1 = 3; #miller indices \n",
+ "\n",
+ "#calculation\n",
+ "d = fractions.gcd(h1,k1);\n",
+ "lcm = (h1*k1)/float(d);\n",
+ "e = fractions.gcd(lcm,l1);\n",
+ "lc = (lcm*l1)/float(e);\n",
+ "h2 = 1;\n",
+ "k2 = 1/float(k1);\n",
+ "l2 = -2/float(l1)\n",
+ "h = h2*lc; #miller indices \n",
+ "k = (k2)*(lc); #miller indices \n",
+ "l = (l2)*(lc); #miller indices \n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %3.0f'%h,'%3.0f'%k,'%3.0f'%l;\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6,Page No:1.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 1 1 2\n",
+ "Note:printing mistake of miller indices in textbook \n",
+ "\n",
+ "\n",
+ "miller indices = 1 2 0\n",
+ "\n",
+ "miller indices = 1 2 1\n",
+ "Note:calculation mistake in textbook\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are 3a,3b,2c\n",
+ "#from the law of rational indices\n",
+ "#3a:3b:2c=a/h:b/k:c/l\n",
+ "#variable declaration\n",
+ "a = 4;\n",
+ "b = 4;\n",
+ "c = 2;\n",
+ "a1 = 2;\n",
+ "b1 = 1;\n",
+ "c1 = 1;\n",
+ "a3 = 1;\n",
+ "b3 = 1;\n",
+ "c3 = 1;\n",
+ "h12 = 1/float(2); #miller indices\n",
+ "k12 = 1; #miller indices\n",
+ "#l12 = 1/math.inf; #miller indices\n",
+ "l12 =0;\n",
+ "h13 = 1; #miller indices\n",
+ "k13 = 2; #miller indices\n",
+ "l13 = 1; #miller indices\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "d = fractions.gcd(a,b);\n",
+ "lcm = (a*b)/float(d);\n",
+ "e = fractions.gcd(lcm,c);\n",
+ "lc = (lcm*c)/float(e); #finding lcm \n",
+ "h1 = 1/float(4); #miller indices\n",
+ "k1 = 1/float(4); #miller indices\n",
+ "l1 = 1/float(2); #miller indices\n",
+ "h = h1*(lc); #miller indices\n",
+ "k = (k1)*(lc); #miller indices\n",
+ "l = (l1)*(lc); #miller indices\n",
+ "\n",
+ "d = fractions.gcd(a1,b1);\n",
+ "lcm = (a1*b1)/float(d);\n",
+ "e = fractions.gcd(lcm,c1);\n",
+ "lc1 = (lcm*c1)/float(e);\n",
+ "# 1/%inf = 0 ; (1/2 1/1 0/1) hence lcm is taken for [2 1 1]\n",
+ "h3 = h12*(lc1); #miller indices\n",
+ "k3 = (k12)*(lc1); #miller indices\n",
+ "l3 = (l12)*(lc1); #miller indices\n",
+ "\n",
+ "\n",
+ "d = fractions.gcd(a3,b3);\n",
+ "lcm = (a3*b3)/float(d);\n",
+ "e = fractions.gcd(lcm,c3);\n",
+ "lc2 = (lcm*c3)/float(e);\n",
+ "h4 = h13*(lc2); #miller indices\n",
+ "k4 = k13*(lc2); #miller indices\n",
+ "l4 = l13*(lc2); #miller indices\n",
+ "\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d'%h,'%d'%k,'%d'%l;\n",
+ "print'Note:printing mistake of miller indices in textbook \\n';\n",
+ "print'\\nmiller indices = %d'%h3,'%d'%k3,'%d'%l3;\n",
+ "print'\\nmiller indices = %d'%h4,'%d'%k4,'%d'%lc2;\n",
+ "print'Note:calculation mistake in textbook\\n';\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.7,Page No:1.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "d100 = 1.00 a\n",
+ "d111 = 0.58 a\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 1; #miller indices\n",
+ "k = 0; #miller indices\n",
+ "l = 0; #miller indices\n",
+ "h1 = 1; #miller indices\n",
+ "k1 = 1; #miller indices\n",
+ "l1 = 1; #miller indices\n",
+ "\n",
+ "#calculations\n",
+ "d100 = 1/float(math.sqrt((h**2)+(k**2)+(l**2)));\n",
+ "d111 = 1/float(math.sqrt((h1**2)+(k1**2)+(l1**2)));\n",
+ "\n",
+ "#result\n",
+ "print'd100 = %3.2f a'%d100;\n",
+ "print'd111 = %3.2f a'%d111;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8,Page No:1.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 2 1 0\n",
+ "interplanar distance is =4.47 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are a,2b,-3c/2\n",
+ "#from the law of rational indices\n",
+ "#a:2b:-3c/2=a/h:b/k:c/l\n",
+ "\n",
+ "\n",
+ "#variable declaration\n",
+ "h1 = 1;\n",
+ "k1 = 2;\n",
+ "l1 = 1;\n",
+ "a = 10*10**-9; \n",
+ "\n",
+ "#calculation\n",
+ "h12 = 1; #miller indices\n",
+ "k12 = 1/float(k1); #miller indices\n",
+ "l12 = 0; #miller indices\n",
+ "\n",
+ "#1/%inf = 0 ; (1/2 1/1 0/1) hence lcm is taken for [2 1 1]\n",
+ "d = fractions.gcd(h1,k1);\n",
+ "lcm = (h1*k1)/float(d);\n",
+ "e = fractions.gcd(lcm,l1);\n",
+ "lc = (lcm*l1)/float(e);\n",
+ "h = h12*(lcm); #miller indices\n",
+ "k = (k12)*(lcm); #miller indices\n",
+ "l = (l12)*(lcm); #miller indices\n",
+ "d = a/float(((h**2)+(k**2)+(l**2))**(1/float(2)));\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d'%h,'%d'%k,'%d'%l;\n",
+ "print'interplanar distance is =%3.2f'%(d*10**9),'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.9,Page No:1.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "inter planar spacing =1.32e-10 m/n\n",
+ "Note : calculation mistake in textbook in calculating in dhkl,r value istaken as 0.125*10**-9 instead of 0.175*10**-9 \n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable Declaration\n",
+ "\n",
+ "r = 0.175*10**-9; #radius in m\n",
+ "h = 2; #miller indices\n",
+ "k = 3; #miller indices\n",
+ "l = 1; #miller indices\n",
+ "\n",
+ "#calculation\n",
+ "a = (4*r)/math.sqrt(2);\n",
+ "dhkl = a/float(math.sqrt((h**2)+(k**2)+(l**2)));\n",
+ " \n",
+ "#result\n",
+ "print'inter planar spacing =%3.2e'%dhkl,'m/n';\n",
+ "print'Note : calculation mistake in textbook in calculating in dhkl,r value istaken as 0.125*10**-9 instead of 0.175*10**-9 ';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.10,Page No:1.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "distance between two atoms =1.732 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "a = 4; #lattice constant in Å\n",
+ "\n",
+ "#calculation\n",
+ "d = (math.sqrt(3)*a)/float(4); #distance between two atoms in Å\n",
+ " \n",
+ "#result\n",
+ "print'distance between two atoms =%3.3f'%d,'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "##Example 1.11,Page No:1.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength=0.431 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 1.41; #lattice constant in Å\n",
+ "theta = 8.8; # angle in degrees\n",
+ "n = 1;\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "lamda = (2*d*(math.sin(theta*math.pi/float(180))))/float(n); #wavelength in Å\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'wavelength=%3.3f'%lamda,'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.12,Page No:1.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength =0.7822 Å\n",
+ "glancing angle =18.2 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "d = 2.5; #spacing in angstroms\n",
+ "theta = 9; #glancing angle in degrees\n",
+ "n1 = 1;\n",
+ "n2 = 2;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "lamda = (2*math.sin(theta*(math.pi/180))*d); #wavelength Å\n",
+ "theta = math.asin((2*lamda)/float(2*d)); #glancing angle in °\n",
+ "\n",
+ "#result\n",
+ "print'wavelength =%3.4f'%lamda,'Å';\n",
+ "print'glancing angle =%3.1f'%(theta*(180/math.pi)),'°';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.13,Page No:1.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice constant=1.15 Å\n",
+ "note:printing mistake in textbook in calculation part,n value is printed as 2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "lamda = 2; #wavelength in angstroms\n",
+ "theta1 = 60; #angle in degrees\n",
+ "n = 1;\n",
+ " \n",
+ "#formula\n",
+ "#2*d*math.sin(theta)=n*lamda\n",
+ "#calculation\n",
+ "d = (n*lamda)/(2*math.sin(theta1*math.pi/float(180))); #lattice constant in Å\n",
+ "\n",
+ "#result\n",
+ "print'lattice constant=%3.2f'%d,'Å';\n",
+ "print'note:printing mistake in textbook in calculation part,n value is printed as 2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.14,Page No:1.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "angle=37.32 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "lamda = 1.4*10**-10; #wavelength in angstroms\n",
+ "a = 2*10**-10; #lattice parameter in angstroms\n",
+ "h = 1; #miller indices\n",
+ "k = 1; #miller indices\n",
+ "l = 1; #miller indices\n",
+ "n = 1;\n",
+ "#formula\n",
+ "#2*d*math.sin(theta)=n*lamda\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "dhkl = a/float(math.sqrt((h**2)+(k**2)+(l**2))); #inter planar spacing\n",
+ "theta = math.asin((n*lamda)/float(2*dhkl)); #angle in °\n",
+ "\n",
+ "#result\n",
+ "print'angle=%3.2f'%(theta*(180/float(math.pi))),'°';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.15,Page No:1.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of neutron =7.33e+02 m/n\n",
+ " Note:calculation mistake in text book in calculating wavelength \n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variabledeclaration\n",
+ "d = 3.84 *10**-10; #spacing between planes in m\n",
+ "theta = 45; #glancing angle in degrees\n",
+ "m = 1.67*10**-27; #mass ef electron\n",
+ "h = 6.62*10**-34; #planck's constant\n",
+ "n = 1; #braggg reflextion \n",
+ "v = 5.41*10**-10;\n",
+ " \n",
+ "#calculation\n",
+ "#lamda = 2*d*(1/math.sqrt(2));\n",
+ "lamda = (n*h)/float(m*v); #wavelength of neutron\n",
+ "\n",
+ "#result\n",
+ "print'wavelength of neutron =%3.2e'%lamda,'m/n';\n",
+ "print' Note:calculation mistake in text book in calculating wavelength ';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.16,Page No:1.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice parameter = 2 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "m = 9.1*10**-31; # mass of electron in kilograms\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "n = 1; #bragg's reflection\n",
+ "h1 = 6.62*10**-34; #planck's constant J.s\n",
+ "n = 1; #bragg reflecton \n",
+ "V = 200; #voltage in V\n",
+ "theta = 22; #observed reflection\n",
+ " \n",
+ "#calculation\n",
+ "\n",
+ "lamda = h1/math.sqrt(2*m*e*V);\n",
+ "dhkl = (n*lamda)/float(2*math.sin(theta*math.pi/180));\n",
+ "a = dhkl*math.sqrt(3); #lattice parameter in Å\n",
+ " \n",
+ "#result\n",
+ " \n",
+ "print'lattice parameter =%3.0f'%(a*10**10),'Å';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_2.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_2.ipynb
new file mode 100644
index 00000000..51ab5318
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_2.ipynb
@@ -0,0 +1,811 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 1:Crystal Structure,Bonding and Defects in solids"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 1.1,Page No:1.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lattice Constant a = 4.00 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "p = 6250; # Density of crystal in kg/m**3\n",
+ "N = 6.023*10**26; #Avagadros number in atoms/kilomole\n",
+ "M = 60.2; #molecular weight per mole\n",
+ "n = 4; #No. of atoms per unit cell for FCC\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "a = ((n*M)/float(N*p))**(1/float(3)); #Lattice Constant Å\n",
+ "\n",
+ "#result\n",
+ "\n",
+ "print'Lattice Constant a = %3.2f'%(a*10**10),'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2,Page No:1.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "d100 = 6.30 Å\n",
+ "d110 = 4.45 Å\n",
+ "d111 = 3.64 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h1 = 1; #miller indice\n",
+ "k1 = 1; # miller indice\n",
+ "l1 = 1; # miller indice\n",
+ "h0 = 0; # miller indice\n",
+ "k0 = 0; # miller indice\n",
+ "l0 = 0; # miller indice\n",
+ "p = 1980; # Density of KCl in kg/m**3\n",
+ "N = 6.023*10**26; # Avagadros number in atoms/kilomole\n",
+ "M = 74.5; # molecular weight of KCl\n",
+ "n = 4; # No. of atoms per unit cell for FCC\n",
+ "\n",
+ "# calculations\n",
+ "a = ((n*M)/float(N*p))**(1/float(3));\n",
+ "\n",
+ "#dhkl = a/math.sqrt((h**2)+(k**2)+(l**2)); #interplanar distance\n",
+ "d100 = a/math.sqrt((h1**2)+(k0**2)+(l0**2)); # interplanar distance\n",
+ "d110 = a/math.sqrt((h1**2)+(k1**2)+(l0**2)); # interplanar distance\n",
+ "d111 = a/math.sqrt((h1**2)+(k1**2)+(l1**2)); # interplanar distance\n",
+ "\n",
+ "# Output\n",
+ "print'd100 = %3.2f'%(d100*10**10),'Å';\n",
+ "print'd110 = %3.2f'%(d110*10**10),'Å';\n",
+ "print'd111 = %3.2f'%(d111*10**10),'Å';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3,Page No:1.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 1 4 2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 4; #miller indices\n",
+ "k = 1; #miller indices\n",
+ "l = 2; #miller indices\n",
+ " \n",
+ "#calculation\n",
+ "d = fractions.gcd(h,k);\n",
+ "lcm = (h*k)/float(d);\n",
+ "e = fractions.gcd(lcm,l);\n",
+ "lc = (lcm*l)/float(e); #finding lcm\n",
+ "h1 =1/float(h); \n",
+ "k1 =1/float(k);\n",
+ "l1 =1/float(l);\n",
+ "a = h1*lc; #miller indices\n",
+ "b = k1*lc; #miller indices\n",
+ "c = l1*lc; #miller indices\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d '%a,'%d'%b,'%d'%c;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4,Page No:1.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 4 3 6\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are 3a,4b,2c\n",
+ "#from the law of rational indices\n",
+ "#3a:4b:2c=a/h:b/k:c/l\n",
+ "\n",
+ "#Variable Declaration\n",
+ "h1 = 3; #miller indices\n",
+ "k1 = 4; #miller indices\n",
+ "l1 = 2; #miller indices\n",
+ " \n",
+ "#calculation\n",
+ "d = fractions.gcd(h1,k1);\n",
+ "lcm = (h1*k1)/float(d);\n",
+ "e = fractions.gcd(lcm,l1);\n",
+ "lc = (lcm*l1)/float(e); #finding lcm\n",
+ "\n",
+ "h = lc*1/float(h1); #miller indices \n",
+ "k = lc*1/float(k1); #miller indices\n",
+ "l= lc*1/float(l1); #miller indices\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d'%h,'%d'%k,'%d'%l;\n",
+ " \n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5,Page No:1.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 6 3 -4\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are a,2b,-3c/2\n",
+ "#from the law of rational indices\n",
+ "#a:2b:-3c/2=a/h:b/k:c/l\n",
+ "\n",
+ "\n",
+ "#variable declaration\n",
+ "h1 = 1; #miller indices\n",
+ "k1 = 2; #miller indices\n",
+ "l1 = 3; #miller indices \n",
+ "\n",
+ "#calculation\n",
+ "d = fractions.gcd(h1,k1);\n",
+ "lcm = (h1*k1)/float(d);\n",
+ "e = fractions.gcd(lcm,l1);\n",
+ "lc = (lcm*l1)/float(e);\n",
+ "h2 = 1;\n",
+ "k2 = 1/float(k1);\n",
+ "l2 = -2/float(l1)\n",
+ "h = h2*lc; #miller indices \n",
+ "k = (k2)*(lc); #miller indices \n",
+ "l = (l2)*(lc); #miller indices \n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %3.0f'%h,'%3.0f'%k,'%3.0f'%l;\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6,Page No:1.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 1 1 2\n",
+ "Note:printing mistake of miller indices in textbook \n",
+ "\n",
+ "\n",
+ "miller indices = 1 2 0\n",
+ "\n",
+ "miller indices = 1 2 1\n",
+ "Note:calculation mistake in textbook\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are 3a,3b,2c\n",
+ "#from the law of rational indices\n",
+ "#3a:3b:2c=a/h:b/k:c/l\n",
+ "#variable declaration\n",
+ "a = 4;\n",
+ "b = 4;\n",
+ "c = 2;\n",
+ "a1 = 2;\n",
+ "b1 = 1;\n",
+ "c1 = 1;\n",
+ "a3 = 1;\n",
+ "b3 = 1;\n",
+ "c3 = 1;\n",
+ "h12 = 1/float(2); #miller indices\n",
+ "k12 = 1; #miller indices\n",
+ "#l12 = 1/math.inf; #miller indices\n",
+ "l12 =0;\n",
+ "h13 = 1; #miller indices\n",
+ "k13 = 2; #miller indices\n",
+ "l13 = 1; #miller indices\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "d = fractions.gcd(a,b);\n",
+ "lcm = (a*b)/float(d);\n",
+ "e = fractions.gcd(lcm,c);\n",
+ "lc = (lcm*c)/float(e); #finding lcm \n",
+ "h1 = 1/float(4); #miller indices\n",
+ "k1 = 1/float(4); #miller indices\n",
+ "l1 = 1/float(2); #miller indices\n",
+ "h = h1*(lc); #miller indices\n",
+ "k = (k1)*(lc); #miller indices\n",
+ "l = (l1)*(lc); #miller indices\n",
+ "\n",
+ "d = fractions.gcd(a1,b1);\n",
+ "lcm = (a1*b1)/float(d);\n",
+ "e = fractions.gcd(lcm,c1);\n",
+ "lc1 = (lcm*c1)/float(e);\n",
+ "# 1/%inf = 0 ; (1/2 1/1 0/1) hence lcm is taken for [2 1 1]\n",
+ "h3 = h12*(lc1); #miller indices\n",
+ "k3 = (k12)*(lc1); #miller indices\n",
+ "l3 = (l12)*(lc1); #miller indices\n",
+ "\n",
+ "\n",
+ "d = fractions.gcd(a3,b3);\n",
+ "lcm = (a3*b3)/float(d);\n",
+ "e = fractions.gcd(lcm,c3);\n",
+ "lc2 = (lcm*c3)/float(e);\n",
+ "h4 = h13*(lc2); #miller indices\n",
+ "k4 = k13*(lc2); #miller indices\n",
+ "l4 = l13*(lc2); #miller indices\n",
+ "\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d'%h,'%d'%k,'%d'%l;\n",
+ "print'Note:printing mistake of miller indices in textbook \\n';\n",
+ "print'\\nmiller indices = %d'%h3,'%d'%k3,'%d'%l3;\n",
+ "print'\\nmiller indices = %d'%h4,'%d'%k4,'%d'%lc2;\n",
+ "print'Note:calculation mistake in textbook\\n';\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.7,Page No:1.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "d100 = 1.00 a\n",
+ "d111 = 0.58 a\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 1; #miller indices\n",
+ "k = 0; #miller indices\n",
+ "l = 0; #miller indices\n",
+ "h1 = 1; #miller indices\n",
+ "k1 = 1; #miller indices\n",
+ "l1 = 1; #miller indices\n",
+ "\n",
+ "#calculations\n",
+ "d100 = 1/float(math.sqrt((h**2)+(k**2)+(l**2)));\n",
+ "d111 = 1/float(math.sqrt((h1**2)+(k1**2)+(l1**2)));\n",
+ "\n",
+ "#result\n",
+ "print'd100 = %3.2f a'%d100;\n",
+ "print'd111 = %3.2f a'%d111;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8,Page No:1.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 2 1 0\n",
+ "interplanar distance is =4.47 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are a,2b,-3c/2\n",
+ "#from the law of rational indices\n",
+ "#a:2b:-3c/2=a/h:b/k:c/l\n",
+ "\n",
+ "\n",
+ "#variable declaration\n",
+ "h1 = 1;\n",
+ "k1 = 2;\n",
+ "l1 = 1;\n",
+ "a = 10*10**-9; \n",
+ "\n",
+ "#calculation\n",
+ "h12 = 1; #miller indices\n",
+ "k12 = 1/float(k1); #miller indices\n",
+ "l12 = 0; #miller indices\n",
+ "\n",
+ "#1/%inf = 0 ; (1/2 1/1 0/1) hence lcm is taken for [2 1 1]\n",
+ "d = fractions.gcd(h1,k1);\n",
+ "lcm = (h1*k1)/float(d);\n",
+ "e = fractions.gcd(lcm,l1);\n",
+ "lc = (lcm*l1)/float(e);\n",
+ "h = h12*(lcm); #miller indices\n",
+ "k = (k12)*(lcm); #miller indices\n",
+ "l = (l12)*(lcm); #miller indices\n",
+ "d = a/float(((h**2)+(k**2)+(l**2))**(1/float(2)));\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d'%h,'%d'%k,'%d'%l;\n",
+ "print'interplanar distance is =%3.2f'%(d*10**9),'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.9,Page No:1.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "inter planar spacing =1.32e-10 m/n\n",
+ "Note : calculation mistake in textbook in calculating in dhkl,r value istaken as 0.125*10**-9 instead of 0.175*10**-9 \n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable Declaration\n",
+ "\n",
+ "r = 0.175*10**-9; #radius in m\n",
+ "h = 2; #miller indices\n",
+ "k = 3; #miller indices\n",
+ "l = 1; #miller indices\n",
+ "\n",
+ "#calculation\n",
+ "a = (4*r)/math.sqrt(2);\n",
+ "dhkl = a/float(math.sqrt((h**2)+(k**2)+(l**2)));\n",
+ " \n",
+ "#result\n",
+ "print'inter planar spacing =%3.2e'%dhkl,'m/n';\n",
+ "print'Note : calculation mistake in textbook in calculating in dhkl,r value istaken as 0.125*10**-9 instead of 0.175*10**-9 ';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.10,Page No:1.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "distance between two atoms =1.732 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "a = 4; #lattice constant in Å\n",
+ "\n",
+ "#calculation\n",
+ "d = (math.sqrt(3)*a)/float(4); #distance between two atoms in Å\n",
+ " \n",
+ "#result\n",
+ "print'distance between two atoms =%3.3f'%d,'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "##Example 1.11,Page No:1.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength=0.431 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 1.41; #lattice constant in Å\n",
+ "theta = 8.8; # angle in degrees\n",
+ "n = 1;\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "lamda = (2*d*(math.sin(theta*math.pi/float(180))))/float(n); #wavelength in Å\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'wavelength=%3.3f'%lamda,'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.12,Page No:1.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength =0.7822 Å\n",
+ "glancing angle =18.2 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "d = 2.5; #spacing in angstroms\n",
+ "theta = 9; #glancing angle in degrees\n",
+ "n1 = 1;\n",
+ "n2 = 2;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "lamda = (2*math.sin(theta*(math.pi/180))*d); #wavelength Å\n",
+ "theta = math.asin((2*lamda)/float(2*d)); #glancing angle in °\n",
+ "\n",
+ "#result\n",
+ "print'wavelength =%3.4f'%lamda,'Å';\n",
+ "print'glancing angle =%3.1f'%(theta*(180/math.pi)),'°';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.13,Page No:1.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice constant=1.15 Å\n",
+ "note:printing mistake in textbook in calculation part,n value is printed as 2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "lamda = 2; #wavelength in angstroms\n",
+ "theta1 = 60; #angle in degrees\n",
+ "n = 1;\n",
+ " \n",
+ "#formula\n",
+ "#2*d*math.sin(theta)=n*lamda\n",
+ "#calculation\n",
+ "d = (n*lamda)/(2*math.sin(theta1*math.pi/float(180))); #lattice constant in Å\n",
+ "\n",
+ "#result\n",
+ "print'lattice constant=%3.2f'%d,'Å';\n",
+ "print'note:printing mistake in textbook in calculation part,n value is printed as 2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.14,Page No:1.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "angle=37.32 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "lamda = 1.4*10**-10; #wavelength in angstroms\n",
+ "a = 2*10**-10; #lattice parameter in angstroms\n",
+ "h = 1; #miller indices\n",
+ "k = 1; #miller indices\n",
+ "l = 1; #miller indices\n",
+ "n = 1;\n",
+ "#formula\n",
+ "#2*d*math.sin(theta)=n*lamda\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "dhkl = a/float(math.sqrt((h**2)+(k**2)+(l**2))); #inter planar spacing\n",
+ "theta = math.asin((n*lamda)/float(2*dhkl)); #angle in °\n",
+ "\n",
+ "#result\n",
+ "print'angle=%3.2f'%(theta*(180/float(math.pi))),'°';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.15,Page No:1.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of neutron =7.33e+02 m/n\n",
+ " Note:calculation mistake in text book in calculating wavelength \n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variabledeclaration\n",
+ "d = 3.84 *10**-10; #spacing between planes in m\n",
+ "theta = 45; #glancing angle in degrees\n",
+ "m = 1.67*10**-27; #mass ef electron\n",
+ "h = 6.62*10**-34; #planck's constant\n",
+ "n = 1; #braggg reflextion \n",
+ "v = 5.41*10**-10;\n",
+ " \n",
+ "#calculation\n",
+ "#lamda = 2*d*(1/math.sqrt(2));\n",
+ "lamda = (n*h)/float(m*v); #wavelength of neutron\n",
+ "\n",
+ "#result\n",
+ "print'wavelength of neutron =%3.2e'%lamda,'m/n';\n",
+ "print' Note:calculation mistake in text book in calculating wavelength ';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.16,Page No:1.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice parameter = 2 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "m = 9.1*10**-31; # mass of electron in kilograms\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "n = 1; #bragg's reflection\n",
+ "h1 = 6.62*10**-34; #planck's constant J.s\n",
+ "n = 1; #bragg reflecton \n",
+ "V = 200; #voltage in V\n",
+ "theta = 22; #observed reflection\n",
+ " \n",
+ "#calculation\n",
+ "\n",
+ "lamda = h1/math.sqrt(2*m*e*V);\n",
+ "dhkl = (n*lamda)/float(2*math.sin(theta*math.pi/180));\n",
+ "a = dhkl*math.sqrt(3); #lattice parameter in Å\n",
+ " \n",
+ "#result\n",
+ " \n",
+ "print'lattice parameter =%3.0f'%(a*10**10),'Å';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_3.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_3.ipynb
new file mode 100644
index 00000000..7a93f17f
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_3.ipynb
@@ -0,0 +1,811 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 1:Crystal Structure,Bonding and Defects in solids"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 1.1,Page No:1.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lattice Constant a = 4.00 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "p = 6250; # Density of crystal in kg/m**3\n",
+ "N = 6.023*10**26; #Avagadros number in atoms/kilomole\n",
+ "M = 60.2; #molecular weight per mole\n",
+ "n = 4; #No. of atoms per unit cell for FCC\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "a = ((n*M)/float(N*p))**(1/float(3)); #Lattice Constant Å\n",
+ "\n",
+ "#result\n",
+ "\n",
+ "print'Lattice Constant a = %3.2f'%(a*10**10),'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2,Page No:1.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "d100 = 6.30 Å\n",
+ "d110 = 4.45 Å\n",
+ "d111 = 3.64 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h1 = 1; #miller indice\n",
+ "k1 = 1; # miller indice\n",
+ "l1 = 1; # miller indice\n",
+ "h0 = 0; # miller indice\n",
+ "k0 = 0; # miller indice\n",
+ "l0 = 0; # miller indice\n",
+ "p = 1980; # Density of KCl in kg/m**3\n",
+ "N = 6.023*10**26; # Avagadros number in atoms/kilomole\n",
+ "M = 74.5; # molecular weight of KCl\n",
+ "n = 4; # No. of atoms per unit cell for FCC\n",
+ "\n",
+ "# calculations\n",
+ "a = ((n*M)/float(N*p))**(1/float(3));\n",
+ "\n",
+ "#dhkl = a/math.sqrt((h**2)+(k**2)+(l**2)); #interplanar distance\n",
+ "d100 = a/math.sqrt((h1**2)+(k0**2)+(l0**2)); # interplanar distance\n",
+ "d110 = a/math.sqrt((h1**2)+(k1**2)+(l0**2)); # interplanar distance\n",
+ "d111 = a/math.sqrt((h1**2)+(k1**2)+(l1**2)); # interplanar distance\n",
+ "\n",
+ "# Output\n",
+ "print'd100 = %3.2f'%(d100*10**10),'Å';\n",
+ "print'd110 = %3.2f'%(d110*10**10),'Å';\n",
+ "print'd111 = %3.2f'%(d111*10**10),'Å';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3,Page No:1.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 1 4 2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 4; #miller indices\n",
+ "k = 1; #miller indices\n",
+ "l = 2; #miller indices\n",
+ " \n",
+ "#calculation\n",
+ "d = fractions.gcd(h,k);\n",
+ "lcm = (h*k)/float(d);\n",
+ "e = fractions.gcd(lcm,l);\n",
+ "lc = (lcm*l)/float(e); #finding lcm\n",
+ "h1 =1/float(h); \n",
+ "k1 =1/float(k);\n",
+ "l1 =1/float(l);\n",
+ "a = h1*lc; #miller indices\n",
+ "b = k1*lc; #miller indices\n",
+ "c = l1*lc; #miller indices\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d '%a,'%d'%b,'%d'%c;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4,Page No:1.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 4 3 6\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are 3a,4b,2c\n",
+ "#from the law of rational indices\n",
+ "#3a:4b:2c=a/h:b/k:c/l\n",
+ "\n",
+ "#Variable Declaration\n",
+ "h1 = 3; #miller indices\n",
+ "k1 = 4; #miller indices\n",
+ "l1 = 2; #miller indices\n",
+ " \n",
+ "#calculation\n",
+ "d = fractions.gcd(h1,k1);\n",
+ "lcm = (h1*k1)/float(d);\n",
+ "e = fractions.gcd(lcm,l1);\n",
+ "lc = (lcm*l1)/float(e); #finding lcm\n",
+ "\n",
+ "h = lc*1/float(h1); #miller indices \n",
+ "k = lc*1/float(k1); #miller indices\n",
+ "l= lc*1/float(l1); #miller indices\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d'%h,'%d'%k,'%d'%l;\n",
+ " \n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5,Page No:1.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 6 3 -4\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are a,2b,-3c/2\n",
+ "#from the law of rational indices\n",
+ "#a:2b:-3c/2=a/h:b/k:c/l\n",
+ "\n",
+ "\n",
+ "#variable declaration\n",
+ "h1 = 1; #miller indices\n",
+ "k1 = 2; #miller indices\n",
+ "l1 = 3; #miller indices \n",
+ "\n",
+ "#calculation\n",
+ "d = fractions.gcd(h1,k1);\n",
+ "lcm = (h1*k1)/float(d);\n",
+ "e = fractions.gcd(lcm,l1);\n",
+ "lc = (lcm*l1)/float(e);\n",
+ "h2 = 1;\n",
+ "k2 = 1/float(k1);\n",
+ "l2 = -2/float(l1)\n",
+ "h = h2*lc; #miller indices \n",
+ "k = (k2)*(lc); #miller indices \n",
+ "l = (l2)*(lc); #miller indices \n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %3.0f'%h,'%3.0f'%k,'%3.0f'%l;\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6,Page No:1.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 1 1 2\n",
+ "Note:printing mistake of miller indices in textbook \n",
+ "\n",
+ "\n",
+ "miller indices = 1 2 0\n",
+ "\n",
+ "miller indices = 1 2 1\n",
+ "Note:calculation mistake in textbook\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are 3a,3b,2c\n",
+ "#from the law of rational indices\n",
+ "#3a:3b:2c=a/h:b/k:c/l\n",
+ "#variable declaration\n",
+ "a = 4;\n",
+ "b = 4;\n",
+ "c = 2;\n",
+ "a1 = 2;\n",
+ "b1 = 1;\n",
+ "c1 = 1;\n",
+ "a3 = 1;\n",
+ "b3 = 1;\n",
+ "c3 = 1;\n",
+ "h12 = 1/float(2); #miller indices\n",
+ "k12 = 1; #miller indices\n",
+ "#l12 = 1/math.inf; #miller indices\n",
+ "l12 =0;\n",
+ "h13 = 1; #miller indices\n",
+ "k13 = 2; #miller indices\n",
+ "l13 = 1; #miller indices\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "d = fractions.gcd(a,b);\n",
+ "lcm = (a*b)/float(d);\n",
+ "e = fractions.gcd(lcm,c);\n",
+ "lc = (lcm*c)/float(e); #finding lcm \n",
+ "h1 = 1/float(4); #miller indices\n",
+ "k1 = 1/float(4); #miller indices\n",
+ "l1 = 1/float(2); #miller indices\n",
+ "h = h1*(lc); #miller indices\n",
+ "k = (k1)*(lc); #miller indices\n",
+ "l = (l1)*(lc); #miller indices\n",
+ "\n",
+ "d = fractions.gcd(a1,b1);\n",
+ "lcm = (a1*b1)/float(d);\n",
+ "e = fractions.gcd(lcm,c1);\n",
+ "lc1 = (lcm*c1)/float(e);\n",
+ "# 1/%inf = 0 ; (1/2 1/1 0/1) hence lcm is taken for [2 1 1]\n",
+ "h3 = h12*(lc1); #miller indices\n",
+ "k3 = (k12)*(lc1); #miller indices\n",
+ "l3 = (l12)*(lc1); #miller indices\n",
+ "\n",
+ "\n",
+ "d = fractions.gcd(a3,b3);\n",
+ "lcm = (a3*b3)/float(d);\n",
+ "e = fractions.gcd(lcm,c3);\n",
+ "lc2 = (lcm*c3)/float(e);\n",
+ "h4 = h13*(lc2); #miller indices\n",
+ "k4 = k13*(lc2); #miller indices\n",
+ "l4 = l13*(lc2); #miller indices\n",
+ "\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d'%h,'%d'%k,'%d'%l;\n",
+ "print'Note:printing mistake of miller indices in textbook \\n';\n",
+ "print'\\nmiller indices = %d'%h3,'%d'%k3,'%d'%l3;\n",
+ "print'\\nmiller indices = %d'%h4,'%d'%k4,'%d'%lc2;\n",
+ "print'Note:calculation mistake in textbook\\n';\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.7,Page No:1.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "d100 = 1.00 a\n",
+ "d111 = 0.58 a\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 1; #miller indices\n",
+ "k = 0; #miller indices\n",
+ "l = 0; #miller indices\n",
+ "h1 = 1; #miller indices\n",
+ "k1 = 1; #miller indices\n",
+ "l1 = 1; #miller indices\n",
+ "\n",
+ "#calculations\n",
+ "d100 = 1/float(math.sqrt((h**2)+(k**2)+(l**2)));\n",
+ "d111 = 1/float(math.sqrt((h1**2)+(k1**2)+(l1**2)));\n",
+ "\n",
+ "#result\n",
+ "print'd100 = %3.2f a'%d100;\n",
+ "print'd111 = %3.2f a'%d111;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8,Page No:1.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 2 1 0\n",
+ "interplanar distance is =4.47 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are a,2b,-3c/2\n",
+ "#from the law of rational indices\n",
+ "#a:2b:-3c/2=a/h:b/k:c/l\n",
+ "\n",
+ "\n",
+ "#variable declaration\n",
+ "h1 = 1;\n",
+ "k1 = 2;\n",
+ "l1 = 1;\n",
+ "a = 10*10**-9; \n",
+ "\n",
+ "#calculation\n",
+ "h12 = 1; #miller indices\n",
+ "k12 = 1/float(k1); #miller indices\n",
+ "l12 = 0; #miller indices\n",
+ "\n",
+ "#1/%inf = 0 ; (1/2 1/1 0/1) hence lcm is taken for [2 1 1]\n",
+ "d = fractions.gcd(h1,k1);\n",
+ "lcm = (h1*k1)/float(d);\n",
+ "e = fractions.gcd(lcm,l1);\n",
+ "lc = (lcm*l1)/float(e);\n",
+ "h = h12*(lcm); #miller indices\n",
+ "k = (k12)*(lcm); #miller indices\n",
+ "l = (l12)*(lcm); #miller indices\n",
+ "d = a/float(((h**2)+(k**2)+(l**2))**(1/float(2)));\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d'%h,'%d'%k,'%d'%l;\n",
+ "print'interplanar distance is =%3.2f'%(d*10**9),'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.9,Page No:1.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "inter planar spacing =1.32e-10 m/n\n",
+ "Note : calculation mistake in textbook in calculating in dhkl,r value istaken as 0.125*10**-9 instead of 0.175*10**-9 \n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable Declaration\n",
+ "\n",
+ "r = 0.175*10**-9; #radius in m\n",
+ "h = 2; #miller indices\n",
+ "k = 3; #miller indices\n",
+ "l = 1; #miller indices\n",
+ "\n",
+ "#calculation\n",
+ "a = (4*r)/math.sqrt(2);\n",
+ "dhkl = a/float(math.sqrt((h**2)+(k**2)+(l**2)));\n",
+ " \n",
+ "#result\n",
+ "print'inter planar spacing =%3.2e'%dhkl,'m/n';\n",
+ "print'Note : calculation mistake in textbook in calculating in dhkl,r value istaken as 0.125*10**-9 instead of 0.175*10**-9 ';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.10,Page No:1.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "distance between two atoms =1.732 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "a = 4; #lattice constant in Å\n",
+ "\n",
+ "#calculation\n",
+ "d = (math.sqrt(3)*a)/float(4); #distance between two atoms in Å\n",
+ " \n",
+ "#result\n",
+ "print'distance between two atoms =%3.3f'%d,'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "##Example 1.11,Page No:1.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength=0.431 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 1.41; #lattice constant in Å\n",
+ "theta = 8.8; # angle in degrees\n",
+ "n = 1;\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "lamda = (2*d*(math.sin(theta*math.pi/float(180))))/float(n); #wavelength in Å\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'wavelength=%3.3f'%lamda,'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.12,Page No:1.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength =0.7822 Å\n",
+ "glancing angle =18.2 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "d = 2.5; #spacing in angstroms\n",
+ "theta = 9; #glancing angle in degrees\n",
+ "n1 = 1;\n",
+ "n2 = 2;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "lamda = (2*math.sin(theta*(math.pi/180))*d); #wavelength Å\n",
+ "theta = math.asin((2*lamda)/float(2*d)); #glancing angle in °\n",
+ "\n",
+ "#result\n",
+ "print'wavelength =%3.4f'%lamda,'Å';\n",
+ "print'glancing angle =%3.1f'%(theta*(180/math.pi)),'°';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.13,Page No:1.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice constant=1.15 Å\n",
+ "note:printing mistake in textbook in calculation part,n value is printed as 2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "lamda = 2; #wavelength in angstroms\n",
+ "theta1 = 60; #angle in degrees\n",
+ "n = 1;\n",
+ " \n",
+ "#formula\n",
+ "#2*d*math.sin(theta)=n*lamda\n",
+ "#calculation\n",
+ "d = (n*lamda)/(2*math.sin(theta1*math.pi/float(180))); #lattice constant in Å\n",
+ "\n",
+ "#result\n",
+ "print'lattice constant=%3.2f'%d,'Å';\n",
+ "print'note:printing mistake in textbook in calculation part,n value is printed as 2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.14,Page No:1.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "angle=37.32 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "lamda = 1.4*10**-10; #wavelength in angstroms\n",
+ "a = 2*10**-10; #lattice parameter in angstroms\n",
+ "h = 1; #miller indices\n",
+ "k = 1; #miller indices\n",
+ "l = 1; #miller indices\n",
+ "n = 1;\n",
+ "#formula\n",
+ "#2*d*math.sin(theta)=n*lamda\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "dhkl = a/float(math.sqrt((h**2)+(k**2)+(l**2))); #inter planar spacing\n",
+ "theta = math.asin((n*lamda)/float(2*dhkl)); #angle in °\n",
+ "\n",
+ "#result\n",
+ "print'angle=%3.2f'%(theta*(180/float(math.pi))),'°';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.15,Page No:1.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of neutron =7.33e+02 m/n\n",
+ " Note:calculation mistake in text book in calculating wavelength \n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variabledeclaration\n",
+ "d = 3.84 *10**-10; #spacing between planes in m\n",
+ "theta = 45; #glancing angle in degrees\n",
+ "m = 1.67*10**-27; #mass ef electron\n",
+ "h = 6.62*10**-34; #planck's constant\n",
+ "n = 1; #braggg reflextion \n",
+ "v = 5.41*10**-10;\n",
+ " \n",
+ "#calculation\n",
+ "#lamda = 2*d*(1/math.sqrt(2));\n",
+ "lamda = (n*h)/float(m*v); #wavelength of neutron\n",
+ "\n",
+ "#result\n",
+ "print'wavelength of neutron =%3.2e'%lamda,'m/n';\n",
+ "print' Note:calculation mistake in text book in calculating wavelength ';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.16,Page No:1.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice parameter = 2 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "m = 9.1*10**-31; # mass of electron in kilograms\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "n = 1; #bragg's reflection\n",
+ "h1 = 6.62*10**-34; #planck's constant J.s\n",
+ "n = 1; #bragg reflecton \n",
+ "V = 200; #voltage in V\n",
+ "theta = 22; #observed reflection\n",
+ " \n",
+ "#calculation\n",
+ "\n",
+ "lamda = h1/math.sqrt(2*m*e*V);\n",
+ "dhkl = (n*lamda)/float(2*math.sin(theta*math.pi/180));\n",
+ "a = dhkl*math.sqrt(3); #lattice parameter in Å\n",
+ " \n",
+ "#result\n",
+ " \n",
+ "print'lattice parameter =%3.0f'%(a*10**10),'Å';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_4.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_4.ipynb
new file mode 100644
index 00000000..7a93f17f
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_4.ipynb
@@ -0,0 +1,811 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 1:Crystal Structure,Bonding and Defects in solids"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 1.1,Page No:1.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lattice Constant a = 4.00 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "p = 6250; # Density of crystal in kg/m**3\n",
+ "N = 6.023*10**26; #Avagadros number in atoms/kilomole\n",
+ "M = 60.2; #molecular weight per mole\n",
+ "n = 4; #No. of atoms per unit cell for FCC\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "a = ((n*M)/float(N*p))**(1/float(3)); #Lattice Constant Å\n",
+ "\n",
+ "#result\n",
+ "\n",
+ "print'Lattice Constant a = %3.2f'%(a*10**10),'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2,Page No:1.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "d100 = 6.30 Å\n",
+ "d110 = 4.45 Å\n",
+ "d111 = 3.64 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h1 = 1; #miller indice\n",
+ "k1 = 1; # miller indice\n",
+ "l1 = 1; # miller indice\n",
+ "h0 = 0; # miller indice\n",
+ "k0 = 0; # miller indice\n",
+ "l0 = 0; # miller indice\n",
+ "p = 1980; # Density of KCl in kg/m**3\n",
+ "N = 6.023*10**26; # Avagadros number in atoms/kilomole\n",
+ "M = 74.5; # molecular weight of KCl\n",
+ "n = 4; # No. of atoms per unit cell for FCC\n",
+ "\n",
+ "# calculations\n",
+ "a = ((n*M)/float(N*p))**(1/float(3));\n",
+ "\n",
+ "#dhkl = a/math.sqrt((h**2)+(k**2)+(l**2)); #interplanar distance\n",
+ "d100 = a/math.sqrt((h1**2)+(k0**2)+(l0**2)); # interplanar distance\n",
+ "d110 = a/math.sqrt((h1**2)+(k1**2)+(l0**2)); # interplanar distance\n",
+ "d111 = a/math.sqrt((h1**2)+(k1**2)+(l1**2)); # interplanar distance\n",
+ "\n",
+ "# Output\n",
+ "print'd100 = %3.2f'%(d100*10**10),'Å';\n",
+ "print'd110 = %3.2f'%(d110*10**10),'Å';\n",
+ "print'd111 = %3.2f'%(d111*10**10),'Å';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3,Page No:1.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 1 4 2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 4; #miller indices\n",
+ "k = 1; #miller indices\n",
+ "l = 2; #miller indices\n",
+ " \n",
+ "#calculation\n",
+ "d = fractions.gcd(h,k);\n",
+ "lcm = (h*k)/float(d);\n",
+ "e = fractions.gcd(lcm,l);\n",
+ "lc = (lcm*l)/float(e); #finding lcm\n",
+ "h1 =1/float(h); \n",
+ "k1 =1/float(k);\n",
+ "l1 =1/float(l);\n",
+ "a = h1*lc; #miller indices\n",
+ "b = k1*lc; #miller indices\n",
+ "c = l1*lc; #miller indices\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d '%a,'%d'%b,'%d'%c;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4,Page No:1.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 4 3 6\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are 3a,4b,2c\n",
+ "#from the law of rational indices\n",
+ "#3a:4b:2c=a/h:b/k:c/l\n",
+ "\n",
+ "#Variable Declaration\n",
+ "h1 = 3; #miller indices\n",
+ "k1 = 4; #miller indices\n",
+ "l1 = 2; #miller indices\n",
+ " \n",
+ "#calculation\n",
+ "d = fractions.gcd(h1,k1);\n",
+ "lcm = (h1*k1)/float(d);\n",
+ "e = fractions.gcd(lcm,l1);\n",
+ "lc = (lcm*l1)/float(e); #finding lcm\n",
+ "\n",
+ "h = lc*1/float(h1); #miller indices \n",
+ "k = lc*1/float(k1); #miller indices\n",
+ "l= lc*1/float(l1); #miller indices\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d'%h,'%d'%k,'%d'%l;\n",
+ " \n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5,Page No:1.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 6 3 -4\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are a,2b,-3c/2\n",
+ "#from the law of rational indices\n",
+ "#a:2b:-3c/2=a/h:b/k:c/l\n",
+ "\n",
+ "\n",
+ "#variable declaration\n",
+ "h1 = 1; #miller indices\n",
+ "k1 = 2; #miller indices\n",
+ "l1 = 3; #miller indices \n",
+ "\n",
+ "#calculation\n",
+ "d = fractions.gcd(h1,k1);\n",
+ "lcm = (h1*k1)/float(d);\n",
+ "e = fractions.gcd(lcm,l1);\n",
+ "lc = (lcm*l1)/float(e);\n",
+ "h2 = 1;\n",
+ "k2 = 1/float(k1);\n",
+ "l2 = -2/float(l1)\n",
+ "h = h2*lc; #miller indices \n",
+ "k = (k2)*(lc); #miller indices \n",
+ "l = (l2)*(lc); #miller indices \n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %3.0f'%h,'%3.0f'%k,'%3.0f'%l;\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6,Page No:1.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 1 1 2\n",
+ "Note:printing mistake of miller indices in textbook \n",
+ "\n",
+ "\n",
+ "miller indices = 1 2 0\n",
+ "\n",
+ "miller indices = 1 2 1\n",
+ "Note:calculation mistake in textbook\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are 3a,3b,2c\n",
+ "#from the law of rational indices\n",
+ "#3a:3b:2c=a/h:b/k:c/l\n",
+ "#variable declaration\n",
+ "a = 4;\n",
+ "b = 4;\n",
+ "c = 2;\n",
+ "a1 = 2;\n",
+ "b1 = 1;\n",
+ "c1 = 1;\n",
+ "a3 = 1;\n",
+ "b3 = 1;\n",
+ "c3 = 1;\n",
+ "h12 = 1/float(2); #miller indices\n",
+ "k12 = 1; #miller indices\n",
+ "#l12 = 1/math.inf; #miller indices\n",
+ "l12 =0;\n",
+ "h13 = 1; #miller indices\n",
+ "k13 = 2; #miller indices\n",
+ "l13 = 1; #miller indices\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "d = fractions.gcd(a,b);\n",
+ "lcm = (a*b)/float(d);\n",
+ "e = fractions.gcd(lcm,c);\n",
+ "lc = (lcm*c)/float(e); #finding lcm \n",
+ "h1 = 1/float(4); #miller indices\n",
+ "k1 = 1/float(4); #miller indices\n",
+ "l1 = 1/float(2); #miller indices\n",
+ "h = h1*(lc); #miller indices\n",
+ "k = (k1)*(lc); #miller indices\n",
+ "l = (l1)*(lc); #miller indices\n",
+ "\n",
+ "d = fractions.gcd(a1,b1);\n",
+ "lcm = (a1*b1)/float(d);\n",
+ "e = fractions.gcd(lcm,c1);\n",
+ "lc1 = (lcm*c1)/float(e);\n",
+ "# 1/%inf = 0 ; (1/2 1/1 0/1) hence lcm is taken for [2 1 1]\n",
+ "h3 = h12*(lc1); #miller indices\n",
+ "k3 = (k12)*(lc1); #miller indices\n",
+ "l3 = (l12)*(lc1); #miller indices\n",
+ "\n",
+ "\n",
+ "d = fractions.gcd(a3,b3);\n",
+ "lcm = (a3*b3)/float(d);\n",
+ "e = fractions.gcd(lcm,c3);\n",
+ "lc2 = (lcm*c3)/float(e);\n",
+ "h4 = h13*(lc2); #miller indices\n",
+ "k4 = k13*(lc2); #miller indices\n",
+ "l4 = l13*(lc2); #miller indices\n",
+ "\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d'%h,'%d'%k,'%d'%l;\n",
+ "print'Note:printing mistake of miller indices in textbook \\n';\n",
+ "print'\\nmiller indices = %d'%h3,'%d'%k3,'%d'%l3;\n",
+ "print'\\nmiller indices = %d'%h4,'%d'%k4,'%d'%lc2;\n",
+ "print'Note:calculation mistake in textbook\\n';\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.7,Page No:1.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "d100 = 1.00 a\n",
+ "d111 = 0.58 a\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 1; #miller indices\n",
+ "k = 0; #miller indices\n",
+ "l = 0; #miller indices\n",
+ "h1 = 1; #miller indices\n",
+ "k1 = 1; #miller indices\n",
+ "l1 = 1; #miller indices\n",
+ "\n",
+ "#calculations\n",
+ "d100 = 1/float(math.sqrt((h**2)+(k**2)+(l**2)));\n",
+ "d111 = 1/float(math.sqrt((h1**2)+(k1**2)+(l1**2)));\n",
+ "\n",
+ "#result\n",
+ "print'd100 = %3.2f a'%d100;\n",
+ "print'd111 = %3.2f a'%d111;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8,Page No:1.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 2 1 0\n",
+ "interplanar distance is =4.47 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are a,2b,-3c/2\n",
+ "#from the law of rational indices\n",
+ "#a:2b:-3c/2=a/h:b/k:c/l\n",
+ "\n",
+ "\n",
+ "#variable declaration\n",
+ "h1 = 1;\n",
+ "k1 = 2;\n",
+ "l1 = 1;\n",
+ "a = 10*10**-9; \n",
+ "\n",
+ "#calculation\n",
+ "h12 = 1; #miller indices\n",
+ "k12 = 1/float(k1); #miller indices\n",
+ "l12 = 0; #miller indices\n",
+ "\n",
+ "#1/%inf = 0 ; (1/2 1/1 0/1) hence lcm is taken for [2 1 1]\n",
+ "d = fractions.gcd(h1,k1);\n",
+ "lcm = (h1*k1)/float(d);\n",
+ "e = fractions.gcd(lcm,l1);\n",
+ "lc = (lcm*l1)/float(e);\n",
+ "h = h12*(lcm); #miller indices\n",
+ "k = (k12)*(lcm); #miller indices\n",
+ "l = (l12)*(lcm); #miller indices\n",
+ "d = a/float(((h**2)+(k**2)+(l**2))**(1/float(2)));\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d'%h,'%d'%k,'%d'%l;\n",
+ "print'interplanar distance is =%3.2f'%(d*10**9),'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.9,Page No:1.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "inter planar spacing =1.32e-10 m/n\n",
+ "Note : calculation mistake in textbook in calculating in dhkl,r value istaken as 0.125*10**-9 instead of 0.175*10**-9 \n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable Declaration\n",
+ "\n",
+ "r = 0.175*10**-9; #radius in m\n",
+ "h = 2; #miller indices\n",
+ "k = 3; #miller indices\n",
+ "l = 1; #miller indices\n",
+ "\n",
+ "#calculation\n",
+ "a = (4*r)/math.sqrt(2);\n",
+ "dhkl = a/float(math.sqrt((h**2)+(k**2)+(l**2)));\n",
+ " \n",
+ "#result\n",
+ "print'inter planar spacing =%3.2e'%dhkl,'m/n';\n",
+ "print'Note : calculation mistake in textbook in calculating in dhkl,r value istaken as 0.125*10**-9 instead of 0.175*10**-9 ';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.10,Page No:1.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "distance between two atoms =1.732 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "a = 4; #lattice constant in Å\n",
+ "\n",
+ "#calculation\n",
+ "d = (math.sqrt(3)*a)/float(4); #distance between two atoms in Å\n",
+ " \n",
+ "#result\n",
+ "print'distance between two atoms =%3.3f'%d,'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "##Example 1.11,Page No:1.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength=0.431 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 1.41; #lattice constant in Å\n",
+ "theta = 8.8; # angle in degrees\n",
+ "n = 1;\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "lamda = (2*d*(math.sin(theta*math.pi/float(180))))/float(n); #wavelength in Å\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'wavelength=%3.3f'%lamda,'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.12,Page No:1.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength =0.7822 Å\n",
+ "glancing angle =18.2 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "d = 2.5; #spacing in angstroms\n",
+ "theta = 9; #glancing angle in degrees\n",
+ "n1 = 1;\n",
+ "n2 = 2;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "lamda = (2*math.sin(theta*(math.pi/180))*d); #wavelength Å\n",
+ "theta = math.asin((2*lamda)/float(2*d)); #glancing angle in °\n",
+ "\n",
+ "#result\n",
+ "print'wavelength =%3.4f'%lamda,'Å';\n",
+ "print'glancing angle =%3.1f'%(theta*(180/math.pi)),'°';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.13,Page No:1.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice constant=1.15 Å\n",
+ "note:printing mistake in textbook in calculation part,n value is printed as 2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "lamda = 2; #wavelength in angstroms\n",
+ "theta1 = 60; #angle in degrees\n",
+ "n = 1;\n",
+ " \n",
+ "#formula\n",
+ "#2*d*math.sin(theta)=n*lamda\n",
+ "#calculation\n",
+ "d = (n*lamda)/(2*math.sin(theta1*math.pi/float(180))); #lattice constant in Å\n",
+ "\n",
+ "#result\n",
+ "print'lattice constant=%3.2f'%d,'Å';\n",
+ "print'note:printing mistake in textbook in calculation part,n value is printed as 2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.14,Page No:1.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "angle=37.32 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "lamda = 1.4*10**-10; #wavelength in angstroms\n",
+ "a = 2*10**-10; #lattice parameter in angstroms\n",
+ "h = 1; #miller indices\n",
+ "k = 1; #miller indices\n",
+ "l = 1; #miller indices\n",
+ "n = 1;\n",
+ "#formula\n",
+ "#2*d*math.sin(theta)=n*lamda\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "dhkl = a/float(math.sqrt((h**2)+(k**2)+(l**2))); #inter planar spacing\n",
+ "theta = math.asin((n*lamda)/float(2*dhkl)); #angle in °\n",
+ "\n",
+ "#result\n",
+ "print'angle=%3.2f'%(theta*(180/float(math.pi))),'°';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.15,Page No:1.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of neutron =7.33e+02 m/n\n",
+ " Note:calculation mistake in text book in calculating wavelength \n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variabledeclaration\n",
+ "d = 3.84 *10**-10; #spacing between planes in m\n",
+ "theta = 45; #glancing angle in degrees\n",
+ "m = 1.67*10**-27; #mass ef electron\n",
+ "h = 6.62*10**-34; #planck's constant\n",
+ "n = 1; #braggg reflextion \n",
+ "v = 5.41*10**-10;\n",
+ " \n",
+ "#calculation\n",
+ "#lamda = 2*d*(1/math.sqrt(2));\n",
+ "lamda = (n*h)/float(m*v); #wavelength of neutron\n",
+ "\n",
+ "#result\n",
+ "print'wavelength of neutron =%3.2e'%lamda,'m/n';\n",
+ "print' Note:calculation mistake in text book in calculating wavelength ';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.16,Page No:1.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice parameter = 2 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "m = 9.1*10**-31; # mass of electron in kilograms\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "n = 1; #bragg's reflection\n",
+ "h1 = 6.62*10**-34; #planck's constant J.s\n",
+ "n = 1; #bragg reflecton \n",
+ "V = 200; #voltage in V\n",
+ "theta = 22; #observed reflection\n",
+ " \n",
+ "#calculation\n",
+ "\n",
+ "lamda = h1/math.sqrt(2*m*e*V);\n",
+ "dhkl = (n*lamda)/float(2*math.sin(theta*math.pi/180));\n",
+ "a = dhkl*math.sqrt(3); #lattice parameter in Å\n",
+ " \n",
+ "#result\n",
+ " \n",
+ "print'lattice parameter =%3.0f'%(a*10**10),'Å';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_5.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_5.ipynb
new file mode 100644
index 00000000..7a93f17f
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter1_5.ipynb
@@ -0,0 +1,811 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 1:Crystal Structure,Bonding and Defects in solids"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 1.1,Page No:1.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lattice Constant a = 4.00 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "p = 6250; # Density of crystal in kg/m**3\n",
+ "N = 6.023*10**26; #Avagadros number in atoms/kilomole\n",
+ "M = 60.2; #molecular weight per mole\n",
+ "n = 4; #No. of atoms per unit cell for FCC\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "a = ((n*M)/float(N*p))**(1/float(3)); #Lattice Constant Å\n",
+ "\n",
+ "#result\n",
+ "\n",
+ "print'Lattice Constant a = %3.2f'%(a*10**10),'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2,Page No:1.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "d100 = 6.30 Å\n",
+ "d110 = 4.45 Å\n",
+ "d111 = 3.64 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h1 = 1; #miller indice\n",
+ "k1 = 1; # miller indice\n",
+ "l1 = 1; # miller indice\n",
+ "h0 = 0; # miller indice\n",
+ "k0 = 0; # miller indice\n",
+ "l0 = 0; # miller indice\n",
+ "p = 1980; # Density of KCl in kg/m**3\n",
+ "N = 6.023*10**26; # Avagadros number in atoms/kilomole\n",
+ "M = 74.5; # molecular weight of KCl\n",
+ "n = 4; # No. of atoms per unit cell for FCC\n",
+ "\n",
+ "# calculations\n",
+ "a = ((n*M)/float(N*p))**(1/float(3));\n",
+ "\n",
+ "#dhkl = a/math.sqrt((h**2)+(k**2)+(l**2)); #interplanar distance\n",
+ "d100 = a/math.sqrt((h1**2)+(k0**2)+(l0**2)); # interplanar distance\n",
+ "d110 = a/math.sqrt((h1**2)+(k1**2)+(l0**2)); # interplanar distance\n",
+ "d111 = a/math.sqrt((h1**2)+(k1**2)+(l1**2)); # interplanar distance\n",
+ "\n",
+ "# Output\n",
+ "print'd100 = %3.2f'%(d100*10**10),'Å';\n",
+ "print'd110 = %3.2f'%(d110*10**10),'Å';\n",
+ "print'd111 = %3.2f'%(d111*10**10),'Å';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3,Page No:1.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 1 4 2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 4; #miller indices\n",
+ "k = 1; #miller indices\n",
+ "l = 2; #miller indices\n",
+ " \n",
+ "#calculation\n",
+ "d = fractions.gcd(h,k);\n",
+ "lcm = (h*k)/float(d);\n",
+ "e = fractions.gcd(lcm,l);\n",
+ "lc = (lcm*l)/float(e); #finding lcm\n",
+ "h1 =1/float(h); \n",
+ "k1 =1/float(k);\n",
+ "l1 =1/float(l);\n",
+ "a = h1*lc; #miller indices\n",
+ "b = k1*lc; #miller indices\n",
+ "c = l1*lc; #miller indices\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d '%a,'%d'%b,'%d'%c;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4,Page No:1.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 4 3 6\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are 3a,4b,2c\n",
+ "#from the law of rational indices\n",
+ "#3a:4b:2c=a/h:b/k:c/l\n",
+ "\n",
+ "#Variable Declaration\n",
+ "h1 = 3; #miller indices\n",
+ "k1 = 4; #miller indices\n",
+ "l1 = 2; #miller indices\n",
+ " \n",
+ "#calculation\n",
+ "d = fractions.gcd(h1,k1);\n",
+ "lcm = (h1*k1)/float(d);\n",
+ "e = fractions.gcd(lcm,l1);\n",
+ "lc = (lcm*l1)/float(e); #finding lcm\n",
+ "\n",
+ "h = lc*1/float(h1); #miller indices \n",
+ "k = lc*1/float(k1); #miller indices\n",
+ "l= lc*1/float(l1); #miller indices\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d'%h,'%d'%k,'%d'%l;\n",
+ " \n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5,Page No:1.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 6 3 -4\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are a,2b,-3c/2\n",
+ "#from the law of rational indices\n",
+ "#a:2b:-3c/2=a/h:b/k:c/l\n",
+ "\n",
+ "\n",
+ "#variable declaration\n",
+ "h1 = 1; #miller indices\n",
+ "k1 = 2; #miller indices\n",
+ "l1 = 3; #miller indices \n",
+ "\n",
+ "#calculation\n",
+ "d = fractions.gcd(h1,k1);\n",
+ "lcm = (h1*k1)/float(d);\n",
+ "e = fractions.gcd(lcm,l1);\n",
+ "lc = (lcm*l1)/float(e);\n",
+ "h2 = 1;\n",
+ "k2 = 1/float(k1);\n",
+ "l2 = -2/float(l1)\n",
+ "h = h2*lc; #miller indices \n",
+ "k = (k2)*(lc); #miller indices \n",
+ "l = (l2)*(lc); #miller indices \n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %3.0f'%h,'%3.0f'%k,'%3.0f'%l;\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6,Page No:1.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 1 1 2\n",
+ "Note:printing mistake of miller indices in textbook \n",
+ "\n",
+ "\n",
+ "miller indices = 1 2 0\n",
+ "\n",
+ "miller indices = 1 2 1\n",
+ "Note:calculation mistake in textbook\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are 3a,3b,2c\n",
+ "#from the law of rational indices\n",
+ "#3a:3b:2c=a/h:b/k:c/l\n",
+ "#variable declaration\n",
+ "a = 4;\n",
+ "b = 4;\n",
+ "c = 2;\n",
+ "a1 = 2;\n",
+ "b1 = 1;\n",
+ "c1 = 1;\n",
+ "a3 = 1;\n",
+ "b3 = 1;\n",
+ "c3 = 1;\n",
+ "h12 = 1/float(2); #miller indices\n",
+ "k12 = 1; #miller indices\n",
+ "#l12 = 1/math.inf; #miller indices\n",
+ "l12 =0;\n",
+ "h13 = 1; #miller indices\n",
+ "k13 = 2; #miller indices\n",
+ "l13 = 1; #miller indices\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "d = fractions.gcd(a,b);\n",
+ "lcm = (a*b)/float(d);\n",
+ "e = fractions.gcd(lcm,c);\n",
+ "lc = (lcm*c)/float(e); #finding lcm \n",
+ "h1 = 1/float(4); #miller indices\n",
+ "k1 = 1/float(4); #miller indices\n",
+ "l1 = 1/float(2); #miller indices\n",
+ "h = h1*(lc); #miller indices\n",
+ "k = (k1)*(lc); #miller indices\n",
+ "l = (l1)*(lc); #miller indices\n",
+ "\n",
+ "d = fractions.gcd(a1,b1);\n",
+ "lcm = (a1*b1)/float(d);\n",
+ "e = fractions.gcd(lcm,c1);\n",
+ "lc1 = (lcm*c1)/float(e);\n",
+ "# 1/%inf = 0 ; (1/2 1/1 0/1) hence lcm is taken for [2 1 1]\n",
+ "h3 = h12*(lc1); #miller indices\n",
+ "k3 = (k12)*(lc1); #miller indices\n",
+ "l3 = (l12)*(lc1); #miller indices\n",
+ "\n",
+ "\n",
+ "d = fractions.gcd(a3,b3);\n",
+ "lcm = (a3*b3)/float(d);\n",
+ "e = fractions.gcd(lcm,c3);\n",
+ "lc2 = (lcm*c3)/float(e);\n",
+ "h4 = h13*(lc2); #miller indices\n",
+ "k4 = k13*(lc2); #miller indices\n",
+ "l4 = l13*(lc2); #miller indices\n",
+ "\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d'%h,'%d'%k,'%d'%l;\n",
+ "print'Note:printing mistake of miller indices in textbook \\n';\n",
+ "print'\\nmiller indices = %d'%h3,'%d'%k3,'%d'%l3;\n",
+ "print'\\nmiller indices = %d'%h4,'%d'%k4,'%d'%lc2;\n",
+ "print'Note:calculation mistake in textbook\\n';\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.7,Page No:1.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "d100 = 1.00 a\n",
+ "d111 = 0.58 a\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 1; #miller indices\n",
+ "k = 0; #miller indices\n",
+ "l = 0; #miller indices\n",
+ "h1 = 1; #miller indices\n",
+ "k1 = 1; #miller indices\n",
+ "l1 = 1; #miller indices\n",
+ "\n",
+ "#calculations\n",
+ "d100 = 1/float(math.sqrt((h**2)+(k**2)+(l**2)));\n",
+ "d111 = 1/float(math.sqrt((h1**2)+(k1**2)+(l1**2)));\n",
+ "\n",
+ "#result\n",
+ "print'd100 = %3.2f a'%d100;\n",
+ "print'd111 = %3.2f a'%d111;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8,Page No:1.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices = 2 1 0\n",
+ "interplanar distance is =4.47 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import fractions\n",
+ "\n",
+ "#variable declaration\n",
+ "#intercepts given are a,2b,-3c/2\n",
+ "#from the law of rational indices\n",
+ "#a:2b:-3c/2=a/h:b/k:c/l\n",
+ "\n",
+ "\n",
+ "#variable declaration\n",
+ "h1 = 1;\n",
+ "k1 = 2;\n",
+ "l1 = 1;\n",
+ "a = 10*10**-9; \n",
+ "\n",
+ "#calculation\n",
+ "h12 = 1; #miller indices\n",
+ "k12 = 1/float(k1); #miller indices\n",
+ "l12 = 0; #miller indices\n",
+ "\n",
+ "#1/%inf = 0 ; (1/2 1/1 0/1) hence lcm is taken for [2 1 1]\n",
+ "d = fractions.gcd(h1,k1);\n",
+ "lcm = (h1*k1)/float(d);\n",
+ "e = fractions.gcd(lcm,l1);\n",
+ "lc = (lcm*l1)/float(e);\n",
+ "h = h12*(lcm); #miller indices\n",
+ "k = (k12)*(lcm); #miller indices\n",
+ "l = (l12)*(lcm); #miller indices\n",
+ "d = a/float(((h**2)+(k**2)+(l**2))**(1/float(2)));\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'miller indices = %d'%h,'%d'%k,'%d'%l;\n",
+ "print'interplanar distance is =%3.2f'%(d*10**9),'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.9,Page No:1.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "inter planar spacing =1.32e-10 m/n\n",
+ "Note : calculation mistake in textbook in calculating in dhkl,r value istaken as 0.125*10**-9 instead of 0.175*10**-9 \n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable Declaration\n",
+ "\n",
+ "r = 0.175*10**-9; #radius in m\n",
+ "h = 2; #miller indices\n",
+ "k = 3; #miller indices\n",
+ "l = 1; #miller indices\n",
+ "\n",
+ "#calculation\n",
+ "a = (4*r)/math.sqrt(2);\n",
+ "dhkl = a/float(math.sqrt((h**2)+(k**2)+(l**2)));\n",
+ " \n",
+ "#result\n",
+ "print'inter planar spacing =%3.2e'%dhkl,'m/n';\n",
+ "print'Note : calculation mistake in textbook in calculating in dhkl,r value istaken as 0.125*10**-9 instead of 0.175*10**-9 ';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.10,Page No:1.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "distance between two atoms =1.732 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "a = 4; #lattice constant in Å\n",
+ "\n",
+ "#calculation\n",
+ "d = (math.sqrt(3)*a)/float(4); #distance between two atoms in Å\n",
+ " \n",
+ "#result\n",
+ "print'distance between two atoms =%3.3f'%d,'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "##Example 1.11,Page No:1.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength=0.431 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 1.41; #lattice constant in Å\n",
+ "theta = 8.8; # angle in degrees\n",
+ "n = 1;\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "lamda = (2*d*(math.sin(theta*math.pi/float(180))))/float(n); #wavelength in Å\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'wavelength=%3.3f'%lamda,'Å';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.12,Page No:1.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength =0.7822 Å\n",
+ "glancing angle =18.2 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "d = 2.5; #spacing in angstroms\n",
+ "theta = 9; #glancing angle in degrees\n",
+ "n1 = 1;\n",
+ "n2 = 2;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "lamda = (2*math.sin(theta*(math.pi/180))*d); #wavelength Å\n",
+ "theta = math.asin((2*lamda)/float(2*d)); #glancing angle in °\n",
+ "\n",
+ "#result\n",
+ "print'wavelength =%3.4f'%lamda,'Å';\n",
+ "print'glancing angle =%3.1f'%(theta*(180/math.pi)),'°';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.13,Page No:1.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice constant=1.15 Å\n",
+ "note:printing mistake in textbook in calculation part,n value is printed as 2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "lamda = 2; #wavelength in angstroms\n",
+ "theta1 = 60; #angle in degrees\n",
+ "n = 1;\n",
+ " \n",
+ "#formula\n",
+ "#2*d*math.sin(theta)=n*lamda\n",
+ "#calculation\n",
+ "d = (n*lamda)/(2*math.sin(theta1*math.pi/float(180))); #lattice constant in Å\n",
+ "\n",
+ "#result\n",
+ "print'lattice constant=%3.2f'%d,'Å';\n",
+ "print'note:printing mistake in textbook in calculation part,n value is printed as 2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.14,Page No:1.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "angle=37.32 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "lamda = 1.4*10**-10; #wavelength in angstroms\n",
+ "a = 2*10**-10; #lattice parameter in angstroms\n",
+ "h = 1; #miller indices\n",
+ "k = 1; #miller indices\n",
+ "l = 1; #miller indices\n",
+ "n = 1;\n",
+ "#formula\n",
+ "#2*d*math.sin(theta)=n*lamda\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "dhkl = a/float(math.sqrt((h**2)+(k**2)+(l**2))); #inter planar spacing\n",
+ "theta = math.asin((n*lamda)/float(2*dhkl)); #angle in °\n",
+ "\n",
+ "#result\n",
+ "print'angle=%3.2f'%(theta*(180/float(math.pi))),'°';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.15,Page No:1.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of neutron =7.33e+02 m/n\n",
+ " Note:calculation mistake in text book in calculating wavelength \n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variabledeclaration\n",
+ "d = 3.84 *10**-10; #spacing between planes in m\n",
+ "theta = 45; #glancing angle in degrees\n",
+ "m = 1.67*10**-27; #mass ef electron\n",
+ "h = 6.62*10**-34; #planck's constant\n",
+ "n = 1; #braggg reflextion \n",
+ "v = 5.41*10**-10;\n",
+ " \n",
+ "#calculation\n",
+ "#lamda = 2*d*(1/math.sqrt(2));\n",
+ "lamda = (n*h)/float(m*v); #wavelength of neutron\n",
+ "\n",
+ "#result\n",
+ "print'wavelength of neutron =%3.2e'%lamda,'m/n';\n",
+ "print' Note:calculation mistake in text book in calculating wavelength ';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 1.16,Page No:1.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice parameter = 2 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "m = 9.1*10**-31; # mass of electron in kilograms\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "n = 1; #bragg's reflection\n",
+ "h1 = 6.62*10**-34; #planck's constant J.s\n",
+ "n = 1; #bragg reflecton \n",
+ "V = 200; #voltage in V\n",
+ "theta = 22; #observed reflection\n",
+ " \n",
+ "#calculation\n",
+ "\n",
+ "lamda = h1/math.sqrt(2*m*e*V);\n",
+ "dhkl = (n*lamda)/float(2*math.sin(theta*math.pi/180));\n",
+ "a = dhkl*math.sqrt(3); #lattice parameter in Å\n",
+ " \n",
+ "#result\n",
+ " \n",
+ "print'lattice parameter =%3.0f'%(a*10**10),'Å';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2.ipynb
new file mode 100755
index 00000000..1cfc005c
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2.ipynb
@@ -0,0 +1,281 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": false
+ },
+ "source": [
+ "# Chapter 2:Band Theory of Solids"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 2.1,Page No:2.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lowest three permissable quantum energies are E1 = 6 eV\n",
+ " E2 = 24 eV\n",
+ " E3 = 54 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "a = 2.5*10**-10; # width of infinite square well\n",
+ "e = 1.6*10**-19; # charge of electron coulombs\n",
+ "n2 = 2; #number of permiissable quantum\n",
+ "n3 = 3; #number of permiissable quantum\n",
+ "\n",
+ "# Calculations\n",
+ "E1 = (h**2)/float(8*m*a**2*e); # first lowest permissable quantum energy in eV\n",
+ "E2 = n2**2 *E1; # second lowest permissable quantum energy in eV\n",
+ "E3 = n3**2 *E1; # second lowest permissable quantum energy in eV\n",
+ "\n",
+ "# Result\n",
+ "print'Lowest three permissable quantum energies are E1 = %d'%E1,'eV';\n",
+ "print' E2 = %d'%E2,'eV';\n",
+ "print' E3 = %d'%E3,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 2.2,Page No:2.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy Difference = 113.21 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "a = 10**-10; # width of infinite square well in m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "n1 = 1; #energy level constant\n",
+ "n2 = 2; #energy level constant\n",
+ "\n",
+ "# calculations\n",
+ "E1 = ((n1**2)*(h**2))/float(8*m*(a**2)*e); # ground state energy in eV\n",
+ "E2 = ((n2**2)*(h**2))/float(8*m*(a**2)*e); # first excited state in energy in eV\n",
+ "dE = E2-E1 # difference between first excited and ground state(E2 - E1)\n",
+ "\n",
+ "#Result\n",
+ "print'Energy Difference = %3.2f '%dE,'eV';\n",
+ "\n",
+ " \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 2.3,Page No:2.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "First Three Energy levels are \n",
+ " E1 = 1.51 eV\n",
+ " E2 = 6 eV\n",
+ " E3 = 13.59 eV\n",
+ "\n",
+ " Above calculation shows that the energy of the bound electron cannot be continuous\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "a = 5*10**-10; # width of infinite potential well in m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "n1 = 1; # energy level constant\n",
+ "n2 = 2; # energy level constant\n",
+ "n3 = 3; # energy level constant\n",
+ "\n",
+ "#Calculations\n",
+ "E1 = ((n1**2)*(h**2))/(8*m*(a**2)*e); # first energy level in eV\n",
+ "E2 = ((n2**2)*(h**2))/(8*m*(a**2)*e); # second energy level in eV\n",
+ "E3 = ((n3**2)*(h**2))/(8*m*(a**2)*e); # third energy level in eV\n",
+ "\n",
+ "# Result\n",
+ "print'First Three Energy levels are \\n E1 = %3.2f'%E1,'eV';\n",
+ "print' E2 = %d'%E2,'eV';\n",
+ "print' E3 = %3.2f'%E3,'eV';\n",
+ "print'\\n Above calculation shows that the energy of the bound electron cannot be continuous';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 2.4,Page No:2.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lowest energy bandwidth = 0.452 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 1.054*10**-34; #plancks constant in J.s\n",
+ "m = 9.1*10**-31; #mass of electron in kg\n",
+ "a = 5*10**-10; #width of infinite potential well in m\n",
+ "e = 1.6*10**-19; # charge of electron coulombs\n",
+ "\n",
+ "# Calculations\n",
+ "#cos(ka) = ((Psin(alpha*a))/(alpha*a)) + cos(alpha*a)\n",
+ "#to find the lowest allowed energy bandwidth,we have to find the difference in αa values, as ka changes from 0 to π\n",
+ "# for ka = 0 in above eq becomes\n",
+ "# 1 = 10*sin(αa))/(αa)) + cos(αa)\n",
+ "# This gives αa = 2.628 rad\n",
+ "# ka = π , αa = π\n",
+ "# sqrt((2*m*E2)/h**2)*a = π\n",
+ "\n",
+ "E2 = ((math.pi*math.pi)*h**2)/(2*m*a**2*e); #energy in eV\n",
+ "E1 = ((2.628**2)*h**2)/(2*m*a**2*e); #for αa = 2.628 rad energy in eV\n",
+ "dE = E2 - E1; #lowest energy bandwidth in eV\n",
+ "\n",
+ "# Result\n",
+ "print'Lowest energy bandwidth = %3.3f'%dE,'eV';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 2.5,Page No:2.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electron Momentum for first Brillouin zone appearance = 1.105e-24 eV\n",
+ "\n",
+ " Energy of free electron with this momentum = 4.2 eV\n",
+ "\n",
+ " Note: in Textbook Momentum value is wrongly printed as 1.1*10**-10\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "a = 3*10**-10; # side of 2d square lattice in m\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "\n",
+ "# calculations\n",
+ "#p = h*k # momentum of the electron\n",
+ "k = math.pi/float(a); # first Brillouin zone\n",
+ "p = (h/float(2*math.pi))*(math.pi/float(a)); # momentum of electron\n",
+ "E = (p**2)/float(2*m*e) # Energyin eV\n",
+ "\n",
+ "#Result\n",
+ "print'Electron Momentum for first Brillouin zone appearance = %g'%p,'eV';\n",
+ "print'\\n Energy of free electron with this momentum = %4.1f'%E,'eV';\n",
+ "print'\\n Note: in Textbook Momentum value is wrongly printed as 1.1*10**-10';"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2_(1).ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2_(1).ipynb
new file mode 100644
index 00000000..8b0abd3c
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2_(1).ipynb
@@ -0,0 +1,272 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": false
+ },
+ "source": [
+ "# Chapter 2:Band Theory of Solids"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 2.1,Page No:2.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lowest three permissable quantum energies are E1 = 6 eV\n",
+ " E2 = 24 eV\n",
+ " E3 = 54 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "a = 2.5*10**-10; # width of infinite square well\n",
+ "e = 1.6*10**-19; # charge of electron coulombs\n",
+ "n2 = 2; #number of permiissable quantum\n",
+ "n3 = 3; #number of permiissable quantum\n",
+ "\n",
+ "# Calculations\n",
+ "E1 = (h**2)/float(8*m*a**2*e); # first lowest permissable quantum energy in eV\n",
+ "E2 = n2**2 *E1; # second lowest permissable quantum energy in eV\n",
+ "E3 = n3**2 *E1; # second lowest permissable quantum energy in eV\n",
+ "\n",
+ "# Result\n",
+ "print'Lowest three permissable quantum energies are E1 = %d'%E1,'eV';\n",
+ "print' E2 = %d'%E2,'eV';\n",
+ "print' E3 = %d'%E3,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2,Page No:2.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy Difference = 113.21 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "a = 10**-10; # width of infinite square well in m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "n1 = 1; #energy level constant\n",
+ "n2 = 2; #energy level constant\n",
+ "\n",
+ "# calculations\n",
+ "E1 = ((n1**2)*(h**2))/float(8*m*(a**2)*e); # ground state energy in eV\n",
+ "E2 = ((n2**2)*(h**2))/float(8*m*(a**2)*e); # first excited state in energy in eV\n",
+ "dE = E2-E1 # difference between first excited and ground state(E2 - E1)\n",
+ "\n",
+ "#Result\n",
+ "print'Energy Difference = %3.2f '%dE,'eV';\n",
+ "\n",
+ " \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3,Page No:2.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "First Three Energy levels are \n",
+ " E1 = 1.51 eV\n",
+ " E2 = 6 eV\n",
+ " E3 = 13.59 eV\n",
+ "\n",
+ " Above calculation shows that the energy of the bound electron cannot be continuous\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "a = 5*10**-10; # width of infinite potential well in m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "n1 = 1; # energy level constant\n",
+ "n2 = 2; # energy level constant\n",
+ "n3 = 3; # energy level constant\n",
+ "\n",
+ "#Calculations\n",
+ "E1 = ((n1**2)*(h**2))/(8*m*(a**2)*e); # first energy level in eV\n",
+ "E2 = ((n2**2)*(h**2))/(8*m*(a**2)*e); # second energy level in eV\n",
+ "E3 = ((n3**2)*(h**2))/(8*m*(a**2)*e); # third energy level in eV\n",
+ "\n",
+ "# Result\n",
+ "print'First Three Energy levels are \\n E1 = %3.2f'%E1,'eV';\n",
+ "print' E2 = %d'%E2,'eV';\n",
+ "print' E3 = %3.2f'%E3,'eV';\n",
+ "print'\\n Above calculation shows that the energy of the bound electron cannot be continuous';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4,Page No:2.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lowest energy bandwidth = 0.452 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 1.054*10**-34; #plancks constant in J.s\n",
+ "m = 9.1*10**-31; #mass of electron in kg\n",
+ "a = 5*10**-10; #width of infinite potential well in m\n",
+ "e = 1.6*10**-19; # charge of electron coulombs\n",
+ "\n",
+ "# Calculations\n",
+ "#cos(ka) = ((Psin(alpha*a))/(alpha*a)) + cos(alpha*a)\n",
+ "#to find the lowest allowed energy bandwidth,we have to find the difference in αa values, as ka changes from 0 to π\n",
+ "# for ka = 0 in above eq becomes\n",
+ "# 1 = 10*sin(αa))/(αa)) + cos(αa)\n",
+ "# This gives αa = 2.628 rad\n",
+ "# ka = π , αa = π\n",
+ "# sqrt((2*m*E2)/h**2)*a = π\n",
+ "\n",
+ "E2 = ((math.pi*math.pi)*h**2)/(2*m*a**2*e); #energy in eV\n",
+ "E1 = ((2.628**2)*h**2)/(2*m*a**2*e); #for αa = 2.628 rad energy in eV\n",
+ "dE = E2 - E1; #lowest energy bandwidth in eV\n",
+ "\n",
+ "# Result\n",
+ "print'Lowest energy bandwidth = %3.3f'%dE,'eV';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5,Page No:2.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electron Momentum for first Brillouin zone appearance = 1.105e-24 eV\n",
+ "\n",
+ " Energy of free electron with this momentum = 4.2 eV\n",
+ "\n",
+ " Note: in Textbook Momentum value is wrongly printed as 1.1*10**-10\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "a = 3*10**-10; # side of 2d square lattice in m\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "\n",
+ "# calculations\n",
+ "#p = h*k # momentum of the electron\n",
+ "k = math.pi/float(a); # first Brillouin zone\n",
+ "p = (h/float(2*math.pi))*(math.pi/float(a)); # momentum of electron\n",
+ "E = (p**2)/float(2*m*e) # Energyin eV\n",
+ "\n",
+ "#Result\n",
+ "print'Electron Momentum for first Brillouin zone appearance = %g'%p,'eV';\n",
+ "print'\\n Energy of free electron with this momentum = %4.1f'%E,'eV';\n",
+ "print'\\n Note: in Textbook Momentum value is wrongly printed as 1.1*10**-10';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2_1.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2_1.ipynb
new file mode 100644
index 00000000..1cfc005c
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2_1.ipynb
@@ -0,0 +1,281 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": false
+ },
+ "source": [
+ "# Chapter 2:Band Theory of Solids"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 2.1,Page No:2.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lowest three permissable quantum energies are E1 = 6 eV\n",
+ " E2 = 24 eV\n",
+ " E3 = 54 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "a = 2.5*10**-10; # width of infinite square well\n",
+ "e = 1.6*10**-19; # charge of electron coulombs\n",
+ "n2 = 2; #number of permiissable quantum\n",
+ "n3 = 3; #number of permiissable quantum\n",
+ "\n",
+ "# Calculations\n",
+ "E1 = (h**2)/float(8*m*a**2*e); # first lowest permissable quantum energy in eV\n",
+ "E2 = n2**2 *E1; # second lowest permissable quantum energy in eV\n",
+ "E3 = n3**2 *E1; # second lowest permissable quantum energy in eV\n",
+ "\n",
+ "# Result\n",
+ "print'Lowest three permissable quantum energies are E1 = %d'%E1,'eV';\n",
+ "print' E2 = %d'%E2,'eV';\n",
+ "print' E3 = %d'%E3,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 2.2,Page No:2.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy Difference = 113.21 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "a = 10**-10; # width of infinite square well in m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "n1 = 1; #energy level constant\n",
+ "n2 = 2; #energy level constant\n",
+ "\n",
+ "# calculations\n",
+ "E1 = ((n1**2)*(h**2))/float(8*m*(a**2)*e); # ground state energy in eV\n",
+ "E2 = ((n2**2)*(h**2))/float(8*m*(a**2)*e); # first excited state in energy in eV\n",
+ "dE = E2-E1 # difference between first excited and ground state(E2 - E1)\n",
+ "\n",
+ "#Result\n",
+ "print'Energy Difference = %3.2f '%dE,'eV';\n",
+ "\n",
+ " \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 2.3,Page No:2.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "First Three Energy levels are \n",
+ " E1 = 1.51 eV\n",
+ " E2 = 6 eV\n",
+ " E3 = 13.59 eV\n",
+ "\n",
+ " Above calculation shows that the energy of the bound electron cannot be continuous\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "a = 5*10**-10; # width of infinite potential well in m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "n1 = 1; # energy level constant\n",
+ "n2 = 2; # energy level constant\n",
+ "n3 = 3; # energy level constant\n",
+ "\n",
+ "#Calculations\n",
+ "E1 = ((n1**2)*(h**2))/(8*m*(a**2)*e); # first energy level in eV\n",
+ "E2 = ((n2**2)*(h**2))/(8*m*(a**2)*e); # second energy level in eV\n",
+ "E3 = ((n3**2)*(h**2))/(8*m*(a**2)*e); # third energy level in eV\n",
+ "\n",
+ "# Result\n",
+ "print'First Three Energy levels are \\n E1 = %3.2f'%E1,'eV';\n",
+ "print' E2 = %d'%E2,'eV';\n",
+ "print' E3 = %3.2f'%E3,'eV';\n",
+ "print'\\n Above calculation shows that the energy of the bound electron cannot be continuous';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 2.4,Page No:2.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lowest energy bandwidth = 0.452 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 1.054*10**-34; #plancks constant in J.s\n",
+ "m = 9.1*10**-31; #mass of electron in kg\n",
+ "a = 5*10**-10; #width of infinite potential well in m\n",
+ "e = 1.6*10**-19; # charge of electron coulombs\n",
+ "\n",
+ "# Calculations\n",
+ "#cos(ka) = ((Psin(alpha*a))/(alpha*a)) + cos(alpha*a)\n",
+ "#to find the lowest allowed energy bandwidth,we have to find the difference in αa values, as ka changes from 0 to π\n",
+ "# for ka = 0 in above eq becomes\n",
+ "# 1 = 10*sin(αa))/(αa)) + cos(αa)\n",
+ "# This gives αa = 2.628 rad\n",
+ "# ka = π , αa = π\n",
+ "# sqrt((2*m*E2)/h**2)*a = π\n",
+ "\n",
+ "E2 = ((math.pi*math.pi)*h**2)/(2*m*a**2*e); #energy in eV\n",
+ "E1 = ((2.628**2)*h**2)/(2*m*a**2*e); #for αa = 2.628 rad energy in eV\n",
+ "dE = E2 - E1; #lowest energy bandwidth in eV\n",
+ "\n",
+ "# Result\n",
+ "print'Lowest energy bandwidth = %3.3f'%dE,'eV';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 2.5,Page No:2.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electron Momentum for first Brillouin zone appearance = 1.105e-24 eV\n",
+ "\n",
+ " Energy of free electron with this momentum = 4.2 eV\n",
+ "\n",
+ " Note: in Textbook Momentum value is wrongly printed as 1.1*10**-10\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "a = 3*10**-10; # side of 2d square lattice in m\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "\n",
+ "# calculations\n",
+ "#p = h*k # momentum of the electron\n",
+ "k = math.pi/float(a); # first Brillouin zone\n",
+ "p = (h/float(2*math.pi))*(math.pi/float(a)); # momentum of electron\n",
+ "E = (p**2)/float(2*m*e) # Energyin eV\n",
+ "\n",
+ "#Result\n",
+ "print'Electron Momentum for first Brillouin zone appearance = %g'%p,'eV';\n",
+ "print'\\n Energy of free electron with this momentum = %4.1f'%E,'eV';\n",
+ "print'\\n Note: in Textbook Momentum value is wrongly printed as 1.1*10**-10';"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2_2.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2_2.ipynb
new file mode 100644
index 00000000..8b0abd3c
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2_2.ipynb
@@ -0,0 +1,272 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": false
+ },
+ "source": [
+ "# Chapter 2:Band Theory of Solids"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 2.1,Page No:2.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lowest three permissable quantum energies are E1 = 6 eV\n",
+ " E2 = 24 eV\n",
+ " E3 = 54 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "a = 2.5*10**-10; # width of infinite square well\n",
+ "e = 1.6*10**-19; # charge of electron coulombs\n",
+ "n2 = 2; #number of permiissable quantum\n",
+ "n3 = 3; #number of permiissable quantum\n",
+ "\n",
+ "# Calculations\n",
+ "E1 = (h**2)/float(8*m*a**2*e); # first lowest permissable quantum energy in eV\n",
+ "E2 = n2**2 *E1; # second lowest permissable quantum energy in eV\n",
+ "E3 = n3**2 *E1; # second lowest permissable quantum energy in eV\n",
+ "\n",
+ "# Result\n",
+ "print'Lowest three permissable quantum energies are E1 = %d'%E1,'eV';\n",
+ "print' E2 = %d'%E2,'eV';\n",
+ "print' E3 = %d'%E3,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2,Page No:2.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy Difference = 113.21 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "a = 10**-10; # width of infinite square well in m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "n1 = 1; #energy level constant\n",
+ "n2 = 2; #energy level constant\n",
+ "\n",
+ "# calculations\n",
+ "E1 = ((n1**2)*(h**2))/float(8*m*(a**2)*e); # ground state energy in eV\n",
+ "E2 = ((n2**2)*(h**2))/float(8*m*(a**2)*e); # first excited state in energy in eV\n",
+ "dE = E2-E1 # difference between first excited and ground state(E2 - E1)\n",
+ "\n",
+ "#Result\n",
+ "print'Energy Difference = %3.2f '%dE,'eV';\n",
+ "\n",
+ " \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3,Page No:2.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "First Three Energy levels are \n",
+ " E1 = 1.51 eV\n",
+ " E2 = 6 eV\n",
+ " E3 = 13.59 eV\n",
+ "\n",
+ " Above calculation shows that the energy of the bound electron cannot be continuous\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "a = 5*10**-10; # width of infinite potential well in m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "n1 = 1; # energy level constant\n",
+ "n2 = 2; # energy level constant\n",
+ "n3 = 3; # energy level constant\n",
+ "\n",
+ "#Calculations\n",
+ "E1 = ((n1**2)*(h**2))/(8*m*(a**2)*e); # first energy level in eV\n",
+ "E2 = ((n2**2)*(h**2))/(8*m*(a**2)*e); # second energy level in eV\n",
+ "E3 = ((n3**2)*(h**2))/(8*m*(a**2)*e); # third energy level in eV\n",
+ "\n",
+ "# Result\n",
+ "print'First Three Energy levels are \\n E1 = %3.2f'%E1,'eV';\n",
+ "print' E2 = %d'%E2,'eV';\n",
+ "print' E3 = %3.2f'%E3,'eV';\n",
+ "print'\\n Above calculation shows that the energy of the bound electron cannot be continuous';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4,Page No:2.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lowest energy bandwidth = 0.452 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 1.054*10**-34; #plancks constant in J.s\n",
+ "m = 9.1*10**-31; #mass of electron in kg\n",
+ "a = 5*10**-10; #width of infinite potential well in m\n",
+ "e = 1.6*10**-19; # charge of electron coulombs\n",
+ "\n",
+ "# Calculations\n",
+ "#cos(ka) = ((Psin(alpha*a))/(alpha*a)) + cos(alpha*a)\n",
+ "#to find the lowest allowed energy bandwidth,we have to find the difference in αa values, as ka changes from 0 to π\n",
+ "# for ka = 0 in above eq becomes\n",
+ "# 1 = 10*sin(αa))/(αa)) + cos(αa)\n",
+ "# This gives αa = 2.628 rad\n",
+ "# ka = π , αa = π\n",
+ "# sqrt((2*m*E2)/h**2)*a = π\n",
+ "\n",
+ "E2 = ((math.pi*math.pi)*h**2)/(2*m*a**2*e); #energy in eV\n",
+ "E1 = ((2.628**2)*h**2)/(2*m*a**2*e); #for αa = 2.628 rad energy in eV\n",
+ "dE = E2 - E1; #lowest energy bandwidth in eV\n",
+ "\n",
+ "# Result\n",
+ "print'Lowest energy bandwidth = %3.3f'%dE,'eV';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5,Page No:2.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electron Momentum for first Brillouin zone appearance = 1.105e-24 eV\n",
+ "\n",
+ " Energy of free electron with this momentum = 4.2 eV\n",
+ "\n",
+ " Note: in Textbook Momentum value is wrongly printed as 1.1*10**-10\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "a = 3*10**-10; # side of 2d square lattice in m\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "\n",
+ "# calculations\n",
+ "#p = h*k # momentum of the electron\n",
+ "k = math.pi/float(a); # first Brillouin zone\n",
+ "p = (h/float(2*math.pi))*(math.pi/float(a)); # momentum of electron\n",
+ "E = (p**2)/float(2*m*e) # Energyin eV\n",
+ "\n",
+ "#Result\n",
+ "print'Electron Momentum for first Brillouin zone appearance = %g'%p,'eV';\n",
+ "print'\\n Energy of free electron with this momentum = %4.1f'%E,'eV';\n",
+ "print'\\n Note: in Textbook Momentum value is wrongly printed as 1.1*10**-10';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2_3.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2_3.ipynb
new file mode 100644
index 00000000..8b0abd3c
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2_3.ipynb
@@ -0,0 +1,272 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": false
+ },
+ "source": [
+ "# Chapter 2:Band Theory of Solids"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 2.1,Page No:2.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lowest three permissable quantum energies are E1 = 6 eV\n",
+ " E2 = 24 eV\n",
+ " E3 = 54 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "a = 2.5*10**-10; # width of infinite square well\n",
+ "e = 1.6*10**-19; # charge of electron coulombs\n",
+ "n2 = 2; #number of permiissable quantum\n",
+ "n3 = 3; #number of permiissable quantum\n",
+ "\n",
+ "# Calculations\n",
+ "E1 = (h**2)/float(8*m*a**2*e); # first lowest permissable quantum energy in eV\n",
+ "E2 = n2**2 *E1; # second lowest permissable quantum energy in eV\n",
+ "E3 = n3**2 *E1; # second lowest permissable quantum energy in eV\n",
+ "\n",
+ "# Result\n",
+ "print'Lowest three permissable quantum energies are E1 = %d'%E1,'eV';\n",
+ "print' E2 = %d'%E2,'eV';\n",
+ "print' E3 = %d'%E3,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2,Page No:2.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy Difference = 113.21 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "a = 10**-10; # width of infinite square well in m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "n1 = 1; #energy level constant\n",
+ "n2 = 2; #energy level constant\n",
+ "\n",
+ "# calculations\n",
+ "E1 = ((n1**2)*(h**2))/float(8*m*(a**2)*e); # ground state energy in eV\n",
+ "E2 = ((n2**2)*(h**2))/float(8*m*(a**2)*e); # first excited state in energy in eV\n",
+ "dE = E2-E1 # difference between first excited and ground state(E2 - E1)\n",
+ "\n",
+ "#Result\n",
+ "print'Energy Difference = %3.2f '%dE,'eV';\n",
+ "\n",
+ " \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3,Page No:2.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "First Three Energy levels are \n",
+ " E1 = 1.51 eV\n",
+ " E2 = 6 eV\n",
+ " E3 = 13.59 eV\n",
+ "\n",
+ " Above calculation shows that the energy of the bound electron cannot be continuous\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "a = 5*10**-10; # width of infinite potential well in m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "n1 = 1; # energy level constant\n",
+ "n2 = 2; # energy level constant\n",
+ "n3 = 3; # energy level constant\n",
+ "\n",
+ "#Calculations\n",
+ "E1 = ((n1**2)*(h**2))/(8*m*(a**2)*e); # first energy level in eV\n",
+ "E2 = ((n2**2)*(h**2))/(8*m*(a**2)*e); # second energy level in eV\n",
+ "E3 = ((n3**2)*(h**2))/(8*m*(a**2)*e); # third energy level in eV\n",
+ "\n",
+ "# Result\n",
+ "print'First Three Energy levels are \\n E1 = %3.2f'%E1,'eV';\n",
+ "print' E2 = %d'%E2,'eV';\n",
+ "print' E3 = %3.2f'%E3,'eV';\n",
+ "print'\\n Above calculation shows that the energy of the bound electron cannot be continuous';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4,Page No:2.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lowest energy bandwidth = 0.452 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 1.054*10**-34; #plancks constant in J.s\n",
+ "m = 9.1*10**-31; #mass of electron in kg\n",
+ "a = 5*10**-10; #width of infinite potential well in m\n",
+ "e = 1.6*10**-19; # charge of electron coulombs\n",
+ "\n",
+ "# Calculations\n",
+ "#cos(ka) = ((Psin(alpha*a))/(alpha*a)) + cos(alpha*a)\n",
+ "#to find the lowest allowed energy bandwidth,we have to find the difference in αa values, as ka changes from 0 to π\n",
+ "# for ka = 0 in above eq becomes\n",
+ "# 1 = 10*sin(αa))/(αa)) + cos(αa)\n",
+ "# This gives αa = 2.628 rad\n",
+ "# ka = π , αa = π\n",
+ "# sqrt((2*m*E2)/h**2)*a = π\n",
+ "\n",
+ "E2 = ((math.pi*math.pi)*h**2)/(2*m*a**2*e); #energy in eV\n",
+ "E1 = ((2.628**2)*h**2)/(2*m*a**2*e); #for αa = 2.628 rad energy in eV\n",
+ "dE = E2 - E1; #lowest energy bandwidth in eV\n",
+ "\n",
+ "# Result\n",
+ "print'Lowest energy bandwidth = %3.3f'%dE,'eV';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5,Page No:2.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electron Momentum for first Brillouin zone appearance = 1.105e-24 eV\n",
+ "\n",
+ " Energy of free electron with this momentum = 4.2 eV\n",
+ "\n",
+ " Note: in Textbook Momentum value is wrongly printed as 1.1*10**-10\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "a = 3*10**-10; # side of 2d square lattice in m\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "\n",
+ "# calculations\n",
+ "#p = h*k # momentum of the electron\n",
+ "k = math.pi/float(a); # first Brillouin zone\n",
+ "p = (h/float(2*math.pi))*(math.pi/float(a)); # momentum of electron\n",
+ "E = (p**2)/float(2*m*e) # Energyin eV\n",
+ "\n",
+ "#Result\n",
+ "print'Electron Momentum for first Brillouin zone appearance = %g'%p,'eV';\n",
+ "print'\\n Energy of free electron with this momentum = %4.1f'%E,'eV';\n",
+ "print'\\n Note: in Textbook Momentum value is wrongly printed as 1.1*10**-10';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2_4.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2_4.ipynb
new file mode 100644
index 00000000..8b0abd3c
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter2_4.ipynb
@@ -0,0 +1,272 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": false
+ },
+ "source": [
+ "# Chapter 2:Band Theory of Solids"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 2.1,Page No:2.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lowest three permissable quantum energies are E1 = 6 eV\n",
+ " E2 = 24 eV\n",
+ " E3 = 54 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "a = 2.5*10**-10; # width of infinite square well\n",
+ "e = 1.6*10**-19; # charge of electron coulombs\n",
+ "n2 = 2; #number of permiissable quantum\n",
+ "n3 = 3; #number of permiissable quantum\n",
+ "\n",
+ "# Calculations\n",
+ "E1 = (h**2)/float(8*m*a**2*e); # first lowest permissable quantum energy in eV\n",
+ "E2 = n2**2 *E1; # second lowest permissable quantum energy in eV\n",
+ "E3 = n3**2 *E1; # second lowest permissable quantum energy in eV\n",
+ "\n",
+ "# Result\n",
+ "print'Lowest three permissable quantum energies are E1 = %d'%E1,'eV';\n",
+ "print' E2 = %d'%E2,'eV';\n",
+ "print' E3 = %d'%E3,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2,Page No:2.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy Difference = 113.21 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "a = 10**-10; # width of infinite square well in m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "n1 = 1; #energy level constant\n",
+ "n2 = 2; #energy level constant\n",
+ "\n",
+ "# calculations\n",
+ "E1 = ((n1**2)*(h**2))/float(8*m*(a**2)*e); # ground state energy in eV\n",
+ "E2 = ((n2**2)*(h**2))/float(8*m*(a**2)*e); # first excited state in energy in eV\n",
+ "dE = E2-E1 # difference between first excited and ground state(E2 - E1)\n",
+ "\n",
+ "#Result\n",
+ "print'Energy Difference = %3.2f '%dE,'eV';\n",
+ "\n",
+ " \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3,Page No:2.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "First Three Energy levels are \n",
+ " E1 = 1.51 eV\n",
+ " E2 = 6 eV\n",
+ " E3 = 13.59 eV\n",
+ "\n",
+ " Above calculation shows that the energy of the bound electron cannot be continuous\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "a = 5*10**-10; # width of infinite potential well in m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "n1 = 1; # energy level constant\n",
+ "n2 = 2; # energy level constant\n",
+ "n3 = 3; # energy level constant\n",
+ "\n",
+ "#Calculations\n",
+ "E1 = ((n1**2)*(h**2))/(8*m*(a**2)*e); # first energy level in eV\n",
+ "E2 = ((n2**2)*(h**2))/(8*m*(a**2)*e); # second energy level in eV\n",
+ "E3 = ((n3**2)*(h**2))/(8*m*(a**2)*e); # third energy level in eV\n",
+ "\n",
+ "# Result\n",
+ "print'First Three Energy levels are \\n E1 = %3.2f'%E1,'eV';\n",
+ "print' E2 = %d'%E2,'eV';\n",
+ "print' E3 = %3.2f'%E3,'eV';\n",
+ "print'\\n Above calculation shows that the energy of the bound electron cannot be continuous';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4,Page No:2.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lowest energy bandwidth = 0.452 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 1.054*10**-34; #plancks constant in J.s\n",
+ "m = 9.1*10**-31; #mass of electron in kg\n",
+ "a = 5*10**-10; #width of infinite potential well in m\n",
+ "e = 1.6*10**-19; # charge of electron coulombs\n",
+ "\n",
+ "# Calculations\n",
+ "#cos(ka) = ((Psin(alpha*a))/(alpha*a)) + cos(alpha*a)\n",
+ "#to find the lowest allowed energy bandwidth,we have to find the difference in αa values, as ka changes from 0 to π\n",
+ "# for ka = 0 in above eq becomes\n",
+ "# 1 = 10*sin(αa))/(αa)) + cos(αa)\n",
+ "# This gives αa = 2.628 rad\n",
+ "# ka = π , αa = π\n",
+ "# sqrt((2*m*E2)/h**2)*a = π\n",
+ "\n",
+ "E2 = ((math.pi*math.pi)*h**2)/(2*m*a**2*e); #energy in eV\n",
+ "E1 = ((2.628**2)*h**2)/(2*m*a**2*e); #for αa = 2.628 rad energy in eV\n",
+ "dE = E2 - E1; #lowest energy bandwidth in eV\n",
+ "\n",
+ "# Result\n",
+ "print'Lowest energy bandwidth = %3.3f'%dE,'eV';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5,Page No:2.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electron Momentum for first Brillouin zone appearance = 1.105e-24 eV\n",
+ "\n",
+ " Energy of free electron with this momentum = 4.2 eV\n",
+ "\n",
+ " Note: in Textbook Momentum value is wrongly printed as 1.1*10**-10\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "a = 3*10**-10; # side of 2d square lattice in m\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "\n",
+ "# calculations\n",
+ "#p = h*k # momentum of the electron\n",
+ "k = math.pi/float(a); # first Brillouin zone\n",
+ "p = (h/float(2*math.pi))*(math.pi/float(a)); # momentum of electron\n",
+ "E = (p**2)/float(2*m*e) # Energyin eV\n",
+ "\n",
+ "#Result\n",
+ "print'Electron Momentum for first Brillouin zone appearance = %g'%p,'eV';\n",
+ "print'\\n Energy of free electron with this momentum = %4.1f'%E,'eV';\n",
+ "print'\\n Note: in Textbook Momentum value is wrongly printed as 1.1*10**-10';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3.ipynb
new file mode 100755
index 00000000..6a5b90a9
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3.ipynb
@@ -0,0 +1,889 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3:Magnetic Properties of Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.1,Page No:3.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic moment = 9.319e-24 Am**2\n",
+ "Bohr magneton = 9.28e-24 J/T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "r = 0.53*10**-10; # orbit radius m\n",
+ "n = 6.6*10**15; # frequency of revolution of electronHz\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "\n",
+ "# Calculations\n",
+ "i = e*n # current produced due to electron\n",
+ "A = math.pi*r*r # Area in m^2\n",
+ "u = i*A; # magnetic moment A*m^2\n",
+ "ub = (e*h)/float(4*math.pi*m); # Bohr magneton in J/T\n",
+ "\n",
+ "#result\n",
+ "print'Magnetic moment = %3.3e'%u,'Am**2';\n",
+ "print'Bohr magneton = %3.2e'%ub,'J/T';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.2,Page No:3.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 52,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic moment = 2.87e+02 A-m**2\n",
+ "\n",
+ " Note: Instead of 2.87*10**2, 2.87*10**-2 is printed in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "ur = 1150; # relative permeability\n",
+ "n = 500; # turns per m\n",
+ "V = 10**-3; # volume of iron rod in m**3\n",
+ "i = 0.5; # current in amp\n",
+ "\n",
+ "#Calculations\n",
+ "#B = uo(H+M)\n",
+ "# B = uH, u/uo = ur\n",
+ "# M = (ur - 1)H\n",
+ "#if current is flowing through a solenoid having n turns/l then H = ni\n",
+ "\n",
+ "M = (ur - 1)*n*i # magnetisation\n",
+ "m = M*V; # magnetic moment\n",
+ " \n",
+ "#Output\n",
+ "print'Magnetic moment = %3.2e'%m,' A-m**2';\n",
+ "print'\\n Note: Instead of 2.87*10**2, 2.87*10**-2 is printed in textbook';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.3,Page No:3.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 53,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic Moment of the rod = 2.1 A-m**2\n",
+ "Note: In textbook length of iron rod given as 2m whereas in calculation it is wrongly taken as 0.2m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "ur = 90; #relative permeability\n",
+ "n = 300; # turns per m\n",
+ "i = 0.5; # current in amp\n",
+ "d = 10*10**-3; # diameter of iron rod\n",
+ "l = 2; # length of iron rod\n",
+ "\n",
+ "#Calculations\n",
+ "V = math.pi*(d/float(2))**2 * l; #volume of rod\n",
+ "M = (ur - 1)*n*i; # magnetisation\n",
+ "m = M*V; # magnetic moment\n",
+ "\n",
+ "# Output\n",
+ "print'Magnetic Moment of the rod = %3.3g'%m,'A-m**2';\n",
+ "print'Note: In textbook length of iron rod given as 2m whereas in calculation it is wrongly taken as 0.2m';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.4,Page No:3.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Change in magnetic moment = 3.9e-29 J/T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Bo = 2; # magnetic field in tesla\n",
+ "r = 5.29*10**-11 # radius in m\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "e = 1.6*10**-19 # charge of electron\n",
+ "\n",
+ "# calculations\n",
+ "du = (e**2 * Bo * r**2)/float(4*m); # change in magnetic moment(indicating oth in -ve and +ve values)\n",
+ "\n",
+ "#result\n",
+ "print'Change in magnetic moment = %3.1e'%du,'J/T';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.6,Page No:3.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Temperature to which substance to be cooled = 7.7 K\n",
+ "Note:Values given in question B = 52, u = 924*10**-24.Values substituted in calculation B = 5.2, u = 9.24*10**-24\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "u1 = 3.3; # magnetic dipole moment\n",
+ "u = 9.24*10**-24;\n",
+ "B = 5.2; # magnetic field in tesla\n",
+ "k = 1.38*10**-23; # boltzmann constant\n",
+ "\n",
+ "# calculations\n",
+ "T = (u*u1*B)/float(1.5*k); # Temperature in Kelvin\n",
+ "\n",
+ "#result\n",
+ "print'Temperature to which substance to be cooled = %3.1f'%T,'K';\n",
+ "print'Note:Values given in question B = 52, u = 924*10**-24.Values substituted in calculation B = 5.2, u = 9.24*10**-24';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.7,Page No:3.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetisation = -0.48 A/m\n",
+ "flux density = 0.14 Tesla\n",
+ "relative permeability = 0.999996\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "xm = -4.2*10**-6; # magnetic susceptibility in A.m**-1\n",
+ "H = 1.15*10**5; # magnetic field in A.m**-1\n",
+ "\n",
+ "#Calculations\n",
+ "uo = 4*math.pi*10**-7; # magnetic permeability N·A**-2\n",
+ "M = xm*H; # magnetisation in A.m**-1\n",
+ "B = uo*(H + M); # flux density in T\n",
+ "ur = 1+(M/float(H)); # relative permeability \n",
+ "\n",
+ "# result\n",
+ "print'Magnetisation = %3.2f'%M,'A/m';\n",
+ "print'flux density = %3.2f'%B,'Tesla'; \n",
+ "print'relative permeability = %f'%ur;\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.8,Page No:3.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percentage increase = 0.0014 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "xm = 1.4*10**-5; # magnetic susceptibility\n",
+ "# B = uoH\n",
+ "# B' = uruoH\n",
+ "# ur = 1+xm\n",
+ "# from above equations\n",
+ "#B' = (1+xm)B\n",
+ "# percentage increase in magnetic induction = ((B'-B)/B)*100\n",
+ "# y = (((1+xm)B - B)/B)*100\n",
+ "PI = xm*100; # percentage increase\n",
+ "\n",
+ "# Output\n",
+ "print'Percentage increase = %3.4f'%PI,'%';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.9,Page No:3.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "magnetisation = -0.02 A/m\n",
+ "Magnetic flux density = 0.0126 T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "xm = -0.2*10**-5; # magnetic susceptability in A.m**-1\n",
+ "H = 10**4; # magnetic field in A/m\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "uo = 4*math.pi*10**-7; # magnetic permeability\n",
+ "M = xm*H # magnetisation in A/m\n",
+ "B = uo*(H+M); # magnetic flux density in T\n",
+ "\n",
+ "# Output\n",
+ "print'magnetisation = %3.2f'%M,'A/m';\n",
+ "print'Magnetic flux density = %3.4f'%B,'T';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 3.10,Page No:3.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "permeability =1.000021\n",
+ "relative permeability =1.2567e-06 N/A**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "sighem = 2.1*10**-5; #magnetic susceptability\n",
+ "u1 = 10**-7;\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*u1;\n",
+ "ur = 1+(sighem); #permeability\n",
+ "u = u0*ur; #relative permeability in N/A**2\n",
+ "\n",
+ "#result\n",
+ "print'permeability =%3.6f'%ur;\n",
+ "print'relative permeability =%3.4e'%u,'N/A**2';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.11,Page No:3.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "permeability =1.084000\n",
+ "relative permeability =1.362e-06 N/A**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "sighem = 0.084; #magnetic susceptability\n",
+ "u1 = 10**-7;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*u1;\n",
+ "ur = 1+(sighem); #permeability\n",
+ "u = u0*ur; #relative permeability in N/A**2\n",
+ "\n",
+ "#result\n",
+ "print'permeability =%3.6f'%ur;\n",
+ "print'relative permeability =%3.3e'%u,'N/A**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.12,Page No:3.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "relative permiability =1.00267e+05\n",
+ " Note:Calculation mistake in textbook in calculating sighe by taking ur as 10**5 instead of 100318.4\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declarationn\n",
+ "u = 0.126; #permiability in N/A**2\n",
+ "u1 = 10**-7;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*u1;\n",
+ "ur = u/float(u0);\n",
+ "sighe = ur-1; #magnetic susceptability\n",
+ "\n",
+ "#result\n",
+ "print'relative permiability =%3.5e'%sighe;\n",
+ "print' Note:Calculation mistake in textbook in calculating sighe by taking ur as 10**5 instead of 100318.4';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#Example 3.13,Page No:3.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 62,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "susceptability of diamagnetic material = -1.1878e-07\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "#diamagnetic susceptability of He\n",
+ "R = 0.6*10**-10; #mean radius of atom in m\n",
+ "N = 28*10**26; #avagadro number in per m**3\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "m = 9.1*10**-31; #mass of electron in kilograms\n",
+ "Z = 2; #atomic number\n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7; #atomic number\n",
+ "si = -(u0*Z*(e**2)*N*(R**2))/float(6*m); #susceptability of diamagnetic material \n",
+ " \n",
+ "#result\n",
+ "print'susceptability of diamagnetic material = %3.4e'%si;\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#Example 3.14,Page No:3.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "permiability =5.00e-04 N/A**2\n",
+ "susceptability =396.887358\n",
+ "Note:answer of permiability is wrong in textbook\n",
+ "Note: calcuation mistake in textbook in sighem\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "phi = 2*10**-5; #magnetic flux in Wb/m**2\n",
+ "H = 2*10**3; #in A/m\n",
+ "A = 0.2*10**-4; #area in m**2\n",
+ "\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7;\n",
+ "B = phi/float(A); #magnetic flux density in Wb/m**2\n",
+ "u = B/float(H); #permiability in A**-2\n",
+ "sighem = (u/float(u0))-1;\n",
+ " \n",
+ "#result\n",
+ "print'permiability =%3.2e'%u,'N/A**2';\n",
+ "print'susceptability =%4f'%sighem;\n",
+ "print'Note:answer of permiability is wrong in textbook';\n",
+ "print'Note: calcuation mistake in textbook in sighem';\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.15,Page No:3.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "susceptability of diamagnetic material = 5.61e-07\n"
+ ]
+ }
+ ],
+ "source": [
+ "# import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N = 6.5*10**25; #number of atoms in atoms per m**3\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "m = 9.1*10**-31; #mass of electron inilograms\n",
+ "h = 6.6*10**-34; #planck's constant in J.s\n",
+ "T = 300; #temperature in K\n",
+ "k = 1.38*10**-23; #boltzman constant in J*(K**-1)\n",
+ "n = 1; #constant\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7;\n",
+ "M = n*((e*h)/float(4*math.pi*m)); #magnetic moment in A*m**2\n",
+ "sighe = (u0*N*(M**2))/float(3*k*T); #susceptability of diamagnetic material\n",
+ " \n",
+ "#result\n",
+ "print'susceptability of diamagnetic material = %3.2e'%sighe;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.16,Page No:3.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ampere turn =200 A/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "L = 2.0; #length in m\n",
+ "A = 4*10**-4; #cross section sq.m\n",
+ "u = 50*10**-4; #permiability in H*m**-1\n",
+ "phi = 4*10**-4; #magnetic flux in Wb\n",
+ "\n",
+ "#calculation\n",
+ "B = phi/float(A); #magnetic flux density in Wb/m**2\n",
+ "NI = B/float(u); #ampere turn in A/m\n",
+ " \n",
+ "#result\n",
+ "print'ampere turn =%3.0f'%NI,'A/m';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.17,Page No:3.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current =1 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "H = 5*10**3; #corecivity in A/m\n",
+ "l = 10**-1; #length in m\n",
+ "n = 500; #number of turns\n",
+ "\n",
+ "#calculation\n",
+ "N = n/float(l); #number of turns per m\n",
+ "i = H/float(N); #current in A\n",
+ " \n",
+ "#result\n",
+ "print'current =%1d'%i,'A';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.18,Page No:3.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of turns =5.128205\n",
+ " Note: calculation mistake in textbook in calculattig H by taking B value as 0.06 instead of 0.0666\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "A = 6*10**-4; #area in m**2\n",
+ "l = 0.5; #length in m\n",
+ "u = 65*10**-4; #permiability in H/m\n",
+ "phi = 4*10**-5; #magnetic flux in Wb\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "B = phi/float(A);\n",
+ "H = B/float(u);\n",
+ "N = H*l; #number of turns\n",
+ " \n",
+ "#result\n",
+ "print'number of turns =%1f'%N;\n",
+ "print' Note: calculation mistake in textbook in calculattig H by taking B value as 0.06 instead of 0.0666';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.19,Page No:3.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 68,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "susceptability =1908\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "A = 0.2*10**-4; #area in m**2\n",
+ "H = 500; #magnetising field in A.m**-1\n",
+ "phi = 2.4*10**-5; # magnetic flux in Wb\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7;\n",
+ "B = phi/float(A); #magnetic flux density in N*A**-1 *m**-1\n",
+ "u = B/float(H); #permiability in N/m\n",
+ "fm = (u/float(u0))-1; #susceptability \n",
+ " \n",
+ "#result\n",
+ "print'susceptability =%3.2d'%fm;\n",
+ "\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.20,Page No:3.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 69,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "loss of energy per hour =4800.00\n",
+ "calculation mistake in textbook in calculating Lh\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "f = 50; #number of reversals/s in Hz\n",
+ "W = 50; #weight in kg\n",
+ "d = 7500; #density in kg/m^3\n",
+ "A = 200; #area in joules /m^3\n",
+ " \n",
+ "#calculation\n",
+ " \n",
+ "V = 1/float(d); #volume of 1 kg iron\n",
+ "E = A*V; #loss of energy per kg\n",
+ "L = f*E; #hysteresisloss/s in Joule/second\n",
+ "Lh = L*60*60; #loss per hour\n",
+ " \n",
+ "#calculation\n",
+ "print'loss of energy per hour =%3.2f'%Lh;\n",
+ "print'calculation mistake in textbook in calculating Lh';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#Example 3.21,Page No:3.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 70,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "total iron loss =2.97 watt/kg\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "f = 50; #frequency in Hz\n",
+ "Bm = 1.1; #magnetic flux in Wb/m**2\n",
+ "t = 0.0005; #thickness of sheet \n",
+ "p = 30*10**-8*7800; #resistivity in ohms m\n",
+ "d = 7800; #density in kg/m**3\n",
+ "Hl = 380; #hysteresis loss per cycle in W-S/m**2\n",
+ "\n",
+ "#calculation\n",
+ "Pl = ((math.pi**2)*(f**2)*(Bm**2)*(t**2))/float(6*p); #eddy current loss\n",
+ "Hel = (Hl*f)/float(d); #hysteresis loss\n",
+ "Tl = Pl+Hel; #total iron loss watt/kg\n",
+ " \n",
+ "#result\n",
+ "print'total iron loss =%3.2f'%Tl,' watt/kg';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3_1.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3_1.ipynb
new file mode 100644
index 00000000..64f5bc0b
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3_1.ipynb
@@ -0,0 +1,880 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3:Magnetic Properties of Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1,Page No:3.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic moment = 9.319e-24 Am**2\n",
+ "Bohr magneton = 9.28e-24 J/T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "r = 0.53*10**-10; # orbit radius m\n",
+ "n = 6.6*10**15; # frequency of revolution of electronHz\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "\n",
+ "# Calculations\n",
+ "i = e*n # current produced due to electron\n",
+ "A = math.pi*r*r # Area in m^2\n",
+ "u = i*A; # magnetic moment A*m^2\n",
+ "ub = (e*h)/float(4*math.pi*m); # Bohr magneton in J/T\n",
+ "\n",
+ "#result\n",
+ "print'Magnetic moment = %3.3e'%u,'Am**2';\n",
+ "print'Bohr magneton = %3.2e'%ub,'J/T';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2,Page No:3.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic moment = 2.87e+02 A-m**2\n",
+ "\n",
+ " Note: Instead of 2.87*10**2, 2.87*10**-2 is printed in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "ur = 1150; # relative permeability\n",
+ "n = 500; # turns per m\n",
+ "V = 10**-3; # volume of iron rod in m**3\n",
+ "i = 0.5; # current in amp\n",
+ "\n",
+ "#Calculations\n",
+ "#B = uo(H+M)\n",
+ "# B = uH, u/uo = ur\n",
+ "# M = (ur - 1)H\n",
+ "#if current is flowing through a solenoid having n turns/l then H = ni\n",
+ "\n",
+ "M = (ur - 1)*n*i # magnetisation\n",
+ "m = M*V; # magnetic moment\n",
+ " \n",
+ "#Output\n",
+ "print'Magnetic moment = %3.2e'%m,' A-m**2';\n",
+ "print'\\n Note: Instead of 2.87*10**2, 2.87*10**-2 is printed in textbook';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3,Page No:3.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic Moment of the rod = 2.1 A-m**2\n",
+ "Note: In textbook length of iron rod given as 2m whereas in calculation it is wrongly taken as 0.2m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "ur = 90; #relative permeability\n",
+ "n = 300; # turns per m\n",
+ "i = 0.5; # current in amp\n",
+ "d = 10*10**-3; # diameter of iron rod\n",
+ "l = 2; # length of iron rod\n",
+ "\n",
+ "#Calculations\n",
+ "V = math.pi*(d/float(2))**2 * l; #volume of rod\n",
+ "M = (ur - 1)*n*i; # magnetisation\n",
+ "m = M*V; # magnetic moment\n",
+ "\n",
+ "# Output\n",
+ "print'Magnetic Moment of the rod = %3.3g'%m,'A-m**2';\n",
+ "print'Note: In textbook length of iron rod given as 2m whereas in calculation it is wrongly taken as 0.2m';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4,Page No:3.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Change in magnetic moment = 3.9e-29 J/T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Bo = 2; # magnetic field in tesla\n",
+ "r = 5.29*10**-11 # radius in m\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "e = 1.6*10**-19 # charge of electron\n",
+ "\n",
+ "# calculations\n",
+ "du = (e**2 * Bo * r**2)/float(4*m); # change in magnetic moment(indicating oth in -ve and +ve values)\n",
+ "\n",
+ "#result\n",
+ "print'Change in magnetic moment = %3.1e'%du,'J/T';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6,Page No:3.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Temperature to which substance to be cooled = 7.7 K\n",
+ "Note:Values given in question B = 52, u = 924*10**-24.Values substituted in calculation B = 5.2, u = 9.24*10**-24\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "u1 = 3.3; # magnetic dipole moment\n",
+ "u = 9.24*10**-24;\n",
+ "B = 5.2; # magnetic field in tesla\n",
+ "k = 1.38*10**-23; # boltzmann constant\n",
+ "\n",
+ "# calculations\n",
+ "T = (u*u1*B)/float(1.5*k); # Temperature in Kelvin\n",
+ "\n",
+ "#result\n",
+ "print'Temperature to which substance to be cooled = %3.1f'%T,'K';\n",
+ "print'Note:Values given in question B = 52, u = 924*10**-24.Values substituted in calculation B = 5.2, u = 9.24*10**-24';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.7,Page No:3.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetisation = -0.48 A/m\n",
+ "flux density = 0.14 Tesla\n",
+ "relative permeability = 0.999996\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "xm = -4.2*10**-6; # magnetic susceptibility in A.m**-1\n",
+ "H = 1.15*10**5; # magnetic field in A.m**-1\n",
+ "\n",
+ "#Calculations\n",
+ "uo = 4*math.pi*10**-7; # magnetic permeability N·A**-2\n",
+ "M = xm*H; # magnetisation in A.m**-1\n",
+ "B = uo*(H + M); # flux density in T\n",
+ "ur = 1+(M/float(H)); # relative permeability \n",
+ "\n",
+ "# result\n",
+ "print'Magnetisation = %3.2f'%M,'A/m';\n",
+ "print'flux density = %3.2f'%B,'Tesla'; \n",
+ "print'relative permeability = %f'%ur;\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8,Page No:3.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percentage increase = 0.0014 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "xm = 1.4*10**-5; # magnetic susceptibility\n",
+ "# B = uoH\n",
+ "# B' = uruoH\n",
+ "# ur = 1+xm\n",
+ "# from above equations\n",
+ "#B' = (1+xm)B\n",
+ "# percentage increase in magnetic induction = ((B'-B)/B)*100\n",
+ "# y = (((1+xm)B - B)/B)*100\n",
+ "PI = xm*100; # percentage increase\n",
+ "\n",
+ "# Output\n",
+ "print'Percentage increase = %3.4f'%PI,'%';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.9,Page No:3.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "magnetisation = -0.02 A/m\n",
+ "Magnetic flux density = 0.0126 T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "xm = -0.2*10**-5; # magnetic susceptability in A.m**-1\n",
+ "H = 10**4; # magnetic field in A/m\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "uo = 4*math.pi*10**-7; # magnetic permeability\n",
+ "M = xm*H # magnetisation in A/m\n",
+ "B = uo*(H+M); # magnetic flux density in T\n",
+ "\n",
+ "# Output\n",
+ "print'magnetisation = %3.2f'%M,'A/m';\n",
+ "print'Magnetic flux density = %3.4f'%B,'T';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 3.10,Page No:3.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "permeability =1.000021\n",
+ "relative permeability =1.2567e-06 N/A**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "sighem = 2.1*10**-5; #magnetic susceptability\n",
+ "u1 = 10**-7;\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*u1;\n",
+ "ur = 1+(sighem); #permeability\n",
+ "u = u0*ur; #relative permeability in N/A**2\n",
+ "\n",
+ "#result\n",
+ "print'permeability =%3.6f'%ur;\n",
+ "print'relative permeability =%3.4e'%u,'N/A**2';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.11,Page No:3.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "permeability =1.084000\n",
+ "relative permeability =1.362e-06 N/A**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "sighem = 0.084; #magnetic susceptability\n",
+ "u1 = 10**-7;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*u1;\n",
+ "ur = 1+(sighem); #permeability\n",
+ "u = u0*ur; #relative permeability in N/A**2\n",
+ "\n",
+ "#result\n",
+ "print'permeability =%3.6f'%ur;\n",
+ "print'relative permeability =%3.3e'%u,'N/A**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.12,Page No:3.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "relative permiability =1.00267e+05\n",
+ " Note:Calculation mistake in textbook in calculating sighe by taking ur as 10**5 instead of 100318.4\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declarationn\n",
+ "u = 0.126; #permiability in N/A**2\n",
+ "u1 = 10**-7;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*u1;\n",
+ "ur = u/float(u0);\n",
+ "sighe = ur-1; #magnetic susceptability\n",
+ "\n",
+ "#result\n",
+ "print'relative permiability =%3.5e'%sighe;\n",
+ "print' Note:Calculation mistake in textbook in calculating sighe by taking ur as 10**5 instead of 100318.4';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 3.13,Page No:3.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "susceptability of diamagnetic material = -1.1878e-07\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "#diamagnetic susceptability of He\n",
+ "R = 0.6*10**-10; #mean radius of atom in m\n",
+ "N = 28*10**26; #avagadro number in per m**3\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "m = 9.1*10**-31; #mass of electron in kilograms\n",
+ "Z = 2; #atomic number\n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7; #atomic number\n",
+ "si = -(u0*Z*(e**2)*N*(R**2))/float(6*m); #susceptability of diamagnetic material \n",
+ " \n",
+ "#result\n",
+ "print'susceptability of diamagnetic material = %3.4e'%si;\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 3.14,Page No:3.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "permiability =5.00e-04 N/A**2\n",
+ "susceptability =396.887358\n",
+ "Note:answer of permiability is wrong in textbook\n",
+ "Note: calcuation mistake in textbook in sighem\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "phi = 2*10**-5; #magnetic flux in Wb/m**2\n",
+ "H = 2*10**3; #in A/m\n",
+ "A = 0.2*10**-4; #area in m**2\n",
+ "\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7;\n",
+ "B = phi/float(A); #magnetic flux density in Wb/m**2\n",
+ "u = B/float(H); #permiability in A**-2\n",
+ "sighem = (u/float(u0))-1;\n",
+ " \n",
+ "#result\n",
+ "print'permiability =%3.2e'%u,'N/A**2';\n",
+ "print'susceptability =%4f'%sighem;\n",
+ "print'Note:answer of permiability is wrong in textbook';\n",
+ "print'Note: calcuation mistake in textbook in sighem';\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.15,Page No:3.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "susceptability of diamagnetic material = 5.61e-07\n"
+ ]
+ }
+ ],
+ "source": [
+ "# import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N = 6.5*10**25; #number of atoms in atoms per m**3\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "m = 9.1*10**-31; #mass of electron inilograms\n",
+ "h = 6.6*10**-34; #planck's constant in J.s\n",
+ "T = 300; #temperature in K\n",
+ "k = 1.38*10**-23; #boltzman constant in J*(K**-1)\n",
+ "n = 1; #constant\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7;\n",
+ "M = n*((e*h)/float(4*math.pi*m)); #magnetic moment in A*m**2\n",
+ "sighe = (u0*N*(M**2))/float(3*k*T); #susceptability of diamagnetic material\n",
+ " \n",
+ "#result\n",
+ "print'susceptability of diamagnetic material = %3.2e'%sighe;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.16,Page No:3.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ampere turn =200 A/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "L = 2.0; #length in m\n",
+ "A = 4*10**-4; #cross section sq.m\n",
+ "u = 50*10**-4; #permiability in H*m**-1\n",
+ "phi = 4*10**-4; #magnetic flux in Wb\n",
+ "\n",
+ "#calculation\n",
+ "B = phi/float(A); #magnetic flux density in Wb/m**2\n",
+ "NI = B/float(u); #ampere turn in A/m\n",
+ " \n",
+ "#result\n",
+ "print'ampere turn =%3.0f'%NI,'A/m';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17,Page No:3.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current =1 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "H = 5*10**3; #corecivity in A/m\n",
+ "l = 10**-1; #length in m\n",
+ "n = 500; #number of turns\n",
+ "\n",
+ "#calculation\n",
+ "N = n/float(l); #number of turns per m\n",
+ "i = H/float(N); #current in A\n",
+ " \n",
+ "#result\n",
+ "print'current =%1d'%i,'A';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.18,Page No:3.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of turns =5.128205\n",
+ " Note: calculation mistake in textbook in calculattig H by taking B value as 0.06 instead of 0.0666\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "A = 6*10**-4; #area in m**2\n",
+ "l = 0.5; #length in m\n",
+ "u = 65*10**-4; #permiability in H/m\n",
+ "phi = 4*10**-5; #magnetic flux in Wb\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "B = phi/float(A);\n",
+ "H = B/float(u);\n",
+ "N = H*l; #number of turns\n",
+ " \n",
+ "#result\n",
+ "print'number of turns =%1f'%N;\n",
+ "print' Note: calculation mistake in textbook in calculattig H by taking B value as 0.06 instead of 0.0666';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.19,Page No:3.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "susceptability =1908\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "A = 0.2*10**-4; #area in m**2\n",
+ "H = 500; #magnetising field in A.m**-1\n",
+ "phi = 2.4*10**-5; # magnetic flux in Wb\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7;\n",
+ "B = phi/float(A); #magnetic flux density in N*A**-1 *m**-1\n",
+ "u = B/float(H); #permiability in N/m\n",
+ "fm = (u/float(u0))-1; #susceptability \n",
+ " \n",
+ "#result\n",
+ "print'susceptability =%3.2d'%fm;\n",
+ "\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.20,Page No:3.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "loss of energy per hour =4800.00\n",
+ "calculation mistake in textbook in calculating Lh\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "f = 50; #number of reversals/s in Hz\n",
+ "W = 50; #weight in kg\n",
+ "d = 7500; #density in kg/m^3\n",
+ "A = 200; #area in joules /m^3\n",
+ " \n",
+ "#calculation\n",
+ " \n",
+ "V = 1/float(d); #volume of 1 kg iron\n",
+ "E = A*V; #loss of energy per kg\n",
+ "L = f*E; #hysteresisloss/s in Joule/second\n",
+ "Lh = L*60*60; #loss per hour\n",
+ " \n",
+ "#calculation\n",
+ "print'loss of energy per hour =%3.2f'%Lh;\n",
+ "print'calculation mistake in textbook in calculating Lh';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 3.21,Page No:3.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "total iron loss =2.97 watt/kg\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "f = 50; #frequency in Hz\n",
+ "Bm = 1.1; #magnetic flux in Wb/m**2\n",
+ "t = 0.0005; #thickness of sheet \n",
+ "p = 30*10**-8*7800; #resistivity in ohms m\n",
+ "d = 7800; #density in kg/m**3\n",
+ "Hl = 380; #hysteresis loss per cycle in W-S/m**2\n",
+ "\n",
+ "#calculation\n",
+ "Pl = ((math.pi**2)*(f**2)*(Bm**2)*(t**2))/float(6*p); #eddy current loss\n",
+ "Hel = (Hl*f)/float(d); #hysteresis loss\n",
+ "Tl = Pl+Hel; #total iron loss watt/kg\n",
+ " \n",
+ "#result\n",
+ "print'total iron loss =%3.2f'%Tl,'watt/kg';\n",
+ " "
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3_2.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3_2.ipynb
new file mode 100644
index 00000000..64f5bc0b
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3_2.ipynb
@@ -0,0 +1,880 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3:Magnetic Properties of Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1,Page No:3.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic moment = 9.319e-24 Am**2\n",
+ "Bohr magneton = 9.28e-24 J/T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "r = 0.53*10**-10; # orbit radius m\n",
+ "n = 6.6*10**15; # frequency of revolution of electronHz\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "\n",
+ "# Calculations\n",
+ "i = e*n # current produced due to electron\n",
+ "A = math.pi*r*r # Area in m^2\n",
+ "u = i*A; # magnetic moment A*m^2\n",
+ "ub = (e*h)/float(4*math.pi*m); # Bohr magneton in J/T\n",
+ "\n",
+ "#result\n",
+ "print'Magnetic moment = %3.3e'%u,'Am**2';\n",
+ "print'Bohr magneton = %3.2e'%ub,'J/T';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2,Page No:3.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic moment = 2.87e+02 A-m**2\n",
+ "\n",
+ " Note: Instead of 2.87*10**2, 2.87*10**-2 is printed in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "ur = 1150; # relative permeability\n",
+ "n = 500; # turns per m\n",
+ "V = 10**-3; # volume of iron rod in m**3\n",
+ "i = 0.5; # current in amp\n",
+ "\n",
+ "#Calculations\n",
+ "#B = uo(H+M)\n",
+ "# B = uH, u/uo = ur\n",
+ "# M = (ur - 1)H\n",
+ "#if current is flowing through a solenoid having n turns/l then H = ni\n",
+ "\n",
+ "M = (ur - 1)*n*i # magnetisation\n",
+ "m = M*V; # magnetic moment\n",
+ " \n",
+ "#Output\n",
+ "print'Magnetic moment = %3.2e'%m,' A-m**2';\n",
+ "print'\\n Note: Instead of 2.87*10**2, 2.87*10**-2 is printed in textbook';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3,Page No:3.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic Moment of the rod = 2.1 A-m**2\n",
+ "Note: In textbook length of iron rod given as 2m whereas in calculation it is wrongly taken as 0.2m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "ur = 90; #relative permeability\n",
+ "n = 300; # turns per m\n",
+ "i = 0.5; # current in amp\n",
+ "d = 10*10**-3; # diameter of iron rod\n",
+ "l = 2; # length of iron rod\n",
+ "\n",
+ "#Calculations\n",
+ "V = math.pi*(d/float(2))**2 * l; #volume of rod\n",
+ "M = (ur - 1)*n*i; # magnetisation\n",
+ "m = M*V; # magnetic moment\n",
+ "\n",
+ "# Output\n",
+ "print'Magnetic Moment of the rod = %3.3g'%m,'A-m**2';\n",
+ "print'Note: In textbook length of iron rod given as 2m whereas in calculation it is wrongly taken as 0.2m';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4,Page No:3.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Change in magnetic moment = 3.9e-29 J/T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Bo = 2; # magnetic field in tesla\n",
+ "r = 5.29*10**-11 # radius in m\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "e = 1.6*10**-19 # charge of electron\n",
+ "\n",
+ "# calculations\n",
+ "du = (e**2 * Bo * r**2)/float(4*m); # change in magnetic moment(indicating oth in -ve and +ve values)\n",
+ "\n",
+ "#result\n",
+ "print'Change in magnetic moment = %3.1e'%du,'J/T';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6,Page No:3.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Temperature to which substance to be cooled = 7.7 K\n",
+ "Note:Values given in question B = 52, u = 924*10**-24.Values substituted in calculation B = 5.2, u = 9.24*10**-24\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "u1 = 3.3; # magnetic dipole moment\n",
+ "u = 9.24*10**-24;\n",
+ "B = 5.2; # magnetic field in tesla\n",
+ "k = 1.38*10**-23; # boltzmann constant\n",
+ "\n",
+ "# calculations\n",
+ "T = (u*u1*B)/float(1.5*k); # Temperature in Kelvin\n",
+ "\n",
+ "#result\n",
+ "print'Temperature to which substance to be cooled = %3.1f'%T,'K';\n",
+ "print'Note:Values given in question B = 52, u = 924*10**-24.Values substituted in calculation B = 5.2, u = 9.24*10**-24';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.7,Page No:3.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetisation = -0.48 A/m\n",
+ "flux density = 0.14 Tesla\n",
+ "relative permeability = 0.999996\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "xm = -4.2*10**-6; # magnetic susceptibility in A.m**-1\n",
+ "H = 1.15*10**5; # magnetic field in A.m**-1\n",
+ "\n",
+ "#Calculations\n",
+ "uo = 4*math.pi*10**-7; # magnetic permeability N·A**-2\n",
+ "M = xm*H; # magnetisation in A.m**-1\n",
+ "B = uo*(H + M); # flux density in T\n",
+ "ur = 1+(M/float(H)); # relative permeability \n",
+ "\n",
+ "# result\n",
+ "print'Magnetisation = %3.2f'%M,'A/m';\n",
+ "print'flux density = %3.2f'%B,'Tesla'; \n",
+ "print'relative permeability = %f'%ur;\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8,Page No:3.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percentage increase = 0.0014 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "xm = 1.4*10**-5; # magnetic susceptibility\n",
+ "# B = uoH\n",
+ "# B' = uruoH\n",
+ "# ur = 1+xm\n",
+ "# from above equations\n",
+ "#B' = (1+xm)B\n",
+ "# percentage increase in magnetic induction = ((B'-B)/B)*100\n",
+ "# y = (((1+xm)B - B)/B)*100\n",
+ "PI = xm*100; # percentage increase\n",
+ "\n",
+ "# Output\n",
+ "print'Percentage increase = %3.4f'%PI,'%';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.9,Page No:3.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "magnetisation = -0.02 A/m\n",
+ "Magnetic flux density = 0.0126 T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "xm = -0.2*10**-5; # magnetic susceptability in A.m**-1\n",
+ "H = 10**4; # magnetic field in A/m\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "uo = 4*math.pi*10**-7; # magnetic permeability\n",
+ "M = xm*H # magnetisation in A/m\n",
+ "B = uo*(H+M); # magnetic flux density in T\n",
+ "\n",
+ "# Output\n",
+ "print'magnetisation = %3.2f'%M,'A/m';\n",
+ "print'Magnetic flux density = %3.4f'%B,'T';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 3.10,Page No:3.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "permeability =1.000021\n",
+ "relative permeability =1.2567e-06 N/A**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "sighem = 2.1*10**-5; #magnetic susceptability\n",
+ "u1 = 10**-7;\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*u1;\n",
+ "ur = 1+(sighem); #permeability\n",
+ "u = u0*ur; #relative permeability in N/A**2\n",
+ "\n",
+ "#result\n",
+ "print'permeability =%3.6f'%ur;\n",
+ "print'relative permeability =%3.4e'%u,'N/A**2';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.11,Page No:3.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "permeability =1.084000\n",
+ "relative permeability =1.362e-06 N/A**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "sighem = 0.084; #magnetic susceptability\n",
+ "u1 = 10**-7;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*u1;\n",
+ "ur = 1+(sighem); #permeability\n",
+ "u = u0*ur; #relative permeability in N/A**2\n",
+ "\n",
+ "#result\n",
+ "print'permeability =%3.6f'%ur;\n",
+ "print'relative permeability =%3.3e'%u,'N/A**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.12,Page No:3.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "relative permiability =1.00267e+05\n",
+ " Note:Calculation mistake in textbook in calculating sighe by taking ur as 10**5 instead of 100318.4\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declarationn\n",
+ "u = 0.126; #permiability in N/A**2\n",
+ "u1 = 10**-7;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*u1;\n",
+ "ur = u/float(u0);\n",
+ "sighe = ur-1; #magnetic susceptability\n",
+ "\n",
+ "#result\n",
+ "print'relative permiability =%3.5e'%sighe;\n",
+ "print' Note:Calculation mistake in textbook in calculating sighe by taking ur as 10**5 instead of 100318.4';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 3.13,Page No:3.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "susceptability of diamagnetic material = -1.1878e-07\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "#diamagnetic susceptability of He\n",
+ "R = 0.6*10**-10; #mean radius of atom in m\n",
+ "N = 28*10**26; #avagadro number in per m**3\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "m = 9.1*10**-31; #mass of electron in kilograms\n",
+ "Z = 2; #atomic number\n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7; #atomic number\n",
+ "si = -(u0*Z*(e**2)*N*(R**2))/float(6*m); #susceptability of diamagnetic material \n",
+ " \n",
+ "#result\n",
+ "print'susceptability of diamagnetic material = %3.4e'%si;\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 3.14,Page No:3.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "permiability =5.00e-04 N/A**2\n",
+ "susceptability =396.887358\n",
+ "Note:answer of permiability is wrong in textbook\n",
+ "Note: calcuation mistake in textbook in sighem\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "phi = 2*10**-5; #magnetic flux in Wb/m**2\n",
+ "H = 2*10**3; #in A/m\n",
+ "A = 0.2*10**-4; #area in m**2\n",
+ "\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7;\n",
+ "B = phi/float(A); #magnetic flux density in Wb/m**2\n",
+ "u = B/float(H); #permiability in A**-2\n",
+ "sighem = (u/float(u0))-1;\n",
+ " \n",
+ "#result\n",
+ "print'permiability =%3.2e'%u,'N/A**2';\n",
+ "print'susceptability =%4f'%sighem;\n",
+ "print'Note:answer of permiability is wrong in textbook';\n",
+ "print'Note: calcuation mistake in textbook in sighem';\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.15,Page No:3.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "susceptability of diamagnetic material = 5.61e-07\n"
+ ]
+ }
+ ],
+ "source": [
+ "# import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N = 6.5*10**25; #number of atoms in atoms per m**3\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "m = 9.1*10**-31; #mass of electron inilograms\n",
+ "h = 6.6*10**-34; #planck's constant in J.s\n",
+ "T = 300; #temperature in K\n",
+ "k = 1.38*10**-23; #boltzman constant in J*(K**-1)\n",
+ "n = 1; #constant\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7;\n",
+ "M = n*((e*h)/float(4*math.pi*m)); #magnetic moment in A*m**2\n",
+ "sighe = (u0*N*(M**2))/float(3*k*T); #susceptability of diamagnetic material\n",
+ " \n",
+ "#result\n",
+ "print'susceptability of diamagnetic material = %3.2e'%sighe;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.16,Page No:3.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ampere turn =200 A/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "L = 2.0; #length in m\n",
+ "A = 4*10**-4; #cross section sq.m\n",
+ "u = 50*10**-4; #permiability in H*m**-1\n",
+ "phi = 4*10**-4; #magnetic flux in Wb\n",
+ "\n",
+ "#calculation\n",
+ "B = phi/float(A); #magnetic flux density in Wb/m**2\n",
+ "NI = B/float(u); #ampere turn in A/m\n",
+ " \n",
+ "#result\n",
+ "print'ampere turn =%3.0f'%NI,'A/m';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17,Page No:3.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current =1 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "H = 5*10**3; #corecivity in A/m\n",
+ "l = 10**-1; #length in m\n",
+ "n = 500; #number of turns\n",
+ "\n",
+ "#calculation\n",
+ "N = n/float(l); #number of turns per m\n",
+ "i = H/float(N); #current in A\n",
+ " \n",
+ "#result\n",
+ "print'current =%1d'%i,'A';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.18,Page No:3.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of turns =5.128205\n",
+ " Note: calculation mistake in textbook in calculattig H by taking B value as 0.06 instead of 0.0666\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "A = 6*10**-4; #area in m**2\n",
+ "l = 0.5; #length in m\n",
+ "u = 65*10**-4; #permiability in H/m\n",
+ "phi = 4*10**-5; #magnetic flux in Wb\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "B = phi/float(A);\n",
+ "H = B/float(u);\n",
+ "N = H*l; #number of turns\n",
+ " \n",
+ "#result\n",
+ "print'number of turns =%1f'%N;\n",
+ "print' Note: calculation mistake in textbook in calculattig H by taking B value as 0.06 instead of 0.0666';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.19,Page No:3.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "susceptability =1908\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "A = 0.2*10**-4; #area in m**2\n",
+ "H = 500; #magnetising field in A.m**-1\n",
+ "phi = 2.4*10**-5; # magnetic flux in Wb\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7;\n",
+ "B = phi/float(A); #magnetic flux density in N*A**-1 *m**-1\n",
+ "u = B/float(H); #permiability in N/m\n",
+ "fm = (u/float(u0))-1; #susceptability \n",
+ " \n",
+ "#result\n",
+ "print'susceptability =%3.2d'%fm;\n",
+ "\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.20,Page No:3.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "loss of energy per hour =4800.00\n",
+ "calculation mistake in textbook in calculating Lh\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "f = 50; #number of reversals/s in Hz\n",
+ "W = 50; #weight in kg\n",
+ "d = 7500; #density in kg/m^3\n",
+ "A = 200; #area in joules /m^3\n",
+ " \n",
+ "#calculation\n",
+ " \n",
+ "V = 1/float(d); #volume of 1 kg iron\n",
+ "E = A*V; #loss of energy per kg\n",
+ "L = f*E; #hysteresisloss/s in Joule/second\n",
+ "Lh = L*60*60; #loss per hour\n",
+ " \n",
+ "#calculation\n",
+ "print'loss of energy per hour =%3.2f'%Lh;\n",
+ "print'calculation mistake in textbook in calculating Lh';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 3.21,Page No:3.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "total iron loss =2.97 watt/kg\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "f = 50; #frequency in Hz\n",
+ "Bm = 1.1; #magnetic flux in Wb/m**2\n",
+ "t = 0.0005; #thickness of sheet \n",
+ "p = 30*10**-8*7800; #resistivity in ohms m\n",
+ "d = 7800; #density in kg/m**3\n",
+ "Hl = 380; #hysteresis loss per cycle in W-S/m**2\n",
+ "\n",
+ "#calculation\n",
+ "Pl = ((math.pi**2)*(f**2)*(Bm**2)*(t**2))/float(6*p); #eddy current loss\n",
+ "Hel = (Hl*f)/float(d); #hysteresis loss\n",
+ "Tl = Pl+Hel; #total iron loss watt/kg\n",
+ " \n",
+ "#result\n",
+ "print'total iron loss =%3.2f'%Tl,'watt/kg';\n",
+ " "
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3_3.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3_3.ipynb
new file mode 100644
index 00000000..740a15e5
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3_3.ipynb
@@ -0,0 +1,882 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3:Magnetic Properties of Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1,Page No:3.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic moment = 9.319e-24 Am**2\n",
+ "Bohr magneton = 9.28e-24 J/T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "r = 0.53*10**-10; # orbit radius m\n",
+ "n = 6.6*10**15; # frequency of revolution of electronHz\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "\n",
+ "# Calculations\n",
+ "i = e*n # current produced due to electron\n",
+ "A = math.pi*r*r # Area in m^2\n",
+ "u = i*A; # magnetic moment A*m^2\n",
+ "ub = (e*h)/float(4*math.pi*m); # Bohr magneton in J/T\n",
+ "\n",
+ "#result\n",
+ "print'Magnetic moment = %3.3e'%u,'Am**2';\n",
+ "print'Bohr magneton = %3.2e'%ub,'J/T';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2,Page No:3.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic moment = 2.87e+02 A-m**2\n",
+ "\n",
+ " Note: Instead of 2.87*10**2, 2.87*10**-2 is printed in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "ur = 1150; # relative permeability\n",
+ "n = 500; # turns per m\n",
+ "V = 10**-3; # volume of iron rod in m**3\n",
+ "i = 0.5; # current in amp\n",
+ "\n",
+ "#Calculations\n",
+ "#B = uo(H+M)\n",
+ "# B = uH, u/uo = ur\n",
+ "# M = (ur - 1)H\n",
+ "#if current is flowing through a solenoid having n turns/l then H = ni\n",
+ "\n",
+ "M = (ur - 1)*n*i # magnetisation\n",
+ "m = M*V; # magnetic moment\n",
+ " \n",
+ "#Output\n",
+ "print'Magnetic moment = %3.2e'%m,' A-m**2';\n",
+ "print'\\n Note: Instead of 2.87*10**2, 2.87*10**-2 is printed in textbook';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3,Page No:3.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic Moment of the rod = 2.1 A-m**2\n",
+ "Note: In textbook length of iron rod given as 2m whereas in calculation it is wrongly taken as 0.2m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "ur = 90; #relative permeability\n",
+ "n = 300; # turns per m\n",
+ "i = 0.5; # current in amp\n",
+ "d = 10*10**-3; # diameter of iron rod\n",
+ "l = 2; # length of iron rod\n",
+ "\n",
+ "#Calculations\n",
+ "V = math.pi*(d/float(2))**2 * l; #volume of rod\n",
+ "M = (ur - 1)*n*i; # magnetisation\n",
+ "m = M*V; # magnetic moment\n",
+ "\n",
+ "# Output\n",
+ "print'Magnetic Moment of the rod = %3.3g'%m,'A-m**2';\n",
+ "print'Note: In textbook length of iron rod given as 2m whereas in calculation it is wrongly taken as 0.2m';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4,Page No:3.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Change in magnetic moment = 3.9e-29 J/T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Bo = 2; # magnetic field in tesla\n",
+ "r = 5.29*10**-11 # radius in m\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "e = 1.6*10**-19 # charge of electron\n",
+ "\n",
+ "# calculations\n",
+ "du = (e**2 * Bo * r**2)/float(4*m); # change in magnetic moment(indicating oth in -ve and +ve values)\n",
+ "\n",
+ "#result\n",
+ "print'Change in magnetic moment = %3.1e'%du,'J/T';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6,Page No:3.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Temperature to which substance to be cooled = 7.7 K\n",
+ "Note:Values given in question B = 52, u = 924*10**-24.Values substituted in calculation B = 5.2, u = 9.24*10**-24\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "u1 = 3.3; # magnetic dipole moment\n",
+ "u = 9.24*10**-24;\n",
+ "B = 5.2; # magnetic field in tesla\n",
+ "k = 1.38*10**-23; # boltzmann constant\n",
+ "\n",
+ "# calculations\n",
+ "T = (u*u1*B)/float(1.5*k); # Temperature in Kelvin\n",
+ "\n",
+ "#result\n",
+ "print'Temperature to which substance to be cooled = %3.1f'%T,'K';\n",
+ "print'Note:Values given in question B = 52, u = 924*10**-24.Values substituted in calculation B = 5.2, u = 9.24*10**-24';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.7,Page No:3.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetisation = -0.48 A/m\n",
+ "flux density = 0.14 Tesla\n",
+ "relative permeability = 0.999996\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "xm = -4.2*10**-6; # magnetic susceptibility in A.m**-1\n",
+ "H = 1.15*10**5; # magnetic field in A.m**-1\n",
+ "\n",
+ "#Calculations\n",
+ "uo = 4*math.pi*10**-7; # magnetic permeability N·A**-2\n",
+ "M = xm*H; # magnetisation in A.m**-1\n",
+ "B = uo*(H + M); # flux density in T\n",
+ "ur = 1+(M/float(H)); # relative permeability \n",
+ "\n",
+ "# result\n",
+ "print'Magnetisation = %3.2f'%M,'A/m';\n",
+ "print'flux density = %3.2f'%B,'Tesla'; \n",
+ "print'relative permeability = %f'%ur;\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8,Page No:3.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percentage increase = 0.0014 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "xm = 1.4*10**-5; # magnetic susceptibility\n",
+ "# B = uoH\n",
+ "# B' = uruoH\n",
+ "# ur = 1+xm\n",
+ "# from above equations\n",
+ "#B' = (1+xm)B\n",
+ "# percentage increase in magnetic induction = ((B'-B)/B)*100\n",
+ "# y = (((1+xm)B - B)/B)*100\n",
+ "PI = xm*100; # percentage increase\n",
+ "\n",
+ "# Output\n",
+ "print'Percentage increase = %3.4f'%PI,'%';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.9,Page No:3.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "magnetisation = -0.02 A/m\n",
+ "Note:magnetisation sign is printed wrong in textbook\n",
+ "Magnetic flux density = 0.0126 T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "xm = -0.2*10**-5; # magnetic susceptability in A.m**-1\n",
+ "H = 10**4; # magnetic field in A/m\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "uo = 4*math.pi*10**-7; # magnetic permeability\n",
+ "M = xm*H # magnetisation in A/m\n",
+ "B = uo*(H+M); # magnetic flux density in T\n",
+ "\n",
+ "# Output\n",
+ "print'magnetisation = %3.2f'%M,'A/m';\n",
+ "print'Note:magnetisation sign is printed wrong in textbook';\n",
+ "print'Magnetic flux density = %3.4f'%B,'T';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 3.10,Page No:3.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "permeability =1.000021\n",
+ "relative permeability =1.2567e-06 N/A**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "sighem = 2.1*10**-5; #magnetic susceptability\n",
+ "u1 = 10**-7;\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*u1;\n",
+ "ur = 1+(sighem); #permeability\n",
+ "u = u0*ur; #relative permeability in N/A**2\n",
+ "\n",
+ "#result\n",
+ "print'permeability =%3.6f'%ur;\n",
+ "print'relative permeability =%3.4e'%u,'N/A**2';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.11,Page No:3.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "permeability =1.084000\n",
+ "relative permeability =1.362e-06 N/A**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "sighem = 0.084; #magnetic susceptability\n",
+ "u1 = 10**-7;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*u1;\n",
+ "ur = 1+(sighem); #permeability\n",
+ "u = u0*ur; #relative permeability in N/A**2\n",
+ "\n",
+ "#result\n",
+ "print'permeability =%3.6f'%ur;\n",
+ "print'relative permeability =%3.3e'%u,'N/A**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.12,Page No:3.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "relative permiability =1.00267e+05\n",
+ " Note:Calculation mistake in textbook in calculating sighe by taking ur as 10**5 instead of 100318.4\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declarationn\n",
+ "u = 0.126; #permiability in N/A**2\n",
+ "u1 = 10**-7;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*u1;\n",
+ "ur = u/float(u0);\n",
+ "sighe = ur-1; #magnetic susceptability\n",
+ "\n",
+ "#result\n",
+ "print'relative permiability =%3.5e'%sighe;\n",
+ "print' Note:Calculation mistake in textbook in calculating sighe by taking ur as 10**5 instead of 100318.4';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 3.13,Page No:3.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "susceptability of diamagnetic material = -1.1878e-07\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "#diamagnetic susceptability of He\n",
+ "R = 0.6*10**-10; #mean radius of atom in m\n",
+ "N = 28*10**26; #avagadro number in per m**3\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "m = 9.1*10**-31; #mass of electron in kilograms\n",
+ "Z = 2; #atomic number\n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7; #atomic number\n",
+ "si = -(u0*Z*(e**2)*N*(R**2))/float(6*m); #susceptability of diamagnetic material \n",
+ " \n",
+ "#result\n",
+ "print'susceptability of diamagnetic material = %3.4e'%si;\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 3.14,Page No:3.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "permiability =5.00e-04 N/A**2\n",
+ "susceptability =396.887358\n",
+ "Note:answer of permiability is wrong in textbook\n",
+ "Note: calcuation mistake in textbook in sighem\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "phi = 2*10**-5; #magnetic flux in Wb/m**2\n",
+ "H = 2*10**3; #in A/m\n",
+ "A = 0.2*10**-4; #area in m**2\n",
+ "\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7;\n",
+ "B = phi/float(A); #magnetic flux density in Wb/m**2\n",
+ "u = B/float(H); #permiability in A**-2\n",
+ "sighem = (u/float(u0))-1;\n",
+ " \n",
+ "#result\n",
+ "print'permiability =%3.2e'%u,'N/A**2';\n",
+ "print'susceptability =%4f'%sighem;\n",
+ "print'Note:answer of permiability is wrong in textbook';\n",
+ "print'Note: calcuation mistake in textbook in sighem';\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.15,Page No:3.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "susceptability of diamagnetic material = 5.61e-07\n"
+ ]
+ }
+ ],
+ "source": [
+ "# import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N = 6.5*10**25; #number of atoms in atoms per m**3\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "m = 9.1*10**-31; #mass of electron inilograms\n",
+ "h = 6.6*10**-34; #planck's constant in J.s\n",
+ "T = 300; #temperature in K\n",
+ "k = 1.38*10**-23; #boltzman constant in J*(K**-1)\n",
+ "n = 1; #constant\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7;\n",
+ "M = n*((e*h)/float(4*math.pi*m)); #magnetic moment in A*m**2\n",
+ "sighe = (u0*N*(M**2))/float(3*k*T); #susceptability of diamagnetic material\n",
+ " \n",
+ "#result\n",
+ "print'susceptability of diamagnetic material = %3.2e'%sighe;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.16,Page No:3.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ampere turn =200 A/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "L = 2.0; #length in m\n",
+ "A = 4*10**-4; #cross section sq.m\n",
+ "u = 50*10**-4; #permiability in H*m**-1\n",
+ "phi = 4*10**-4; #magnetic flux in Wb\n",
+ "\n",
+ "#calculation\n",
+ "B = phi/float(A); #magnetic flux density in Wb/m**2\n",
+ "NI = B/float(u); #ampere turn in A/m\n",
+ " \n",
+ "#result\n",
+ "print'ampere turn =%3.0f'%NI,'A/m';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17,Page No:3.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current =1 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "H = 5*10**3; #corecivity in A/m\n",
+ "l = 10**-1; #length in m\n",
+ "n = 500; #number of turns\n",
+ "\n",
+ "#calculation\n",
+ "N = n/float(l); #number of turns per m\n",
+ "i = H/float(N); #current in A\n",
+ " \n",
+ "#result\n",
+ "print'current =%1d'%i,'A';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.18,Page No:3.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of turns =5.128205\n",
+ " Note: calculation mistake in textbook in calculattig H by taking B value as 0.06 instead of 0.0666\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "A = 6*10**-4; #area in m**2\n",
+ "l = 0.5; #length in m\n",
+ "u = 65*10**-4; #permiability in H/m\n",
+ "phi = 4*10**-5; #magnetic flux in Wb\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "B = phi/float(A);\n",
+ "H = B/float(u);\n",
+ "N = H*l; #number of turns\n",
+ " \n",
+ "#result\n",
+ "print'number of turns =%1f'%N;\n",
+ "print' Note: calculation mistake in textbook in calculattig H by taking B value as 0.06 instead of 0.0666';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.19,Page No:3.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "susceptability =1908\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "A = 0.2*10**-4; #area in m**2\n",
+ "H = 500; #magnetising field in A.m**-1\n",
+ "phi = 2.4*10**-5; # magnetic flux in Wb\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7;\n",
+ "B = phi/float(A); #magnetic flux density in N*A**-1 *m**-1\n",
+ "u = B/float(H); #permiability in N/m\n",
+ "fm = (u/float(u0))-1; #susceptability \n",
+ " \n",
+ "#result\n",
+ "print'susceptability =%3.2d'%fm;\n",
+ "\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.20,Page No:3.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "loss of energy per hour =4800.00\n",
+ "Note:calculation mistake in textbook in calculating Lh\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "f = 50; #number of reversals/s in Hz\n",
+ "W = 50; #weight in kg\n",
+ "d = 7500; #density in kg/m^3\n",
+ "A = 200; #area in joules /m^3\n",
+ " \n",
+ "#calculation\n",
+ " \n",
+ "V = 1/float(d); #volume of 1 kg iron\n",
+ "E = A*V; #loss of energy per kg\n",
+ "L = f*E; #hysteresisloss/s in Joule/second\n",
+ "Lh = L*60*60; #loss per hour\n",
+ " \n",
+ "#calculation\n",
+ "print'loss of energy per hour =%3.2f'%Lh;\n",
+ "print'Note:calculation mistake in textbook in calculating Lh';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 3.21,Page No:3.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "total iron loss =2.97 watt/kg\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "f = 50; #frequency in Hz\n",
+ "Bm = 1.1; #magnetic flux in Wb/m**2\n",
+ "t = 0.0005; #thickness of sheet \n",
+ "p = 30*10**-8*7800; #resistivity in ohms m\n",
+ "d = 7800; #density in kg/m**3\n",
+ "Hl = 380; #hysteresis loss per cycle in W-S/m**2\n",
+ "\n",
+ "#calculation\n",
+ "Pl = ((math.pi**2)*(f**2)*(Bm**2)*(t**2))/float(6*p); #eddy current loss\n",
+ "Hel = (Hl*f)/float(d); #hysteresis loss\n",
+ "Tl = Pl+Hel; #total iron loss watt/kg\n",
+ " \n",
+ "#result\n",
+ "print'total iron loss =%3.2f'%Tl,'watt/kg';\n",
+ " "
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3_4.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3_4.ipynb
new file mode 100644
index 00000000..740a15e5
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3_4.ipynb
@@ -0,0 +1,882 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3:Magnetic Properties of Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1,Page No:3.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic moment = 9.319e-24 Am**2\n",
+ "Bohr magneton = 9.28e-24 J/T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "r = 0.53*10**-10; # orbit radius m\n",
+ "n = 6.6*10**15; # frequency of revolution of electronHz\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "\n",
+ "# Calculations\n",
+ "i = e*n # current produced due to electron\n",
+ "A = math.pi*r*r # Area in m^2\n",
+ "u = i*A; # magnetic moment A*m^2\n",
+ "ub = (e*h)/float(4*math.pi*m); # Bohr magneton in J/T\n",
+ "\n",
+ "#result\n",
+ "print'Magnetic moment = %3.3e'%u,'Am**2';\n",
+ "print'Bohr magneton = %3.2e'%ub,'J/T';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2,Page No:3.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic moment = 2.87e+02 A-m**2\n",
+ "\n",
+ " Note: Instead of 2.87*10**2, 2.87*10**-2 is printed in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "ur = 1150; # relative permeability\n",
+ "n = 500; # turns per m\n",
+ "V = 10**-3; # volume of iron rod in m**3\n",
+ "i = 0.5; # current in amp\n",
+ "\n",
+ "#Calculations\n",
+ "#B = uo(H+M)\n",
+ "# B = uH, u/uo = ur\n",
+ "# M = (ur - 1)H\n",
+ "#if current is flowing through a solenoid having n turns/l then H = ni\n",
+ "\n",
+ "M = (ur - 1)*n*i # magnetisation\n",
+ "m = M*V; # magnetic moment\n",
+ " \n",
+ "#Output\n",
+ "print'Magnetic moment = %3.2e'%m,' A-m**2';\n",
+ "print'\\n Note: Instead of 2.87*10**2, 2.87*10**-2 is printed in textbook';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3,Page No:3.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic Moment of the rod = 2.1 A-m**2\n",
+ "Note: In textbook length of iron rod given as 2m whereas in calculation it is wrongly taken as 0.2m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "ur = 90; #relative permeability\n",
+ "n = 300; # turns per m\n",
+ "i = 0.5; # current in amp\n",
+ "d = 10*10**-3; # diameter of iron rod\n",
+ "l = 2; # length of iron rod\n",
+ "\n",
+ "#Calculations\n",
+ "V = math.pi*(d/float(2))**2 * l; #volume of rod\n",
+ "M = (ur - 1)*n*i; # magnetisation\n",
+ "m = M*V; # magnetic moment\n",
+ "\n",
+ "# Output\n",
+ "print'Magnetic Moment of the rod = %3.3g'%m,'A-m**2';\n",
+ "print'Note: In textbook length of iron rod given as 2m whereas in calculation it is wrongly taken as 0.2m';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4,Page No:3.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Change in magnetic moment = 3.9e-29 J/T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Bo = 2; # magnetic field in tesla\n",
+ "r = 5.29*10**-11 # radius in m\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "e = 1.6*10**-19 # charge of electron\n",
+ "\n",
+ "# calculations\n",
+ "du = (e**2 * Bo * r**2)/float(4*m); # change in magnetic moment(indicating oth in -ve and +ve values)\n",
+ "\n",
+ "#result\n",
+ "print'Change in magnetic moment = %3.1e'%du,'J/T';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6,Page No:3.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Temperature to which substance to be cooled = 7.7 K\n",
+ "Note:Values given in question B = 52, u = 924*10**-24.Values substituted in calculation B = 5.2, u = 9.24*10**-24\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "u1 = 3.3; # magnetic dipole moment\n",
+ "u = 9.24*10**-24;\n",
+ "B = 5.2; # magnetic field in tesla\n",
+ "k = 1.38*10**-23; # boltzmann constant\n",
+ "\n",
+ "# calculations\n",
+ "T = (u*u1*B)/float(1.5*k); # Temperature in Kelvin\n",
+ "\n",
+ "#result\n",
+ "print'Temperature to which substance to be cooled = %3.1f'%T,'K';\n",
+ "print'Note:Values given in question B = 52, u = 924*10**-24.Values substituted in calculation B = 5.2, u = 9.24*10**-24';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.7,Page No:3.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetisation = -0.48 A/m\n",
+ "flux density = 0.14 Tesla\n",
+ "relative permeability = 0.999996\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "xm = -4.2*10**-6; # magnetic susceptibility in A.m**-1\n",
+ "H = 1.15*10**5; # magnetic field in A.m**-1\n",
+ "\n",
+ "#Calculations\n",
+ "uo = 4*math.pi*10**-7; # magnetic permeability N·A**-2\n",
+ "M = xm*H; # magnetisation in A.m**-1\n",
+ "B = uo*(H + M); # flux density in T\n",
+ "ur = 1+(M/float(H)); # relative permeability \n",
+ "\n",
+ "# result\n",
+ "print'Magnetisation = %3.2f'%M,'A/m';\n",
+ "print'flux density = %3.2f'%B,'Tesla'; \n",
+ "print'relative permeability = %f'%ur;\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8,Page No:3.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percentage increase = 0.0014 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "xm = 1.4*10**-5; # magnetic susceptibility\n",
+ "# B = uoH\n",
+ "# B' = uruoH\n",
+ "# ur = 1+xm\n",
+ "# from above equations\n",
+ "#B' = (1+xm)B\n",
+ "# percentage increase in magnetic induction = ((B'-B)/B)*100\n",
+ "# y = (((1+xm)B - B)/B)*100\n",
+ "PI = xm*100; # percentage increase\n",
+ "\n",
+ "# Output\n",
+ "print'Percentage increase = %3.4f'%PI,'%';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.9,Page No:3.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "magnetisation = -0.02 A/m\n",
+ "Note:magnetisation sign is printed wrong in textbook\n",
+ "Magnetic flux density = 0.0126 T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "xm = -0.2*10**-5; # magnetic susceptability in A.m**-1\n",
+ "H = 10**4; # magnetic field in A/m\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "uo = 4*math.pi*10**-7; # magnetic permeability\n",
+ "M = xm*H # magnetisation in A/m\n",
+ "B = uo*(H+M); # magnetic flux density in T\n",
+ "\n",
+ "# Output\n",
+ "print'magnetisation = %3.2f'%M,'A/m';\n",
+ "print'Note:magnetisation sign is printed wrong in textbook';\n",
+ "print'Magnetic flux density = %3.4f'%B,'T';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 3.10,Page No:3.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "permeability =1.000021\n",
+ "relative permeability =1.2567e-06 N/A**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "sighem = 2.1*10**-5; #magnetic susceptability\n",
+ "u1 = 10**-7;\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*u1;\n",
+ "ur = 1+(sighem); #permeability\n",
+ "u = u0*ur; #relative permeability in N/A**2\n",
+ "\n",
+ "#result\n",
+ "print'permeability =%3.6f'%ur;\n",
+ "print'relative permeability =%3.4e'%u,'N/A**2';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.11,Page No:3.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "permeability =1.084000\n",
+ "relative permeability =1.362e-06 N/A**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "sighem = 0.084; #magnetic susceptability\n",
+ "u1 = 10**-7;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*u1;\n",
+ "ur = 1+(sighem); #permeability\n",
+ "u = u0*ur; #relative permeability in N/A**2\n",
+ "\n",
+ "#result\n",
+ "print'permeability =%3.6f'%ur;\n",
+ "print'relative permeability =%3.3e'%u,'N/A**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.12,Page No:3.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "relative permiability =1.00267e+05\n",
+ " Note:Calculation mistake in textbook in calculating sighe by taking ur as 10**5 instead of 100318.4\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declarationn\n",
+ "u = 0.126; #permiability in N/A**2\n",
+ "u1 = 10**-7;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*u1;\n",
+ "ur = u/float(u0);\n",
+ "sighe = ur-1; #magnetic susceptability\n",
+ "\n",
+ "#result\n",
+ "print'relative permiability =%3.5e'%sighe;\n",
+ "print' Note:Calculation mistake in textbook in calculating sighe by taking ur as 10**5 instead of 100318.4';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 3.13,Page No:3.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "susceptability of diamagnetic material = -1.1878e-07\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "#diamagnetic susceptability of He\n",
+ "R = 0.6*10**-10; #mean radius of atom in m\n",
+ "N = 28*10**26; #avagadro number in per m**3\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "m = 9.1*10**-31; #mass of electron in kilograms\n",
+ "Z = 2; #atomic number\n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7; #atomic number\n",
+ "si = -(u0*Z*(e**2)*N*(R**2))/float(6*m); #susceptability of diamagnetic material \n",
+ " \n",
+ "#result\n",
+ "print'susceptability of diamagnetic material = %3.4e'%si;\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 3.14,Page No:3.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "permiability =5.00e-04 N/A**2\n",
+ "susceptability =396.887358\n",
+ "Note:answer of permiability is wrong in textbook\n",
+ "Note: calcuation mistake in textbook in sighem\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "phi = 2*10**-5; #magnetic flux in Wb/m**2\n",
+ "H = 2*10**3; #in A/m\n",
+ "A = 0.2*10**-4; #area in m**2\n",
+ "\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7;\n",
+ "B = phi/float(A); #magnetic flux density in Wb/m**2\n",
+ "u = B/float(H); #permiability in A**-2\n",
+ "sighem = (u/float(u0))-1;\n",
+ " \n",
+ "#result\n",
+ "print'permiability =%3.2e'%u,'N/A**2';\n",
+ "print'susceptability =%4f'%sighem;\n",
+ "print'Note:answer of permiability is wrong in textbook';\n",
+ "print'Note: calcuation mistake in textbook in sighem';\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.15,Page No:3.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "susceptability of diamagnetic material = 5.61e-07\n"
+ ]
+ }
+ ],
+ "source": [
+ "# import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N = 6.5*10**25; #number of atoms in atoms per m**3\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "m = 9.1*10**-31; #mass of electron inilograms\n",
+ "h = 6.6*10**-34; #planck's constant in J.s\n",
+ "T = 300; #temperature in K\n",
+ "k = 1.38*10**-23; #boltzman constant in J*(K**-1)\n",
+ "n = 1; #constant\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7;\n",
+ "M = n*((e*h)/float(4*math.pi*m)); #magnetic moment in A*m**2\n",
+ "sighe = (u0*N*(M**2))/float(3*k*T); #susceptability of diamagnetic material\n",
+ " \n",
+ "#result\n",
+ "print'susceptability of diamagnetic material = %3.2e'%sighe;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.16,Page No:3.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ampere turn =200 A/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "L = 2.0; #length in m\n",
+ "A = 4*10**-4; #cross section sq.m\n",
+ "u = 50*10**-4; #permiability in H*m**-1\n",
+ "phi = 4*10**-4; #magnetic flux in Wb\n",
+ "\n",
+ "#calculation\n",
+ "B = phi/float(A); #magnetic flux density in Wb/m**2\n",
+ "NI = B/float(u); #ampere turn in A/m\n",
+ " \n",
+ "#result\n",
+ "print'ampere turn =%3.0f'%NI,'A/m';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17,Page No:3.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current =1 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "H = 5*10**3; #corecivity in A/m\n",
+ "l = 10**-1; #length in m\n",
+ "n = 500; #number of turns\n",
+ "\n",
+ "#calculation\n",
+ "N = n/float(l); #number of turns per m\n",
+ "i = H/float(N); #current in A\n",
+ " \n",
+ "#result\n",
+ "print'current =%1d'%i,'A';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.18,Page No:3.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of turns =5.128205\n",
+ " Note: calculation mistake in textbook in calculattig H by taking B value as 0.06 instead of 0.0666\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "A = 6*10**-4; #area in m**2\n",
+ "l = 0.5; #length in m\n",
+ "u = 65*10**-4; #permiability in H/m\n",
+ "phi = 4*10**-5; #magnetic flux in Wb\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "B = phi/float(A);\n",
+ "H = B/float(u);\n",
+ "N = H*l; #number of turns\n",
+ " \n",
+ "#result\n",
+ "print'number of turns =%1f'%N;\n",
+ "print' Note: calculation mistake in textbook in calculattig H by taking B value as 0.06 instead of 0.0666';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.19,Page No:3.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "susceptability =1908\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "A = 0.2*10**-4; #area in m**2\n",
+ "H = 500; #magnetising field in A.m**-1\n",
+ "phi = 2.4*10**-5; # magnetic flux in Wb\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7;\n",
+ "B = phi/float(A); #magnetic flux density in N*A**-1 *m**-1\n",
+ "u = B/float(H); #permiability in N/m\n",
+ "fm = (u/float(u0))-1; #susceptability \n",
+ " \n",
+ "#result\n",
+ "print'susceptability =%3.2d'%fm;\n",
+ "\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.20,Page No:3.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "loss of energy per hour =4800.00\n",
+ "Note:calculation mistake in textbook in calculating Lh\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "f = 50; #number of reversals/s in Hz\n",
+ "W = 50; #weight in kg\n",
+ "d = 7500; #density in kg/m^3\n",
+ "A = 200; #area in joules /m^3\n",
+ " \n",
+ "#calculation\n",
+ " \n",
+ "V = 1/float(d); #volume of 1 kg iron\n",
+ "E = A*V; #loss of energy per kg\n",
+ "L = f*E; #hysteresisloss/s in Joule/second\n",
+ "Lh = L*60*60; #loss per hour\n",
+ " \n",
+ "#calculation\n",
+ "print'loss of energy per hour =%3.2f'%Lh;\n",
+ "print'Note:calculation mistake in textbook in calculating Lh';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 3.21,Page No:3.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "total iron loss =2.97 watt/kg\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "f = 50; #frequency in Hz\n",
+ "Bm = 1.1; #magnetic flux in Wb/m**2\n",
+ "t = 0.0005; #thickness of sheet \n",
+ "p = 30*10**-8*7800; #resistivity in ohms m\n",
+ "d = 7800; #density in kg/m**3\n",
+ "Hl = 380; #hysteresis loss per cycle in W-S/m**2\n",
+ "\n",
+ "#calculation\n",
+ "Pl = ((math.pi**2)*(f**2)*(Bm**2)*(t**2))/float(6*p); #eddy current loss\n",
+ "Hel = (Hl*f)/float(d); #hysteresis loss\n",
+ "Tl = Pl+Hel; #total iron loss watt/kg\n",
+ " \n",
+ "#result\n",
+ "print'total iron loss =%3.2f'%Tl,'watt/kg';\n",
+ " "
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3_5.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3_5.ipynb
new file mode 100644
index 00000000..740a15e5
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter3_5.ipynb
@@ -0,0 +1,882 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3:Magnetic Properties of Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1,Page No:3.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic moment = 9.319e-24 Am**2\n",
+ "Bohr magneton = 9.28e-24 J/T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "r = 0.53*10**-10; # orbit radius m\n",
+ "n = 6.6*10**15; # frequency of revolution of electronHz\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "h = 6.63*10**-34; # plancks constant in J.s\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "\n",
+ "# Calculations\n",
+ "i = e*n # current produced due to electron\n",
+ "A = math.pi*r*r # Area in m^2\n",
+ "u = i*A; # magnetic moment A*m^2\n",
+ "ub = (e*h)/float(4*math.pi*m); # Bohr magneton in J/T\n",
+ "\n",
+ "#result\n",
+ "print'Magnetic moment = %3.3e'%u,'Am**2';\n",
+ "print'Bohr magneton = %3.2e'%ub,'J/T';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2,Page No:3.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic moment = 2.87e+02 A-m**2\n",
+ "\n",
+ " Note: Instead of 2.87*10**2, 2.87*10**-2 is printed in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "ur = 1150; # relative permeability\n",
+ "n = 500; # turns per m\n",
+ "V = 10**-3; # volume of iron rod in m**3\n",
+ "i = 0.5; # current in amp\n",
+ "\n",
+ "#Calculations\n",
+ "#B = uo(H+M)\n",
+ "# B = uH, u/uo = ur\n",
+ "# M = (ur - 1)H\n",
+ "#if current is flowing through a solenoid having n turns/l then H = ni\n",
+ "\n",
+ "M = (ur - 1)*n*i # magnetisation\n",
+ "m = M*V; # magnetic moment\n",
+ " \n",
+ "#Output\n",
+ "print'Magnetic moment = %3.2e'%m,' A-m**2';\n",
+ "print'\\n Note: Instead of 2.87*10**2, 2.87*10**-2 is printed in textbook';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3,Page No:3.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic Moment of the rod = 2.1 A-m**2\n",
+ "Note: In textbook length of iron rod given as 2m whereas in calculation it is wrongly taken as 0.2m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "ur = 90; #relative permeability\n",
+ "n = 300; # turns per m\n",
+ "i = 0.5; # current in amp\n",
+ "d = 10*10**-3; # diameter of iron rod\n",
+ "l = 2; # length of iron rod\n",
+ "\n",
+ "#Calculations\n",
+ "V = math.pi*(d/float(2))**2 * l; #volume of rod\n",
+ "M = (ur - 1)*n*i; # magnetisation\n",
+ "m = M*V; # magnetic moment\n",
+ "\n",
+ "# Output\n",
+ "print'Magnetic Moment of the rod = %3.3g'%m,'A-m**2';\n",
+ "print'Note: In textbook length of iron rod given as 2m whereas in calculation it is wrongly taken as 0.2m';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4,Page No:3.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Change in magnetic moment = 3.9e-29 J/T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Bo = 2; # magnetic field in tesla\n",
+ "r = 5.29*10**-11 # radius in m\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "e = 1.6*10**-19 # charge of electron\n",
+ "\n",
+ "# calculations\n",
+ "du = (e**2 * Bo * r**2)/float(4*m); # change in magnetic moment(indicating oth in -ve and +ve values)\n",
+ "\n",
+ "#result\n",
+ "print'Change in magnetic moment = %3.1e'%du,'J/T';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6,Page No:3.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Temperature to which substance to be cooled = 7.7 K\n",
+ "Note:Values given in question B = 52, u = 924*10**-24.Values substituted in calculation B = 5.2, u = 9.24*10**-24\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "u1 = 3.3; # magnetic dipole moment\n",
+ "u = 9.24*10**-24;\n",
+ "B = 5.2; # magnetic field in tesla\n",
+ "k = 1.38*10**-23; # boltzmann constant\n",
+ "\n",
+ "# calculations\n",
+ "T = (u*u1*B)/float(1.5*k); # Temperature in Kelvin\n",
+ "\n",
+ "#result\n",
+ "print'Temperature to which substance to be cooled = %3.1f'%T,'K';\n",
+ "print'Note:Values given in question B = 52, u = 924*10**-24.Values substituted in calculation B = 5.2, u = 9.24*10**-24';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.7,Page No:3.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetisation = -0.48 A/m\n",
+ "flux density = 0.14 Tesla\n",
+ "relative permeability = 0.999996\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "xm = -4.2*10**-6; # magnetic susceptibility in A.m**-1\n",
+ "H = 1.15*10**5; # magnetic field in A.m**-1\n",
+ "\n",
+ "#Calculations\n",
+ "uo = 4*math.pi*10**-7; # magnetic permeability N·A**-2\n",
+ "M = xm*H; # magnetisation in A.m**-1\n",
+ "B = uo*(H + M); # flux density in T\n",
+ "ur = 1+(M/float(H)); # relative permeability \n",
+ "\n",
+ "# result\n",
+ "print'Magnetisation = %3.2f'%M,'A/m';\n",
+ "print'flux density = %3.2f'%B,'Tesla'; \n",
+ "print'relative permeability = %f'%ur;\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8,Page No:3.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percentage increase = 0.0014 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "xm = 1.4*10**-5; # magnetic susceptibility\n",
+ "# B = uoH\n",
+ "# B' = uruoH\n",
+ "# ur = 1+xm\n",
+ "# from above equations\n",
+ "#B' = (1+xm)B\n",
+ "# percentage increase in magnetic induction = ((B'-B)/B)*100\n",
+ "# y = (((1+xm)B - B)/B)*100\n",
+ "PI = xm*100; # percentage increase\n",
+ "\n",
+ "# Output\n",
+ "print'Percentage increase = %3.4f'%PI,'%';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.9,Page No:3.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "magnetisation = -0.02 A/m\n",
+ "Note:magnetisation sign is printed wrong in textbook\n",
+ "Magnetic flux density = 0.0126 T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "xm = -0.2*10**-5; # magnetic susceptability in A.m**-1\n",
+ "H = 10**4; # magnetic field in A/m\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "uo = 4*math.pi*10**-7; # magnetic permeability\n",
+ "M = xm*H # magnetisation in A/m\n",
+ "B = uo*(H+M); # magnetic flux density in T\n",
+ "\n",
+ "# Output\n",
+ "print'magnetisation = %3.2f'%M,'A/m';\n",
+ "print'Note:magnetisation sign is printed wrong in textbook';\n",
+ "print'Magnetic flux density = %3.4f'%B,'T';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 3.10,Page No:3.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "permeability =1.000021\n",
+ "relative permeability =1.2567e-06 N/A**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "sighem = 2.1*10**-5; #magnetic susceptability\n",
+ "u1 = 10**-7;\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*u1;\n",
+ "ur = 1+(sighem); #permeability\n",
+ "u = u0*ur; #relative permeability in N/A**2\n",
+ "\n",
+ "#result\n",
+ "print'permeability =%3.6f'%ur;\n",
+ "print'relative permeability =%3.4e'%u,'N/A**2';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.11,Page No:3.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "permeability =1.084000\n",
+ "relative permeability =1.362e-06 N/A**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "sighem = 0.084; #magnetic susceptability\n",
+ "u1 = 10**-7;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*u1;\n",
+ "ur = 1+(sighem); #permeability\n",
+ "u = u0*ur; #relative permeability in N/A**2\n",
+ "\n",
+ "#result\n",
+ "print'permeability =%3.6f'%ur;\n",
+ "print'relative permeability =%3.3e'%u,'N/A**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.12,Page No:3.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "relative permiability =1.00267e+05\n",
+ " Note:Calculation mistake in textbook in calculating sighe by taking ur as 10**5 instead of 100318.4\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declarationn\n",
+ "u = 0.126; #permiability in N/A**2\n",
+ "u1 = 10**-7;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*u1;\n",
+ "ur = u/float(u0);\n",
+ "sighe = ur-1; #magnetic susceptability\n",
+ "\n",
+ "#result\n",
+ "print'relative permiability =%3.5e'%sighe;\n",
+ "print' Note:Calculation mistake in textbook in calculating sighe by taking ur as 10**5 instead of 100318.4';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 3.13,Page No:3.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "susceptability of diamagnetic material = -1.1878e-07\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "#diamagnetic susceptability of He\n",
+ "R = 0.6*10**-10; #mean radius of atom in m\n",
+ "N = 28*10**26; #avagadro number in per m**3\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "m = 9.1*10**-31; #mass of electron in kilograms\n",
+ "Z = 2; #atomic number\n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7; #atomic number\n",
+ "si = -(u0*Z*(e**2)*N*(R**2))/float(6*m); #susceptability of diamagnetic material \n",
+ " \n",
+ "#result\n",
+ "print'susceptability of diamagnetic material = %3.4e'%si;\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 3.14,Page No:3.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "permiability =5.00e-04 N/A**2\n",
+ "susceptability =396.887358\n",
+ "Note:answer of permiability is wrong in textbook\n",
+ "Note: calcuation mistake in textbook in sighem\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "phi = 2*10**-5; #magnetic flux in Wb/m**2\n",
+ "H = 2*10**3; #in A/m\n",
+ "A = 0.2*10**-4; #area in m**2\n",
+ "\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7;\n",
+ "B = phi/float(A); #magnetic flux density in Wb/m**2\n",
+ "u = B/float(H); #permiability in A**-2\n",
+ "sighem = (u/float(u0))-1;\n",
+ " \n",
+ "#result\n",
+ "print'permiability =%3.2e'%u,'N/A**2';\n",
+ "print'susceptability =%4f'%sighem;\n",
+ "print'Note:answer of permiability is wrong in textbook';\n",
+ "print'Note: calcuation mistake in textbook in sighem';\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.15,Page No:3.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "susceptability of diamagnetic material = 5.61e-07\n"
+ ]
+ }
+ ],
+ "source": [
+ "# import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N = 6.5*10**25; #number of atoms in atoms per m**3\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "m = 9.1*10**-31; #mass of electron inilograms\n",
+ "h = 6.6*10**-34; #planck's constant in J.s\n",
+ "T = 300; #temperature in K\n",
+ "k = 1.38*10**-23; #boltzman constant in J*(K**-1)\n",
+ "n = 1; #constant\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7;\n",
+ "M = n*((e*h)/float(4*math.pi*m)); #magnetic moment in A*m**2\n",
+ "sighe = (u0*N*(M**2))/float(3*k*T); #susceptability of diamagnetic material\n",
+ " \n",
+ "#result\n",
+ "print'susceptability of diamagnetic material = %3.2e'%sighe;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.16,Page No:3.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ampere turn =200 A/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "L = 2.0; #length in m\n",
+ "A = 4*10**-4; #cross section sq.m\n",
+ "u = 50*10**-4; #permiability in H*m**-1\n",
+ "phi = 4*10**-4; #magnetic flux in Wb\n",
+ "\n",
+ "#calculation\n",
+ "B = phi/float(A); #magnetic flux density in Wb/m**2\n",
+ "NI = B/float(u); #ampere turn in A/m\n",
+ " \n",
+ "#result\n",
+ "print'ampere turn =%3.0f'%NI,'A/m';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17,Page No:3.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current =1 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "H = 5*10**3; #corecivity in A/m\n",
+ "l = 10**-1; #length in m\n",
+ "n = 500; #number of turns\n",
+ "\n",
+ "#calculation\n",
+ "N = n/float(l); #number of turns per m\n",
+ "i = H/float(N); #current in A\n",
+ " \n",
+ "#result\n",
+ "print'current =%1d'%i,'A';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.18,Page No:3.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of turns =5.128205\n",
+ " Note: calculation mistake in textbook in calculattig H by taking B value as 0.06 instead of 0.0666\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "A = 6*10**-4; #area in m**2\n",
+ "l = 0.5; #length in m\n",
+ "u = 65*10**-4; #permiability in H/m\n",
+ "phi = 4*10**-5; #magnetic flux in Wb\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "B = phi/float(A);\n",
+ "H = B/float(u);\n",
+ "N = H*l; #number of turns\n",
+ " \n",
+ "#result\n",
+ "print'number of turns =%1f'%N;\n",
+ "print' Note: calculation mistake in textbook in calculattig H by taking B value as 0.06 instead of 0.0666';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.19,Page No:3.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "susceptability =1908\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "A = 0.2*10**-4; #area in m**2\n",
+ "H = 500; #magnetising field in A.m**-1\n",
+ "phi = 2.4*10**-5; # magnetic flux in Wb\n",
+ "\n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7;\n",
+ "B = phi/float(A); #magnetic flux density in N*A**-1 *m**-1\n",
+ "u = B/float(H); #permiability in N/m\n",
+ "fm = (u/float(u0))-1; #susceptability \n",
+ " \n",
+ "#result\n",
+ "print'susceptability =%3.2d'%fm;\n",
+ "\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.20,Page No:3.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "loss of energy per hour =4800.00\n",
+ "Note:calculation mistake in textbook in calculating Lh\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "f = 50; #number of reversals/s in Hz\n",
+ "W = 50; #weight in kg\n",
+ "d = 7500; #density in kg/m^3\n",
+ "A = 200; #area in joules /m^3\n",
+ " \n",
+ "#calculation\n",
+ " \n",
+ "V = 1/float(d); #volume of 1 kg iron\n",
+ "E = A*V; #loss of energy per kg\n",
+ "L = f*E; #hysteresisloss/s in Joule/second\n",
+ "Lh = L*60*60; #loss per hour\n",
+ " \n",
+ "#calculation\n",
+ "print'loss of energy per hour =%3.2f'%Lh;\n",
+ "print'Note:calculation mistake in textbook in calculating Lh';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 3.21,Page No:3.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "total iron loss =2.97 watt/kg\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "f = 50; #frequency in Hz\n",
+ "Bm = 1.1; #magnetic flux in Wb/m**2\n",
+ "t = 0.0005; #thickness of sheet \n",
+ "p = 30*10**-8*7800; #resistivity in ohms m\n",
+ "d = 7800; #density in kg/m**3\n",
+ "Hl = 380; #hysteresis loss per cycle in W-S/m**2\n",
+ "\n",
+ "#calculation\n",
+ "Pl = ((math.pi**2)*(f**2)*(Bm**2)*(t**2))/float(6*p); #eddy current loss\n",
+ "Hel = (Hl*f)/float(d); #hysteresis loss\n",
+ "Tl = Pl+Hel; #total iron loss watt/kg\n",
+ " \n",
+ "#result\n",
+ "print'total iron loss =%3.2f'%Tl,'watt/kg';\n",
+ " "
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4.ipynb
new file mode 100755
index 00000000..b824cd54
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4.ipynb
@@ -0,0 +1,750 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4:Behaviour of Dielectric Materials in ac and dc Fields"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 4.1,Page No:4.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric constant of argon = 1.0005466\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "alpha = 1.8*10**-40; #polarisability of argon in Fm**2\n",
+ "e0 = 8.85*10**-12; #dielectric constant F/m\n",
+ "N1 = 6.02*10**23; #avagadro number in mol**-1\n",
+ "x = 22.4*10**3; #volume in m**3\n",
+ " \n",
+ "#formula\n",
+ "#er-1=N*p/e0*E=(N/e0)*alpha\n",
+ "#calculation\n",
+ "N = N1/float(x); #number of argon atoms in per unit volume in cm**3\n",
+ "N2 = N*10**6; #number of argon atoms in per unit volume in m**3\n",
+ "er = 1+((N2/float(e0)))*(alpha); #dielectric constant F/m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'dielectric constant of argon = %3.7f'%er;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 4.2,Page No:4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "displacement = 1.25e-17 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "alpha = 1.8*10**-40; #polarisability of argon in F*m^2\n",
+ "E = 2*10**5; # in V/m\n",
+ "z = 18;\n",
+ "e = 1.6*10**-19;\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#p=18*e*x\n",
+ "#calculation\n",
+ "p = alpha*E;\n",
+ "x = p/float(18*e); #displacement in m\n",
+ "\n",
+ " \n",
+ "#result\n",
+ "print'displacement = %3.2e'%x,'m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 4.3,Page No:4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "local field of benzene=4.40e+03 V/m\n",
+ "local field of water=-1.570e+06 V/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "E0 = 300*10**2; #local field in V/m\n",
+ "P1 = 3.398*10**-7; #dipole moment Coulomb/m\n",
+ "P2 = 2.124*10**-5; #dipole moment Coulomb/m\n",
+ "e0 = 8.85*10**-12; #permittivity in F/m\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#E10Ci=E0-(2*Pi/3*e0)\n",
+ "#calculation\n",
+ "E10C1 = E0-((2*P1)/float(3*e0)); #local field of benzene in V/m\n",
+ "E10C2 = E0-((2*P2)/float(3*e0)); #local field of water in V/m\n",
+ " \n",
+ "#result\n",
+ "print'local field of benzene=%3.2e'%E10C1,'V/m';\n",
+ "print'local field of water=%3.3e'%E10C2,'V/m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 4.4,Page No:4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "polarisability of benzene = 1.16e-37 F*m**2\n",
+ "polarisability of water = 4.04e-40 F*m**2\n",
+ "Note: mistake in textbok,alpha1 value is printed as 1.16*10**-38 instead of 1.16*10**-37\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p1 = 5.12*10**-34; #p of benzene kg/m**3\n",
+ "p2 = 6.34*10**-34; #p of water kg/m**3\n",
+ "e10C1 = 4.4*10**3; #local field of benzene in V/m\n",
+ "e10C2 = 1570*10**3; #local field of water in V/m\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#p=alphai*e10Ci\n",
+ "#calculation\n",
+ "alpha1 = p1/float(e10C1); #polarisability of benzene in F*m**2\n",
+ "alpha2 = p2/float(e10C2); #polarisability of water in F*m**2\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'polarisability of benzene = %3.2e'%alpha1,'F*m**2';\n",
+ "print'polarisability of water = %3.2e'%alpha2,'F*m**2';\n",
+ "print'Note: mistake in textbok,alpha1 value is printed as 1.16*10**-38 instead of 1.16*10**-37';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 4.5,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "polarisation of benzene = 6.80e-07 c/m**2\n",
+ "polarisation of water = 4.25e-05. c/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e0 = 8.85*10**-12; #abslute permitivity in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "E = 600*10**2; #strength in V/cm\n",
+ "er1 = 2.28; #dielectric constant of benzene in coulomb/m\n",
+ "er2 = 81; #dielectric constant of water in coulomb/m\n",
+ "\n",
+ "\n",
+ "#fomula\n",
+ "#p=e0*E*(er-1)\n",
+ "#calculation\n",
+ "pB = e0*E*(er1-1); #polarisation of benzene in c/m**2\n",
+ "pW = e0*E*(er2-1); #polarisation of water in c/m**2\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'polarisation of benzene = %3.2e'%pB,'c/m**2';\n",
+ "print'polarisation of water = %3.2e.'%pW,'c/m**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 4.6,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "percentage contribution from ionic polaristion = 59.82 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "er0 = 5.6; #static dielectric cnstant of NaCl \n",
+ "n = 1.5; #optical index of refraction\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "er = er0-n**2;\n",
+ "d = ((er/float(er0))*100); #percentage contribution from ionic polaristion in %\n",
+ " \n",
+ "#result \n",
+ "print'percentage contribution from ionic polaristion = %3.2f'%d,'%';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 4.7,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "separation=1.69e-17 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "alpha = 0.18*10**-40; #polarisability of He in F *m**2\n",
+ "E = 3*10**5; #constant in V/m\n",
+ "N = 2.6*10**25; #number of atoms in per m**3\n",
+ "e = 1.6*10**-19;\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#P=N*p\n",
+ "#charge of He=2*electron charge\n",
+ "#p=2(e*d)\n",
+ "#calculation\n",
+ "P = N*alpha*E; #in coul/m**2\n",
+ "p = P/float(N); #polarisation of He in coul.m\n",
+ "d = p/float(2*e); #separation between charges in m\n",
+ " \n",
+ " \n",
+ "#result \n",
+ "print'separation=%3.2e'%d,'m';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 4.8,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "oriental polarisation=9.66e-08 coul/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N = 10**27; #number of HCl molecules in molecules/m**3\n",
+ "E = 10**5; #electric field in V/m\n",
+ "P = 1.04*3.33*10**-30; #permanent dipole moment in coul.m\n",
+ "T = 300; #temperature in kelvin\n",
+ "K = 1.38*10**-23;\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "P0 = (N*(P**2)*E)/float(3*K*T); #oriental polarisation in coul/m^2\n",
+ "\n",
+ " \n",
+ "#result\n",
+ "print'oriental polarisation=%3.2e'%P0,'coul/m**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 4.9,Page No:4.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "relative dielectric constant =1.0\n",
+ " Note: calculation mistake in text book in calculating relative dielectric constant\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N = 6.023*10**26; #avagadro number  (lb-mol)**-1\n",
+ "alpha = 3.28*10**-40; #polarisability in F*m**2\n",
+ "M = 32; #molecular weight in kilograms\n",
+ "p = 2.08*10**3; #density of sulphur in g/cm**3\n",
+ "e0 = 8.85*10**12; #permitivity in F/m\n",
+ "\n",
+ "#calculation\n",
+ "er = ((2*N*p*alpha)+(3*M*e0))/float((3*M*e0)-(N*p*alpha)); \n",
+ "\n",
+ "#result\n",
+ "\n",
+ "print'relative dielectric constant =%3.1f'%er;\n",
+ "print' Note: calculation mistake in text book in calculating relative dielectric constant';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 4.10,Page No:4.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio of electronic and ionic probabilities =1.6\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "er = 4.94;\n",
+ "n = 1.64;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "#(alphae)/(alphai) =x\n",
+ "x = ((er-1)/float(er+2))*(((n**2)+2)/float((n**2)-1)); #ratio of electronic and ionic probabilities\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'ratio of electronic and ionic probabilities =%3.1f'%x;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 4.11,Page No:4.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric constant=16.43\n",
+ "electrical suseptibility=1.3711e-10 c**2*N**-1*M**-2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declartion\n",
+ "E = 1.46*10**-10; #permitivity in c**2*N**-1*m**-2\n",
+ "E0 = 8.885*10**-12; #permitivity in c**2*N**-1*m**-2\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "Er = E/float(E0);\n",
+ "sighe = E0*(Er-1); #electrical suseptbility in c**2*N**-1*M**-2\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'dielectric constant=%3.2f'%Er;\n",
+ "print'electrical suseptibility=%3.4e'%sighe,'c**2*N**-1*M**-2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 4.12,Page No:4.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "polarisation=8.4e-07 cm**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "r = 0.1; #radius in m\n",
+ "pw = 1; #density of water in g/ml\n",
+ "Mw = 18; # molecular mass of water \n",
+ "E = 6.0*10**-30; #dipole moment of water in cm\n",
+ "N = 6.0*10**26; #avagadro constant in (lb-mol)−1\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "n = N*(4*(math.pi)*(r**3)*pw)/(Mw*3); #number of water molecules in a water drop \n",
+ "p = n*E; #polarisation in cm**2\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'polarisation=%3.1e'%p,'cm**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 4.13,Page No:4.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric susceptibility=0.000074\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Er = 1.000074; #dielectric constant for a gas at 0°C\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "sighe = Er-1; #dielectric susceptibility\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'dielectric susceptibility=%3.6f'%sighe;\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 4.14,Page No:4.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "free charge=2.65e-05 Coul/m**2\n",
+ "polarisation=5.31e-05 Coul/m\n",
+ "displacement=7.96e-05\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "E = 10**6; #dielectric in volts/s\n",
+ "er = 3; #dielectric in mm\n",
+ "e0 = 8.85*10**-12;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "E0 = er*E; #electric field in V/m\n",
+ "sigma = e0*E0; #free charge in Coul/m^2\n",
+ "P = e0*(er-1)*E0; #polarisation in coul/m\n",
+ "D = e0*er*E0; #displacement in in dielectric\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'free charge=%3.2e'%sigma,'Coul/m**2';\n",
+ "print'polarisation=%3.2e'%P,'Coul/m';\n",
+ "print'displacement=%3.2e'%D; "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 4.15,Page No:4.19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "capacitance = 3.42e-11 Farad\n",
+ "charge =3.42e-10 coulomb\n",
+ "displacement =5.31e-07 c/m**2\n",
+ "polarisation =4.42e-07 c/m**2\n",
+ "Note:error in calculation of P,E value is taken as 5000 instead of 10**4\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 1.0*10**-3; #separation between plates in m\n",
+ "A = 6.45*10**-4; # surface area in m^2\n",
+ "e0 = 8.85*10**-12; #permitivity of electron in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "er = 6.0; #relative permitivity in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "V = 10; #voltage in V\n",
+ "E = 10; \n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "C = (e0*er*A)/float(d); #capacitance in Farad\n",
+ "q = C*V; #charge in coulomb\n",
+ "D = (e0*er*E)/float(10**-3); #displacement vector in c/m**2\n",
+ "P = D-(e0*E/float(10**-3)); #polarisation vector in c/m**2\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'capacitance = %3.2e'%C,'Farad';\n",
+ "print'charge =%3.2e'%q,'coulomb';\n",
+ "print'displacement =%3.2e'%D,'c/m**2';\n",
+ "print'polarisation =%3.2e'%P,'c/m**2';\n",
+ "print'Note:error in calculation of P,E value is taken as 5000 instead of 10**4\\n';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 4.16,Page No:4.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "frequency = 8.84 KHz\n",
+ "phase difference = 45 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "t = 18*10**-6; #relaxation time in s\n",
+ "er1 = 1; #permitivity in F/m\n",
+ "er = 1; #permitivity in F/m\n",
+ "t = 18*10**-6; #relaxation time in s\n",
+ " \n",
+ "#calculation\n",
+ "f = 1/float(2*math.pi*t); #frequency in Hz\n",
+ "theta_c = math.atan(er1/float(er));\n",
+ "#theta_c_deg = (theta_c*180)/float(math.pi);\n",
+ "#phi = 90-theta_c_deg; #phase difference in degrees\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'frequency = %3.2f'%(f*10**-3),'KHz';\n",
+ "print'phase difference =%3.0f'%((theta_c*180)/float(math.pi)),'°';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4_1.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4_1.ipynb
new file mode 100644
index 00000000..a26aa20d
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4_1.ipynb
@@ -0,0 +1,732 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4:Behaviour of Dielectric Materials in ac and dc Fields"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1,Page No:4.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric constant of argon = 1.0005466\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "alpha = 1.8*10**-40; #polarisability of argon in Fm**2\n",
+ "e0 = 8.85*10**-12; #dielectric constant F/m\n",
+ "N1 = 6.02*10**23; #avagadro number in mol**-1\n",
+ "x = 22.4*10**3; #volume in m**3\n",
+ " \n",
+ "#formula\n",
+ "#er-1=N*p/e0*E=(N/e0)*alpha\n",
+ "#calculation\n",
+ "N = N1/float(x); #number of argon atoms in per unit volume in cm**3\n",
+ "N2 = N*10**6; #number of argon atoms in per unit volume in m**3\n",
+ "er = 1+((N2/float(e0)))*(alpha); #dielectric constant F/m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'dielectric constant of argon = %3.7f'%er;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2,Page No:4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "displacement = 1.25e-17 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "alpha = 1.8*10**-40; #polarisability of argon in F*m^2\n",
+ "E = 2*10**5; # in V/m\n",
+ "z = 18;\n",
+ "e = 1.6*10**-19;\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#p=18*e*x\n",
+ "#calculation\n",
+ "p = alpha*E;\n",
+ "x = p/float(18*e); #displacement in m\n",
+ "\n",
+ " \n",
+ "#result\n",
+ "print'displacement = %3.2e'%x,'m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3,Page No:4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "local field of benzene=4.40e+03 V/m\n",
+ "local field of water=-1.570e+06 V/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "E0 = 300*10**2; #local field in V/m\n",
+ "P1 = 3.398*10**-7; #dipole moment Coulomb/m\n",
+ "P2 = 2.124*10**-5; #dipole moment Coulomb/m\n",
+ "e0 = 8.85*10**-12; #permittivity in F/m\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#E10Ci=E0-(2*Pi/3*e0)\n",
+ "#calculation\n",
+ "E10C1 = E0-((2*P1)/float(3*e0)); #local field of benzene in V/m\n",
+ "E10C2 = E0-((2*P2)/float(3*e0)); #local field of water in V/m\n",
+ " \n",
+ "#result\n",
+ "print'local field of benzene=%3.2e'%E10C1,'V/m';\n",
+ "print'local field of water=%3.3e'%E10C2,'V/m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4,Page No:4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "polarisability of benzene = 1.16e-37 F*m**2\n",
+ "polarisability of water = 4.04e-40 F*m**2\n",
+ "Note: mistake in textbok,alpha1 value is printed as 1.16*10**-38 instead of 1.16*10**-37\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p1 = 5.12*10**-34; #p of benzene kg/m**3\n",
+ "p2 = 6.34*10**-34; #p of water kg/m**3\n",
+ "e10C1 = 4.4*10**3; #local field of benzene in V/m\n",
+ "e10C2 = 1570*10**3; #local field of water in V/m\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#p=alphai*e10Ci\n",
+ "#calculation\n",
+ "alpha1 = p1/float(e10C1); #polarisability of benzene in F*m**2\n",
+ "alpha2 = p2/float(e10C2); #polarisability of water in F*m**2\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'polarisability of benzene = %3.2e'%alpha1,'F*m**2';\n",
+ "print'polarisability of water = %3.2e'%alpha2,'F*m**2';\n",
+ "print'Note: mistake in textbok,alpha1 value is printed as 1.16*10**-38 instead of 1.16*10**-37';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "polarisation of benzene = 6.80e-07 c/m**2\n",
+ "polarisation of water = 4.25e-05. c/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e0 = 8.85*10**-12; #abslute permitivity in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "E = 600*10**2; #strength in V/cm\n",
+ "er1 = 2.28; #dielectric constant of benzene in coulomb/m\n",
+ "er2 = 81; #dielectric constant of water in coulomb/m\n",
+ "\n",
+ "\n",
+ "#fomula\n",
+ "#p=e0*E*(er-1)\n",
+ "#calculation\n",
+ "pB = e0*E*(er1-1); #polarisation of benzene in c/m**2\n",
+ "pW = e0*E*(er2-1); #polarisation of water in c/m**2\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'polarisation of benzene = %3.2e'%pB,'c/m**2';\n",
+ "print'polarisation of water = %3.2e.'%pW,'c/m**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "percentage contribution from ionic polaristion = 59.82 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "er0 = 5.6; #static dielectric cnstant of NaCl \n",
+ "n = 1.5; #optical index of refraction\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "er = er0-n**2;\n",
+ "d = ((er/float(er0))*100); #percentage contribution from ionic polaristion in %\n",
+ " \n",
+ "#result \n",
+ "print'percentage contribution from ionic polaristion = %3.2f'%d,'%';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "separation=1.69e-17 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "alpha = 0.18*10**-40; #polarisability of He in F *m**2\n",
+ "E = 3*10**5; #constant in V/m\n",
+ "N = 2.6*10**25; #number of atoms in per m**3\n",
+ "e = 1.6*10**-19;\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#P=N*p\n",
+ "#charge of He=2*electron charge\n",
+ "#p=2(e*d)\n",
+ "#calculation\n",
+ "P = N*alpha*E; #in coul/m**2\n",
+ "p = P/float(N); #polarisation of He in coul.m\n",
+ "d = p/float(2*e); #separation between charges in m\n",
+ " \n",
+ " \n",
+ "#result \n",
+ "print'separation=%3.2e'%d,'m';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 4.8,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "oriental polarisation=9.66e-08 coul/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N = 10**27; #number of HCl molecules in molecules/m**3\n",
+ "E = 10**5; #electric field in V/m\n",
+ "P = 1.04*3.33*10**-30; #permanent dipole moment in coul.m\n",
+ "T = 300; #temperature in kelvin\n",
+ "K = 1.38*10**-23;\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "P0 = (N*(P**2)*E)/float(3*K*T); #oriental polarisation in coul/m^2\n",
+ "\n",
+ " \n",
+ "#result\n",
+ "print'oriental polarisation=%3.2e'%P0,'coul/m**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 4.9,Page No:4.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "relative dielectric constant =1.0\n",
+ " Note: calculation mistake in text book in calculating relative dielectric constant\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N = 6.023*10**26; #avagadro number  (lb-mol)**-1\n",
+ "alpha = 3.28*10**-40; #polarisability in F*m**2\n",
+ "M = 32; #molecular weight in kilograms\n",
+ "p = 2.08*10**3; #density of sulphur in g/cm**3\n",
+ "e0 = 8.85*10**12; #permitivity in F/m\n",
+ "\n",
+ "#calculation\n",
+ "er = ((2*N*p*alpha)+(3*M*e0))/float((3*M*e0)-(N*p*alpha)); \n",
+ "\n",
+ "#result\n",
+ "\n",
+ "print'relative dielectric constant =%3.1f'%er;\n",
+ "print' Note: calculation mistake in text book in calculating relative dielectric constant';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.10,Page No:4.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio of electronic and ionic probabilities =1.6\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "er = 4.94;\n",
+ "n = 1.64;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "#(alphae)/(alphai) =x\n",
+ "x = ((er-1)/float(er+2))*(((n**2)+2)/float((n**2)-1)); #ratio of electronic and ionic probabilities\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'ratio of electronic and ionic probabilities =%3.1f'%x;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.11,Page No:4.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric constant=16.43\n",
+ "electrical suseptibility=1.3711e-10 c**2*N**-1*M**-2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declartion\n",
+ "E = 1.46*10**-10; #permitivity in c**2*N**-1*m**-2\n",
+ "E0 = 8.885*10**-12; #permitivity in c**2*N**-1*m**-2\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "Er = E/float(E0);\n",
+ "sighe = E0*(Er-1); #electrical suseptbility in c**2*N**-1*M**-2\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'dielectric constant=%3.2f'%Er;\n",
+ "print'electrical suseptibility=%3.4e'%sighe,'c**2*N**-1*M**-2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.12,Page No:4.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "polarisation=8.4e-07 cm**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "r = 0.1; #radius in m\n",
+ "pw = 1; #density of water in g/ml\n",
+ "Mw = 18; # molecular mass of water \n",
+ "E = 6.0*10**-30; #dipole moment of water in cm\n",
+ "N = 6.0*10**26; #avagadro constant in (lb-mol)−1\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "n = N*(4*(math.pi)*(r**3)*pw)/(Mw*3); #number of water molecules in a water drop \n",
+ "p = n*E; #polarisation in cm**2\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'polarisation=%3.1e'%p,'cm**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.13,Page No:4.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric susceptibility=0.000074\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Er = 1.000074; #dielectric constant for a gas at 0°C\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "sighe = Er-1; #dielectric susceptibility\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'dielectric susceptibility=%3.6f'%sighe;\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.14,Page No:4.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "free charge=2.65e-05 Coul/m**2\n",
+ "polarisation=5.31e-05 Coul/m\n",
+ "displacement=7.96e-05\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "E = 10**6; #dielectric in volts/s\n",
+ "er = 3; #dielectric in mm\n",
+ "e0 = 8.85*10**-12;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "E0 = er*E; #electric field in V/m\n",
+ "sigma = e0*E0; #free charge in Coul/m^2\n",
+ "P = e0*(er-1)*E0; #polarisation in coul/m\n",
+ "D = e0*er*E0; #displacement in in dielectric\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'free charge=%3.2e'%sigma,'Coul/m**2';\n",
+ "print'polarisation=%3.2e'%P,'Coul/m';\n",
+ "print'displacement=%3.2e'%D; "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15,Page No:4.19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "capacitance = 3.42e-11 Farad\n",
+ "charge =3.42e-10 coulomb\n",
+ "displacement =5.31e-07 c/m**2\n",
+ "polarisation =4.42e-07 c/m**2\n",
+ "Note:error in calculation of P,E value is taken as 5000 instead of 10**4\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 1.0*10**-3; #separation between plates in m\n",
+ "A = 6.45*10**-4; # surface area in m^2\n",
+ "e0 = 8.85*10**-12; #permitivity of electron in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "er = 6.0; #relative permitivity in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "V = 10; #voltage in V\n",
+ "E = 10; \n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "C = (e0*er*A)/float(d); #capacitance in Farad\n",
+ "q = C*V; #charge in coulomb\n",
+ "D = (e0*er*E)/float(10**-3); #displacement vector in c/m**2\n",
+ "P = D-(e0*E/float(10**-3)); #polarisation vector in c/m**2\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'capacitance = %3.2e'%C,'Farad';\n",
+ "print'charge =%3.2e'%q,'coulomb';\n",
+ "print'displacement =%3.2e'%D,'c/m**2';\n",
+ "print'polarisation =%3.2e'%P,'c/m**2';\n",
+ "print'Note:error in calculation of P,E value is taken as 5000 instead of 10**4\\n';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 4.16,Page No:4.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "frequency = 8.84 KHz\n",
+ "phase difference = 45 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "t = 18*10**-6; #relaxation time in s\n",
+ "er1 = 1; #permitivity in F/m\n",
+ "er = 1; #permitivity in F/m\n",
+ "t = 18*10**-6; #relaxation time in s\n",
+ " \n",
+ "#calculation\n",
+ "f = 1/float(2*math.pi*t); #frequency in Hz\n",
+ "theta_c = math.atan(er1/float(er));\n",
+ "#theta_c_deg = (theta_c*180)/float(math.pi);\n",
+ "#phi = 90-theta_c_deg; #phase difference in degrees\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'frequency = %3.2f'%(f*10**-3),'KHz';\n",
+ "print'phase difference =%3.0f'%((theta_c*180)/float(math.pi)),'°';\n",
+ " "
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4_2.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4_2.ipynb
new file mode 100644
index 00000000..a26aa20d
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4_2.ipynb
@@ -0,0 +1,732 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4:Behaviour of Dielectric Materials in ac and dc Fields"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1,Page No:4.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric constant of argon = 1.0005466\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "alpha = 1.8*10**-40; #polarisability of argon in Fm**2\n",
+ "e0 = 8.85*10**-12; #dielectric constant F/m\n",
+ "N1 = 6.02*10**23; #avagadro number in mol**-1\n",
+ "x = 22.4*10**3; #volume in m**3\n",
+ " \n",
+ "#formula\n",
+ "#er-1=N*p/e0*E=(N/e0)*alpha\n",
+ "#calculation\n",
+ "N = N1/float(x); #number of argon atoms in per unit volume in cm**3\n",
+ "N2 = N*10**6; #number of argon atoms in per unit volume in m**3\n",
+ "er = 1+((N2/float(e0)))*(alpha); #dielectric constant F/m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'dielectric constant of argon = %3.7f'%er;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2,Page No:4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "displacement = 1.25e-17 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "alpha = 1.8*10**-40; #polarisability of argon in F*m^2\n",
+ "E = 2*10**5; # in V/m\n",
+ "z = 18;\n",
+ "e = 1.6*10**-19;\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#p=18*e*x\n",
+ "#calculation\n",
+ "p = alpha*E;\n",
+ "x = p/float(18*e); #displacement in m\n",
+ "\n",
+ " \n",
+ "#result\n",
+ "print'displacement = %3.2e'%x,'m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3,Page No:4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "local field of benzene=4.40e+03 V/m\n",
+ "local field of water=-1.570e+06 V/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "E0 = 300*10**2; #local field in V/m\n",
+ "P1 = 3.398*10**-7; #dipole moment Coulomb/m\n",
+ "P2 = 2.124*10**-5; #dipole moment Coulomb/m\n",
+ "e0 = 8.85*10**-12; #permittivity in F/m\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#E10Ci=E0-(2*Pi/3*e0)\n",
+ "#calculation\n",
+ "E10C1 = E0-((2*P1)/float(3*e0)); #local field of benzene in V/m\n",
+ "E10C2 = E0-((2*P2)/float(3*e0)); #local field of water in V/m\n",
+ " \n",
+ "#result\n",
+ "print'local field of benzene=%3.2e'%E10C1,'V/m';\n",
+ "print'local field of water=%3.3e'%E10C2,'V/m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4,Page No:4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "polarisability of benzene = 1.16e-37 F*m**2\n",
+ "polarisability of water = 4.04e-40 F*m**2\n",
+ "Note: mistake in textbok,alpha1 value is printed as 1.16*10**-38 instead of 1.16*10**-37\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p1 = 5.12*10**-34; #p of benzene kg/m**3\n",
+ "p2 = 6.34*10**-34; #p of water kg/m**3\n",
+ "e10C1 = 4.4*10**3; #local field of benzene in V/m\n",
+ "e10C2 = 1570*10**3; #local field of water in V/m\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#p=alphai*e10Ci\n",
+ "#calculation\n",
+ "alpha1 = p1/float(e10C1); #polarisability of benzene in F*m**2\n",
+ "alpha2 = p2/float(e10C2); #polarisability of water in F*m**2\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'polarisability of benzene = %3.2e'%alpha1,'F*m**2';\n",
+ "print'polarisability of water = %3.2e'%alpha2,'F*m**2';\n",
+ "print'Note: mistake in textbok,alpha1 value is printed as 1.16*10**-38 instead of 1.16*10**-37';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "polarisation of benzene = 6.80e-07 c/m**2\n",
+ "polarisation of water = 4.25e-05. c/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e0 = 8.85*10**-12; #abslute permitivity in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "E = 600*10**2; #strength in V/cm\n",
+ "er1 = 2.28; #dielectric constant of benzene in coulomb/m\n",
+ "er2 = 81; #dielectric constant of water in coulomb/m\n",
+ "\n",
+ "\n",
+ "#fomula\n",
+ "#p=e0*E*(er-1)\n",
+ "#calculation\n",
+ "pB = e0*E*(er1-1); #polarisation of benzene in c/m**2\n",
+ "pW = e0*E*(er2-1); #polarisation of water in c/m**2\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'polarisation of benzene = %3.2e'%pB,'c/m**2';\n",
+ "print'polarisation of water = %3.2e.'%pW,'c/m**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "percentage contribution from ionic polaristion = 59.82 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "er0 = 5.6; #static dielectric cnstant of NaCl \n",
+ "n = 1.5; #optical index of refraction\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "er = er0-n**2;\n",
+ "d = ((er/float(er0))*100); #percentage contribution from ionic polaristion in %\n",
+ " \n",
+ "#result \n",
+ "print'percentage contribution from ionic polaristion = %3.2f'%d,'%';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "separation=1.69e-17 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "alpha = 0.18*10**-40; #polarisability of He in F *m**2\n",
+ "E = 3*10**5; #constant in V/m\n",
+ "N = 2.6*10**25; #number of atoms in per m**3\n",
+ "e = 1.6*10**-19;\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#P=N*p\n",
+ "#charge of He=2*electron charge\n",
+ "#p=2(e*d)\n",
+ "#calculation\n",
+ "P = N*alpha*E; #in coul/m**2\n",
+ "p = P/float(N); #polarisation of He in coul.m\n",
+ "d = p/float(2*e); #separation between charges in m\n",
+ " \n",
+ " \n",
+ "#result \n",
+ "print'separation=%3.2e'%d,'m';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 4.8,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "oriental polarisation=9.66e-08 coul/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N = 10**27; #number of HCl molecules in molecules/m**3\n",
+ "E = 10**5; #electric field in V/m\n",
+ "P = 1.04*3.33*10**-30; #permanent dipole moment in coul.m\n",
+ "T = 300; #temperature in kelvin\n",
+ "K = 1.38*10**-23;\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "P0 = (N*(P**2)*E)/float(3*K*T); #oriental polarisation in coul/m^2\n",
+ "\n",
+ " \n",
+ "#result\n",
+ "print'oriental polarisation=%3.2e'%P0,'coul/m**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 4.9,Page No:4.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "relative dielectric constant =1.0\n",
+ " Note: calculation mistake in text book in calculating relative dielectric constant\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N = 6.023*10**26; #avagadro number  (lb-mol)**-1\n",
+ "alpha = 3.28*10**-40; #polarisability in F*m**2\n",
+ "M = 32; #molecular weight in kilograms\n",
+ "p = 2.08*10**3; #density of sulphur in g/cm**3\n",
+ "e0 = 8.85*10**12; #permitivity in F/m\n",
+ "\n",
+ "#calculation\n",
+ "er = ((2*N*p*alpha)+(3*M*e0))/float((3*M*e0)-(N*p*alpha)); \n",
+ "\n",
+ "#result\n",
+ "\n",
+ "print'relative dielectric constant =%3.1f'%er;\n",
+ "print' Note: calculation mistake in text book in calculating relative dielectric constant';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.10,Page No:4.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio of electronic and ionic probabilities =1.6\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "er = 4.94;\n",
+ "n = 1.64;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "#(alphae)/(alphai) =x\n",
+ "x = ((er-1)/float(er+2))*(((n**2)+2)/float((n**2)-1)); #ratio of electronic and ionic probabilities\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'ratio of electronic and ionic probabilities =%3.1f'%x;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.11,Page No:4.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric constant=16.43\n",
+ "electrical suseptibility=1.3711e-10 c**2*N**-1*M**-2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declartion\n",
+ "E = 1.46*10**-10; #permitivity in c**2*N**-1*m**-2\n",
+ "E0 = 8.885*10**-12; #permitivity in c**2*N**-1*m**-2\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "Er = E/float(E0);\n",
+ "sighe = E0*(Er-1); #electrical suseptbility in c**2*N**-1*M**-2\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'dielectric constant=%3.2f'%Er;\n",
+ "print'electrical suseptibility=%3.4e'%sighe,'c**2*N**-1*M**-2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.12,Page No:4.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "polarisation=8.4e-07 cm**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "r = 0.1; #radius in m\n",
+ "pw = 1; #density of water in g/ml\n",
+ "Mw = 18; # molecular mass of water \n",
+ "E = 6.0*10**-30; #dipole moment of water in cm\n",
+ "N = 6.0*10**26; #avagadro constant in (lb-mol)−1\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "n = N*(4*(math.pi)*(r**3)*pw)/(Mw*3); #number of water molecules in a water drop \n",
+ "p = n*E; #polarisation in cm**2\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'polarisation=%3.1e'%p,'cm**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.13,Page No:4.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric susceptibility=0.000074\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Er = 1.000074; #dielectric constant for a gas at 0°C\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "sighe = Er-1; #dielectric susceptibility\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'dielectric susceptibility=%3.6f'%sighe;\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.14,Page No:4.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "free charge=2.65e-05 Coul/m**2\n",
+ "polarisation=5.31e-05 Coul/m\n",
+ "displacement=7.96e-05\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "E = 10**6; #dielectric in volts/s\n",
+ "er = 3; #dielectric in mm\n",
+ "e0 = 8.85*10**-12;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "E0 = er*E; #electric field in V/m\n",
+ "sigma = e0*E0; #free charge in Coul/m^2\n",
+ "P = e0*(er-1)*E0; #polarisation in coul/m\n",
+ "D = e0*er*E0; #displacement in in dielectric\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'free charge=%3.2e'%sigma,'Coul/m**2';\n",
+ "print'polarisation=%3.2e'%P,'Coul/m';\n",
+ "print'displacement=%3.2e'%D; "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15,Page No:4.19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "capacitance = 3.42e-11 Farad\n",
+ "charge =3.42e-10 coulomb\n",
+ "displacement =5.31e-07 c/m**2\n",
+ "polarisation =4.42e-07 c/m**2\n",
+ "Note:error in calculation of P,E value is taken as 5000 instead of 10**4\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 1.0*10**-3; #separation between plates in m\n",
+ "A = 6.45*10**-4; # surface area in m^2\n",
+ "e0 = 8.85*10**-12; #permitivity of electron in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "er = 6.0; #relative permitivity in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "V = 10; #voltage in V\n",
+ "E = 10; \n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "C = (e0*er*A)/float(d); #capacitance in Farad\n",
+ "q = C*V; #charge in coulomb\n",
+ "D = (e0*er*E)/float(10**-3); #displacement vector in c/m**2\n",
+ "P = D-(e0*E/float(10**-3)); #polarisation vector in c/m**2\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'capacitance = %3.2e'%C,'Farad';\n",
+ "print'charge =%3.2e'%q,'coulomb';\n",
+ "print'displacement =%3.2e'%D,'c/m**2';\n",
+ "print'polarisation =%3.2e'%P,'c/m**2';\n",
+ "print'Note:error in calculation of P,E value is taken as 5000 instead of 10**4\\n';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 4.16,Page No:4.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "frequency = 8.84 KHz\n",
+ "phase difference = 45 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "t = 18*10**-6; #relaxation time in s\n",
+ "er1 = 1; #permitivity in F/m\n",
+ "er = 1; #permitivity in F/m\n",
+ "t = 18*10**-6; #relaxation time in s\n",
+ " \n",
+ "#calculation\n",
+ "f = 1/float(2*math.pi*t); #frequency in Hz\n",
+ "theta_c = math.atan(er1/float(er));\n",
+ "#theta_c_deg = (theta_c*180)/float(math.pi);\n",
+ "#phi = 90-theta_c_deg; #phase difference in degrees\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'frequency = %3.2f'%(f*10**-3),'KHz';\n",
+ "print'phase difference =%3.0f'%((theta_c*180)/float(math.pi)),'°';\n",
+ " "
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4_3.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4_3.ipynb
new file mode 100644
index 00000000..b5443c89
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4_3.ipynb
@@ -0,0 +1,732 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4:Behaviour of Dielectric Materials in ac and dc Fields"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1,Page No:4.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric constant of argon = 1.0005466\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "alpha = 1.8*10**-40; #polarisability of argon in Fm**2\n",
+ "e0 = 8.85*10**-12; #dielectric constant F/m\n",
+ "N1 = 6.02*10**23; #avagadro number in mol**-1\n",
+ "x = 22.4*10**3; #volume in m**3\n",
+ " \n",
+ "#formula\n",
+ "#er-1=N*p/e0*E=(N/e0)*alpha\n",
+ "#calculation\n",
+ "N = N1/float(x); #number of argon atoms in per unit volume in cm**3\n",
+ "N2 = N*10**6; #number of argon atoms in per unit volume in m**3\n",
+ "er = 1+((N2/float(e0)))*(alpha); #dielectric constant F/m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'dielectric constant of argon = %3.7f'%er;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2,Page No:4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "displacement = 1.25e-17 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "alpha = 1.8*10**-40; #polarisability of argon in F*m^2\n",
+ "E = 2*10**5; # in V/m\n",
+ "z = 18;\n",
+ "e = 1.6*10**-19;\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#p=18*e*x\n",
+ "#calculation\n",
+ "p = alpha*E;\n",
+ "x = p/float(18*e); #displacement in m\n",
+ "\n",
+ " \n",
+ "#result\n",
+ "print'displacement = %3.2e'%x,'m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3,Page No:4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "local field of benzene=4.40e+03 V/m\n",
+ "local field of water=-1.570e+06 V/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "E0 = 300*10**2; #local field in V/m\n",
+ "P1 = 3.398*10**-7; #dipole moment Coulomb/m\n",
+ "P2 = 2.124*10**-5; #dipole moment Coulomb/m\n",
+ "e0 = 8.85*10**-12; #permittivity in F/m\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#E10Ci=E0-(2*Pi/3*e0)\n",
+ "#calculation\n",
+ "E10C1 = E0-((2*P1)/float(3*e0)); #local field of benzene in V/m\n",
+ "E10C2 = E0-((2*P2)/float(3*e0)); #local field of water in V/m\n",
+ " \n",
+ "#result\n",
+ "print'local field of benzene=%3.2e'%E10C1,'V/m';\n",
+ "print'local field of water=%3.3e'%E10C2,'V/m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4,Page No:4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "polarisability of benzene = 1.16e-37 F*m**2\n",
+ "polarisability of water = 4.04e-40 F*m**2\n",
+ "Note: mistake in textbok,alpha1 value is printed as 1.16*10**-38 instead of 1.16*10**-37\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p1 = 5.12*10**-34; #p of benzene kg/m**3\n",
+ "p2 = 6.34*10**-34; #p of water kg/m**3\n",
+ "e10C1 = 4.4*10**3; #local field of benzene in V/m\n",
+ "e10C2 = 1570*10**3; #local field of water in V/m\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#p=alphai*e10Ci\n",
+ "#calculation\n",
+ "alpha1 = p1/float(e10C1); #polarisability of benzene in F*m**2\n",
+ "alpha2 = p2/float(e10C2); #polarisability of water in F*m**2\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'polarisability of benzene = %3.2e'%alpha1,'F*m**2';\n",
+ "print'polarisability of water = %3.2e'%alpha2,'F*m**2';\n",
+ "print'Note: mistake in textbok,alpha1 value is printed as 1.16*10**-38 instead of 1.16*10**-37';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "polarisation of benzene = 6.80e-07 c/m**2\n",
+ "polarisation of water = 4.25e-05. c/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e0 = 8.85*10**-12; #abslute permitivity in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "E = 600*10**2; #strength in V/cm\n",
+ "er1 = 2.28; #dielectric constant of benzene in coulomb/m\n",
+ "er2 = 81; #dielectric constant of water in coulomb/m\n",
+ "\n",
+ "\n",
+ "#fomula\n",
+ "#p=e0*E*(er-1)\n",
+ "#calculation\n",
+ "pB = e0*E*(er1-1); #polarisation of benzene in c/m**2\n",
+ "pW = e0*E*(er2-1); #polarisation of water in c/m**2\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'polarisation of benzene = %3.2e'%pB,'c/m**2';\n",
+ "print'polarisation of water = %3.2e.'%pW,'c/m**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "percentage contribution from ionic polaristion = 59.82 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "er0 = 5.6; #static dielectric cnstant of NaCl \n",
+ "n = 1.5; #optical index of refraction\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "er = er0-n**2;\n",
+ "d = ((er/float(er0))*100); #percentage contribution from ionic polaristion in %\n",
+ " \n",
+ "#result \n",
+ "print'percentage contribution from ionic polaristion = %3.2f'%d,'%';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "separation=1.69e-17 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "alpha = 0.18*10**-40; #polarisability of He in F *m**2\n",
+ "E = 3*10**5; #constant in V/m\n",
+ "N = 2.6*10**25; #number of atoms in per m**3\n",
+ "e = 1.6*10**-19;\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#P=N*p\n",
+ "#charge of He=2*electron charge\n",
+ "#p=2(e*d)\n",
+ "#calculation\n",
+ "P = N*alpha*E; #in coul/m**2\n",
+ "p = P/float(N); #polarisation of He in coul.m\n",
+ "d = p/float(2*e); #separation between charges in m\n",
+ " \n",
+ " \n",
+ "#result \n",
+ "print'separation=%3.2e'%d,'m';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 4.8,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "oriental polarisation=9.66e-08 coul/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N = 10**27; #number of HCl molecules in molecules/m**3\n",
+ "E = 10**5; #electric field in V/m\n",
+ "P = 1.04*3.33*10**-30; #permanent dipole moment in coul.m\n",
+ "T = 300; #temperature in kelvin\n",
+ "K = 1.38*10**-23;\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "P0 = (N*(P**2)*E)/float(3*K*T); #oriental polarisation in coul/m^2\n",
+ "\n",
+ " \n",
+ "#result\n",
+ "print'oriental polarisation=%3.2e'%P0,'coul/m**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 4.9,Page No:4.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "relative dielectric constant =1.0\n",
+ " Note: calculation mistake in text book in calculating relative dielectric constant\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N = 6.023*10**26; #avagadro number  (lb-mol)**-1\n",
+ "alpha = 3.28*10**-40; #polarisability in F*m**2\n",
+ "M = 32; #molecular weight in kilograms\n",
+ "p = 2.08*10**3; #density of sulphur in g/cm**3\n",
+ "e0 = 8.85*10**12; #permitivity in F/m\n",
+ "\n",
+ "#calculation\n",
+ "er = ((2*N*p*alpha)+(3*M*e0))/float((3*M*e0)-(N*p*alpha)); \n",
+ "\n",
+ "#result\n",
+ "\n",
+ "print'relative dielectric constant =%3.1f'%er;\n",
+ "print' Note: calculation mistake in text book in calculating relative dielectric constant';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.10,Page No:4.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio of electronic and ionic probabilities =1.6\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "er = 4.94;\n",
+ "n = 1.64;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "#(alphae)/(alphai) =x\n",
+ "x = ((er-1)/float(er+2))*(((n**2)+2)/float((n**2)-1)); #ratio of electronic and ionic probabilities\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'ratio of electronic and ionic probabilities =%3.1f'%x;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.11,Page No:4.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric constant=16.43\n",
+ "electrical suseptibility=1.3711e-10 c**2*N**-1*M**-2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declartion\n",
+ "E = 1.46*10**-10; #permitivity in c**2*N**-1*m**-2\n",
+ "E0 = 8.885*10**-12; #permitivity in c**2*N**-1*m**-2\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "Er = E/float(E0);\n",
+ "sighe = E0*(Er-1); #electrical susceptbility in c**2*N**-1*M**-2\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'dielectric constant=%3.2f'%Er;\n",
+ "print'electrical suseptibility=%3.4e'%sighe,'c**2*N**-1*M**-2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.12,Page No:4.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "polarisation=8.4e-07 cm**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "r = 0.1; #radius in m\n",
+ "pw = 1; #density of water in g/ml\n",
+ "Mw = 18; # molecular mass of water \n",
+ "E = 6.0*10**-30; #dipole moment of water in cm\n",
+ "N = 6.0*10**26; #avagadro constant in (lb-mol)−1\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "n = N*(4*(math.pi)*(r**3)*pw)/(Mw*3); #number of water molecules in a water drop \n",
+ "p = n*E; #polarisation in cm**2\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'polarisation=%3.1e'%p,'cm**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.13,Page No:4.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric susceptibility=0.000074\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Er = 1.000074; #dielectric constant for a gas at 0°C\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "sighe = Er-1; #dielectric susceptibility\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'dielectric susceptibility=%3.6f'%sighe;\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.14,Page No:4.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "free charge=2.65e-05 Coul/m**2\n",
+ "polarisation=5.31e-05 Coul/m\n",
+ "displacement=7.96e-05\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "E = 10**6; #dielectric in volts/s\n",
+ "er = 3; #dielectric in mm\n",
+ "e0 = 8.85*10**-12;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "E0 = er*E; #electric field in V/m\n",
+ "sigma = e0*E0; #free charge in Coul/m^2\n",
+ "P = e0*(er-1)*E0; #polarisation in coul/m\n",
+ "D = e0*er*E0; #displacement in in dielectric\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'free charge=%3.2e'%sigma,'Coul/m**2';\n",
+ "print'polarisation=%3.2e'%P,'Coul/m';\n",
+ "print'displacement=%3.2e'%D; "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15,Page No:4.19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "capacitance = 3.42e-11 Farad\n",
+ "charge =3.42e-10 coulomb\n",
+ "displacement =5.31e-07 c/m**2\n",
+ "polarisation =4.42e-07 c/m**2\n",
+ "Note:error in calculation of P,E value is taken as 5000 instead of 10**4\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 1.0*10**-3; #separation between plates in m\n",
+ "A = 6.45*10**-4; # surface area in m^2\n",
+ "e0 = 8.85*10**-12; #permitivity of electron in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "er = 6.0; #relative permitivity in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "V = 10; #voltage in V\n",
+ "E = 10; \n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "C = (e0*er*A)/float(d); #capacitance in Farad\n",
+ "q = C*V; #charge in coulomb\n",
+ "D = (e0*er*E)/float(10**-3); #displacement vector in c/m**2\n",
+ "P = D-(e0*E/float(10**-3)); #polarisation vector in c/m**2\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'capacitance = %3.2e'%C,'Farad';\n",
+ "print'charge =%3.2e'%q,'coulomb';\n",
+ "print'displacement =%3.2e'%D,'c/m**2';\n",
+ "print'polarisation =%3.2e'%P,'c/m**2';\n",
+ "print'Note:error in calculation of P,E value is taken as 5000 instead of 10**4\\n';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 4.16,Page No:4.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "frequency = 8.84 KHz\n",
+ "phase difference = 45 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "t = 18*10**-6; #relaxation time in s\n",
+ "er1 = 1; #permitivity in F/m\n",
+ "er = 1; #permitivity in F/m\n",
+ "t = 18*10**-6; #relaxation time in s\n",
+ " \n",
+ "#calculation\n",
+ "f = 1/float(2*math.pi*t); #frequency in Hz\n",
+ "theta_c = math.atan(er1/float(er));\n",
+ "#theta_c_deg = (theta_c*180)/float(math.pi);\n",
+ "#phi = 90-theta_c_deg; #phase difference in degrees\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'frequency = %3.2f'%(f*10**-3),'KHz';\n",
+ "print'phase difference =%3.0f'%((theta_c*180)/float(math.pi)),'°';\n",
+ " "
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4_4.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4_4.ipynb
new file mode 100644
index 00000000..b5443c89
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4_4.ipynb
@@ -0,0 +1,732 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4:Behaviour of Dielectric Materials in ac and dc Fields"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1,Page No:4.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric constant of argon = 1.0005466\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "alpha = 1.8*10**-40; #polarisability of argon in Fm**2\n",
+ "e0 = 8.85*10**-12; #dielectric constant F/m\n",
+ "N1 = 6.02*10**23; #avagadro number in mol**-1\n",
+ "x = 22.4*10**3; #volume in m**3\n",
+ " \n",
+ "#formula\n",
+ "#er-1=N*p/e0*E=(N/e0)*alpha\n",
+ "#calculation\n",
+ "N = N1/float(x); #number of argon atoms in per unit volume in cm**3\n",
+ "N2 = N*10**6; #number of argon atoms in per unit volume in m**3\n",
+ "er = 1+((N2/float(e0)))*(alpha); #dielectric constant F/m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'dielectric constant of argon = %3.7f'%er;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2,Page No:4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "displacement = 1.25e-17 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "alpha = 1.8*10**-40; #polarisability of argon in F*m^2\n",
+ "E = 2*10**5; # in V/m\n",
+ "z = 18;\n",
+ "e = 1.6*10**-19;\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#p=18*e*x\n",
+ "#calculation\n",
+ "p = alpha*E;\n",
+ "x = p/float(18*e); #displacement in m\n",
+ "\n",
+ " \n",
+ "#result\n",
+ "print'displacement = %3.2e'%x,'m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3,Page No:4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "local field of benzene=4.40e+03 V/m\n",
+ "local field of water=-1.570e+06 V/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "E0 = 300*10**2; #local field in V/m\n",
+ "P1 = 3.398*10**-7; #dipole moment Coulomb/m\n",
+ "P2 = 2.124*10**-5; #dipole moment Coulomb/m\n",
+ "e0 = 8.85*10**-12; #permittivity in F/m\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#E10Ci=E0-(2*Pi/3*e0)\n",
+ "#calculation\n",
+ "E10C1 = E0-((2*P1)/float(3*e0)); #local field of benzene in V/m\n",
+ "E10C2 = E0-((2*P2)/float(3*e0)); #local field of water in V/m\n",
+ " \n",
+ "#result\n",
+ "print'local field of benzene=%3.2e'%E10C1,'V/m';\n",
+ "print'local field of water=%3.3e'%E10C2,'V/m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4,Page No:4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "polarisability of benzene = 1.16e-37 F*m**2\n",
+ "polarisability of water = 4.04e-40 F*m**2\n",
+ "Note: mistake in textbok,alpha1 value is printed as 1.16*10**-38 instead of 1.16*10**-37\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p1 = 5.12*10**-34; #p of benzene kg/m**3\n",
+ "p2 = 6.34*10**-34; #p of water kg/m**3\n",
+ "e10C1 = 4.4*10**3; #local field of benzene in V/m\n",
+ "e10C2 = 1570*10**3; #local field of water in V/m\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#p=alphai*e10Ci\n",
+ "#calculation\n",
+ "alpha1 = p1/float(e10C1); #polarisability of benzene in F*m**2\n",
+ "alpha2 = p2/float(e10C2); #polarisability of water in F*m**2\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'polarisability of benzene = %3.2e'%alpha1,'F*m**2';\n",
+ "print'polarisability of water = %3.2e'%alpha2,'F*m**2';\n",
+ "print'Note: mistake in textbok,alpha1 value is printed as 1.16*10**-38 instead of 1.16*10**-37';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "polarisation of benzene = 6.80e-07 c/m**2\n",
+ "polarisation of water = 4.25e-05. c/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e0 = 8.85*10**-12; #abslute permitivity in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "E = 600*10**2; #strength in V/cm\n",
+ "er1 = 2.28; #dielectric constant of benzene in coulomb/m\n",
+ "er2 = 81; #dielectric constant of water in coulomb/m\n",
+ "\n",
+ "\n",
+ "#fomula\n",
+ "#p=e0*E*(er-1)\n",
+ "#calculation\n",
+ "pB = e0*E*(er1-1); #polarisation of benzene in c/m**2\n",
+ "pW = e0*E*(er2-1); #polarisation of water in c/m**2\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'polarisation of benzene = %3.2e'%pB,'c/m**2';\n",
+ "print'polarisation of water = %3.2e.'%pW,'c/m**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "percentage contribution from ionic polaristion = 59.82 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "er0 = 5.6; #static dielectric cnstant of NaCl \n",
+ "n = 1.5; #optical index of refraction\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "er = er0-n**2;\n",
+ "d = ((er/float(er0))*100); #percentage contribution from ionic polaristion in %\n",
+ " \n",
+ "#result \n",
+ "print'percentage contribution from ionic polaristion = %3.2f'%d,'%';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "separation=1.69e-17 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "alpha = 0.18*10**-40; #polarisability of He in F *m**2\n",
+ "E = 3*10**5; #constant in V/m\n",
+ "N = 2.6*10**25; #number of atoms in per m**3\n",
+ "e = 1.6*10**-19;\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#P=N*p\n",
+ "#charge of He=2*electron charge\n",
+ "#p=2(e*d)\n",
+ "#calculation\n",
+ "P = N*alpha*E; #in coul/m**2\n",
+ "p = P/float(N); #polarisation of He in coul.m\n",
+ "d = p/float(2*e); #separation between charges in m\n",
+ " \n",
+ " \n",
+ "#result \n",
+ "print'separation=%3.2e'%d,'m';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 4.8,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "oriental polarisation=9.66e-08 coul/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N = 10**27; #number of HCl molecules in molecules/m**3\n",
+ "E = 10**5; #electric field in V/m\n",
+ "P = 1.04*3.33*10**-30; #permanent dipole moment in coul.m\n",
+ "T = 300; #temperature in kelvin\n",
+ "K = 1.38*10**-23;\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "P0 = (N*(P**2)*E)/float(3*K*T); #oriental polarisation in coul/m^2\n",
+ "\n",
+ " \n",
+ "#result\n",
+ "print'oriental polarisation=%3.2e'%P0,'coul/m**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 4.9,Page No:4.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "relative dielectric constant =1.0\n",
+ " Note: calculation mistake in text book in calculating relative dielectric constant\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N = 6.023*10**26; #avagadro number  (lb-mol)**-1\n",
+ "alpha = 3.28*10**-40; #polarisability in F*m**2\n",
+ "M = 32; #molecular weight in kilograms\n",
+ "p = 2.08*10**3; #density of sulphur in g/cm**3\n",
+ "e0 = 8.85*10**12; #permitivity in F/m\n",
+ "\n",
+ "#calculation\n",
+ "er = ((2*N*p*alpha)+(3*M*e0))/float((3*M*e0)-(N*p*alpha)); \n",
+ "\n",
+ "#result\n",
+ "\n",
+ "print'relative dielectric constant =%3.1f'%er;\n",
+ "print' Note: calculation mistake in text book in calculating relative dielectric constant';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.10,Page No:4.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio of electronic and ionic probabilities =1.6\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "er = 4.94;\n",
+ "n = 1.64;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "#(alphae)/(alphai) =x\n",
+ "x = ((er-1)/float(er+2))*(((n**2)+2)/float((n**2)-1)); #ratio of electronic and ionic probabilities\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'ratio of electronic and ionic probabilities =%3.1f'%x;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.11,Page No:4.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric constant=16.43\n",
+ "electrical suseptibility=1.3711e-10 c**2*N**-1*M**-2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declartion\n",
+ "E = 1.46*10**-10; #permitivity in c**2*N**-1*m**-2\n",
+ "E0 = 8.885*10**-12; #permitivity in c**2*N**-1*m**-2\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "Er = E/float(E0);\n",
+ "sighe = E0*(Er-1); #electrical susceptbility in c**2*N**-1*M**-2\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'dielectric constant=%3.2f'%Er;\n",
+ "print'electrical suseptibility=%3.4e'%sighe,'c**2*N**-1*M**-2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.12,Page No:4.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "polarisation=8.4e-07 cm**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "r = 0.1; #radius in m\n",
+ "pw = 1; #density of water in g/ml\n",
+ "Mw = 18; # molecular mass of water \n",
+ "E = 6.0*10**-30; #dipole moment of water in cm\n",
+ "N = 6.0*10**26; #avagadro constant in (lb-mol)−1\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "n = N*(4*(math.pi)*(r**3)*pw)/(Mw*3); #number of water molecules in a water drop \n",
+ "p = n*E; #polarisation in cm**2\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'polarisation=%3.1e'%p,'cm**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.13,Page No:4.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric susceptibility=0.000074\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Er = 1.000074; #dielectric constant for a gas at 0°C\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "sighe = Er-1; #dielectric susceptibility\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'dielectric susceptibility=%3.6f'%sighe;\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.14,Page No:4.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "free charge=2.65e-05 Coul/m**2\n",
+ "polarisation=5.31e-05 Coul/m\n",
+ "displacement=7.96e-05\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "E = 10**6; #dielectric in volts/s\n",
+ "er = 3; #dielectric in mm\n",
+ "e0 = 8.85*10**-12;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "E0 = er*E; #electric field in V/m\n",
+ "sigma = e0*E0; #free charge in Coul/m^2\n",
+ "P = e0*(er-1)*E0; #polarisation in coul/m\n",
+ "D = e0*er*E0; #displacement in in dielectric\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'free charge=%3.2e'%sigma,'Coul/m**2';\n",
+ "print'polarisation=%3.2e'%P,'Coul/m';\n",
+ "print'displacement=%3.2e'%D; "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15,Page No:4.19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "capacitance = 3.42e-11 Farad\n",
+ "charge =3.42e-10 coulomb\n",
+ "displacement =5.31e-07 c/m**2\n",
+ "polarisation =4.42e-07 c/m**2\n",
+ "Note:error in calculation of P,E value is taken as 5000 instead of 10**4\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 1.0*10**-3; #separation between plates in m\n",
+ "A = 6.45*10**-4; # surface area in m^2\n",
+ "e0 = 8.85*10**-12; #permitivity of electron in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "er = 6.0; #relative permitivity in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "V = 10; #voltage in V\n",
+ "E = 10; \n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "C = (e0*er*A)/float(d); #capacitance in Farad\n",
+ "q = C*V; #charge in coulomb\n",
+ "D = (e0*er*E)/float(10**-3); #displacement vector in c/m**2\n",
+ "P = D-(e0*E/float(10**-3)); #polarisation vector in c/m**2\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'capacitance = %3.2e'%C,'Farad';\n",
+ "print'charge =%3.2e'%q,'coulomb';\n",
+ "print'displacement =%3.2e'%D,'c/m**2';\n",
+ "print'polarisation =%3.2e'%P,'c/m**2';\n",
+ "print'Note:error in calculation of P,E value is taken as 5000 instead of 10**4\\n';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 4.16,Page No:4.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "frequency = 8.84 KHz\n",
+ "phase difference = 45 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "t = 18*10**-6; #relaxation time in s\n",
+ "er1 = 1; #permitivity in F/m\n",
+ "er = 1; #permitivity in F/m\n",
+ "t = 18*10**-6; #relaxation time in s\n",
+ " \n",
+ "#calculation\n",
+ "f = 1/float(2*math.pi*t); #frequency in Hz\n",
+ "theta_c = math.atan(er1/float(er));\n",
+ "#theta_c_deg = (theta_c*180)/float(math.pi);\n",
+ "#phi = 90-theta_c_deg; #phase difference in degrees\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'frequency = %3.2f'%(f*10**-3),'KHz';\n",
+ "print'phase difference =%3.0f'%((theta_c*180)/float(math.pi)),'°';\n",
+ " "
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4_5.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4_5.ipynb
new file mode 100644
index 00000000..b5443c89
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter4_5.ipynb
@@ -0,0 +1,732 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4:Behaviour of Dielectric Materials in ac and dc Fields"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1,Page No:4.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric constant of argon = 1.0005466\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "alpha = 1.8*10**-40; #polarisability of argon in Fm**2\n",
+ "e0 = 8.85*10**-12; #dielectric constant F/m\n",
+ "N1 = 6.02*10**23; #avagadro number in mol**-1\n",
+ "x = 22.4*10**3; #volume in m**3\n",
+ " \n",
+ "#formula\n",
+ "#er-1=N*p/e0*E=(N/e0)*alpha\n",
+ "#calculation\n",
+ "N = N1/float(x); #number of argon atoms in per unit volume in cm**3\n",
+ "N2 = N*10**6; #number of argon atoms in per unit volume in m**3\n",
+ "er = 1+((N2/float(e0)))*(alpha); #dielectric constant F/m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'dielectric constant of argon = %3.7f'%er;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2,Page No:4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "displacement = 1.25e-17 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "alpha = 1.8*10**-40; #polarisability of argon in F*m^2\n",
+ "E = 2*10**5; # in V/m\n",
+ "z = 18;\n",
+ "e = 1.6*10**-19;\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#p=18*e*x\n",
+ "#calculation\n",
+ "p = alpha*E;\n",
+ "x = p/float(18*e); #displacement in m\n",
+ "\n",
+ " \n",
+ "#result\n",
+ "print'displacement = %3.2e'%x,'m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3,Page No:4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "local field of benzene=4.40e+03 V/m\n",
+ "local field of water=-1.570e+06 V/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "E0 = 300*10**2; #local field in V/m\n",
+ "P1 = 3.398*10**-7; #dipole moment Coulomb/m\n",
+ "P2 = 2.124*10**-5; #dipole moment Coulomb/m\n",
+ "e0 = 8.85*10**-12; #permittivity in F/m\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#E10Ci=E0-(2*Pi/3*e0)\n",
+ "#calculation\n",
+ "E10C1 = E0-((2*P1)/float(3*e0)); #local field of benzene in V/m\n",
+ "E10C2 = E0-((2*P2)/float(3*e0)); #local field of water in V/m\n",
+ " \n",
+ "#result\n",
+ "print'local field of benzene=%3.2e'%E10C1,'V/m';\n",
+ "print'local field of water=%3.3e'%E10C2,'V/m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4,Page No:4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "polarisability of benzene = 1.16e-37 F*m**2\n",
+ "polarisability of water = 4.04e-40 F*m**2\n",
+ "Note: mistake in textbok,alpha1 value is printed as 1.16*10**-38 instead of 1.16*10**-37\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p1 = 5.12*10**-34; #p of benzene kg/m**3\n",
+ "p2 = 6.34*10**-34; #p of water kg/m**3\n",
+ "e10C1 = 4.4*10**3; #local field of benzene in V/m\n",
+ "e10C2 = 1570*10**3; #local field of water in V/m\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#p=alphai*e10Ci\n",
+ "#calculation\n",
+ "alpha1 = p1/float(e10C1); #polarisability of benzene in F*m**2\n",
+ "alpha2 = p2/float(e10C2); #polarisability of water in F*m**2\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'polarisability of benzene = %3.2e'%alpha1,'F*m**2';\n",
+ "print'polarisability of water = %3.2e'%alpha2,'F*m**2';\n",
+ "print'Note: mistake in textbok,alpha1 value is printed as 1.16*10**-38 instead of 1.16*10**-37';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "polarisation of benzene = 6.80e-07 c/m**2\n",
+ "polarisation of water = 4.25e-05. c/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e0 = 8.85*10**-12; #abslute permitivity in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "E = 600*10**2; #strength in V/cm\n",
+ "er1 = 2.28; #dielectric constant of benzene in coulomb/m\n",
+ "er2 = 81; #dielectric constant of water in coulomb/m\n",
+ "\n",
+ "\n",
+ "#fomula\n",
+ "#p=e0*E*(er-1)\n",
+ "#calculation\n",
+ "pB = e0*E*(er1-1); #polarisation of benzene in c/m**2\n",
+ "pW = e0*E*(er2-1); #polarisation of water in c/m**2\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'polarisation of benzene = %3.2e'%pB,'c/m**2';\n",
+ "print'polarisation of water = %3.2e.'%pW,'c/m**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "percentage contribution from ionic polaristion = 59.82 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "er0 = 5.6; #static dielectric cnstant of NaCl \n",
+ "n = 1.5; #optical index of refraction\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "er = er0-n**2;\n",
+ "d = ((er/float(er0))*100); #percentage contribution from ionic polaristion in %\n",
+ " \n",
+ "#result \n",
+ "print'percentage contribution from ionic polaristion = %3.2f'%d,'%';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "separation=1.69e-17 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "alpha = 0.18*10**-40; #polarisability of He in F *m**2\n",
+ "E = 3*10**5; #constant in V/m\n",
+ "N = 2.6*10**25; #number of atoms in per m**3\n",
+ "e = 1.6*10**-19;\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#P=N*p\n",
+ "#charge of He=2*electron charge\n",
+ "#p=2(e*d)\n",
+ "#calculation\n",
+ "P = N*alpha*E; #in coul/m**2\n",
+ "p = P/float(N); #polarisation of He in coul.m\n",
+ "d = p/float(2*e); #separation between charges in m\n",
+ " \n",
+ " \n",
+ "#result \n",
+ "print'separation=%3.2e'%d,'m';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 4.8,Page No:4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "oriental polarisation=9.66e-08 coul/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N = 10**27; #number of HCl molecules in molecules/m**3\n",
+ "E = 10**5; #electric field in V/m\n",
+ "P = 1.04*3.33*10**-30; #permanent dipole moment in coul.m\n",
+ "T = 300; #temperature in kelvin\n",
+ "K = 1.38*10**-23;\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "P0 = (N*(P**2)*E)/float(3*K*T); #oriental polarisation in coul/m^2\n",
+ "\n",
+ " \n",
+ "#result\n",
+ "print'oriental polarisation=%3.2e'%P0,'coul/m**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 4.9,Page No:4.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "relative dielectric constant =1.0\n",
+ " Note: calculation mistake in text book in calculating relative dielectric constant\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N = 6.023*10**26; #avagadro number  (lb-mol)**-1\n",
+ "alpha = 3.28*10**-40; #polarisability in F*m**2\n",
+ "M = 32; #molecular weight in kilograms\n",
+ "p = 2.08*10**3; #density of sulphur in g/cm**3\n",
+ "e0 = 8.85*10**12; #permitivity in F/m\n",
+ "\n",
+ "#calculation\n",
+ "er = ((2*N*p*alpha)+(3*M*e0))/float((3*M*e0)-(N*p*alpha)); \n",
+ "\n",
+ "#result\n",
+ "\n",
+ "print'relative dielectric constant =%3.1f'%er;\n",
+ "print' Note: calculation mistake in text book in calculating relative dielectric constant';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.10,Page No:4.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio of electronic and ionic probabilities =1.6\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "er = 4.94;\n",
+ "n = 1.64;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "#(alphae)/(alphai) =x\n",
+ "x = ((er-1)/float(er+2))*(((n**2)+2)/float((n**2)-1)); #ratio of electronic and ionic probabilities\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'ratio of electronic and ionic probabilities =%3.1f'%x;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.11,Page No:4.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric constant=16.43\n",
+ "electrical suseptibility=1.3711e-10 c**2*N**-1*M**-2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declartion\n",
+ "E = 1.46*10**-10; #permitivity in c**2*N**-1*m**-2\n",
+ "E0 = 8.885*10**-12; #permitivity in c**2*N**-1*m**-2\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "Er = E/float(E0);\n",
+ "sighe = E0*(Er-1); #electrical susceptbility in c**2*N**-1*M**-2\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'dielectric constant=%3.2f'%Er;\n",
+ "print'electrical suseptibility=%3.4e'%sighe,'c**2*N**-1*M**-2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.12,Page No:4.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "polarisation=8.4e-07 cm**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "r = 0.1; #radius in m\n",
+ "pw = 1; #density of water in g/ml\n",
+ "Mw = 18; # molecular mass of water \n",
+ "E = 6.0*10**-30; #dipole moment of water in cm\n",
+ "N = 6.0*10**26; #avagadro constant in (lb-mol)−1\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "n = N*(4*(math.pi)*(r**3)*pw)/(Mw*3); #number of water molecules in a water drop \n",
+ "p = n*E; #polarisation in cm**2\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'polarisation=%3.1e'%p,'cm**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.13,Page No:4.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric susceptibility=0.000074\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Er = 1.000074; #dielectric constant for a gas at 0°C\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "sighe = Er-1; #dielectric susceptibility\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'dielectric susceptibility=%3.6f'%sighe;\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.14,Page No:4.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "free charge=2.65e-05 Coul/m**2\n",
+ "polarisation=5.31e-05 Coul/m\n",
+ "displacement=7.96e-05\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "E = 10**6; #dielectric in volts/s\n",
+ "er = 3; #dielectric in mm\n",
+ "e0 = 8.85*10**-12;\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "E0 = er*E; #electric field in V/m\n",
+ "sigma = e0*E0; #free charge in Coul/m^2\n",
+ "P = e0*(er-1)*E0; #polarisation in coul/m\n",
+ "D = e0*er*E0; #displacement in in dielectric\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'free charge=%3.2e'%sigma,'Coul/m**2';\n",
+ "print'polarisation=%3.2e'%P,'Coul/m';\n",
+ "print'displacement=%3.2e'%D; "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15,Page No:4.19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "capacitance = 3.42e-11 Farad\n",
+ "charge =3.42e-10 coulomb\n",
+ "displacement =5.31e-07 c/m**2\n",
+ "polarisation =4.42e-07 c/m**2\n",
+ "Note:error in calculation of P,E value is taken as 5000 instead of 10**4\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 1.0*10**-3; #separation between plates in m\n",
+ "A = 6.45*10**-4; # surface area in m^2\n",
+ "e0 = 8.85*10**-12; #permitivity of electron in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "er = 6.0; #relative permitivity in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "V = 10; #voltage in V\n",
+ "E = 10; \n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "C = (e0*er*A)/float(d); #capacitance in Farad\n",
+ "q = C*V; #charge in coulomb\n",
+ "D = (e0*er*E)/float(10**-3); #displacement vector in c/m**2\n",
+ "P = D-(e0*E/float(10**-3)); #polarisation vector in c/m**2\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'capacitance = %3.2e'%C,'Farad';\n",
+ "print'charge =%3.2e'%q,'coulomb';\n",
+ "print'displacement =%3.2e'%D,'c/m**2';\n",
+ "print'polarisation =%3.2e'%P,'c/m**2';\n",
+ "print'Note:error in calculation of P,E value is taken as 5000 instead of 10**4\\n';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 4.16,Page No:4.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "frequency = 8.84 KHz\n",
+ "phase difference = 45 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "t = 18*10**-6; #relaxation time in s\n",
+ "er1 = 1; #permitivity in F/m\n",
+ "er = 1; #permitivity in F/m\n",
+ "t = 18*10**-6; #relaxation time in s\n",
+ " \n",
+ "#calculation\n",
+ "f = 1/float(2*math.pi*t); #frequency in Hz\n",
+ "theta_c = math.atan(er1/float(er));\n",
+ "#theta_c_deg = (theta_c*180)/float(math.pi);\n",
+ "#phi = 90-theta_c_deg; #phase difference in degrees\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'frequency = %3.2f'%(f*10**-3),'KHz';\n",
+ "print'phase difference =%3.0f'%((theta_c*180)/float(math.pi)),'°';\n",
+ " "
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5.ipynb
new file mode 100755
index 00000000..a7c9ca96
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5.ipynb
@@ -0,0 +1,1642 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5:Conductivity of Metals and Superconductivity"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.1,Page No:5.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 105,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=1.17e-07 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 2*10**-3; #diameter in m \n",
+ "I = 5*10**-3; #current in A\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs \n",
+ "a = 3.61*10**-10; #side of cube in m\n",
+ "N = 4; #number of atoms in per unit cell\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#J=n*v*e\n",
+ "\n",
+ "#calculation\n",
+ "r = d/float(2); #radius in m\n",
+ "n = N/float(a**3); #number of atoms per unit volume in atoms/m**3\n",
+ "A = math.pi*(r**2); #area in m**2\n",
+ "J = I/float(A); #current density in Amp/m**2\n",
+ "v = J/float(n*e); #average drift velocity in m/s\n",
+ "\n",
+ "#result\n",
+ "print'velocity=%3.2e'%v,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.2,Page No:5.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 106,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=1.06e-03 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "I = 6; #current in A\n",
+ "d = 1*10**-3; #diameter in m\n",
+ "n = 4.5*10**28; #electrons available in electron/m**3\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "r = d/float(2); #radius in m\n",
+ "A = math.pi*(r**2); #area in m**2\n",
+ "J = I/float(A); #current density in A/m**3\n",
+ "vd = J/float(n*e); #density in m/s\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'velocity=%3.2e'%vd,'m/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.3,Page No:5.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 107,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=4.80e-06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "V = 63.5; #atomic weight in kg\n",
+ "d = 8.92*10**3; #density of copper in kg/m**3\n",
+ "r = 0.7*10**-3; #radius in m\n",
+ "I = 10; #current in A\n",
+ "e = 1.6*10**-19; #charge of electronin coulomb\n",
+ "h = 6.02*10**28; #planck's constant in (m**2)*kg/s\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "A = math.pi*(r**2); # area in m**2\n",
+ "N = h*d;\n",
+ "n = N/float(V);\n",
+ "J = I/float(A); #current density in m/s\n",
+ "vd = J/float(n*e); #drift velocity in m/s\n",
+ "\n",
+ "#result\n",
+ "print'velocity=%2.2e'%vd,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.4,Page No:5.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 108,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "restivity=1.82e-08 ohm m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R = 0.182; #resistance in ohm\n",
+ "l = 1; #length in m\n",
+ "A = 0.1*10**-6; #area in m**2\n",
+ "\n",
+ "#formula \n",
+ "#R=(p*l)/A\n",
+ "\n",
+ "#calculation\n",
+ "p = (R*A)/float(l); #resistivity in ohm m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'restivity=%3.2e'%p,'ohm m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.5,Page No:5.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 109,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=0.7 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n = 5.8*10**28; #number of silver electrons in electrond/m**3\n",
+ "p = 1.45*10**-8; #resistivity in ohm m\n",
+ "E = 10**2; #electric field in V/m\n",
+ "e = 1.6*10**-19; \n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#sigma = n*e*u \n",
+ "#sigma=p\n",
+ "#calculation\n",
+ "u = 1/float(n*e*p);\n",
+ "vd = u*E; #drift velocity in m/s\n",
+ "\n",
+ "#result\n",
+ "print'velocity=%3.1f'%vd,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.6,Page No:5.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 110,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "density=7.25e-03 m**2.V**-1.s**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "W = 107.9; #atomic weight in amu(atomic mass unit)\n",
+ "p = 10.5*10**3; #density in kg/m**3\n",
+ "sigma =6.8*10**7; #conductivity in ohm**-1.m**-1\n",
+ "e =1.6*10**-19; #charge of electron in coulombs\n",
+ "N = 6.02*10**26; #avagadro number in mol**-1\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "n = (N*p)/float(W); #number of atoms per unit volume \n",
+ "u = sigma/float(n*e); #density of electron in m**2.V**-1.s**-1\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'density=%3.2e'%u,'m**2.V**-1.s**-1';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#Example 5.7,Page No:5.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 111,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "time=2.51e-14 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "#for common metal copper\n",
+ "n = 8.5*10**28; #number of atoms in m**-3\n",
+ "sigma = 6*10**7; #sigma in ohm**-1 m**-1\n",
+ "m = 9.1*10**-31; #mass of electron in kilogram\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "\n",
+ "#calculation\n",
+ "t = (m*sigma)/float(n*(e**2)); #relaxation time in s\n",
+ "\n",
+ "#result\n",
+ "print'time=%3.2e'%t,'s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.9,Page No:5.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 112,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "thermal conductivity=1.6731 W/m-K\n",
+ " Note: calculation mistake in textbook in calculating K as T value is taken 325 instead of 3.25\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "t = 3.0*10**-14; #time in s\n",
+ "n = 2.5*10**22; #in electrons per m**3\n",
+ "m = 9.1*10**-31; #mass of electron in kilograms\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "T = 3.25; #temperature in K\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#K/(sigma*T)=2.44*10**-8 from wiedemann Franz law\n",
+ "#calculation\n",
+ "sigma = (n*(e**2)*t)/float(m*10**-6); #conductivity in m**3\n",
+ "K = (2.44*10**-8)*sigma*T; #thermalconductivity in W/m-K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'thermal conductivity=%3.4f '%K,'W/m-K';\n",
+ "print' Note: calculation mistake in textbook in calculating K as T value is taken 325 instead of 3.25';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.10,Page No:5.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 113,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy diefference=1.13e+02 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 10**-10; #one dimension in m\n",
+ "m = 9.1*10**-31; #mass of kg\n",
+ "h = 6.62*10**-34; #planck's constant in joule-s\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#En = ((n**2)*(h**2))/float(8*m*(a**2))\n",
+ "#calculation\n",
+ "E1 = (h**2)/float(8*m*(a**2)); #energy in J\n",
+ "E2 = (4*(h**2))/float(8*m*(a**2)); #energy in J\n",
+ "dE = (3*(h**2))/float(8*m*(a**2)); #energy diefference in J \n",
+ "x = dE/float(1.6*10**-19); #energy diefference in eV\n",
+ "\n",
+ "#result\n",
+ "print'energy diefference=%3.2e'%x,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.11,Page No:5.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 114,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fermi energy=3.16 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N =6.02*10**23; #avagadro number in atoms /mole\n",
+ "h = 6.63*10**-34; #planck's constant in joule-s\n",
+ "m = 9.11*10**-31; #mass in kg\n",
+ "M = 23; #atomic weight in grams /mole\n",
+ "p = 0.971; #density in gram/cm**3\n",
+ "\n",
+ "\n",
+ "#formula \n",
+ "#x=N/V=(N*p)/M\n",
+ "#calculation\n",
+ "x = (N*p)/float(M);\n",
+ "x1 = x*10**6;\n",
+ "eF = (((h**2)/float(2*m)))*(((3*x1)/(8*math.pi))**(2/float(3))); #Fermi energy\n",
+ "eF1 = (eF)/float(1.6*10**-19);\n",
+ "\n",
+ "#result\n",
+ "print'fermi energy=%3.2f'%eF1,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.12,Page No:5.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 115,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fermi energy =3.16 eV\n",
+ "fermi velocity =1.05e+06 m/s\n",
+ "femi temperature =3.66e+04 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "x = 2.54*10**28; #number of electrons in per m**2\n",
+ "h = 6.63*10**-34; # planck's constant in joule-s\n",
+ "m = 9.11*10**-31; # mass in kg\n",
+ "p = 0.971; #density in grams/cm**3\n",
+ "k = 1.38*10**-23;\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "#x = (N*p)/float(M);\n",
+ "eF = (((h**2)/(2*m)))*(((3*x)/float(8*math.pi))**(2/float(3))); \n",
+ "eF1 = (eF)/float(1.6*10**-19); #Fermi energy in eV\n",
+ "vF = math.sqrt((2*eF)/float(m)); #fermi velocity in m/s\n",
+ "TF = eF/float(k); #fermi temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'fermi energy =%3.2f'%eF1,'eV';\n",
+ "print'fermi velocity =%3.2e'%vF,'m/s';\n",
+ "print'femi temperature =%3.2e'%TF,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.13,Page No:5.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 116,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fermi energy = 11 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "M = 65.4; #atomic weight\n",
+ "p = 7.13; #density in g/cm**3\n",
+ "h = 6.62*10**-34; # planck's constant in joules-s\n",
+ "m = 7.7*10**-31; # mass\n",
+ "v = 6.02*10**23; #avagadros number in atoms/gram-atom\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "#x =N/V\n",
+ "V = M/float(p); #volume of one atom in cm**3\n",
+ "n = v/float(V); # number of Zn atoms in volume v\n",
+ "x = 2*n*(10**6); #number of free electrons in unit volume iper m**2\n",
+ "eF = ((h**2)/float(2*m))*(((3*x)/float(8*math.pi))**(2/float(3))); # fermi energy in J\n",
+ "eF1 = eF/float(1.6*(10**-19));\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'fermi energy =%3.2d'%eF1,'eV';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.14,Page No:5.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 117,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of electrons per unit volume =4e+28 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "eF = 4.27; #fermi energy in eV\n",
+ "m = 9.11*10**-31; # mass of electron in kg\n",
+ "h = 6.63*10**-34; # planck's constant J.s\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#x= N/V\n",
+ "#calculation\n",
+ "eF1 = eF*1.6*10**-19; #fermi energy in eV \n",
+ "x = (((2*m*eF1)/float(h**2))**(3/float(2)))*((8*math.pi)/float(3)); #number of electrons per unit volume\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'number of electrons per unit volume =%4.00e'%x,'m**-3';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 5.15,Page No:5.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 118,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electron density for a metal =1.47e+28 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "eF1 = 4.70; # fermi energy in eV\n",
+ "eF2 = 2.20; #fermi energy in eV\n",
+ "x1 = 4.6*10**28; # electron density of lithium per m**3\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#N/V = (((2*m*eF1)/(h**2))**(3/2))*((8*math.pi)/3);\n",
+ "#N/V = k*(eF**3/2)\n",
+ "#N/V = x\n",
+ "#calculation\n",
+ "x2 = x1*((eF2/float(eF1))**(3/float(2))); #electron density for metal in per m**3\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'electron density for a metal =%4.2e'%x2,'m**-3';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 5.16,Page No:5.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 119,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average energy =3.24 eV\n",
+ "temperature =2.50e+04 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "eF = 5.4; #fermi energy in eV\n",
+ "k = 1.38*10**-23; # k in joule/K\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "e0 = (3*eF)/float(5); #average energy in eV\n",
+ "T = (e0*(1.6*10**-19)*2)/float(3*k); #temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'average energy =%3.2f'%e0,'eV';\n",
+ "print'temperature =%3.2e'%T,'K';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.17,Page No:5.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 120,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average energy =9.0 eV\n",
+ "speed =1.78e+06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "EF = 15; #fermi energy in eV\n",
+ "m = 9.1*10**-31; #mass of electron in kilogarams\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "E0 = (3*EF)/float(5); #average energy en eV\n",
+ "v = math.sqrt((2*E0*1.6*10**-19)/float(m)); #speed of electron in m/s\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'average energy =%3.1f'%E0,'eV';\n",
+ "print'speed =%3.2e'%v,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.18,Page No:5.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 121,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average energy =4.50 eV\n",
+ " speed =1.26e+06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "EF = 7.5; #fermi energy in eV\n",
+ "m = 9.1*10**-31; #mass of electron in kilograms\n",
+ "\n",
+ "#calculation\n",
+ "E0 = (3*EF)/float(5); #average energy en eV\n",
+ "v = math.sqrt((2*E0*1.6*10**-19)/float(m)); #speed in m\n",
+ "\n",
+ "#result\n",
+ "print'average energy =%3.2f'%E0,'eV';\n",
+ "print' speed =%3.2e'%v,'m/s';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.19,Page No:5.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 122,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy=3.12 eV\n",
+ " speed= =1.05e+06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "m = 9.1*10**-31; #mass of electron in kg\n",
+ "h = 6.62*10**-34; #planck's constant in (m**2)*kg/s\n",
+ "#formula\n",
+ "#x=N/V\n",
+ "x = 2.5*10**28;\n",
+ "\n",
+ "#calculation\n",
+ "EF = ((h**2)/float(8*(math.pi**2)*m))*((3*(math.pi**2)*x)**(2/float(3))); #fermi energy in J\n",
+ "EF1 = EF/float(1.6*10**-19); #fermi energy in eV\n",
+ "vF = (h/float(2*m*math.pi))*((3*(math.pi**2)*x)**(1/float(3))); #fermi velocity in m/s\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'energy=%3.2f'%EF1,'eV';\n",
+ "print' speed= =%3.2e'%vF,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.20,Page No:5.29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 123,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "efficiency =99.998163 %\n",
+ "voltage drop =1.8 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Ps = 10**7; #power in W\n",
+ "V = 33*10**3; #power transmitted in W\n",
+ "R = 2; #resistance in ohm\n",
+ " \n",
+ "#calculation\n",
+ "I = Ps/float(V); #current in A\n",
+ "Pd = (I**2*R)/float(1000); #power lost in feeder in kW \n",
+ "n = ((Ps-Pd)/float(Ps))*100; #efficiency in %\n",
+ "v = I*R; #voltage drop in V\n",
+ "Vd = (v/float(V))*100; #percentage voltage drop\n",
+ " \n",
+ "#result\n",
+ "print'efficiency =%0f '%n,'%';\n",
+ "print'voltage drop =%3.1f'%Vd,'%';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.21,Page No:5.36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 124,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "aCu,Fe = -13.8 uV/°C\n",
+ " bCu,Fe = 0.042 uV/(°C)**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a1 = 2.76; #a1 in uv/°C\n",
+ "a2 = 16.6; #a2 in uv/°C\n",
+ "b1 = 0.012; #b1 in uv/°C\n",
+ "b2 = -0.03; #b2 in uv/°C\n",
+ "\n",
+ "#calculation\n",
+ "#aFe,Pb =a1 \n",
+ "#aCu,Pb = a2\n",
+ "#bCu,Fe = b1\n",
+ "#bFe,Pb = b2\n",
+ "\n",
+ "#calculation\n",
+ "a3 = a1-a2; #a3 in uv/°C\n",
+ "b3 = b1-b2; #b3 in uv/(°C)**2\n",
+ "\n",
+ "#result\n",
+ "print'aCu,Fe = %3.1f'%a3,'uV/°C';\n",
+ "print' bCu,Fe = %3.3f'%b3,'uV/(°C)**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.23,Page No:5.37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 125,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "neutral temperature =225 °C\n",
+ "temperature of inversin = 450 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 15; #a in uv/°C\n",
+ "b = -1/float(30); #b in uv/°C\n",
+ "\n",
+ "#E = at+bt^2\n",
+ "#dE/dT =a+2*b*t\n",
+ "#t=tn\n",
+ "#dE/dT =0\n",
+ "#calculation\n",
+ "tn = -(a/float(2*(b))) #neutral temperature in °C\n",
+ "#t1+t2 = 2*t2;\n",
+ "t2 = 2*tn #inversion temperature in °C\n",
+ " \n",
+ "#result\n",
+ "print'neutral temperature =%3.2d '%tn,'°C';\n",
+ "print'temperature of inversin = %3.2d '%t2,'°C';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.24,Page No:5.37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 126,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity of alloy =4.4533 uΩ-cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p2 = 2.75; #resistivity of alloy 1 percent of Ni in uΩ-cm\n",
+ "p1 = 1.42; #resistivity of pure copper in uΩ-cm\n",
+ "p3 = 1.98; #resistivity of alloy 3 percent of silver in uΩ-cm\n",
+ " \n",
+ "#p(Ni+Cu) =p1\n",
+ "#pCu =p2\n",
+ "#p(Cu+silver)=p3\n",
+ "#calculation\n",
+ "pNi = p2-p1;\n",
+ "p4 = (p3-p1)/float(3);\n",
+ "palloy = p1+(2*pNi)+(2*p4); #resistivity of alloy 2 percent of silver and 2 percent of nickel in uΩ-cm\n",
+ " \n",
+ "#result\n",
+ "print'resistivity of alloy =%3.4f'%palloy,'uΩ-cm';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.25,Page No:5.41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 127,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =4.174 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "M1 = 202; #mass number\n",
+ "M2 = 200; # mass number\n",
+ "Tc1 = 4.153; # temperature in K\n",
+ "alpha = 0.5;\n",
+ " \n",
+ "\n",
+ "#formula\n",
+ "#m**alpha*(Tc)= conatant\n",
+ "#calculation\n",
+ "Tc2 = ((M1**alpha)*Tc1)/float(M2**alpha); #transition temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.3f'%Tc2,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.26,Page No:5.41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 128,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical temperature =1.92 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaraion\n",
+ "Tc1 = 2.1; #temperature in K\n",
+ "M1 = 26.91; #mass number \n",
+ "M2 = 32.13; #mass number \n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#Tc*(M1**2) = constant\n",
+ "#calculation\n",
+ "Tc2 = (Tc1*(M1**(1/float(2))))/float(M2**(1/float(2))); #critical temperature in K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical temperature =%3.2f'%Tc2,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.27,Page No:5.42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 129,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =14.67 K\n",
+ "critical field =1.70e+06 A/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc1 = 1.41*10**5; #critical fields in amp/m\n",
+ "Hc2 = 4.205*10**5; # critical fields in amp/m\n",
+ "T1 = 14.1; #temperature in K\n",
+ "T2 = 12.9; # temperature in K\n",
+ "T3 = 4.2; #temperature in K\n",
+ " \n",
+ "\n",
+ "#formula\n",
+ "#Hcn =Hc*((1-((T/Tc)**4)))\n",
+ "#calculation\n",
+ "Tc =(((((Hc2*(T1**2))-(Hc1*(T2**2)))/float(Hc2-Hc1)))**(1/float(2))); #temperature in K\n",
+ "Hc0 = Hc1/float(1-((T1/float(Tc))**2)); #critical field in A/m\n",
+ "Hc2 = Hc0*(1-(T3/float(Tc))**2); #critical field in A/m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.2f'%Tc,'K';\n",
+ "print'critical field =%3.2e'%Hc2,'A/m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.28,Page No:5.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 130,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical field =4.8751e+05 A/m\n",
+ " Note: calculation mistake in texttbook in calculating Hc\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc0 = 700000; #critical field at 0 K\n",
+ "T = 4; #temperature in K\n",
+ "Tc = 7.26; #temperature in K\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "Hc = Hc0*(1-(T/float(Tc))**2); #critical field n A/m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical field =%3.4e'%Hc,'A/m';\n",
+ "print' Note: calculation mistake in texttbook in calculating Hc';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.29,Page No:5.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 131,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical current =153.15 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc0 = 8*10**4; #critical field \n",
+ "T = 4.5; #temperature in K\n",
+ "Tc = 7.2; #temperature in K\n",
+ "D = 1*10**-3; #diameter in m\n",
+ "\n",
+ " \n",
+ "#calculation\n",
+ "Hc = Hc0*(1-(T/float(Tc))**2);\n",
+ "r = D/float(2); #radius in m\n",
+ "Ic = 2*math.pi*r*Hc; #critical current in A\n",
+ "\n",
+ "#result\n",
+ "print'critical current =%3.2f'%Ic,'A';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.30,Page No:5.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 132,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical field =0.0217 tesla\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc0 = 0.0306; #critical field at 0 K\n",
+ "T = 2; #temperature in K\n",
+ "Tc = 3.7; #temperature in K\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "Hc = Hc0*(1-(T/float(Tc))**2); #critical field in tesla\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical field =%3.4f'%Hc,'tesla';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.31,Page No:5.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 133,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =16.00 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "HcT = 1.5*10**5; # critical field for niobium at 0 K\n",
+ "Hc0 = 2*10**5; # critical field for nobium at 0 K\n",
+ "T = 8; # temperature in K\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "Tc = T/((1-(HcT/float(Hc0)))**0.5); #transition temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.2f'%Tc,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.32,Page No:5.45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 134,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =14.47 K\n",
+ " critical field =2.50 T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc1 = 0.176; #critical fields\n",
+ "Hc2 = 0.528; #critical fields\n",
+ "T1 = 14; #temperature in K\n",
+ "T2 = 13; #temperature in K\n",
+ "T3 = 4.2; #temperature in K\n",
+ "\n",
+ "#formula\n",
+ "#Hcn =Hc*((1-((T/Tc)**4)))\n",
+ "#calculation\n",
+ "Tc =(((((Hc2*(T1**2))-(Hc1*(T2**2)))/float(Hc2-Hc1)))**(1/float(2))); #transition temperature in K\n",
+ "Hc0 = Hc1/(1-((T1/float(Tc))**2)); #critical field in T\n",
+ "Hc2 = Hc0*(1-((T3/float(Tc))**2)); #critical field in T\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.2f '%Tc,'K';\n",
+ "print' critical field =%3.2f '%Hc2,'T';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.33,Page No:5.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 135,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical current =99.274328 A\n",
+ "Note: calculation mistake in textbook in calculation of I\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc = 7900; #magnetic field in A/m\n",
+ "r = 2.0*10**-3; #radius of super condutor in m\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "I = 2*math.pi*r*Hc; #critical current in A\n",
+ " \n",
+ "#result\n",
+ "print'critical current =%4f'%I,'A';\n",
+ "print'Note: calculation mistake in textbook in calculation of I';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.34,Page No:5.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 136,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current =137 Amp\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 10**-3; #diameter in m\n",
+ "Bc = 0.0548; # Bc in T\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7; #permiability m**2\n",
+ "r = d/float(2); #radius in m\n",
+ "Ic = (2*math.pi*r*Bc)/float(u0); #current in Amp\n",
+ "\n",
+ "#result\n",
+ "print'current =%3.2d '%Ic,'Amp';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.35,Page No:5.52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 137,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "penetration depth=11.33 nm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "D =8.5*10**3; #density in kg/m**3\n",
+ "W =93; #atomic weight \n",
+ "m =9.1*10**-31; #mass of electron in kilograms\n",
+ "e =2*1.6*10**-19; #charge of electron in coulombs\n",
+ "N =6.023*10**26; #avagadro number in (lb-mol)−1\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "u0 =4*math.pi*10**-7;\n",
+ "ns =(D*N)/float(W); #in per m**3\n",
+ "lamdaL =(m/float(u0*ns*e**2))**(1/float(2)); #London's penetration depth in nm\n",
+ "\n",
+ "#result\n",
+ "print'penetration depth=%3.2f'%(lamdaL*10**9),'nm';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.36,Page No:5.52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 138,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "penetration depth=467.9 Å\n",
+ " Note: calculation mistake in textbook in calculating lamdaT\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Tc =7.2; #temperature in K\n",
+ "lamda =380; #penetration depth in Å\n",
+ "T =5.5; #temperature in K\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "lamdaT=lamda*((1-((T/float(Tc))**4))**(-1/float(2))); #penetration depth in Å\n",
+ " \n",
+ "#result\n",
+ "print'penetration depth=%3.1f'%lamdaT,'Å';\n",
+ "print' Note: calculation mistake in textbook in calculating lamdaT';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.37,Page No:5.53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 139,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical temperature =8.48 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "lamda1 = 16; #penetration depth in nm\n",
+ "lamda2 = 96; #penetration depth in nm\n",
+ "T1 = 2.18; #temperature in K\n",
+ "T2 = 8.1; # temperature in K\n",
+ "\n",
+ "#formula\n",
+ "#lamdaT =lamda0*((1-((T/Tc)**4))**(-1/4))\n",
+ "#calculation\n",
+ "Tc = ((((lamda2*(T2**4))-(lamda1*(T1**4)))/float(lamda2-lamda1))**(1/float(4))); #critical temperature in K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical temperature =%3.2f '%Tc,'K';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.38,Page No:5.55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 140,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength=0.41 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Eg =30.5*1.6*10**-23; #energy gap in eV\n",
+ "h =6.6*10**-34; #planck's constant in (m**2)*kg/s\n",
+ "c =3.0*10**8; #velocity of light in m\n",
+ " \n",
+ "\n",
+ "#formula\n",
+ "#Eg=h*v\n",
+ "#calculation\n",
+ "v = Eg/float(h); #velocity in m\n",
+ "lamda = c/float(v); #wavelength in m\n",
+ "\n",
+ "#result\n",
+ "print'wavelength=%2.2f'%(lamda*10**3),'mm';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 5.39,Page No:5.55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 141,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "region of electromagnetic spectrum=1.14e-03 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "k =1.38*10**-23;\n",
+ "Tc =4.2; #tempetrature in K\n",
+ "h =6.6*10**-34; #planck's constant in (m**2)*kg/s\n",
+ "c =3*10**8; # velocity of light in m\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "Eg = (3*k*Tc); #energy gap in eV\n",
+ "lamda = h*c/float(Eg); #wavelngth in m\n",
+ "\n",
+ "#result\n",
+ "print'region of electromagnetic spectrum=%3.2e'%lamda,'m';"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5_1.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5_1.ipynb
new file mode 100644
index 00000000..4625b5fe
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5_1.ipynb
@@ -0,0 +1,1615 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5:Conductivity of Metals and Superconductivity"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1,Page No:5.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=1.17e-07 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 2*10**-3; #diameter in m \n",
+ "I = 5*10**-3; #current in A\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs \n",
+ "a = 3.61*10**-10; #side of cube in m\n",
+ "N = 4; #number of atoms in per unit cell\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#J=n*v*e\n",
+ "\n",
+ "#calculation\n",
+ "r = d/float(2); #radius in m\n",
+ "n = N/float(a**3); #number of atoms per unit volume in atoms/m**3\n",
+ "A = math.pi*(r**2); #area in m**2\n",
+ "J = I/float(A); #current density in Amp/m**2\n",
+ "v = J/float(n*e); #average drift velocity in m/s\n",
+ "\n",
+ "#result\n",
+ "print'velocity=%3.2e'%v,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2,Page No:5.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=1.06e-03 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "I = 6; #current in A\n",
+ "d = 1*10**-3; #diameter in m\n",
+ "n = 4.5*10**28; #electrons available in electron/m**3\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "r = d/float(2); #radius in m\n",
+ "A = math.pi*(r**2); #area in m**2\n",
+ "J = I/float(A); #current density in A/m**3\n",
+ "vd = J/float(n*e); #density in m/s\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'velocity=%3.2e'%vd,'m/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3,Page No:5.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=4.80e-06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "V = 63.5; #atomic weight in kg\n",
+ "d = 8.92*10**3; #density of copper in kg/m**3\n",
+ "r = 0.7*10**-3; #radius in m\n",
+ "I = 10; #current in A\n",
+ "e = 1.6*10**-19; #charge of electronin coulomb\n",
+ "h = 6.02*10**28; #planck's constant in (m**2)*kg/s\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "A = math.pi*(r**2); # area in m**2\n",
+ "N = h*d;\n",
+ "n = N/float(V);\n",
+ "J = I/float(A); #current density in m/s\n",
+ "vd = J/float(n*e); #drift velocity in m/s\n",
+ "\n",
+ "#result\n",
+ "print'velocity=%2.2e'%vd,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4,Page No:5.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "restivity=1.82e-08 ohm m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R = 0.182; #resistance in ohm\n",
+ "l = 1; #length in m\n",
+ "A = 0.1*10**-6; #area in m**2\n",
+ "\n",
+ "#formula \n",
+ "#R=(p*l)/A\n",
+ "\n",
+ "#calculation\n",
+ "p = (R*A)/float(l); #resistivity in ohm m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'restivity=%3.2e'%p,'ohm m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5,Page No:5.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=0.7 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n = 5.8*10**28; #number of silver electrons in electrond/m**3\n",
+ "p = 1.45*10**-8; #resistivity in ohm m\n",
+ "E = 10**2; #electric field in V/m\n",
+ "e = 1.6*10**-19; \n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#sigma = n*e*u \n",
+ "#sigma=p\n",
+ "#calculation\n",
+ "u = 1/float(n*e*p);\n",
+ "vd = u*E; #drift velocity in m/s\n",
+ "\n",
+ "#result\n",
+ "print'velocity=%3.1f'%vd,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6,Page No:5.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "density=7.25e-03 m**2.V**-1.s**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "W = 107.9; #atomic weight in amu(atomic mass unit)\n",
+ "p = 10.5*10**3; #density in kg/m**3\n",
+ "sigma =6.8*10**7; #conductivity in ohm**-1.m**-1\n",
+ "e =1.6*10**-19; #charge of electron in coulombs\n",
+ "N = 6.02*10**26; #avagadro number in mol**-1\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "n = (N*p)/float(W); #number of atoms per unit volume \n",
+ "u = sigma/float(n*e); #density of electron in m**2.V**-1.s**-1\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'density=%3.2e'%u,'m**2.V**-1.s**-1';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 5.7,Page No:5.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "time=2.51e-14 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "#for common metal copper\n",
+ "n = 8.5*10**28; #number of atoms in m**-3\n",
+ "sigma = 6*10**7; #sigma in ohm**-1 m**-1\n",
+ "m = 9.1*10**-31; #mass of electron in kilogram\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "\n",
+ "#calculation\n",
+ "t = (m*sigma)/float(n*(e**2)); #relaxation time in s\n",
+ "\n",
+ "#result\n",
+ "print'time=%3.2e'%t,'s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.9,Page No:5.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "thermal conductivity=1.6731 W/m-K\n",
+ " Note: calculation mistake in textbook in calculating K as T value is taken 325 instead of 3.25\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "t = 3.0*10**-14; #time in s\n",
+ "n = 2.5*10**22; #in electrons per m**3\n",
+ "m = 9.1*10**-31; #mass of electron in kilograms\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "T = 3.25; #temperature in K\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#K/(sigma*T)=2.44*10**-8 from wiedemann Franz law\n",
+ "#calculation\n",
+ "sigma = (n*(e**2)*t)/float(m*10**-6); #conductivity in m**3\n",
+ "K = (2.44*10**-8)*sigma*T; #thermalconductivity in W/m-K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'thermal conductivity=%3.4f '%K,'W/m-K';\n",
+ "print' Note: calculation mistake in textbook in calculating K as T value is taken 325 instead of 3.25';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.10,Page No:5.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy diefference=1.13e+02 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 10**-10; #one dimension in m\n",
+ "m = 9.1*10**-31; #mass of kg\n",
+ "h = 6.62*10**-34; #planck's constant in joule-s\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#En = ((n**2)*(h**2))/float(8*m*(a**2))\n",
+ "#calculation\n",
+ "E1 = (h**2)/float(8*m*(a**2)); #energy in J\n",
+ "E2 = (4*(h**2))/float(8*m*(a**2)); #energy in J\n",
+ "dE = (3*(h**2))/float(8*m*(a**2)); #energy diefference in J \n",
+ "x = dE/float(1.6*10**-19); #energy diefference in eV\n",
+ "\n",
+ "#result\n",
+ "print'energy diefference=%3.2e'%x,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.11,Page No:5.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fermi energy=3.16 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N =6.02*10**23; #avagadro number in atoms /mole\n",
+ "h = 6.63*10**-34; #planck's constant in joule-s\n",
+ "m = 9.11*10**-31; #mass in kg\n",
+ "M = 23; #atomic weight in grams /mole\n",
+ "p = 0.971; #density in gram/cm**3\n",
+ "\n",
+ "\n",
+ "#formula \n",
+ "#x=N/V=(N*p)/M\n",
+ "#calculation\n",
+ "x = (N*p)/float(M);\n",
+ "x1 = x*10**6;\n",
+ "eF = (((h**2)/float(2*m)))*(((3*x1)/(8*math.pi))**(2/float(3))); #Fermi energy\n",
+ "eF1 = (eF)/float(1.6*10**-19);\n",
+ "\n",
+ "#result\n",
+ "print'fermi energy=%3.2f'%eF1,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.12,Page No:5.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fermi energy =3.16 eV\n",
+ "fermi velocity =1.05e+06 m/s\n",
+ "femi temperature =3.66e+04 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "x = 2.54*10**28; #number of electrons in per m**2\n",
+ "h = 6.63*10**-34; # planck's constant in joule-s\n",
+ "m = 9.11*10**-31; # mass in kg\n",
+ "p = 0.971; #density in grams/cm**3\n",
+ "k = 1.38*10**-23;\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "#x = (N*p)/float(M);\n",
+ "eF = (((h**2)/(2*m)))*(((3*x)/float(8*math.pi))**(2/float(3))); \n",
+ "eF1 = (eF)/float(1.6*10**-19); #Fermi energy in eV\n",
+ "vF = math.sqrt((2*eF)/float(m)); #fermi velocity in m/s\n",
+ "TF = eF/float(k); #fermi temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'fermi energy =%3.2f'%eF1,'eV';\n",
+ "print'fermi velocity =%3.2e'%vF,'m/s';\n",
+ "print'femi temperature =%3.2e'%TF,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13,Page No:5.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fermi energy = 11 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "M = 65.4; #atomic weight\n",
+ "p = 7.13; #density in g/cm**3\n",
+ "h = 6.62*10**-34; # planck's constant in joules-s\n",
+ "m = 7.7*10**-31; # mass\n",
+ "v = 6.02*10**23; #avagadros number in atoms/gram-atom\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "#x =N/V\n",
+ "V = M/float(p); #volume of one atom in cm**3\n",
+ "n = v/float(V); # number of Zn atoms in volume v\n",
+ "x = 2*n*(10**6); #number of free electrons in unit volume iper m**2\n",
+ "eF = ((h**2)/float(2*m))*(((3*x)/float(8*math.pi))**(2/float(3))); # fermi energy in J\n",
+ "eF1 = eF/float(1.6*(10**-19));\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'fermi energy =%3.2d'%eF1,'eV';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.14,Page No:5.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of electrons per unit volume =4e+28 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "eF = 4.27; #fermi energy in eV\n",
+ "m = 9.11*10**-31; # mass of electron in kg\n",
+ "h = 6.63*10**-34; # planck's constant J.s\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#x= N/V\n",
+ "#calculation\n",
+ "eF1 = eF*1.6*10**-19; #fermi energy in eV \n",
+ "x = (((2*m*eF1)/float(h**2))**(3/float(2)))*((8*math.pi)/float(3)); #number of electrons per unit volume\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'number of electrons per unit volume =%4.00e'%x,'m**-3';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 5.15,Page No:5.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electron density for a metal =1.47e+28 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "eF1 = 4.70; # fermi energy in eV\n",
+ "eF2 = 2.20; #fermi energy in eV\n",
+ "x1 = 4.6*10**28; # electron density of lithium per m**3\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#N/V = (((2*m*eF1)/(h**2))**(3/2))*((8*math.pi)/3);\n",
+ "#N/V = k*(eF**3/2)\n",
+ "#N/V = x\n",
+ "#calculation\n",
+ "x2 = x1*((eF2/float(eF1))**(3/float(2))); #electron density for metal in per m**3\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'electron density for a metal =%4.2e'%x2,'m**-3';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 5.16,Page No:5.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average energy =3.24 eV\n",
+ "temperature =2.50e+04 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "eF = 5.4; #fermi energy in eV\n",
+ "k = 1.38*10**-23; # k in joule/K\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "e0 = (3*eF)/float(5); #average energy in eV\n",
+ "T = (e0*(1.6*10**-19)*2)/float(3*k); #temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'average energy =%3.2f'%e0,'eV';\n",
+ "print'temperature =%3.2e'%T,'K';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.17,Page No:5.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average energy =9.0 eV\n",
+ "speed =1.78e+06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "EF = 15; #fermi energy in eV\n",
+ "m = 9.1*10**-31; #mass of electron in kilogarams\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "E0 = (3*EF)/float(5); #average energy en eV\n",
+ "v = math.sqrt((2*E0*1.6*10**-19)/float(m)); #speed of electron in m/s\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'average energy =%3.1f'%E0,'eV';\n",
+ "print'speed =%3.2e'%v,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.18,Page No:5.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average energy =4.50 eV\n",
+ " speed =1.26e+06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "EF = 7.5; #fermi energy in eV\n",
+ "m = 9.1*10**-31; #mass of electron in kilograms\n",
+ "\n",
+ "#calculation\n",
+ "E0 = (3*EF)/float(5); #average energy en eV\n",
+ "v = math.sqrt((2*E0*1.6*10**-19)/float(m)); #speed in m\n",
+ "\n",
+ "#result\n",
+ "print'average energy =%3.2f'%E0,'eV';\n",
+ "print' speed =%3.2e'%v,'m/s';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.19,Page No:5.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy=3.12 eV\n",
+ " speed= =1.05e+06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "m = 9.1*10**-31; #mass of electron in kg\n",
+ "h = 6.62*10**-34; #planck's constant in (m**2)*kg/s\n",
+ "#formula\n",
+ "#x=N/V\n",
+ "x = 2.5*10**28;\n",
+ "\n",
+ "#calculation\n",
+ "EF = ((h**2)/float(8*(math.pi**2)*m))*((3*(math.pi**2)*x)**(2/float(3))); #fermi energy in J\n",
+ "EF1 = EF/float(1.6*10**-19); #fermi energy in eV\n",
+ "vF = (h/float(2*m*math.pi))*((3*(math.pi**2)*x)**(1/float(3))); #fermi velocity in m/s\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'energy=%3.2f'%EF1,'eV';\n",
+ "print' speed= =%3.2e'%vF,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.20,Page No:5.29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "efficiency =99.998163 %\n",
+ "voltage drop =1.8 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Ps = 10**7; #power in W\n",
+ "V = 33*10**3; #power transmitted in W\n",
+ "R = 2; #resistance in ohm\n",
+ " \n",
+ "#calculation\n",
+ "I = Ps/float(V); #current in A\n",
+ "Pd = (I**2*R)/float(1000); #power lost in feeder in kW \n",
+ "n = ((Ps-Pd)/float(Ps))*100; #efficiency in %\n",
+ "v = I*R; #voltage drop in V\n",
+ "Vd = (v/float(V))*100; #percentage voltage drop\n",
+ " \n",
+ "#result\n",
+ "print'efficiency =%0f '%n,'%';\n",
+ "print'voltage drop =%3.1f'%Vd,'%';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.21,Page No:5.36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "aCu,Fe = -13.8 uV/°C\n",
+ " bCu,Fe = 0.042 uV/(°C)**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a1 = 2.76; #a1 in uv/°C\n",
+ "a2 = 16.6; #a2 in uv/°C\n",
+ "b1 = 0.012; #b1 in uv/°C\n",
+ "b2 = -0.03; #b2 in uv/°C\n",
+ "\n",
+ "#calculation\n",
+ "#aFe,Pb =a1 \n",
+ "#aCu,Pb = a2\n",
+ "#bCu,Fe = b1\n",
+ "#bFe,Pb = b2\n",
+ "\n",
+ "#calculation\n",
+ "a3 = a1-a2; #a3 in uv/°C\n",
+ "b3 = b1-b2; #b3 in uv/(°C)**2\n",
+ "\n",
+ "#result\n",
+ "print'aCu,Fe = %3.1f'%a3,'uV/°C';\n",
+ "print' bCu,Fe = %3.3f'%b3,'uV/(°C)**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.23,Page No:5.37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "neutral temperature =225 °C\n",
+ "temperature of inversin = 450 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 15; #a in uv/°C\n",
+ "b = -1/float(30); #b in uv/°C\n",
+ "\n",
+ "#E = at+bt^2\n",
+ "#dE/dT =a+2*b*t\n",
+ "#t=tn\n",
+ "#dE/dT =0\n",
+ "#calculation\n",
+ "tn = -(a/float(2*(b))) #neutral temperature in °C\n",
+ "#t1+t2 = 2*t2;\n",
+ "t2 = 2*tn #inversion temperature in °C\n",
+ " \n",
+ "#result\n",
+ "print'neutral temperature =%3.2d '%tn,'°C';\n",
+ "print'temperature of inversin = %3.2d '%t2,'°C';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.24,Page No:5.37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity of alloy =4.4533 uΩ-cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p2 = 2.75; #resistivity of alloy 1 percent of Ni in uΩ-cm\n",
+ "p1 = 1.42; #resistivity of pure copper in uΩ-cm\n",
+ "p3 = 1.98; #resistivity of alloy 3 percent of silver in uΩ-cm\n",
+ " \n",
+ "#p(Ni+Cu) =p1\n",
+ "#pCu =p2\n",
+ "#p(Cu+silver)=p3\n",
+ "#calculation\n",
+ "pNi = p2-p1;\n",
+ "p4 = (p3-p1)/float(3);\n",
+ "palloy = p1+(2*pNi)+(2*p4); #resistivity of alloy 2 percent of silver and 2 percent of nickel in uΩ-cm\n",
+ " \n",
+ "#result\n",
+ "print'resistivity of alloy =%3.4f'%palloy,'uΩ-cm';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.25,Page No:5.41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =4.174 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "M1 = 202; #mass number\n",
+ "M2 = 200; # mass number\n",
+ "Tc1 = 4.153; # temperature in K\n",
+ "alpha = 0.5;\n",
+ " \n",
+ "\n",
+ "#formula\n",
+ "#m**alpha*(Tc)= conatant\n",
+ "#calculation\n",
+ "Tc2 = ((M1**alpha)*Tc1)/float(M2**alpha); #transition temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.3f'%Tc2,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.26,Page No:5.41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical temperature =1.92 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaraion\n",
+ "Tc1 = 2.1; #temperature in K\n",
+ "M1 = 26.91; #mass number \n",
+ "M2 = 32.13; #mass number \n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#Tc*(M1**2) = constant\n",
+ "#calculation\n",
+ "Tc2 = (Tc1*(M1**(1/float(2))))/float(M2**(1/float(2))); #critical temperature in K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical temperature =%3.2f'%Tc2,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.27,Page No:5.42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =14.67 K\n",
+ "critical field =1.70e+06 A/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc1 = 1.41*10**5; #critical fields in amp/m\n",
+ "Hc2 = 4.205*10**5; # critical fields in amp/m\n",
+ "T1 = 14.1; #temperature in K\n",
+ "T2 = 12.9; # temperature in K\n",
+ "T3 = 4.2; #temperature in K\n",
+ " \n",
+ "\n",
+ "#formula\n",
+ "#Hcn =Hc*((1-((T/Tc)**4)))\n",
+ "#calculation\n",
+ "Tc =(((((Hc2*(T1**2))-(Hc1*(T2**2)))/float(Hc2-Hc1)))**(1/float(2))); #temperature in K\n",
+ "Hc0 = Hc1/float(1-((T1/float(Tc))**2)); #critical field in A/m\n",
+ "Hc2 = Hc0*(1-(T3/float(Tc))**2); #critical field in A/m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.2f'%Tc,'K';\n",
+ "print'critical field =%3.2e'%Hc2,'A/m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.28,Page No:5.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical field =4.8751e+05 A/m\n",
+ " Note: calculation mistake in texttbook in calculating Hc\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc0 = 700000; #critical field at 0 K\n",
+ "T = 4; #temperature in K\n",
+ "Tc = 7.26; #temperature in K\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "Hc = Hc0*(1-(T/float(Tc))**2); #critical field n A/m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical field =%3.4e'%Hc,'A/m';\n",
+ "print' Note: calculation mistake in texttbook in calculating Hc';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.29,Page No:5.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical current =153.15 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc0 = 8*10**4; #critical field \n",
+ "T = 4.5; #temperature in K\n",
+ "Tc = 7.2; #temperature in K\n",
+ "D = 1*10**-3; #diameter in m\n",
+ "\n",
+ " \n",
+ "#calculation\n",
+ "Hc = Hc0*(1-(T/float(Tc))**2);\n",
+ "r = D/float(2); #radius in m\n",
+ "Ic = 2*math.pi*r*Hc; #critical current in A\n",
+ "\n",
+ "#result\n",
+ "print'critical current =%3.2f'%Ic,'A';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.30,Page No:5.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical field =0.0217 tesla\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc0 = 0.0306; #critical field at 0 K\n",
+ "T = 2; #temperature in K\n",
+ "Tc = 3.7; #temperature in K\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "Hc = Hc0*(1-(T/float(Tc))**2); #critical field in tesla\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical field =%3.4f'%Hc,'tesla';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.31,Page No:5.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =16.00 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "HcT = 1.5*10**5; # critical field for niobium at 0 K\n",
+ "Hc0 = 2*10**5; # critical field for nobium at 0 K\n",
+ "T = 8; # temperature in K\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "Tc = T/((1-(HcT/float(Hc0)))**0.5); #transition temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.2f'%Tc,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.32,Page No:5.45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =14.47 K\n",
+ " critical field =2.50 T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc1 = 0.176; #critical fields\n",
+ "Hc2 = 0.528; #critical fields\n",
+ "T1 = 14; #temperature in K\n",
+ "T2 = 13; #temperature in K\n",
+ "T3 = 4.2; #temperature in K\n",
+ "\n",
+ "#formula\n",
+ "#Hcn =Hc*((1-((T/Tc)**4)))\n",
+ "#calculation\n",
+ "Tc =(((((Hc2*(T1**2))-(Hc1*(T2**2)))/float(Hc2-Hc1)))**(1/float(2))); #transition temperature in K\n",
+ "Hc0 = Hc1/(1-((T1/float(Tc))**2)); #critical field in T\n",
+ "Hc2 = Hc0*(1-((T3/float(Tc))**2)); #critical field in T\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.2f '%Tc,'K';\n",
+ "print' critical field =%3.2f '%Hc2,'T';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.33,Page No:5.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical current =99.274328 A\n",
+ "Note: calculation mistake in textbook in calculation of I\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc = 7900; #magnetic field in A/m\n",
+ "r = 2.0*10**-3; #radius of super condutor in m\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "I = 2*math.pi*r*Hc; #critical current in A\n",
+ " \n",
+ "#result\n",
+ "print'critical current =%4f'%I,'A';\n",
+ "print'Note: calculation mistake in textbook in calculation of I';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.34,Page No:5.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current =137 Amp\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 10**-3; #diameter in m\n",
+ "Bc = 0.0548; # Bc in T\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7; #permiability m**2\n",
+ "r = d/float(2); #radius in m\n",
+ "Ic = (2*math.pi*r*Bc)/float(u0); #current in Amp\n",
+ "\n",
+ "#result\n",
+ "print'current =%3.2d '%Ic,'Amp';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.35,Page No:5.52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "penetration depth=11.33 nm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "D =8.5*10**3; #density in kg/m**3\n",
+ "W =93; #atomic weight \n",
+ "m =9.1*10**-31; #mass of electron in kilograms\n",
+ "e =2*1.6*10**-19; #charge of electron in coulombs\n",
+ "N =6.023*10**26; #avagadro number in (lb-mol)−1\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "u0 =4*math.pi*10**-7;\n",
+ "ns =(D*N)/float(W); #in per m**3\n",
+ "lamdaL =(m/float(u0*ns*e**2))**(1/float(2)); #London's penetration depth in nm\n",
+ "\n",
+ "#result\n",
+ "print'penetration depth=%3.2f'%(lamdaL*10**9),'nm';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.36,Page No:5.52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "penetration depth=467.9 Å\n",
+ " Note: calculation mistake in textbook in calculating lamdaT\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Tc =7.2; #temperature in K\n",
+ "lamda =380; #penetration depth in Å\n",
+ "T =5.5; #temperature in K\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "lamdaT=lamda*((1-((T/float(Tc))**4))**(-1/float(2))); #penetration depth in Å\n",
+ " \n",
+ "#result\n",
+ "print'penetration depth=%3.1f'%lamdaT,'Å';\n",
+ "print' Note: calculation mistake in textbook in calculating lamdaT';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.37,Page No:5.53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical temperature =8.48 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "lamda1 = 16; #penetration depth in nm\n",
+ "lamda2 = 96; #penetration depth in nm\n",
+ "T1 = 2.18; #temperature in K\n",
+ "T2 = 8.1; # temperature in K\n",
+ "\n",
+ "#formula\n",
+ "#lamdaT =lamda0*((1-((T/Tc)**4))**(-1/4))\n",
+ "#calculation\n",
+ "Tc = ((((lamda2*(T2**4))-(lamda1*(T1**4)))/float(lamda2-lamda1))**(1/float(4))); #critical temperature in K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical temperature =%3.2f '%Tc,'K';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.38,Page No:5.55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength=0.41 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Eg =30.5*1.6*10**-23; #energy gap in eV\n",
+ "h =6.6*10**-34; #planck's constant in (m**2)*kg/s\n",
+ "c =3.0*10**8; #velocity of light in m\n",
+ " \n",
+ "\n",
+ "#formula\n",
+ "#Eg=h*v\n",
+ "#calculation\n",
+ "v = Eg/float(h); #velocity in m\n",
+ "lamda = c/float(v); #wavelength in m\n",
+ "\n",
+ "#result\n",
+ "print'wavelength=%2.2f'%(lamda*10**3),'mm';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.39,Page No:5.55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "region of electromagnetic spectrum=1.14e-03 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "k =1.38*10**-23;\n",
+ "Tc =4.2; #tempetrature in K\n",
+ "h =6.6*10**-34; #planck's constant in (m**2)*kg/s\n",
+ "c =3*10**8; # velocity of light in m\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "Eg = (3*k*Tc); #energy gap in eV\n",
+ "lamda = h*c/float(Eg); #wavelngth in m\n",
+ "\n",
+ "#result\n",
+ "print'region of electromagnetic spectrum=%3.2e'%lamda,'m';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5_2.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5_2.ipynb
new file mode 100644
index 00000000..4625b5fe
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5_2.ipynb
@@ -0,0 +1,1615 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5:Conductivity of Metals and Superconductivity"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1,Page No:5.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=1.17e-07 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 2*10**-3; #diameter in m \n",
+ "I = 5*10**-3; #current in A\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs \n",
+ "a = 3.61*10**-10; #side of cube in m\n",
+ "N = 4; #number of atoms in per unit cell\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#J=n*v*e\n",
+ "\n",
+ "#calculation\n",
+ "r = d/float(2); #radius in m\n",
+ "n = N/float(a**3); #number of atoms per unit volume in atoms/m**3\n",
+ "A = math.pi*(r**2); #area in m**2\n",
+ "J = I/float(A); #current density in Amp/m**2\n",
+ "v = J/float(n*e); #average drift velocity in m/s\n",
+ "\n",
+ "#result\n",
+ "print'velocity=%3.2e'%v,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2,Page No:5.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=1.06e-03 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "I = 6; #current in A\n",
+ "d = 1*10**-3; #diameter in m\n",
+ "n = 4.5*10**28; #electrons available in electron/m**3\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "r = d/float(2); #radius in m\n",
+ "A = math.pi*(r**2); #area in m**2\n",
+ "J = I/float(A); #current density in A/m**3\n",
+ "vd = J/float(n*e); #density in m/s\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'velocity=%3.2e'%vd,'m/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3,Page No:5.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=4.80e-06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "V = 63.5; #atomic weight in kg\n",
+ "d = 8.92*10**3; #density of copper in kg/m**3\n",
+ "r = 0.7*10**-3; #radius in m\n",
+ "I = 10; #current in A\n",
+ "e = 1.6*10**-19; #charge of electronin coulomb\n",
+ "h = 6.02*10**28; #planck's constant in (m**2)*kg/s\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "A = math.pi*(r**2); # area in m**2\n",
+ "N = h*d;\n",
+ "n = N/float(V);\n",
+ "J = I/float(A); #current density in m/s\n",
+ "vd = J/float(n*e); #drift velocity in m/s\n",
+ "\n",
+ "#result\n",
+ "print'velocity=%2.2e'%vd,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4,Page No:5.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "restivity=1.82e-08 ohm m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R = 0.182; #resistance in ohm\n",
+ "l = 1; #length in m\n",
+ "A = 0.1*10**-6; #area in m**2\n",
+ "\n",
+ "#formula \n",
+ "#R=(p*l)/A\n",
+ "\n",
+ "#calculation\n",
+ "p = (R*A)/float(l); #resistivity in ohm m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'restivity=%3.2e'%p,'ohm m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5,Page No:5.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=0.7 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n = 5.8*10**28; #number of silver electrons in electrond/m**3\n",
+ "p = 1.45*10**-8; #resistivity in ohm m\n",
+ "E = 10**2; #electric field in V/m\n",
+ "e = 1.6*10**-19; \n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#sigma = n*e*u \n",
+ "#sigma=p\n",
+ "#calculation\n",
+ "u = 1/float(n*e*p);\n",
+ "vd = u*E; #drift velocity in m/s\n",
+ "\n",
+ "#result\n",
+ "print'velocity=%3.1f'%vd,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6,Page No:5.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "density=7.25e-03 m**2.V**-1.s**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "W = 107.9; #atomic weight in amu(atomic mass unit)\n",
+ "p = 10.5*10**3; #density in kg/m**3\n",
+ "sigma =6.8*10**7; #conductivity in ohm**-1.m**-1\n",
+ "e =1.6*10**-19; #charge of electron in coulombs\n",
+ "N = 6.02*10**26; #avagadro number in mol**-1\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "n = (N*p)/float(W); #number of atoms per unit volume \n",
+ "u = sigma/float(n*e); #density of electron in m**2.V**-1.s**-1\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'density=%3.2e'%u,'m**2.V**-1.s**-1';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 5.7,Page No:5.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "time=2.51e-14 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "#for common metal copper\n",
+ "n = 8.5*10**28; #number of atoms in m**-3\n",
+ "sigma = 6*10**7; #sigma in ohm**-1 m**-1\n",
+ "m = 9.1*10**-31; #mass of electron in kilogram\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "\n",
+ "#calculation\n",
+ "t = (m*sigma)/float(n*(e**2)); #relaxation time in s\n",
+ "\n",
+ "#result\n",
+ "print'time=%3.2e'%t,'s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.9,Page No:5.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "thermal conductivity=1.6731 W/m-K\n",
+ " Note: calculation mistake in textbook in calculating K as T value is taken 325 instead of 3.25\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "t = 3.0*10**-14; #time in s\n",
+ "n = 2.5*10**22; #in electrons per m**3\n",
+ "m = 9.1*10**-31; #mass of electron in kilograms\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "T = 3.25; #temperature in K\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#K/(sigma*T)=2.44*10**-8 from wiedemann Franz law\n",
+ "#calculation\n",
+ "sigma = (n*(e**2)*t)/float(m*10**-6); #conductivity in m**3\n",
+ "K = (2.44*10**-8)*sigma*T; #thermalconductivity in W/m-K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'thermal conductivity=%3.4f '%K,'W/m-K';\n",
+ "print' Note: calculation mistake in textbook in calculating K as T value is taken 325 instead of 3.25';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.10,Page No:5.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy diefference=1.13e+02 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 10**-10; #one dimension in m\n",
+ "m = 9.1*10**-31; #mass of kg\n",
+ "h = 6.62*10**-34; #planck's constant in joule-s\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#En = ((n**2)*(h**2))/float(8*m*(a**2))\n",
+ "#calculation\n",
+ "E1 = (h**2)/float(8*m*(a**2)); #energy in J\n",
+ "E2 = (4*(h**2))/float(8*m*(a**2)); #energy in J\n",
+ "dE = (3*(h**2))/float(8*m*(a**2)); #energy diefference in J \n",
+ "x = dE/float(1.6*10**-19); #energy diefference in eV\n",
+ "\n",
+ "#result\n",
+ "print'energy diefference=%3.2e'%x,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.11,Page No:5.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fermi energy=3.16 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N =6.02*10**23; #avagadro number in atoms /mole\n",
+ "h = 6.63*10**-34; #planck's constant in joule-s\n",
+ "m = 9.11*10**-31; #mass in kg\n",
+ "M = 23; #atomic weight in grams /mole\n",
+ "p = 0.971; #density in gram/cm**3\n",
+ "\n",
+ "\n",
+ "#formula \n",
+ "#x=N/V=(N*p)/M\n",
+ "#calculation\n",
+ "x = (N*p)/float(M);\n",
+ "x1 = x*10**6;\n",
+ "eF = (((h**2)/float(2*m)))*(((3*x1)/(8*math.pi))**(2/float(3))); #Fermi energy\n",
+ "eF1 = (eF)/float(1.6*10**-19);\n",
+ "\n",
+ "#result\n",
+ "print'fermi energy=%3.2f'%eF1,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.12,Page No:5.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fermi energy =3.16 eV\n",
+ "fermi velocity =1.05e+06 m/s\n",
+ "femi temperature =3.66e+04 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "x = 2.54*10**28; #number of electrons in per m**2\n",
+ "h = 6.63*10**-34; # planck's constant in joule-s\n",
+ "m = 9.11*10**-31; # mass in kg\n",
+ "p = 0.971; #density in grams/cm**3\n",
+ "k = 1.38*10**-23;\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "#x = (N*p)/float(M);\n",
+ "eF = (((h**2)/(2*m)))*(((3*x)/float(8*math.pi))**(2/float(3))); \n",
+ "eF1 = (eF)/float(1.6*10**-19); #Fermi energy in eV\n",
+ "vF = math.sqrt((2*eF)/float(m)); #fermi velocity in m/s\n",
+ "TF = eF/float(k); #fermi temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'fermi energy =%3.2f'%eF1,'eV';\n",
+ "print'fermi velocity =%3.2e'%vF,'m/s';\n",
+ "print'femi temperature =%3.2e'%TF,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13,Page No:5.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fermi energy = 11 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "M = 65.4; #atomic weight\n",
+ "p = 7.13; #density in g/cm**3\n",
+ "h = 6.62*10**-34; # planck's constant in joules-s\n",
+ "m = 7.7*10**-31; # mass\n",
+ "v = 6.02*10**23; #avagadros number in atoms/gram-atom\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "#x =N/V\n",
+ "V = M/float(p); #volume of one atom in cm**3\n",
+ "n = v/float(V); # number of Zn atoms in volume v\n",
+ "x = 2*n*(10**6); #number of free electrons in unit volume iper m**2\n",
+ "eF = ((h**2)/float(2*m))*(((3*x)/float(8*math.pi))**(2/float(3))); # fermi energy in J\n",
+ "eF1 = eF/float(1.6*(10**-19));\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'fermi energy =%3.2d'%eF1,'eV';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.14,Page No:5.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of electrons per unit volume =4e+28 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "eF = 4.27; #fermi energy in eV\n",
+ "m = 9.11*10**-31; # mass of electron in kg\n",
+ "h = 6.63*10**-34; # planck's constant J.s\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#x= N/V\n",
+ "#calculation\n",
+ "eF1 = eF*1.6*10**-19; #fermi energy in eV \n",
+ "x = (((2*m*eF1)/float(h**2))**(3/float(2)))*((8*math.pi)/float(3)); #number of electrons per unit volume\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'number of electrons per unit volume =%4.00e'%x,'m**-3';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 5.15,Page No:5.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electron density for a metal =1.47e+28 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "eF1 = 4.70; # fermi energy in eV\n",
+ "eF2 = 2.20; #fermi energy in eV\n",
+ "x1 = 4.6*10**28; # electron density of lithium per m**3\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#N/V = (((2*m*eF1)/(h**2))**(3/2))*((8*math.pi)/3);\n",
+ "#N/V = k*(eF**3/2)\n",
+ "#N/V = x\n",
+ "#calculation\n",
+ "x2 = x1*((eF2/float(eF1))**(3/float(2))); #electron density for metal in per m**3\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'electron density for a metal =%4.2e'%x2,'m**-3';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 5.16,Page No:5.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average energy =3.24 eV\n",
+ "temperature =2.50e+04 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "eF = 5.4; #fermi energy in eV\n",
+ "k = 1.38*10**-23; # k in joule/K\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "e0 = (3*eF)/float(5); #average energy in eV\n",
+ "T = (e0*(1.6*10**-19)*2)/float(3*k); #temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'average energy =%3.2f'%e0,'eV';\n",
+ "print'temperature =%3.2e'%T,'K';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.17,Page No:5.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average energy =9.0 eV\n",
+ "speed =1.78e+06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "EF = 15; #fermi energy in eV\n",
+ "m = 9.1*10**-31; #mass of electron in kilogarams\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "E0 = (3*EF)/float(5); #average energy en eV\n",
+ "v = math.sqrt((2*E0*1.6*10**-19)/float(m)); #speed of electron in m/s\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'average energy =%3.1f'%E0,'eV';\n",
+ "print'speed =%3.2e'%v,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.18,Page No:5.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average energy =4.50 eV\n",
+ " speed =1.26e+06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "EF = 7.5; #fermi energy in eV\n",
+ "m = 9.1*10**-31; #mass of electron in kilograms\n",
+ "\n",
+ "#calculation\n",
+ "E0 = (3*EF)/float(5); #average energy en eV\n",
+ "v = math.sqrt((2*E0*1.6*10**-19)/float(m)); #speed in m\n",
+ "\n",
+ "#result\n",
+ "print'average energy =%3.2f'%E0,'eV';\n",
+ "print' speed =%3.2e'%v,'m/s';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.19,Page No:5.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy=3.12 eV\n",
+ " speed= =1.05e+06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "m = 9.1*10**-31; #mass of electron in kg\n",
+ "h = 6.62*10**-34; #planck's constant in (m**2)*kg/s\n",
+ "#formula\n",
+ "#x=N/V\n",
+ "x = 2.5*10**28;\n",
+ "\n",
+ "#calculation\n",
+ "EF = ((h**2)/float(8*(math.pi**2)*m))*((3*(math.pi**2)*x)**(2/float(3))); #fermi energy in J\n",
+ "EF1 = EF/float(1.6*10**-19); #fermi energy in eV\n",
+ "vF = (h/float(2*m*math.pi))*((3*(math.pi**2)*x)**(1/float(3))); #fermi velocity in m/s\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'energy=%3.2f'%EF1,'eV';\n",
+ "print' speed= =%3.2e'%vF,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.20,Page No:5.29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "efficiency =99.998163 %\n",
+ "voltage drop =1.8 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Ps = 10**7; #power in W\n",
+ "V = 33*10**3; #power transmitted in W\n",
+ "R = 2; #resistance in ohm\n",
+ " \n",
+ "#calculation\n",
+ "I = Ps/float(V); #current in A\n",
+ "Pd = (I**2*R)/float(1000); #power lost in feeder in kW \n",
+ "n = ((Ps-Pd)/float(Ps))*100; #efficiency in %\n",
+ "v = I*R; #voltage drop in V\n",
+ "Vd = (v/float(V))*100; #percentage voltage drop\n",
+ " \n",
+ "#result\n",
+ "print'efficiency =%0f '%n,'%';\n",
+ "print'voltage drop =%3.1f'%Vd,'%';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.21,Page No:5.36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "aCu,Fe = -13.8 uV/°C\n",
+ " bCu,Fe = 0.042 uV/(°C)**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a1 = 2.76; #a1 in uv/°C\n",
+ "a2 = 16.6; #a2 in uv/°C\n",
+ "b1 = 0.012; #b1 in uv/°C\n",
+ "b2 = -0.03; #b2 in uv/°C\n",
+ "\n",
+ "#calculation\n",
+ "#aFe,Pb =a1 \n",
+ "#aCu,Pb = a2\n",
+ "#bCu,Fe = b1\n",
+ "#bFe,Pb = b2\n",
+ "\n",
+ "#calculation\n",
+ "a3 = a1-a2; #a3 in uv/°C\n",
+ "b3 = b1-b2; #b3 in uv/(°C)**2\n",
+ "\n",
+ "#result\n",
+ "print'aCu,Fe = %3.1f'%a3,'uV/°C';\n",
+ "print' bCu,Fe = %3.3f'%b3,'uV/(°C)**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.23,Page No:5.37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "neutral temperature =225 °C\n",
+ "temperature of inversin = 450 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 15; #a in uv/°C\n",
+ "b = -1/float(30); #b in uv/°C\n",
+ "\n",
+ "#E = at+bt^2\n",
+ "#dE/dT =a+2*b*t\n",
+ "#t=tn\n",
+ "#dE/dT =0\n",
+ "#calculation\n",
+ "tn = -(a/float(2*(b))) #neutral temperature in °C\n",
+ "#t1+t2 = 2*t2;\n",
+ "t2 = 2*tn #inversion temperature in °C\n",
+ " \n",
+ "#result\n",
+ "print'neutral temperature =%3.2d '%tn,'°C';\n",
+ "print'temperature of inversin = %3.2d '%t2,'°C';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.24,Page No:5.37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity of alloy =4.4533 uΩ-cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p2 = 2.75; #resistivity of alloy 1 percent of Ni in uΩ-cm\n",
+ "p1 = 1.42; #resistivity of pure copper in uΩ-cm\n",
+ "p3 = 1.98; #resistivity of alloy 3 percent of silver in uΩ-cm\n",
+ " \n",
+ "#p(Ni+Cu) =p1\n",
+ "#pCu =p2\n",
+ "#p(Cu+silver)=p3\n",
+ "#calculation\n",
+ "pNi = p2-p1;\n",
+ "p4 = (p3-p1)/float(3);\n",
+ "palloy = p1+(2*pNi)+(2*p4); #resistivity of alloy 2 percent of silver and 2 percent of nickel in uΩ-cm\n",
+ " \n",
+ "#result\n",
+ "print'resistivity of alloy =%3.4f'%palloy,'uΩ-cm';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.25,Page No:5.41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =4.174 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "M1 = 202; #mass number\n",
+ "M2 = 200; # mass number\n",
+ "Tc1 = 4.153; # temperature in K\n",
+ "alpha = 0.5;\n",
+ " \n",
+ "\n",
+ "#formula\n",
+ "#m**alpha*(Tc)= conatant\n",
+ "#calculation\n",
+ "Tc2 = ((M1**alpha)*Tc1)/float(M2**alpha); #transition temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.3f'%Tc2,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.26,Page No:5.41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical temperature =1.92 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaraion\n",
+ "Tc1 = 2.1; #temperature in K\n",
+ "M1 = 26.91; #mass number \n",
+ "M2 = 32.13; #mass number \n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#Tc*(M1**2) = constant\n",
+ "#calculation\n",
+ "Tc2 = (Tc1*(M1**(1/float(2))))/float(M2**(1/float(2))); #critical temperature in K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical temperature =%3.2f'%Tc2,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.27,Page No:5.42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =14.67 K\n",
+ "critical field =1.70e+06 A/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc1 = 1.41*10**5; #critical fields in amp/m\n",
+ "Hc2 = 4.205*10**5; # critical fields in amp/m\n",
+ "T1 = 14.1; #temperature in K\n",
+ "T2 = 12.9; # temperature in K\n",
+ "T3 = 4.2; #temperature in K\n",
+ " \n",
+ "\n",
+ "#formula\n",
+ "#Hcn =Hc*((1-((T/Tc)**4)))\n",
+ "#calculation\n",
+ "Tc =(((((Hc2*(T1**2))-(Hc1*(T2**2)))/float(Hc2-Hc1)))**(1/float(2))); #temperature in K\n",
+ "Hc0 = Hc1/float(1-((T1/float(Tc))**2)); #critical field in A/m\n",
+ "Hc2 = Hc0*(1-(T3/float(Tc))**2); #critical field in A/m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.2f'%Tc,'K';\n",
+ "print'critical field =%3.2e'%Hc2,'A/m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.28,Page No:5.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical field =4.8751e+05 A/m\n",
+ " Note: calculation mistake in texttbook in calculating Hc\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc0 = 700000; #critical field at 0 K\n",
+ "T = 4; #temperature in K\n",
+ "Tc = 7.26; #temperature in K\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "Hc = Hc0*(1-(T/float(Tc))**2); #critical field n A/m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical field =%3.4e'%Hc,'A/m';\n",
+ "print' Note: calculation mistake in texttbook in calculating Hc';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.29,Page No:5.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical current =153.15 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc0 = 8*10**4; #critical field \n",
+ "T = 4.5; #temperature in K\n",
+ "Tc = 7.2; #temperature in K\n",
+ "D = 1*10**-3; #diameter in m\n",
+ "\n",
+ " \n",
+ "#calculation\n",
+ "Hc = Hc0*(1-(T/float(Tc))**2);\n",
+ "r = D/float(2); #radius in m\n",
+ "Ic = 2*math.pi*r*Hc; #critical current in A\n",
+ "\n",
+ "#result\n",
+ "print'critical current =%3.2f'%Ic,'A';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.30,Page No:5.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical field =0.0217 tesla\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc0 = 0.0306; #critical field at 0 K\n",
+ "T = 2; #temperature in K\n",
+ "Tc = 3.7; #temperature in K\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "Hc = Hc0*(1-(T/float(Tc))**2); #critical field in tesla\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical field =%3.4f'%Hc,'tesla';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.31,Page No:5.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =16.00 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "HcT = 1.5*10**5; # critical field for niobium at 0 K\n",
+ "Hc0 = 2*10**5; # critical field for nobium at 0 K\n",
+ "T = 8; # temperature in K\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "Tc = T/((1-(HcT/float(Hc0)))**0.5); #transition temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.2f'%Tc,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.32,Page No:5.45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =14.47 K\n",
+ " critical field =2.50 T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc1 = 0.176; #critical fields\n",
+ "Hc2 = 0.528; #critical fields\n",
+ "T1 = 14; #temperature in K\n",
+ "T2 = 13; #temperature in K\n",
+ "T3 = 4.2; #temperature in K\n",
+ "\n",
+ "#formula\n",
+ "#Hcn =Hc*((1-((T/Tc)**4)))\n",
+ "#calculation\n",
+ "Tc =(((((Hc2*(T1**2))-(Hc1*(T2**2)))/float(Hc2-Hc1)))**(1/float(2))); #transition temperature in K\n",
+ "Hc0 = Hc1/(1-((T1/float(Tc))**2)); #critical field in T\n",
+ "Hc2 = Hc0*(1-((T3/float(Tc))**2)); #critical field in T\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.2f '%Tc,'K';\n",
+ "print' critical field =%3.2f '%Hc2,'T';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.33,Page No:5.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical current =99.274328 A\n",
+ "Note: calculation mistake in textbook in calculation of I\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc = 7900; #magnetic field in A/m\n",
+ "r = 2.0*10**-3; #radius of super condutor in m\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "I = 2*math.pi*r*Hc; #critical current in A\n",
+ " \n",
+ "#result\n",
+ "print'critical current =%4f'%I,'A';\n",
+ "print'Note: calculation mistake in textbook in calculation of I';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.34,Page No:5.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current =137 Amp\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 10**-3; #diameter in m\n",
+ "Bc = 0.0548; # Bc in T\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7; #permiability m**2\n",
+ "r = d/float(2); #radius in m\n",
+ "Ic = (2*math.pi*r*Bc)/float(u0); #current in Amp\n",
+ "\n",
+ "#result\n",
+ "print'current =%3.2d '%Ic,'Amp';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.35,Page No:5.52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "penetration depth=11.33 nm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "D =8.5*10**3; #density in kg/m**3\n",
+ "W =93; #atomic weight \n",
+ "m =9.1*10**-31; #mass of electron in kilograms\n",
+ "e =2*1.6*10**-19; #charge of electron in coulombs\n",
+ "N =6.023*10**26; #avagadro number in (lb-mol)−1\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "u0 =4*math.pi*10**-7;\n",
+ "ns =(D*N)/float(W); #in per m**3\n",
+ "lamdaL =(m/float(u0*ns*e**2))**(1/float(2)); #London's penetration depth in nm\n",
+ "\n",
+ "#result\n",
+ "print'penetration depth=%3.2f'%(lamdaL*10**9),'nm';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.36,Page No:5.52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "penetration depth=467.9 Å\n",
+ " Note: calculation mistake in textbook in calculating lamdaT\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Tc =7.2; #temperature in K\n",
+ "lamda =380; #penetration depth in Å\n",
+ "T =5.5; #temperature in K\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "lamdaT=lamda*((1-((T/float(Tc))**4))**(-1/float(2))); #penetration depth in Å\n",
+ " \n",
+ "#result\n",
+ "print'penetration depth=%3.1f'%lamdaT,'Å';\n",
+ "print' Note: calculation mistake in textbook in calculating lamdaT';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.37,Page No:5.53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical temperature =8.48 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "lamda1 = 16; #penetration depth in nm\n",
+ "lamda2 = 96; #penetration depth in nm\n",
+ "T1 = 2.18; #temperature in K\n",
+ "T2 = 8.1; # temperature in K\n",
+ "\n",
+ "#formula\n",
+ "#lamdaT =lamda0*((1-((T/Tc)**4))**(-1/4))\n",
+ "#calculation\n",
+ "Tc = ((((lamda2*(T2**4))-(lamda1*(T1**4)))/float(lamda2-lamda1))**(1/float(4))); #critical temperature in K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical temperature =%3.2f '%Tc,'K';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.38,Page No:5.55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength=0.41 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Eg =30.5*1.6*10**-23; #energy gap in eV\n",
+ "h =6.6*10**-34; #planck's constant in (m**2)*kg/s\n",
+ "c =3.0*10**8; #velocity of light in m\n",
+ " \n",
+ "\n",
+ "#formula\n",
+ "#Eg=h*v\n",
+ "#calculation\n",
+ "v = Eg/float(h); #velocity in m\n",
+ "lamda = c/float(v); #wavelength in m\n",
+ "\n",
+ "#result\n",
+ "print'wavelength=%2.2f'%(lamda*10**3),'mm';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.39,Page No:5.55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "region of electromagnetic spectrum=1.14e-03 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "k =1.38*10**-23;\n",
+ "Tc =4.2; #tempetrature in K\n",
+ "h =6.6*10**-34; #planck's constant in (m**2)*kg/s\n",
+ "c =3*10**8; # velocity of light in m\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "Eg = (3*k*Tc); #energy gap in eV\n",
+ "lamda = h*c/float(Eg); #wavelngth in m\n",
+ "\n",
+ "#result\n",
+ "print'region of electromagnetic spectrum=%3.2e'%lamda,'m';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5_3.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5_3.ipynb
new file mode 100644
index 00000000..87d00465
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5_3.ipynb
@@ -0,0 +1,1615 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5:Conductivity of Metals and Superconductivity"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1,Page No:5.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=1.17e-07 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 2*10**-3; #diameter in m \n",
+ "I = 5*10**-3; #current in A\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs \n",
+ "a = 3.61*10**-10; #side of cube in m\n",
+ "N = 4; #number of atoms in per unit cell\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#J=n*v*e\n",
+ "\n",
+ "#calculation\n",
+ "r = d/float(2); #radius in m\n",
+ "n = N/float(a**3); #number of atoms per unit volume in atoms/m**3\n",
+ "A = math.pi*(r**2); #area in m**2\n",
+ "J = I/float(A); #current density in Amp/m**2\n",
+ "v = J/float(n*e); #average drift velocity in m/s\n",
+ "\n",
+ "#result\n",
+ "print'velocity=%3.2e'%v,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2,Page No:5.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=1.06e-03 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "I = 6; #current in A\n",
+ "d = 1*10**-3; #diameter in m\n",
+ "n = 4.5*10**28; #electrons available in electron/m**3\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "r = d/float(2); #radius in m\n",
+ "A = math.pi*(r**2); #area in m**2\n",
+ "J = I/float(A); #current density in A/m**3\n",
+ "vd = J/float(n*e); #density in m/s\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'velocity=%3.2e'%vd,'m/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3,Page No:5.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=4.80e-06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "V = 63.5; #atomic weight in kg\n",
+ "d = 8.92*10**3; #density of copper in kg/m**3\n",
+ "r = 0.7*10**-3; #radius in m\n",
+ "I = 10; #current in A\n",
+ "e = 1.6*10**-19; #charge of electronin coulomb\n",
+ "h = 6.02*10**28; #planck's constant in (m**2)*kg/s\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "A = math.pi*(r**2); # area in m**2\n",
+ "N = h*d;\n",
+ "n = N/float(V);\n",
+ "J = I/float(A); #current density in m/s\n",
+ "vd = J/float(n*e); #drift velocity in m/s\n",
+ "\n",
+ "#result\n",
+ "print'velocity=%2.2e'%vd,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4,Page No:5.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "restivity=1.82e-08 ohm m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R = 0.182; #resistance in ohm\n",
+ "l = 1; #length in m\n",
+ "A = 0.1*10**-6; #area in m**2\n",
+ "\n",
+ "#formula \n",
+ "#R=(p*l)/A\n",
+ "\n",
+ "#calculation\n",
+ "p = (R*A)/float(l); #resistivity in ohm m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'restivity=%3.2e'%p,'ohm m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5,Page No:5.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=0.7 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n = 5.8*10**28; #number of silver electrons in electrond/m**3\n",
+ "p = 1.45*10**-8; #resistivity in ohm m\n",
+ "E = 10**2; #electric field in V/m\n",
+ "e = 1.6*10**-19; \n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#sigma = n*e*u \n",
+ "#sigma=p\n",
+ "#calculation\n",
+ "u = 1/float(n*e*p);\n",
+ "vd = u*E; #drift velocity in m/s\n",
+ "\n",
+ "#result\n",
+ "print'velocity=%3.1f'%vd,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6,Page No:5.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "density=7.25e-03 m**2.V**-1.s**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "W = 107.9; #atomic weight in amu(atomic mass unit)\n",
+ "p = 10.5*10**3; #density in kg/m**3\n",
+ "sigma =6.8*10**7; #conductivity in ohm**-1.m**-1\n",
+ "e =1.6*10**-19; #charge of electron in coulombs\n",
+ "N = 6.02*10**26; #avagadro number in mol**-1\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "n = (N*p)/float(W); #number of atoms per unit volume \n",
+ "u = sigma/float(n*e); #density of electron in m**2.V**-1.s**-1\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'density=%3.2e'%u,'m**2.V**-1.s**-1';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 5.7,Page No:5.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "time=2.51e-14 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "#for common metal copper\n",
+ "n = 8.5*10**28; #number of atoms in m**-3\n",
+ "sigma = 6*10**7; #sigma in ohm**-1 m**-1\n",
+ "m = 9.1*10**-31; #mass of electron in kilogram\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "\n",
+ "#calculation\n",
+ "t = (m*sigma)/float(n*(e**2)); #relaxation time in s\n",
+ "\n",
+ "#result\n",
+ "print'time=%3.2e'%t,'s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.9,Page No:5.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "thermal conductivity=1.6731 W/m-K\n",
+ " Note: calculation mistake in textbook in calculating K as T value is taken 325 instead of 3.25\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "t = 3.0*10**-14; #time in s\n",
+ "n = 2.5*10**22; #in electrons per m**3\n",
+ "m = 9.1*10**-31; #mass of electron in kilograms\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "T = 3.25; #temperature in K\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#K/(sigma*T)=2.44*10**-8 from wiedemann Franz law\n",
+ "#calculation\n",
+ "sigma = (n*(e**2)*t)/float(m*10**-6); #conductivity in m**3\n",
+ "K = (2.44*10**-8)*sigma*T; #thermalconductivity in W/m-K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'thermal conductivity=%3.4f '%K,'W/m-K';\n",
+ "print' Note: calculation mistake in textbook in calculating K as T value is taken 325 instead of 3.25';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.10,Page No:5.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy diefference=1.13e+02 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 10**-10; #one dimension in m\n",
+ "m = 9.1*10**-31; #mass of kg\n",
+ "h = 6.62*10**-34; #planck's constant in joule-s\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#En = ((n**2)*(h**2))/float(8*m*(a**2))\n",
+ "#calculation\n",
+ "E1 = (h**2)/float(8*m*(a**2)); #energy in J\n",
+ "E2 = (4*(h**2))/float(8*m*(a**2)); #energy in J\n",
+ "dE = (3*(h**2))/float(8*m*(a**2)); #energy diefference in J \n",
+ "x = dE/float(1.6*10**-19); #energy diefference in eV\n",
+ "\n",
+ "#result\n",
+ "print'energy diefference=%3.2e'%x,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.11,Page No:5.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fermi energy=3.16 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N =6.02*10**23; #avagadro number in atoms /mole\n",
+ "h = 6.63*10**-34; #planck's constant in joule-s\n",
+ "m = 9.11*10**-31; #mass in kg\n",
+ "M = 23; #atomic weight in grams /mole\n",
+ "p = 0.971; #density in gram/cm**3\n",
+ "\n",
+ "\n",
+ "#formula \n",
+ "#x=N/V=(N*p)/M\n",
+ "#calculation\n",
+ "x = (N*p)/float(M);\n",
+ "x1 = x*10**6;\n",
+ "eF = (((h**2)/float(2*m)))*(((3*x1)/(8*math.pi))**(2/float(3))); #Fermi energy\n",
+ "eF1 = (eF)/float(1.6*10**-19);\n",
+ "\n",
+ "#result\n",
+ "print'fermi energy=%3.2f'%eF1,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.12,Page No:5.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fermi energy =3.16 eV\n",
+ "fermi velocity =1.05e+06 m/s\n",
+ "femi temperature =3.66e+04 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "x = 2.54*10**28; #number of electrons in per m**2\n",
+ "h = 6.63*10**-34; # planck's constant in joule-s\n",
+ "m = 9.11*10**-31; # mass in kg\n",
+ "p = 0.971; #density in grams/cm**3\n",
+ "k = 1.38*10**-23;\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "#x = (N*p)/float(M);\n",
+ "eF = (((h**2)/(2*m)))*(((3*x)/float(8*math.pi))**(2/float(3))); \n",
+ "eF1 = (eF)/float(1.6*10**-19); #Fermi energy in eV\n",
+ "vF = math.sqrt((2*eF)/float(m)); #fermi velocity in m/s\n",
+ "TF = eF/float(k); #fermi temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'fermi energy =%3.2f'%eF1,'eV';\n",
+ "print'fermi velocity =%3.2e'%vF,'m/s';\n",
+ "print'femi temperature =%3.2e'%TF,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13,Page No:5.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fermi energy = 11 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "M = 65.4; #atomic weight\n",
+ "p = 7.13; #density in g/cm**3\n",
+ "h = 6.62*10**-34; # planck's constant in joules-s\n",
+ "m = 7.7*10**-31; # mass\n",
+ "v = 6.02*10**23; #avagadros number in atoms/gram-atom\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "#x =N/V\n",
+ "V = M/float(p); #volume of one atom in cm**3\n",
+ "n = v/float(V); # number of Zn atoms in volume v\n",
+ "x = 2*n*(10**6); #number of free electrons in unit volume iper m**2\n",
+ "eF = ((h**2)/float(2*m))*(((3*x)/float(8*math.pi))**(2/float(3))); # fermi energy in J\n",
+ "eF1 = eF/float(1.6*(10**-19));\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'fermi energy =%3.2d'%eF1,'eV';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.14,Page No:5.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of electrons per unit volume =4e+28 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "eF = 4.27; #fermi energy in eV\n",
+ "m = 9.11*10**-31; # mass of electron in kg\n",
+ "h = 6.63*10**-34; # planck's constant J.s\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#x= N/V\n",
+ "#calculation\n",
+ "eF1 = eF*1.6*10**-19; #fermi energy in eV \n",
+ "x = (((2*m*eF1)/float(h**2))**(3/float(2)))*((8*math.pi)/float(3)); #number of electrons per unit volume\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'number of electrons per unit volume =%4.00e'%x,'m**-3';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 5.15,Page No:5.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electron density for a metal =1.47e+28 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "eF1 = 4.70; # fermi energy in eV\n",
+ "eF2 = 2.20; #fermi energy in eV\n",
+ "x1 = 4.6*10**28; # electron density of lithium per m**3\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#N/V = (((2*m*eF1)/(h**2))**(3/2))*((8*math.pi)/3);\n",
+ "#N/V = k*(eF**3/2)\n",
+ "#N/V = x\n",
+ "#calculation\n",
+ "x2 = x1*((eF2/float(eF1))**(3/float(2))); #electron density for metal in per m**3\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'electron density for a metal =%4.2e'%x2,'m**-3';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 5.16,Page No:5.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average energy =3.24 eV\n",
+ "temperature =2.50e+04 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "eF = 5.4; #fermi energy in eV\n",
+ "k = 1.38*10**-23; # k in joule/K\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "e0 = (3*eF)/float(5); #average energy in eV\n",
+ "T = (e0*(1.6*10**-19)*2)/float(3*k); #temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'average energy =%3.2f'%e0,'eV';\n",
+ "print'temperature =%3.2e'%T,'K';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.17,Page No:5.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average energy =9.0 eV\n",
+ "speed =1.78e+06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "EF = 15; #fermi energy in eV\n",
+ "m = 9.1*10**-31; #mass of electron in kilogarams\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "E0 = (3*EF)/float(5); #average energy en eV\n",
+ "v = math.sqrt((2*E0*1.6*10**-19)/float(m)); #speed of electron in m/s\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'average energy =%3.1f'%E0,'eV';\n",
+ "print'speed =%3.2e'%v,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.18,Page No:5.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average energy =4.50 eV\n",
+ " speed =1.26e+06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "EF = 7.5; #fermi energy in eV\n",
+ "m = 9.1*10**-31; #mass of electron in kilograms\n",
+ "\n",
+ "#calculation\n",
+ "E0 = (3*EF)/float(5); #average energy en eV\n",
+ "v = math.sqrt((2*E0*1.6*10**-19)/float(m)); #speed in m\n",
+ "\n",
+ "#result\n",
+ "print'average energy =%3.2f'%E0,'eV';\n",
+ "print' speed =%3.2e'%v,'m/s';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.19,Page No:5.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy=3.12 eV\n",
+ " speed= =1.05e+06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "m = 9.1*10**-31; #mass of electron in kg\n",
+ "h = 6.62*10**-34; #planck's constant in (m**2)*kg/s\n",
+ "#formula\n",
+ "#x=N/V\n",
+ "x = 2.5*10**28;\n",
+ "\n",
+ "#calculation\n",
+ "EF = ((h**2)/float(8*(math.pi**2)*m))*((3*(math.pi**2)*x)**(2/float(3))); #fermi energy in J\n",
+ "EF1 = EF/float(1.6*10**-19); #fermi energy in eV\n",
+ "vF = (h/float(2*m*math.pi))*((3*(math.pi**2)*x)**(1/float(3))); #fermi velocity in m/s\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'energy=%3.2f'%EF1,'eV';\n",
+ "print' speed= =%3.2e'%vF,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.20,Page No:5.29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "efficiency =99.998163 %\n",
+ "voltage drop =1.8 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Ps = 10**7; #power in W\n",
+ "V = 33*10**3; #power transmitted in W\n",
+ "R = 2; #resistance in ohm\n",
+ " \n",
+ "#calculation\n",
+ "I = Ps/float(V); #current in A\n",
+ "Pd = (I**2*R)/float(1000); #power lost in feeder in kW \n",
+ "n = ((Ps-Pd)/float(Ps))*100; #efficiency in %\n",
+ "v = I*R; #voltage drop in V\n",
+ "Vd = (v/float(V))*100; #percentage voltage drop\n",
+ " \n",
+ "#result\n",
+ "print'efficiency =%0f '%n,'%';\n",
+ "print'voltage drop =%3.1f'%Vd,'%';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.21,Page No:5.36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "aCu,Fe = -13.8 uV/°C\n",
+ " bCu,Fe = 0.042 uV/(°C)**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a1 = 2.76; #a1 in uv/°C\n",
+ "a2 = 16.6; #a2 in uv/°C\n",
+ "b1 = 0.012; #b1 in uv/°C\n",
+ "b2 = -0.03; #b2 in uv/°C\n",
+ "\n",
+ "#calculation\n",
+ "#aFe,Pb =a1 \n",
+ "#aCu,Pb = a2\n",
+ "#bCu,Fe = b1\n",
+ "#bFe,Pb = b2\n",
+ "\n",
+ "#calculation\n",
+ "a3 = a1-a2; #a3 in uv/°C\n",
+ "b3 = b1-b2; #b3 in uv/(°C)**2\n",
+ "\n",
+ "#result\n",
+ "print'aCu,Fe = %3.1f'%a3,'uV/°C';\n",
+ "print' bCu,Fe = %3.3f'%b3,'uV/(°C)**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.23,Page No:5.37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "neutral temperature =225 °C\n",
+ "temperature of inversin = 450 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 15; #a in uv/°C\n",
+ "b = -1/float(30); #b in uv/°C\n",
+ "\n",
+ "#E = at+bt^2\n",
+ "#dE/dT =a+2*b*t\n",
+ "#t=tn\n",
+ "#dE/dT =0\n",
+ "#calculation\n",
+ "tn = -(a/float(2*(b))) #neutral temperature in °C\n",
+ "#t1+t2 = 2*t2;\n",
+ "t2 = 2*tn #inversion temperature in °C\n",
+ " \n",
+ "#result\n",
+ "print'neutral temperature =%3.2d '%tn,'°C';\n",
+ "print'temperature of inversin = %3.2d '%t2,'°C';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.24,Page No:5.37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity of alloy =4.4533 uΩ-cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p2 = 2.75; #resistivity of alloy 1 percent of Ni in uΩ-cm\n",
+ "p1 = 1.42; #resistivity of pure copper in uΩ-cm\n",
+ "p3 = 1.98; #resistivity of alloy 3 percent of silver in uΩ-cm\n",
+ " \n",
+ "#p(Ni+Cu) =p1\n",
+ "#pCu =p2\n",
+ "#p(Cu+silver)=p3\n",
+ "#calculation\n",
+ "pNi = p2-p1;\n",
+ "p4 = (p3-p1)/float(3);\n",
+ "palloy = p1+(2*pNi)+(2*p4); #resistivity of alloy 2 percent of silver and 2 percent of nickel in uΩ-cm\n",
+ " \n",
+ "#result\n",
+ "print'resistivity of alloy =%3.4f'%palloy,'uΩ-cm';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.25,Page No:5.41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =4.174 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "M1 = 202; #mass number\n",
+ "M2 = 200; # mass number\n",
+ "Tc1 = 4.153; # temperature in K\n",
+ "alpha = 0.5;\n",
+ " \n",
+ "\n",
+ "#formula\n",
+ "#m**alpha*(Tc)= conatant\n",
+ "#calculation\n",
+ "Tc2 = ((M1**alpha)*Tc1)/float(M2**alpha); #transition temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.3f'%Tc2,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.26,Page No:5.41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical temperature =1.92 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaraion\n",
+ "Tc1 = 2.1; #temperature in K\n",
+ "M1 = 26.91; #mass number \n",
+ "M2 = 32.13; #mass number \n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#Tc*(M1**2) = constant\n",
+ "#calculation\n",
+ "Tc2 = (Tc1*(M1**(1/float(2))))/float(M2**(1/float(2))); #critical temperature in K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical temperature =%3.2f'%Tc2,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.27,Page No:5.42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =14.67 K\n",
+ "critical field =1.70e+06 A/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc1 = 1.41*10**5; #critical fields in amp/m\n",
+ "Hc2 = 4.205*10**5; # critical fields in amp/m\n",
+ "T1 = 14.1; #temperature in K\n",
+ "T2 = 12.9; # temperature in K\n",
+ "T3 = 4.2; #temperature in K\n",
+ " \n",
+ "\n",
+ "#formula\n",
+ "#Hcn =Hc*((1-((T/Tc)**4)))\n",
+ "#calculation\n",
+ "Tc =(((((Hc2*(T1**2))-(Hc1*(T2**2)))/float(Hc2-Hc1)))**(1/float(2))); #temperature in K\n",
+ "Hc0 = Hc1/float(1-((T1/float(Tc))**2)); #critical field in A/m\n",
+ "Hc2 = Hc0*(1-(T3/float(Tc))**2); #critical field in A/m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.2f'%Tc,'K';\n",
+ "print'critical field =%3.2e'%Hc2,'A/m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.28,Page No:5.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical field =4.8751e+05 A/m\n",
+ " Note: calculation mistake in texttbook in calculating Hc\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc0 = 700000; #critical field at 0 K\n",
+ "T = 4; #temperature in K\n",
+ "Tc = 7.26; #temperature in K\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "Hc = Hc0*(1-(T/float(Tc))**2); #critical field n A/m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical field =%3.4e'%Hc,'A/m';\n",
+ "print' Note: calculation mistake in texttbook in calculating Hc';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.29,Page No:5.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical current =153.15 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc0 = 8*10**4; #critical field \n",
+ "T = 4.5; #temperature in K\n",
+ "Tc = 7.2; #temperature in K\n",
+ "D = 1*10**-3; #diameter in m\n",
+ "\n",
+ " \n",
+ "#calculation\n",
+ "Hc = Hc0*(1-(T/float(Tc))**2);\n",
+ "r = D/float(2); #radius in m\n",
+ "Ic = 2*math.pi*r*Hc; #critical current in A\n",
+ "\n",
+ "#result\n",
+ "print'critical current =%3.2f'%Ic,'A';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.30,Page No:5.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical field =0.0217 tesla\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc0 = 0.0306; #critical field at 0 K\n",
+ "T = 2; #temperature in K\n",
+ "Tc = 3.7; #temperature in K\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "Hc = Hc0*(1-(T/float(Tc))**2); #critical field in tesla\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical field =%3.4f'%Hc,'tesla';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.31,Page No:5.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =16.00 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "HcT = 1.5*10**5; # critical field for niobium at 0 K\n",
+ "Hc0 = 2*10**5; # critical field for nobium at 0 K\n",
+ "T = 8; # temperature in K\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "Tc = T/((1-(HcT/float(Hc0)))**0.5); #transition temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.2f'%Tc,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.32,Page No:5.45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =14.47 K\n",
+ " critical field =2.50 T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc1 = 0.176; #critical fields\n",
+ "Hc2 = 0.528; #critical fields\n",
+ "T1 = 14; #temperature in K\n",
+ "T2 = 13; #temperature in K\n",
+ "T3 = 4.2; #temperature in K\n",
+ "\n",
+ "#formula\n",
+ "#Hcn =Hc*((1-((T/Tc)**4)))\n",
+ "#calculation\n",
+ "Tc =(((((Hc2*(T1**2))-(Hc1*(T2**2)))/float(Hc2-Hc1)))**(1/float(2))); #transition temperature in K\n",
+ "Hc0 = Hc1/(1-((T1/float(Tc))**2)); #critical field in T\n",
+ "Hc2 = Hc0*(1-((T3/float(Tc))**2)); #critical field in T\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.2f '%Tc,'K';\n",
+ "print' critical field =%3.2f '%Hc2,'T';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.33,Page No:5.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical current =99.274328 A\n",
+ "Note: calculation mistake in textbook in calculation of I\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc = 7900; #magnetic field in A/m\n",
+ "r = 2.0*10**-3; #radius of super condutor in m\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "I = 2*math.pi*r*Hc; #critical current in A\n",
+ " \n",
+ "#result\n",
+ "print'critical current =%4f'%I,'A';\n",
+ "print'Note: calculation mistake in textbook in calculation of I';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.34,Page No:5.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current =137 Amp\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 10**-3; #diameter in m\n",
+ "Bc = 0.0548; # Bc in T\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7; #permiability m**2\n",
+ "r = d/float(2); #radius in m\n",
+ "Ic = (2*math.pi*r*Bc)/float(u0); #current in Amp\n",
+ "\n",
+ "#result\n",
+ "print'current =%3.2d '%Ic,'Amp';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.35,Page No:5.52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "penetration depth=11.33 nm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "D =8.5*10**3; #density in kg/m**3\n",
+ "W =93; #atomic weight \n",
+ "m =9.1*10**-31; #mass of electron in kilograms\n",
+ "e =2*1.6*10**-19; #charge of electron in coulombs\n",
+ "N =6.023*10**26; #avagadro number in (lb-mol)−1\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "u0 =4*math.pi*10**-7;\n",
+ "ns =(D*N)/float(W); #in per m**3\n",
+ "lamdaL =(m/float(u0*ns*e**2))**(1/float(2)); #London's penetration depth in nm\n",
+ "\n",
+ "#result\n",
+ "print'penetration depth=%3.2f'%(lamdaL*10**9),'nm';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.36,Page No:5.52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "penetration depth=467.9 Å\n",
+ " Note: calculation mistake in textbook in calculating lamdaT\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Tc =7.2; #temperature in K\n",
+ "lamda =380; #penetration depth in Å\n",
+ "T =5.5; #temperature in K\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "lamdaT=lamda*((1-((T/float(Tc))**4))**(-1/float(2))); #penetration depth in Å\n",
+ " \n",
+ "#result\n",
+ "print'penetration depth=%3.1f'%lamdaT,'Å';\n",
+ "print' Note: calculation mistake in textbook in calculating lamdaT';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.37,Page No:5.53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical temperature =8.48 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "lamda1 = 16; #penetration depth in nm\n",
+ "lamda2 = 96; #penetration depth in nm\n",
+ "T1 = 2.18; #temperature in K\n",
+ "T2 = 8.1; # temperature in K\n",
+ "\n",
+ "#formula\n",
+ "#lamdaT =lamda0*((1-((T/Tc)**4))**(-1/4))\n",
+ "#calculation\n",
+ "Tc = ((((lamda2*(T2**4))-(lamda1*(T1**4)))/float(lamda2-lamda1))**(1/float(4))); #critical temperature in K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical temperature =%3.2f '%Tc,'K';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.38,Page No:5.55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength=0.41 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Eg =30.5*1.6*10**-23; #energy gap in eV\n",
+ "h =6.6*10**-34; #planck's constant in (m**2)*kg/s\n",
+ "c =3.0*10**8; #velocity of light in m\n",
+ " \n",
+ "\n",
+ "#formula\n",
+ "#Eg=h*v\n",
+ "#calculation\n",
+ "v = Eg/float(h); #velocity in m\n",
+ "lamda = c/float(v); #wavelength in m\n",
+ "\n",
+ "#result\n",
+ "print'wavelength=%2.2f'%(lamda*10**3),'mm';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.39,Page No:5.55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "region of electromagnetic spectrum=1.14e-03 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "k =1.38*10**-23;\n",
+ "Tc =4.2; #tempetrature in K\n",
+ "h =6.6*10**-34; #planck's constant in (m**2)*kg/s\n",
+ "c =3*10**8; # velocity of light in m\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "Eg = (3*k*Tc); #energy gap in eV\n",
+ "lamda = h*c/float(Eg); #wavelngth in m\n",
+ "\n",
+ "#result\n",
+ "print'region of electromagnetic spectrum=%3.2e'%lamda,'m';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5_4.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5_4.ipynb
new file mode 100644
index 00000000..87d00465
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5_4.ipynb
@@ -0,0 +1,1615 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5:Conductivity of Metals and Superconductivity"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1,Page No:5.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=1.17e-07 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 2*10**-3; #diameter in m \n",
+ "I = 5*10**-3; #current in A\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs \n",
+ "a = 3.61*10**-10; #side of cube in m\n",
+ "N = 4; #number of atoms in per unit cell\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#J=n*v*e\n",
+ "\n",
+ "#calculation\n",
+ "r = d/float(2); #radius in m\n",
+ "n = N/float(a**3); #number of atoms per unit volume in atoms/m**3\n",
+ "A = math.pi*(r**2); #area in m**2\n",
+ "J = I/float(A); #current density in Amp/m**2\n",
+ "v = J/float(n*e); #average drift velocity in m/s\n",
+ "\n",
+ "#result\n",
+ "print'velocity=%3.2e'%v,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2,Page No:5.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=1.06e-03 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "I = 6; #current in A\n",
+ "d = 1*10**-3; #diameter in m\n",
+ "n = 4.5*10**28; #electrons available in electron/m**3\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "r = d/float(2); #radius in m\n",
+ "A = math.pi*(r**2); #area in m**2\n",
+ "J = I/float(A); #current density in A/m**3\n",
+ "vd = J/float(n*e); #density in m/s\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'velocity=%3.2e'%vd,'m/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3,Page No:5.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=4.80e-06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "V = 63.5; #atomic weight in kg\n",
+ "d = 8.92*10**3; #density of copper in kg/m**3\n",
+ "r = 0.7*10**-3; #radius in m\n",
+ "I = 10; #current in A\n",
+ "e = 1.6*10**-19; #charge of electronin coulomb\n",
+ "h = 6.02*10**28; #planck's constant in (m**2)*kg/s\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "A = math.pi*(r**2); # area in m**2\n",
+ "N = h*d;\n",
+ "n = N/float(V);\n",
+ "J = I/float(A); #current density in m/s\n",
+ "vd = J/float(n*e); #drift velocity in m/s\n",
+ "\n",
+ "#result\n",
+ "print'velocity=%2.2e'%vd,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4,Page No:5.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "restivity=1.82e-08 ohm m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R = 0.182; #resistance in ohm\n",
+ "l = 1; #length in m\n",
+ "A = 0.1*10**-6; #area in m**2\n",
+ "\n",
+ "#formula \n",
+ "#R=(p*l)/A\n",
+ "\n",
+ "#calculation\n",
+ "p = (R*A)/float(l); #resistivity in ohm m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'restivity=%3.2e'%p,'ohm m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5,Page No:5.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=0.7 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n = 5.8*10**28; #number of silver electrons in electrond/m**3\n",
+ "p = 1.45*10**-8; #resistivity in ohm m\n",
+ "E = 10**2; #electric field in V/m\n",
+ "e = 1.6*10**-19; \n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#sigma = n*e*u \n",
+ "#sigma=p\n",
+ "#calculation\n",
+ "u = 1/float(n*e*p);\n",
+ "vd = u*E; #drift velocity in m/s\n",
+ "\n",
+ "#result\n",
+ "print'velocity=%3.1f'%vd,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6,Page No:5.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "density=7.25e-03 m**2.V**-1.s**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "W = 107.9; #atomic weight in amu(atomic mass unit)\n",
+ "p = 10.5*10**3; #density in kg/m**3\n",
+ "sigma =6.8*10**7; #conductivity in ohm**-1.m**-1\n",
+ "e =1.6*10**-19; #charge of electron in coulombs\n",
+ "N = 6.02*10**26; #avagadro number in mol**-1\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "n = (N*p)/float(W); #number of atoms per unit volume \n",
+ "u = sigma/float(n*e); #density of electron in m**2.V**-1.s**-1\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'density=%3.2e'%u,'m**2.V**-1.s**-1';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 5.7,Page No:5.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "time=2.51e-14 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "#for common metal copper\n",
+ "n = 8.5*10**28; #number of atoms in m**-3\n",
+ "sigma = 6*10**7; #sigma in ohm**-1 m**-1\n",
+ "m = 9.1*10**-31; #mass of electron in kilogram\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "\n",
+ "#calculation\n",
+ "t = (m*sigma)/float(n*(e**2)); #relaxation time in s\n",
+ "\n",
+ "#result\n",
+ "print'time=%3.2e'%t,'s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.9,Page No:5.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "thermal conductivity=1.6731 W/m-K\n",
+ " Note: calculation mistake in textbook in calculating K as T value is taken 325 instead of 3.25\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "t = 3.0*10**-14; #time in s\n",
+ "n = 2.5*10**22; #in electrons per m**3\n",
+ "m = 9.1*10**-31; #mass of electron in kilograms\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "T = 3.25; #temperature in K\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#K/(sigma*T)=2.44*10**-8 from wiedemann Franz law\n",
+ "#calculation\n",
+ "sigma = (n*(e**2)*t)/float(m*10**-6); #conductivity in m**3\n",
+ "K = (2.44*10**-8)*sigma*T; #thermalconductivity in W/m-K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'thermal conductivity=%3.4f '%K,'W/m-K';\n",
+ "print' Note: calculation mistake in textbook in calculating K as T value is taken 325 instead of 3.25';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.10,Page No:5.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy diefference=1.13e+02 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 10**-10; #one dimension in m\n",
+ "m = 9.1*10**-31; #mass of kg\n",
+ "h = 6.62*10**-34; #planck's constant in joule-s\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#En = ((n**2)*(h**2))/float(8*m*(a**2))\n",
+ "#calculation\n",
+ "E1 = (h**2)/float(8*m*(a**2)); #energy in J\n",
+ "E2 = (4*(h**2))/float(8*m*(a**2)); #energy in J\n",
+ "dE = (3*(h**2))/float(8*m*(a**2)); #energy diefference in J \n",
+ "x = dE/float(1.6*10**-19); #energy diefference in eV\n",
+ "\n",
+ "#result\n",
+ "print'energy diefference=%3.2e'%x,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.11,Page No:5.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fermi energy=3.16 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N =6.02*10**23; #avagadro number in atoms /mole\n",
+ "h = 6.63*10**-34; #planck's constant in joule-s\n",
+ "m = 9.11*10**-31; #mass in kg\n",
+ "M = 23; #atomic weight in grams /mole\n",
+ "p = 0.971; #density in gram/cm**3\n",
+ "\n",
+ "\n",
+ "#formula \n",
+ "#x=N/V=(N*p)/M\n",
+ "#calculation\n",
+ "x = (N*p)/float(M);\n",
+ "x1 = x*10**6;\n",
+ "eF = (((h**2)/float(2*m)))*(((3*x1)/(8*math.pi))**(2/float(3))); #Fermi energy\n",
+ "eF1 = (eF)/float(1.6*10**-19);\n",
+ "\n",
+ "#result\n",
+ "print'fermi energy=%3.2f'%eF1,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.12,Page No:5.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fermi energy =3.16 eV\n",
+ "fermi velocity =1.05e+06 m/s\n",
+ "femi temperature =3.66e+04 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "x = 2.54*10**28; #number of electrons in per m**2\n",
+ "h = 6.63*10**-34; # planck's constant in joule-s\n",
+ "m = 9.11*10**-31; # mass in kg\n",
+ "p = 0.971; #density in grams/cm**3\n",
+ "k = 1.38*10**-23;\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "#x = (N*p)/float(M);\n",
+ "eF = (((h**2)/(2*m)))*(((3*x)/float(8*math.pi))**(2/float(3))); \n",
+ "eF1 = (eF)/float(1.6*10**-19); #Fermi energy in eV\n",
+ "vF = math.sqrt((2*eF)/float(m)); #fermi velocity in m/s\n",
+ "TF = eF/float(k); #fermi temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'fermi energy =%3.2f'%eF1,'eV';\n",
+ "print'fermi velocity =%3.2e'%vF,'m/s';\n",
+ "print'femi temperature =%3.2e'%TF,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13,Page No:5.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fermi energy = 11 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "M = 65.4; #atomic weight\n",
+ "p = 7.13; #density in g/cm**3\n",
+ "h = 6.62*10**-34; # planck's constant in joules-s\n",
+ "m = 7.7*10**-31; # mass\n",
+ "v = 6.02*10**23; #avagadros number in atoms/gram-atom\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "#x =N/V\n",
+ "V = M/float(p); #volume of one atom in cm**3\n",
+ "n = v/float(V); # number of Zn atoms in volume v\n",
+ "x = 2*n*(10**6); #number of free electrons in unit volume iper m**2\n",
+ "eF = ((h**2)/float(2*m))*(((3*x)/float(8*math.pi))**(2/float(3))); # fermi energy in J\n",
+ "eF1 = eF/float(1.6*(10**-19));\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'fermi energy =%3.2d'%eF1,'eV';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.14,Page No:5.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of electrons per unit volume =4e+28 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "eF = 4.27; #fermi energy in eV\n",
+ "m = 9.11*10**-31; # mass of electron in kg\n",
+ "h = 6.63*10**-34; # planck's constant J.s\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#x= N/V\n",
+ "#calculation\n",
+ "eF1 = eF*1.6*10**-19; #fermi energy in eV \n",
+ "x = (((2*m*eF1)/float(h**2))**(3/float(2)))*((8*math.pi)/float(3)); #number of electrons per unit volume\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'number of electrons per unit volume =%4.00e'%x,'m**-3';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 5.15,Page No:5.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electron density for a metal =1.47e+28 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "eF1 = 4.70; # fermi energy in eV\n",
+ "eF2 = 2.20; #fermi energy in eV\n",
+ "x1 = 4.6*10**28; # electron density of lithium per m**3\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#N/V = (((2*m*eF1)/(h**2))**(3/2))*((8*math.pi)/3);\n",
+ "#N/V = k*(eF**3/2)\n",
+ "#N/V = x\n",
+ "#calculation\n",
+ "x2 = x1*((eF2/float(eF1))**(3/float(2))); #electron density for metal in per m**3\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'electron density for a metal =%4.2e'%x2,'m**-3';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 5.16,Page No:5.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average energy =3.24 eV\n",
+ "temperature =2.50e+04 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "eF = 5.4; #fermi energy in eV\n",
+ "k = 1.38*10**-23; # k in joule/K\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "e0 = (3*eF)/float(5); #average energy in eV\n",
+ "T = (e0*(1.6*10**-19)*2)/float(3*k); #temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'average energy =%3.2f'%e0,'eV';\n",
+ "print'temperature =%3.2e'%T,'K';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.17,Page No:5.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average energy =9.0 eV\n",
+ "speed =1.78e+06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "EF = 15; #fermi energy in eV\n",
+ "m = 9.1*10**-31; #mass of electron in kilogarams\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "E0 = (3*EF)/float(5); #average energy en eV\n",
+ "v = math.sqrt((2*E0*1.6*10**-19)/float(m)); #speed of electron in m/s\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'average energy =%3.1f'%E0,'eV';\n",
+ "print'speed =%3.2e'%v,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.18,Page No:5.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average energy =4.50 eV\n",
+ " speed =1.26e+06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "EF = 7.5; #fermi energy in eV\n",
+ "m = 9.1*10**-31; #mass of electron in kilograms\n",
+ "\n",
+ "#calculation\n",
+ "E0 = (3*EF)/float(5); #average energy en eV\n",
+ "v = math.sqrt((2*E0*1.6*10**-19)/float(m)); #speed in m\n",
+ "\n",
+ "#result\n",
+ "print'average energy =%3.2f'%E0,'eV';\n",
+ "print' speed =%3.2e'%v,'m/s';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.19,Page No:5.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy=3.12 eV\n",
+ " speed= =1.05e+06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "m = 9.1*10**-31; #mass of electron in kg\n",
+ "h = 6.62*10**-34; #planck's constant in (m**2)*kg/s\n",
+ "#formula\n",
+ "#x=N/V\n",
+ "x = 2.5*10**28;\n",
+ "\n",
+ "#calculation\n",
+ "EF = ((h**2)/float(8*(math.pi**2)*m))*((3*(math.pi**2)*x)**(2/float(3))); #fermi energy in J\n",
+ "EF1 = EF/float(1.6*10**-19); #fermi energy in eV\n",
+ "vF = (h/float(2*m*math.pi))*((3*(math.pi**2)*x)**(1/float(3))); #fermi velocity in m/s\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'energy=%3.2f'%EF1,'eV';\n",
+ "print' speed= =%3.2e'%vF,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.20,Page No:5.29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "efficiency =99.998163 %\n",
+ "voltage drop =1.8 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Ps = 10**7; #power in W\n",
+ "V = 33*10**3; #power transmitted in W\n",
+ "R = 2; #resistance in ohm\n",
+ " \n",
+ "#calculation\n",
+ "I = Ps/float(V); #current in A\n",
+ "Pd = (I**2*R)/float(1000); #power lost in feeder in kW \n",
+ "n = ((Ps-Pd)/float(Ps))*100; #efficiency in %\n",
+ "v = I*R; #voltage drop in V\n",
+ "Vd = (v/float(V))*100; #percentage voltage drop\n",
+ " \n",
+ "#result\n",
+ "print'efficiency =%0f '%n,'%';\n",
+ "print'voltage drop =%3.1f'%Vd,'%';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.21,Page No:5.36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "aCu,Fe = -13.8 uV/°C\n",
+ " bCu,Fe = 0.042 uV/(°C)**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a1 = 2.76; #a1 in uv/°C\n",
+ "a2 = 16.6; #a2 in uv/°C\n",
+ "b1 = 0.012; #b1 in uv/°C\n",
+ "b2 = -0.03; #b2 in uv/°C\n",
+ "\n",
+ "#calculation\n",
+ "#aFe,Pb =a1 \n",
+ "#aCu,Pb = a2\n",
+ "#bCu,Fe = b1\n",
+ "#bFe,Pb = b2\n",
+ "\n",
+ "#calculation\n",
+ "a3 = a1-a2; #a3 in uv/°C\n",
+ "b3 = b1-b2; #b3 in uv/(°C)**2\n",
+ "\n",
+ "#result\n",
+ "print'aCu,Fe = %3.1f'%a3,'uV/°C';\n",
+ "print' bCu,Fe = %3.3f'%b3,'uV/(°C)**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.23,Page No:5.37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "neutral temperature =225 °C\n",
+ "temperature of inversin = 450 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 15; #a in uv/°C\n",
+ "b = -1/float(30); #b in uv/°C\n",
+ "\n",
+ "#E = at+bt^2\n",
+ "#dE/dT =a+2*b*t\n",
+ "#t=tn\n",
+ "#dE/dT =0\n",
+ "#calculation\n",
+ "tn = -(a/float(2*(b))) #neutral temperature in °C\n",
+ "#t1+t2 = 2*t2;\n",
+ "t2 = 2*tn #inversion temperature in °C\n",
+ " \n",
+ "#result\n",
+ "print'neutral temperature =%3.2d '%tn,'°C';\n",
+ "print'temperature of inversin = %3.2d '%t2,'°C';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.24,Page No:5.37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity of alloy =4.4533 uΩ-cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p2 = 2.75; #resistivity of alloy 1 percent of Ni in uΩ-cm\n",
+ "p1 = 1.42; #resistivity of pure copper in uΩ-cm\n",
+ "p3 = 1.98; #resistivity of alloy 3 percent of silver in uΩ-cm\n",
+ " \n",
+ "#p(Ni+Cu) =p1\n",
+ "#pCu =p2\n",
+ "#p(Cu+silver)=p3\n",
+ "#calculation\n",
+ "pNi = p2-p1;\n",
+ "p4 = (p3-p1)/float(3);\n",
+ "palloy = p1+(2*pNi)+(2*p4); #resistivity of alloy 2 percent of silver and 2 percent of nickel in uΩ-cm\n",
+ " \n",
+ "#result\n",
+ "print'resistivity of alloy =%3.4f'%palloy,'uΩ-cm';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.25,Page No:5.41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =4.174 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "M1 = 202; #mass number\n",
+ "M2 = 200; # mass number\n",
+ "Tc1 = 4.153; # temperature in K\n",
+ "alpha = 0.5;\n",
+ " \n",
+ "\n",
+ "#formula\n",
+ "#m**alpha*(Tc)= conatant\n",
+ "#calculation\n",
+ "Tc2 = ((M1**alpha)*Tc1)/float(M2**alpha); #transition temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.3f'%Tc2,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.26,Page No:5.41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical temperature =1.92 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaraion\n",
+ "Tc1 = 2.1; #temperature in K\n",
+ "M1 = 26.91; #mass number \n",
+ "M2 = 32.13; #mass number \n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#Tc*(M1**2) = constant\n",
+ "#calculation\n",
+ "Tc2 = (Tc1*(M1**(1/float(2))))/float(M2**(1/float(2))); #critical temperature in K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical temperature =%3.2f'%Tc2,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.27,Page No:5.42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =14.67 K\n",
+ "critical field =1.70e+06 A/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc1 = 1.41*10**5; #critical fields in amp/m\n",
+ "Hc2 = 4.205*10**5; # critical fields in amp/m\n",
+ "T1 = 14.1; #temperature in K\n",
+ "T2 = 12.9; # temperature in K\n",
+ "T3 = 4.2; #temperature in K\n",
+ " \n",
+ "\n",
+ "#formula\n",
+ "#Hcn =Hc*((1-((T/Tc)**4)))\n",
+ "#calculation\n",
+ "Tc =(((((Hc2*(T1**2))-(Hc1*(T2**2)))/float(Hc2-Hc1)))**(1/float(2))); #temperature in K\n",
+ "Hc0 = Hc1/float(1-((T1/float(Tc))**2)); #critical field in A/m\n",
+ "Hc2 = Hc0*(1-(T3/float(Tc))**2); #critical field in A/m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.2f'%Tc,'K';\n",
+ "print'critical field =%3.2e'%Hc2,'A/m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.28,Page No:5.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical field =4.8751e+05 A/m\n",
+ " Note: calculation mistake in texttbook in calculating Hc\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc0 = 700000; #critical field at 0 K\n",
+ "T = 4; #temperature in K\n",
+ "Tc = 7.26; #temperature in K\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "Hc = Hc0*(1-(T/float(Tc))**2); #critical field n A/m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical field =%3.4e'%Hc,'A/m';\n",
+ "print' Note: calculation mistake in texttbook in calculating Hc';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.29,Page No:5.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical current =153.15 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc0 = 8*10**4; #critical field \n",
+ "T = 4.5; #temperature in K\n",
+ "Tc = 7.2; #temperature in K\n",
+ "D = 1*10**-3; #diameter in m\n",
+ "\n",
+ " \n",
+ "#calculation\n",
+ "Hc = Hc0*(1-(T/float(Tc))**2);\n",
+ "r = D/float(2); #radius in m\n",
+ "Ic = 2*math.pi*r*Hc; #critical current in A\n",
+ "\n",
+ "#result\n",
+ "print'critical current =%3.2f'%Ic,'A';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.30,Page No:5.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical field =0.0217 tesla\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc0 = 0.0306; #critical field at 0 K\n",
+ "T = 2; #temperature in K\n",
+ "Tc = 3.7; #temperature in K\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "Hc = Hc0*(1-(T/float(Tc))**2); #critical field in tesla\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical field =%3.4f'%Hc,'tesla';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.31,Page No:5.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =16.00 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "HcT = 1.5*10**5; # critical field for niobium at 0 K\n",
+ "Hc0 = 2*10**5; # critical field for nobium at 0 K\n",
+ "T = 8; # temperature in K\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "Tc = T/((1-(HcT/float(Hc0)))**0.5); #transition temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.2f'%Tc,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.32,Page No:5.45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =14.47 K\n",
+ " critical field =2.50 T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc1 = 0.176; #critical fields\n",
+ "Hc2 = 0.528; #critical fields\n",
+ "T1 = 14; #temperature in K\n",
+ "T2 = 13; #temperature in K\n",
+ "T3 = 4.2; #temperature in K\n",
+ "\n",
+ "#formula\n",
+ "#Hcn =Hc*((1-((T/Tc)**4)))\n",
+ "#calculation\n",
+ "Tc =(((((Hc2*(T1**2))-(Hc1*(T2**2)))/float(Hc2-Hc1)))**(1/float(2))); #transition temperature in K\n",
+ "Hc0 = Hc1/(1-((T1/float(Tc))**2)); #critical field in T\n",
+ "Hc2 = Hc0*(1-((T3/float(Tc))**2)); #critical field in T\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.2f '%Tc,'K';\n",
+ "print' critical field =%3.2f '%Hc2,'T';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.33,Page No:5.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical current =99.274328 A\n",
+ "Note: calculation mistake in textbook in calculation of I\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc = 7900; #magnetic field in A/m\n",
+ "r = 2.0*10**-3; #radius of super condutor in m\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "I = 2*math.pi*r*Hc; #critical current in A\n",
+ " \n",
+ "#result\n",
+ "print'critical current =%4f'%I,'A';\n",
+ "print'Note: calculation mistake in textbook in calculation of I';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.34,Page No:5.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current =137 Amp\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 10**-3; #diameter in m\n",
+ "Bc = 0.0548; # Bc in T\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7; #permiability m**2\n",
+ "r = d/float(2); #radius in m\n",
+ "Ic = (2*math.pi*r*Bc)/float(u0); #current in Amp\n",
+ "\n",
+ "#result\n",
+ "print'current =%3.2d '%Ic,'Amp';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.35,Page No:5.52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "penetration depth=11.33 nm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "D =8.5*10**3; #density in kg/m**3\n",
+ "W =93; #atomic weight \n",
+ "m =9.1*10**-31; #mass of electron in kilograms\n",
+ "e =2*1.6*10**-19; #charge of electron in coulombs\n",
+ "N =6.023*10**26; #avagadro number in (lb-mol)−1\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "u0 =4*math.pi*10**-7;\n",
+ "ns =(D*N)/float(W); #in per m**3\n",
+ "lamdaL =(m/float(u0*ns*e**2))**(1/float(2)); #London's penetration depth in nm\n",
+ "\n",
+ "#result\n",
+ "print'penetration depth=%3.2f'%(lamdaL*10**9),'nm';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.36,Page No:5.52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "penetration depth=467.9 Å\n",
+ " Note: calculation mistake in textbook in calculating lamdaT\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Tc =7.2; #temperature in K\n",
+ "lamda =380; #penetration depth in Å\n",
+ "T =5.5; #temperature in K\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "lamdaT=lamda*((1-((T/float(Tc))**4))**(-1/float(2))); #penetration depth in Å\n",
+ " \n",
+ "#result\n",
+ "print'penetration depth=%3.1f'%lamdaT,'Å';\n",
+ "print' Note: calculation mistake in textbook in calculating lamdaT';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.37,Page No:5.53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical temperature =8.48 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "lamda1 = 16; #penetration depth in nm\n",
+ "lamda2 = 96; #penetration depth in nm\n",
+ "T1 = 2.18; #temperature in K\n",
+ "T2 = 8.1; # temperature in K\n",
+ "\n",
+ "#formula\n",
+ "#lamdaT =lamda0*((1-((T/Tc)**4))**(-1/4))\n",
+ "#calculation\n",
+ "Tc = ((((lamda2*(T2**4))-(lamda1*(T1**4)))/float(lamda2-lamda1))**(1/float(4))); #critical temperature in K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical temperature =%3.2f '%Tc,'K';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.38,Page No:5.55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength=0.41 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Eg =30.5*1.6*10**-23; #energy gap in eV\n",
+ "h =6.6*10**-34; #planck's constant in (m**2)*kg/s\n",
+ "c =3.0*10**8; #velocity of light in m\n",
+ " \n",
+ "\n",
+ "#formula\n",
+ "#Eg=h*v\n",
+ "#calculation\n",
+ "v = Eg/float(h); #velocity in m\n",
+ "lamda = c/float(v); #wavelength in m\n",
+ "\n",
+ "#result\n",
+ "print'wavelength=%2.2f'%(lamda*10**3),'mm';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.39,Page No:5.55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "region of electromagnetic spectrum=1.14e-03 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "k =1.38*10**-23;\n",
+ "Tc =4.2; #tempetrature in K\n",
+ "h =6.6*10**-34; #planck's constant in (m**2)*kg/s\n",
+ "c =3*10**8; # velocity of light in m\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "Eg = (3*k*Tc); #energy gap in eV\n",
+ "lamda = h*c/float(Eg); #wavelngth in m\n",
+ "\n",
+ "#result\n",
+ "print'region of electromagnetic spectrum=%3.2e'%lamda,'m';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5_5.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5_5.ipynb
new file mode 100644
index 00000000..87d00465
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter5_5.ipynb
@@ -0,0 +1,1615 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5:Conductivity of Metals and Superconductivity"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1,Page No:5.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=1.17e-07 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 2*10**-3; #diameter in m \n",
+ "I = 5*10**-3; #current in A\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs \n",
+ "a = 3.61*10**-10; #side of cube in m\n",
+ "N = 4; #number of atoms in per unit cell\n",
+ " \n",
+ " \n",
+ "#formula\n",
+ "#J=n*v*e\n",
+ "\n",
+ "#calculation\n",
+ "r = d/float(2); #radius in m\n",
+ "n = N/float(a**3); #number of atoms per unit volume in atoms/m**3\n",
+ "A = math.pi*(r**2); #area in m**2\n",
+ "J = I/float(A); #current density in Amp/m**2\n",
+ "v = J/float(n*e); #average drift velocity in m/s\n",
+ "\n",
+ "#result\n",
+ "print'velocity=%3.2e'%v,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2,Page No:5.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=1.06e-03 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "I = 6; #current in A\n",
+ "d = 1*10**-3; #diameter in m\n",
+ "n = 4.5*10**28; #electrons available in electron/m**3\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "r = d/float(2); #radius in m\n",
+ "A = math.pi*(r**2); #area in m**2\n",
+ "J = I/float(A); #current density in A/m**3\n",
+ "vd = J/float(n*e); #density in m/s\n",
+ " \n",
+ " \n",
+ "#result\n",
+ "print'velocity=%3.2e'%vd,'m/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3,Page No:5.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=4.80e-06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "V = 63.5; #atomic weight in kg\n",
+ "d = 8.92*10**3; #density of copper in kg/m**3\n",
+ "r = 0.7*10**-3; #radius in m\n",
+ "I = 10; #current in A\n",
+ "e = 1.6*10**-19; #charge of electronin coulomb\n",
+ "h = 6.02*10**28; #planck's constant in (m**2)*kg/s\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "A = math.pi*(r**2); # area in m**2\n",
+ "N = h*d;\n",
+ "n = N/float(V);\n",
+ "J = I/float(A); #current density in m/s\n",
+ "vd = J/float(n*e); #drift velocity in m/s\n",
+ "\n",
+ "#result\n",
+ "print'velocity=%2.2e'%vd,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4,Page No:5.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "restivity=1.82e-08 ohm m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R = 0.182; #resistance in ohm\n",
+ "l = 1; #length in m\n",
+ "A = 0.1*10**-6; #area in m**2\n",
+ "\n",
+ "#formula \n",
+ "#R=(p*l)/A\n",
+ "\n",
+ "#calculation\n",
+ "p = (R*A)/float(l); #resistivity in ohm m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'restivity=%3.2e'%p,'ohm m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5,Page No:5.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity=0.7 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n = 5.8*10**28; #number of silver electrons in electrond/m**3\n",
+ "p = 1.45*10**-8; #resistivity in ohm m\n",
+ "E = 10**2; #electric field in V/m\n",
+ "e = 1.6*10**-19; \n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#sigma = n*e*u \n",
+ "#sigma=p\n",
+ "#calculation\n",
+ "u = 1/float(n*e*p);\n",
+ "vd = u*E; #drift velocity in m/s\n",
+ "\n",
+ "#result\n",
+ "print'velocity=%3.1f'%vd,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6,Page No:5.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "density=7.25e-03 m**2.V**-1.s**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "W = 107.9; #atomic weight in amu(atomic mass unit)\n",
+ "p = 10.5*10**3; #density in kg/m**3\n",
+ "sigma =6.8*10**7; #conductivity in ohm**-1.m**-1\n",
+ "e =1.6*10**-19; #charge of electron in coulombs\n",
+ "N = 6.02*10**26; #avagadro number in mol**-1\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "n = (N*p)/float(W); #number of atoms per unit volume \n",
+ "u = sigma/float(n*e); #density of electron in m**2.V**-1.s**-1\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'density=%3.2e'%u,'m**2.V**-1.s**-1';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 5.7,Page No:5.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "time=2.51e-14 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "#for common metal copper\n",
+ "n = 8.5*10**28; #number of atoms in m**-3\n",
+ "sigma = 6*10**7; #sigma in ohm**-1 m**-1\n",
+ "m = 9.1*10**-31; #mass of electron in kilogram\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "\n",
+ "#calculation\n",
+ "t = (m*sigma)/float(n*(e**2)); #relaxation time in s\n",
+ "\n",
+ "#result\n",
+ "print'time=%3.2e'%t,'s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.9,Page No:5.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "thermal conductivity=1.6731 W/m-K\n",
+ " Note: calculation mistake in textbook in calculating K as T value is taken 325 instead of 3.25\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "t = 3.0*10**-14; #time in s\n",
+ "n = 2.5*10**22; #in electrons per m**3\n",
+ "m = 9.1*10**-31; #mass of electron in kilograms\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "T = 3.25; #temperature in K\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#K/(sigma*T)=2.44*10**-8 from wiedemann Franz law\n",
+ "#calculation\n",
+ "sigma = (n*(e**2)*t)/float(m*10**-6); #conductivity in m**3\n",
+ "K = (2.44*10**-8)*sigma*T; #thermalconductivity in W/m-K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'thermal conductivity=%3.4f '%K,'W/m-K';\n",
+ "print' Note: calculation mistake in textbook in calculating K as T value is taken 325 instead of 3.25';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.10,Page No:5.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy diefference=1.13e+02 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 10**-10; #one dimension in m\n",
+ "m = 9.1*10**-31; #mass of kg\n",
+ "h = 6.62*10**-34; #planck's constant in joule-s\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#En = ((n**2)*(h**2))/float(8*m*(a**2))\n",
+ "#calculation\n",
+ "E1 = (h**2)/float(8*m*(a**2)); #energy in J\n",
+ "E2 = (4*(h**2))/float(8*m*(a**2)); #energy in J\n",
+ "dE = (3*(h**2))/float(8*m*(a**2)); #energy diefference in J \n",
+ "x = dE/float(1.6*10**-19); #energy diefference in eV\n",
+ "\n",
+ "#result\n",
+ "print'energy diefference=%3.2e'%x,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.11,Page No:5.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fermi energy=3.16 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "N =6.02*10**23; #avagadro number in atoms /mole\n",
+ "h = 6.63*10**-34; #planck's constant in joule-s\n",
+ "m = 9.11*10**-31; #mass in kg\n",
+ "M = 23; #atomic weight in grams /mole\n",
+ "p = 0.971; #density in gram/cm**3\n",
+ "\n",
+ "\n",
+ "#formula \n",
+ "#x=N/V=(N*p)/M\n",
+ "#calculation\n",
+ "x = (N*p)/float(M);\n",
+ "x1 = x*10**6;\n",
+ "eF = (((h**2)/float(2*m)))*(((3*x1)/(8*math.pi))**(2/float(3))); #Fermi energy\n",
+ "eF1 = (eF)/float(1.6*10**-19);\n",
+ "\n",
+ "#result\n",
+ "print'fermi energy=%3.2f'%eF1,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.12,Page No:5.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fermi energy =3.16 eV\n",
+ "fermi velocity =1.05e+06 m/s\n",
+ "femi temperature =3.66e+04 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "x = 2.54*10**28; #number of electrons in per m**2\n",
+ "h = 6.63*10**-34; # planck's constant in joule-s\n",
+ "m = 9.11*10**-31; # mass in kg\n",
+ "p = 0.971; #density in grams/cm**3\n",
+ "k = 1.38*10**-23;\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "#x = (N*p)/float(M);\n",
+ "eF = (((h**2)/(2*m)))*(((3*x)/float(8*math.pi))**(2/float(3))); \n",
+ "eF1 = (eF)/float(1.6*10**-19); #Fermi energy in eV\n",
+ "vF = math.sqrt((2*eF)/float(m)); #fermi velocity in m/s\n",
+ "TF = eF/float(k); #fermi temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'fermi energy =%3.2f'%eF1,'eV';\n",
+ "print'fermi velocity =%3.2e'%vF,'m/s';\n",
+ "print'femi temperature =%3.2e'%TF,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13,Page No:5.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fermi energy = 11 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "M = 65.4; #atomic weight\n",
+ "p = 7.13; #density in g/cm**3\n",
+ "h = 6.62*10**-34; # planck's constant in joules-s\n",
+ "m = 7.7*10**-31; # mass\n",
+ "v = 6.02*10**23; #avagadros number in atoms/gram-atom\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "#x =N/V\n",
+ "V = M/float(p); #volume of one atom in cm**3\n",
+ "n = v/float(V); # number of Zn atoms in volume v\n",
+ "x = 2*n*(10**6); #number of free electrons in unit volume iper m**2\n",
+ "eF = ((h**2)/float(2*m))*(((3*x)/float(8*math.pi))**(2/float(3))); # fermi energy in J\n",
+ "eF1 = eF/float(1.6*(10**-19));\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'fermi energy =%3.2d'%eF1,'eV';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.14,Page No:5.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of electrons per unit volume =4e+28 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "eF = 4.27; #fermi energy in eV\n",
+ "m = 9.11*10**-31; # mass of electron in kg\n",
+ "h = 6.63*10**-34; # planck's constant J.s\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#x= N/V\n",
+ "#calculation\n",
+ "eF1 = eF*1.6*10**-19; #fermi energy in eV \n",
+ "x = (((2*m*eF1)/float(h**2))**(3/float(2)))*((8*math.pi)/float(3)); #number of electrons per unit volume\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'number of electrons per unit volume =%4.00e'%x,'m**-3';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 5.15,Page No:5.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electron density for a metal =1.47e+28 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "eF1 = 4.70; # fermi energy in eV\n",
+ "eF2 = 2.20; #fermi energy in eV\n",
+ "x1 = 4.6*10**28; # electron density of lithium per m**3\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#N/V = (((2*m*eF1)/(h**2))**(3/2))*((8*math.pi)/3);\n",
+ "#N/V = k*(eF**3/2)\n",
+ "#N/V = x\n",
+ "#calculation\n",
+ "x2 = x1*((eF2/float(eF1))**(3/float(2))); #electron density for metal in per m**3\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'electron density for a metal =%4.2e'%x2,'m**-3';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 5.16,Page No:5.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average energy =3.24 eV\n",
+ "temperature =2.50e+04 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "eF = 5.4; #fermi energy in eV\n",
+ "k = 1.38*10**-23; # k in joule/K\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "e0 = (3*eF)/float(5); #average energy in eV\n",
+ "T = (e0*(1.6*10**-19)*2)/float(3*k); #temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'average energy =%3.2f'%e0,'eV';\n",
+ "print'temperature =%3.2e'%T,'K';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.17,Page No:5.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average energy =9.0 eV\n",
+ "speed =1.78e+06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "EF = 15; #fermi energy in eV\n",
+ "m = 9.1*10**-31; #mass of electron in kilogarams\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "E0 = (3*EF)/float(5); #average energy en eV\n",
+ "v = math.sqrt((2*E0*1.6*10**-19)/float(m)); #speed of electron in m/s\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'average energy =%3.1f'%E0,'eV';\n",
+ "print'speed =%3.2e'%v,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.18,Page No:5.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average energy =4.50 eV\n",
+ " speed =1.26e+06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "EF = 7.5; #fermi energy in eV\n",
+ "m = 9.1*10**-31; #mass of electron in kilograms\n",
+ "\n",
+ "#calculation\n",
+ "E0 = (3*EF)/float(5); #average energy en eV\n",
+ "v = math.sqrt((2*E0*1.6*10**-19)/float(m)); #speed in m\n",
+ "\n",
+ "#result\n",
+ "print'average energy =%3.2f'%E0,'eV';\n",
+ "print' speed =%3.2e'%v,'m/s';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.19,Page No:5.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy=3.12 eV\n",
+ " speed= =1.05e+06 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "m = 9.1*10**-31; #mass of electron in kg\n",
+ "h = 6.62*10**-34; #planck's constant in (m**2)*kg/s\n",
+ "#formula\n",
+ "#x=N/V\n",
+ "x = 2.5*10**28;\n",
+ "\n",
+ "#calculation\n",
+ "EF = ((h**2)/float(8*(math.pi**2)*m))*((3*(math.pi**2)*x)**(2/float(3))); #fermi energy in J\n",
+ "EF1 = EF/float(1.6*10**-19); #fermi energy in eV\n",
+ "vF = (h/float(2*m*math.pi))*((3*(math.pi**2)*x)**(1/float(3))); #fermi velocity in m/s\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'energy=%3.2f'%EF1,'eV';\n",
+ "print' speed= =%3.2e'%vF,'m/s';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.20,Page No:5.29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "efficiency =99.998163 %\n",
+ "voltage drop =1.8 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Ps = 10**7; #power in W\n",
+ "V = 33*10**3; #power transmitted in W\n",
+ "R = 2; #resistance in ohm\n",
+ " \n",
+ "#calculation\n",
+ "I = Ps/float(V); #current in A\n",
+ "Pd = (I**2*R)/float(1000); #power lost in feeder in kW \n",
+ "n = ((Ps-Pd)/float(Ps))*100; #efficiency in %\n",
+ "v = I*R; #voltage drop in V\n",
+ "Vd = (v/float(V))*100; #percentage voltage drop\n",
+ " \n",
+ "#result\n",
+ "print'efficiency =%0f '%n,'%';\n",
+ "print'voltage drop =%3.1f'%Vd,'%';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.21,Page No:5.36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "aCu,Fe = -13.8 uV/°C\n",
+ " bCu,Fe = 0.042 uV/(°C)**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a1 = 2.76; #a1 in uv/°C\n",
+ "a2 = 16.6; #a2 in uv/°C\n",
+ "b1 = 0.012; #b1 in uv/°C\n",
+ "b2 = -0.03; #b2 in uv/°C\n",
+ "\n",
+ "#calculation\n",
+ "#aFe,Pb =a1 \n",
+ "#aCu,Pb = a2\n",
+ "#bCu,Fe = b1\n",
+ "#bFe,Pb = b2\n",
+ "\n",
+ "#calculation\n",
+ "a3 = a1-a2; #a3 in uv/°C\n",
+ "b3 = b1-b2; #b3 in uv/(°C)**2\n",
+ "\n",
+ "#result\n",
+ "print'aCu,Fe = %3.1f'%a3,'uV/°C';\n",
+ "print' bCu,Fe = %3.3f'%b3,'uV/(°C)**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.23,Page No:5.37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "neutral temperature =225 °C\n",
+ "temperature of inversin = 450 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 15; #a in uv/°C\n",
+ "b = -1/float(30); #b in uv/°C\n",
+ "\n",
+ "#E = at+bt^2\n",
+ "#dE/dT =a+2*b*t\n",
+ "#t=tn\n",
+ "#dE/dT =0\n",
+ "#calculation\n",
+ "tn = -(a/float(2*(b))) #neutral temperature in °C\n",
+ "#t1+t2 = 2*t2;\n",
+ "t2 = 2*tn #inversion temperature in °C\n",
+ " \n",
+ "#result\n",
+ "print'neutral temperature =%3.2d '%tn,'°C';\n",
+ "print'temperature of inversin = %3.2d '%t2,'°C';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.24,Page No:5.37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity of alloy =4.4533 uΩ-cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p2 = 2.75; #resistivity of alloy 1 percent of Ni in uΩ-cm\n",
+ "p1 = 1.42; #resistivity of pure copper in uΩ-cm\n",
+ "p3 = 1.98; #resistivity of alloy 3 percent of silver in uΩ-cm\n",
+ " \n",
+ "#p(Ni+Cu) =p1\n",
+ "#pCu =p2\n",
+ "#p(Cu+silver)=p3\n",
+ "#calculation\n",
+ "pNi = p2-p1;\n",
+ "p4 = (p3-p1)/float(3);\n",
+ "palloy = p1+(2*pNi)+(2*p4); #resistivity of alloy 2 percent of silver and 2 percent of nickel in uΩ-cm\n",
+ " \n",
+ "#result\n",
+ "print'resistivity of alloy =%3.4f'%palloy,'uΩ-cm';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.25,Page No:5.41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =4.174 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "M1 = 202; #mass number\n",
+ "M2 = 200; # mass number\n",
+ "Tc1 = 4.153; # temperature in K\n",
+ "alpha = 0.5;\n",
+ " \n",
+ "\n",
+ "#formula\n",
+ "#m**alpha*(Tc)= conatant\n",
+ "#calculation\n",
+ "Tc2 = ((M1**alpha)*Tc1)/float(M2**alpha); #transition temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.3f'%Tc2,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.26,Page No:5.41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical temperature =1.92 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaraion\n",
+ "Tc1 = 2.1; #temperature in K\n",
+ "M1 = 26.91; #mass number \n",
+ "M2 = 32.13; #mass number \n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#Tc*(M1**2) = constant\n",
+ "#calculation\n",
+ "Tc2 = (Tc1*(M1**(1/float(2))))/float(M2**(1/float(2))); #critical temperature in K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical temperature =%3.2f'%Tc2,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.27,Page No:5.42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =14.67 K\n",
+ "critical field =1.70e+06 A/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc1 = 1.41*10**5; #critical fields in amp/m\n",
+ "Hc2 = 4.205*10**5; # critical fields in amp/m\n",
+ "T1 = 14.1; #temperature in K\n",
+ "T2 = 12.9; # temperature in K\n",
+ "T3 = 4.2; #temperature in K\n",
+ " \n",
+ "\n",
+ "#formula\n",
+ "#Hcn =Hc*((1-((T/Tc)**4)))\n",
+ "#calculation\n",
+ "Tc =(((((Hc2*(T1**2))-(Hc1*(T2**2)))/float(Hc2-Hc1)))**(1/float(2))); #temperature in K\n",
+ "Hc0 = Hc1/float(1-((T1/float(Tc))**2)); #critical field in A/m\n",
+ "Hc2 = Hc0*(1-(T3/float(Tc))**2); #critical field in A/m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.2f'%Tc,'K';\n",
+ "print'critical field =%3.2e'%Hc2,'A/m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.28,Page No:5.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical field =4.8751e+05 A/m\n",
+ " Note: calculation mistake in texttbook in calculating Hc\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc0 = 700000; #critical field at 0 K\n",
+ "T = 4; #temperature in K\n",
+ "Tc = 7.26; #temperature in K\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "Hc = Hc0*(1-(T/float(Tc))**2); #critical field n A/m\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical field =%3.4e'%Hc,'A/m';\n",
+ "print' Note: calculation mistake in texttbook in calculating Hc';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.29,Page No:5.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical current =153.15 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc0 = 8*10**4; #critical field \n",
+ "T = 4.5; #temperature in K\n",
+ "Tc = 7.2; #temperature in K\n",
+ "D = 1*10**-3; #diameter in m\n",
+ "\n",
+ " \n",
+ "#calculation\n",
+ "Hc = Hc0*(1-(T/float(Tc))**2);\n",
+ "r = D/float(2); #radius in m\n",
+ "Ic = 2*math.pi*r*Hc; #critical current in A\n",
+ "\n",
+ "#result\n",
+ "print'critical current =%3.2f'%Ic,'A';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.30,Page No:5.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical field =0.0217 tesla\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc0 = 0.0306; #critical field at 0 K\n",
+ "T = 2; #temperature in K\n",
+ "Tc = 3.7; #temperature in K\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "Hc = Hc0*(1-(T/float(Tc))**2); #critical field in tesla\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical field =%3.4f'%Hc,'tesla';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.31,Page No:5.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =16.00 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "HcT = 1.5*10**5; # critical field for niobium at 0 K\n",
+ "Hc0 = 2*10**5; # critical field for nobium at 0 K\n",
+ "T = 8; # temperature in K\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "Tc = T/((1-(HcT/float(Hc0)))**0.5); #transition temperature in K\n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.2f'%Tc,'K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.32,Page No:5.45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transition temperature =14.47 K\n",
+ " critical field =2.50 T\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc1 = 0.176; #critical fields\n",
+ "Hc2 = 0.528; #critical fields\n",
+ "T1 = 14; #temperature in K\n",
+ "T2 = 13; #temperature in K\n",
+ "T3 = 4.2; #temperature in K\n",
+ "\n",
+ "#formula\n",
+ "#Hcn =Hc*((1-((T/Tc)**4)))\n",
+ "#calculation\n",
+ "Tc =(((((Hc2*(T1**2))-(Hc1*(T2**2)))/float(Hc2-Hc1)))**(1/float(2))); #transition temperature in K\n",
+ "Hc0 = Hc1/(1-((T1/float(Tc))**2)); #critical field in T\n",
+ "Hc2 = Hc0*(1-((T3/float(Tc))**2)); #critical field in T\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transition temperature =%3.2f '%Tc,'K';\n",
+ "print' critical field =%3.2f '%Hc2,'T';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.33,Page No:5.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical current =99.274328 A\n",
+ "Note: calculation mistake in textbook in calculation of I\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Hc = 7900; #magnetic field in A/m\n",
+ "r = 2.0*10**-3; #radius of super condutor in m\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "I = 2*math.pi*r*Hc; #critical current in A\n",
+ " \n",
+ "#result\n",
+ "print'critical current =%4f'%I,'A';\n",
+ "print'Note: calculation mistake in textbook in calculation of I';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.34,Page No:5.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current =137 Amp\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d = 10**-3; #diameter in m\n",
+ "Bc = 0.0548; # Bc in T\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "u0 = 4*math.pi*10**-7; #permiability m**2\n",
+ "r = d/float(2); #radius in m\n",
+ "Ic = (2*math.pi*r*Bc)/float(u0); #current in Amp\n",
+ "\n",
+ "#result\n",
+ "print'current =%3.2d '%Ic,'Amp';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.35,Page No:5.52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "penetration depth=11.33 nm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "D =8.5*10**3; #density in kg/m**3\n",
+ "W =93; #atomic weight \n",
+ "m =9.1*10**-31; #mass of electron in kilograms\n",
+ "e =2*1.6*10**-19; #charge of electron in coulombs\n",
+ "N =6.023*10**26; #avagadro number in (lb-mol)−1\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "u0 =4*math.pi*10**-7;\n",
+ "ns =(D*N)/float(W); #in per m**3\n",
+ "lamdaL =(m/float(u0*ns*e**2))**(1/float(2)); #London's penetration depth in nm\n",
+ "\n",
+ "#result\n",
+ "print'penetration depth=%3.2f'%(lamdaL*10**9),'nm';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.36,Page No:5.52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "penetration depth=467.9 Å\n",
+ " Note: calculation mistake in textbook in calculating lamdaT\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Tc =7.2; #temperature in K\n",
+ "lamda =380; #penetration depth in Å\n",
+ "T =5.5; #temperature in K\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "lamdaT=lamda*((1-((T/float(Tc))**4))**(-1/float(2))); #penetration depth in Å\n",
+ " \n",
+ "#result\n",
+ "print'penetration depth=%3.1f'%lamdaT,'Å';\n",
+ "print' Note: calculation mistake in textbook in calculating lamdaT';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.37,Page No:5.53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical temperature =8.48 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "lamda1 = 16; #penetration depth in nm\n",
+ "lamda2 = 96; #penetration depth in nm\n",
+ "T1 = 2.18; #temperature in K\n",
+ "T2 = 8.1; # temperature in K\n",
+ "\n",
+ "#formula\n",
+ "#lamdaT =lamda0*((1-((T/Tc)**4))**(-1/4))\n",
+ "#calculation\n",
+ "Tc = ((((lamda2*(T2**4))-(lamda1*(T1**4)))/float(lamda2-lamda1))**(1/float(4))); #critical temperature in K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'critical temperature =%3.2f '%Tc,'K';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.38,Page No:5.55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength=0.41 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Eg =30.5*1.6*10**-23; #energy gap in eV\n",
+ "h =6.6*10**-34; #planck's constant in (m**2)*kg/s\n",
+ "c =3.0*10**8; #velocity of light in m\n",
+ " \n",
+ "\n",
+ "#formula\n",
+ "#Eg=h*v\n",
+ "#calculation\n",
+ "v = Eg/float(h); #velocity in m\n",
+ "lamda = c/float(v); #wavelength in m\n",
+ "\n",
+ "#result\n",
+ "print'wavelength=%2.2f'%(lamda*10**3),'mm';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.39,Page No:5.55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "region of electromagnetic spectrum=1.14e-03 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "k =1.38*10**-23;\n",
+ "Tc =4.2; #tempetrature in K\n",
+ "h =6.6*10**-34; #planck's constant in (m**2)*kg/s\n",
+ "c =3*10**8; # velocity of light in m\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "Eg = (3*k*Tc); #energy gap in eV\n",
+ "lamda = h*c/float(Eg); #wavelngth in m\n",
+ "\n",
+ "#result\n",
+ "print'region of electromagnetic spectrum=%3.2e'%lamda,'m';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6.ipynb
new file mode 100755
index 00000000..c434a941
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6.ipynb
@@ -0,0 +1,714 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6:Electrical Conducting and Insulating Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 6.1,Page No:6.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature coefficient =0.00082 K**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R75 = 57.2; #resistance at 75 C in Ω\n",
+ "R25 = 55; #resistance at 25 C in Ω\n",
+ "t1 = 25; #temperature in C\n",
+ "t2 = 75 # temperature in C\n",
+ "\n",
+ "#formula\n",
+ "#Rt = R0*(1+(alpha*t))\n",
+ "#calculation\n",
+ "alpha = (R25-R75)/float((25*R75)-(75*R25)); #temperature cofficient\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'temperature coefficient =%3.5f'%alpha,'K**-1';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 6.2,Page No:6.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature coefficient of resistance =65.06 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R1 = 50; #resistance in ohm at temperature 15°C\n",
+ "R2 = 60; # resistance in ohm temperature 15°C\n",
+ "t1 = 15; #temperature in °C\n",
+ "alpha = 0.00425; #temperature coefficient of resistance\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#Rt = R0*(1+(alpha*t))\n",
+ "#Rt1/Rt2 = R0*(1+(alpha*t1))/R0*(1+(alpha*t2))\n",
+ "#calculation\n",
+ "R = R2/float(R1); #resistance in Ω\n",
+ "X = 1+(alpha*t1);\n",
+ "t2 = ((R*X)-1)/float(alpha); #temperature coefficient of resistance in °C\n",
+ " \n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'temperature coefficient of resistance =%3.2f'%t2,'°C';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 6.3,Page No:6.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hence temperature under normal condition is 3320.00 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "t1 = 20; #temperature in °C\n",
+ "alpha = 5*10**-3; #average temperature coefficient at 20°C \n",
+ "R1 = 8; #resistance in Ω\n",
+ "R2 = 140; #resistaance in Ω\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "t2 = t1+((R2-R1)/float(R1*alpha)); #temperature in °C\n",
+ " \n",
+ "#result\n",
+ "print'Hence temperature under normal condition is %3.2f'%t2,'°C';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 6.4,Page No:6.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity=4.80e-05 Ω-m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "l = 100; #length in cm\n",
+ "d = 0.008; #diameter of wire in cm\n",
+ "R = 95.5; #resistance in Ω\n",
+ "d = 0.008; #diameter in cm\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#R=p*l/A\n",
+ "#calculation\n",
+ "A = (math.pi*d*d)/float(4); #cross-sectional area\n",
+ "p = (R*A)/float(l); #resistivity of wire in Ω-cm\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'resistivity=%3.2e'%p,'Ω-m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 6.5,Page No:6.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "percentage conductivity=93.59 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R0 =17.5; #resistance at 0 degree c in Ω\n",
+ "alpha =0.00428; #temperature coefficient of copper in per °C\n",
+ "t =16; #temperature in °C\n",
+ "\n",
+ "\n",
+ "#calculations\n",
+ "Rt = R0*(1+(alpha*t)); #resistance at 16 °C\n",
+ "P = (R0/float(Rt))*100; #percentage conductivity at 16 °C\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'percentage conductivity=%3.2f'%P,'%';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 6.10,Page No:6.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "insulation resistance= 16 Ω\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "l = 60; #length in m\n",
+ "r2 = 38/float(2); #radius of outer cylinder in m\n",
+ "r1 = 18/float(2); #radius of inner cylinder in m\n",
+ "p = 8000; #specific resistance in Ω-m\n",
+ "\n",
+ "#calculation\n",
+ "R = (p/float(2*math.pi*l))*math.log(r2/float(r1)); #insulation resistance of liquid resistor in Ω\n",
+ "\n",
+ "#result\n",
+ "print'insulation resistance=%3.0f '%R,'Ω';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 6.11,Page No:6.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity=3.358e+13 Ω-m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d1 = 0.0018; #inner diameter in m\n",
+ "d2 = 0.005; # outer diameter in m\n",
+ "R = 1820*10**6; #insulation resistance in Ω\n",
+ "l = 3000; #length in m\n",
+ "\n",
+ "#calculations\n",
+ "r1 = d1/float(2); #inner radius in m\n",
+ "r2 = d2/float(2); #outer radius in m\n",
+ "p = (2*math.pi*l*R)/float(math.log(r2/float(r1))); #resistivity of dielectric in Ω-m\n",
+ " \n",
+ "#result\n",
+ "print'resistivity=%3.3e'%p,'Ω-m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 6.12,Page No:6.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "insulation resistance =1.606537e+08 Ω\n",
+ " Note: calculation mistake in textbook in calculating insulating resistance\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d1 = 0.05; #inner diametr in m\n",
+ "d2 = 0.07; #outer diameter in m \n",
+ "l = 2000; #length in m\n",
+ "p = 6*10**12; #specific resistance in Ω-m\n",
+ " \n",
+ "#calculations\n",
+ "r1 = d1/float(2); #inner radius in m\n",
+ "r2 = d2/float(2); #outer radius in m\n",
+ "R = (p/float(2*math.pi*l))*(math.log(r2/float(r1))); #insulation resistance\n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'insulation resistance =%1e'%R,'Ω';\n",
+ "print' Note: calculation mistake in textbook in calculating insulating resistance';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 6.13,Page No:6.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "capacitance =2.68e-10 F\n",
+ " charge=6.696e-06 C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 110*10**-3; #area in m**2\n",
+ "d = 2; #thickness in mm\n",
+ "er = 5; #relative permitivity\n",
+ "E = 12.5*10**3; #electric field strength in V/mm\n",
+ "e0 = 8.854*10**-12; #charge of electron in coulombs\n",
+ " \n",
+ " \n",
+ "#calculations\n",
+ "A = a*a; #area in m**2\n",
+ "C = e0*((er*A)/float(d*10**-3)) #capacitance in F\n",
+ "V = E*(d);\n",
+ "Q = (C)*(V) #charge on capacitor in C\n",
+ " \n",
+ "#result\n",
+ "print'capacitance =%3.2e'%C,'F';\n",
+ "print' charge=%3.3e'%Q,'C';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 6.14,Page No:6.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "charge=7.50e-02 C\n",
+ " electric flux=75.000 mc\n",
+ " electric flux density=5.21 c/m**2\n",
+ " electric field strength=1.000e+06 V/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "I = 15*10**-3; #current in A\n",
+ "t = 5; #time in s\n",
+ "V = 1000; #voltage in volts\n",
+ "d = 10**-3; #thickness in m\n",
+ "a = 120*10**-3;\n",
+ "\n",
+ "#calculation\n",
+ "A = a**2 #area in m**2\n",
+ "Q = I*t; #charge on capacitor in C\n",
+ "#since charge and electric field are equal\n",
+ "phi = Q; #electric flux in mc\n",
+ "D = Q/float(A); #electric flux density in c/m**2\n",
+ "E = V/float(d); #electric field strength in dielectric\n",
+ "\n",
+ "#result\n",
+ "print'charge=%3.2e'%Q,'C';\n",
+ "print' electric flux=%4.3f'%(phi*10**3),'mc';\n",
+ "print' electric flux density=%3.2f'%D,'c/m**2';\n",
+ "print' electric field strength=%2.3e'%E,'V/m';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 6.15,Page No:6.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "capacitance=7.0124e-09 F\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n = 12; #number of plates\n",
+ "er = 4; #relative permitivty \n",
+ "d = 1.0*10**-3; #distance between plates in m\n",
+ "A = 120*150*10**-6; #area in m**2\n",
+ "e0 = 8.854*10**-12; # in F/m\n",
+ "\n",
+ "#calculation\n",
+ "c = (n-1)*e0*er*A/float(d); #capacitance in F\n",
+ " \n",
+ "#result\n",
+ "print'capacitance=%3.4e'%c,'F';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 6.16,Page No:6.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "thickness=0.82 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e0 = 40000; #dielectric strength in volts/m\n",
+ "d = 33000; #thickness in kV\n",
+ "\n",
+ "#calculations\n",
+ "t = d/float(e0); #required thickness of insulation in mm\n",
+ " \n",
+ "#result\n",
+ "print'thickness=%3.2f'%t,'mm';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#Example 6.17,Page No:6.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "area = 1.30 m**2\n",
+ " breakdown voltage=1.8e+04 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math \n",
+ "\n",
+ "#variable declaration\n",
+ "C = 0.03*10**-6; #capacitance in F\n",
+ "d = 0.001; #thickness in m\n",
+ "er = 2.6; #dielectric constant\n",
+ "e0 = 8.85*10**-12; #dielectric strength \n",
+ "E0 = 1.8*10**7 \n",
+ " \n",
+ "#formula\n",
+ "#C=e0*er*A/d\n",
+ "#e0=v/d\n",
+ "#calculation\n",
+ "A = (C*d)/float(e0*er); #area of dielectric needed in m**2\n",
+ "Vb = E0*d; #breakdown voltage in m\n",
+ "\n",
+ "#result\n",
+ "print'area = %3.2f'%A,'m**2';\n",
+ "print' breakdown voltage=%3.1e'%Vb,'V';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 6.18,Page No:6.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric loss=5684.1 watts\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "C = 0.035*10**-6; #capacitance in F\n",
+ "tangent = 5*10**-4; #power factor \n",
+ "f = 25*10**3; #frequency in Hz\n",
+ "I = 250; #current in A\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "V = I/float(2*math.pi*f*C) #voltage across capacitor in volts\n",
+ "P = V*I*tangent; #dielectric loss in watts\n",
+ "\n",
+ "#result\n",
+ "print'dielectric loss=%3.1f'%P,'watts';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 6.19,Page No:6.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "area=1.129433e-02 m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Q = 20*10**-6; #charge of electron in coulomb\n",
+ "V = 10*10**3; #potential in V\n",
+ "e0 = 8.854*10**-12; #absolute permitivity\n",
+ "d = 5*10**-4; #separation between plates in m\n",
+ "er = 10; #dielectric constant\n",
+ "\n",
+ "#formula\n",
+ "#Q=CV\n",
+ "#C=er*e0*A/d\n",
+ "C = Q/float(V);\n",
+ "A = (C*d)/float(er*e0); #area in m**2\n",
+ " \n",
+ "#result\n",
+ "print'area=%1e'%A,'m**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 6.20,Page No:6.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electrial conductivity=2.53e+07 (Ω-m)**-1\n",
+ "lorentz number = 185.33 W/mK\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n = 3.0*10**28; #number of electrons per m**3\n",
+ "t = 3*10**-14; #time in s\n",
+ "m = 9.1*10**-31; #mass of electron in kg\n",
+ "L = 2.44*10**-8; #lorentz number in ohm W/K**2\n",
+ "T = 300; #temperature in kelvin \n",
+ "e = 1.6*10**-19; #charge of electron in coulomb\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "sigma = (n*(e**2)*t)/float(m); #electrical conductivity in (ohm-m)**-1\n",
+ "K = sigma*T*L;\n",
+ " \n",
+ "#result\n",
+ "print'electrial conductivity=%3.2e'%sigma,'(Ω-m)**-1';\n",
+ "print'lorentz number = %3.2f'%K,'W/mK';\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6_1.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6_1.ipynb
new file mode 100644
index 00000000..e7b833fc
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6_1.ipynb
@@ -0,0 +1,714 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6:Electrical Conducting and Insulating Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1,Page No:6.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature coefficient =0.00082 K**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R75 = 57.2; #resistance at 75 C in Ω\n",
+ "R25 = 55; #resistance at 25 C in Ω\n",
+ "t1 = 25; #temperature in C\n",
+ "t2 = 75 # temperature in C\n",
+ "\n",
+ "#formula\n",
+ "#Rt = R0*(1+(alpha*t))\n",
+ "#calculation\n",
+ "alpha = (R25-R75)/float((25*R75)-(75*R25)); #temperature cofficient\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'temperature coefficient =%3.5f'%alpha,'K**-1';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2,Page No:6.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature coefficient of resistance =65.06 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R1 = 50; #resistance in ohm at temperature 15°C\n",
+ "R2 = 60; # resistance in ohm temperature 15°C\n",
+ "t1 = 15; #temperature in °C\n",
+ "alpha = 0.00425; #temperature coefficient of resistance\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#Rt = R0*(1+(alpha*t))\n",
+ "#Rt1/Rt2 = R0*(1+(alpha*t1))/R0*(1+(alpha*t2))\n",
+ "#calculation\n",
+ "R = R2/float(R1); #resistance in Ω\n",
+ "X = 1+(alpha*t1);\n",
+ "t2 = ((R*X)-1)/float(alpha); #temperature coefficient of resistance in °C\n",
+ " \n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'temperature coefficient of resistance =%3.2f'%t2,'°C';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3,Page No:6.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hence temperature under normal condition is 3320.00 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "t1 = 20; #temperature in °C\n",
+ "alpha = 5*10**-3; #average temperature coefficient at 20°C \n",
+ "R1 = 8; #resistance in Ω\n",
+ "R2 = 140; #resistaance in Ω\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "t2 = t1+((R2-R1)/float(R1*alpha)); #temperature in °C\n",
+ " \n",
+ "#result\n",
+ "print'Hence temperature under normal condition is %3.2f'%t2,'°C';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4,Page No:6.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity=4.80e-05 Ω-m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "l = 100; #length in cm\n",
+ "d = 0.008; #diameter of wire in cm\n",
+ "R = 95.5; #resistance in Ω\n",
+ "d = 0.008; #diameter in cm\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#R=p*l/A\n",
+ "#calculation\n",
+ "A = (math.pi*d*d)/float(4); #cross-sectional area\n",
+ "p = (R*A)/float(l); #resistivity of wire in Ω-cm\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'resistivity=%3.2e'%p,'Ω-m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5,Page No:6.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "percentage conductivity=93.59 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R0 =17.5; #resistance at 0 degree c in Ω\n",
+ "alpha =0.00428; #temperature coefficient of copper in per °C\n",
+ "t =16; #temperature in °C\n",
+ "\n",
+ "\n",
+ "#calculations\n",
+ "Rt = R0*(1+(alpha*t)); #resistance at 16 °C\n",
+ "P = (R0/float(Rt))*100; #percentage conductivity at 16 °C\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'percentage conductivity=%3.2f'%P,'%';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.10,Page No:6.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "insulation resistance= 16 Ω\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "l = 60; #length in m\n",
+ "r2 = 38/float(2); #radius of outer cylinder in m\n",
+ "r1 = 18/float(2); #radius of inner cylinder in m\n",
+ "p = 8000; #specific resistance in Ω-m\n",
+ "\n",
+ "#calculation\n",
+ "R = (p/float(2*math.pi*l))*math.log(r2/float(r1)); #insulation resistance of liquid resistor in Ω\n",
+ "\n",
+ "#result\n",
+ "print'insulation resistance=%3.0f '%R,'Ω';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.11,Page No:6.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity=3.358e+13 Ω-m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d1 = 0.0018; #inner diameter in m\n",
+ "d2 = 0.005; # outer diameter in m\n",
+ "R = 1820*10**6; #insulation resistance in Ω\n",
+ "l = 3000; #length in m\n",
+ "\n",
+ "#calculations\n",
+ "r1 = d1/float(2); #inner radius in m\n",
+ "r2 = d2/float(2); #outer radius in m\n",
+ "p = (2*math.pi*l*R)/float(math.log(r2/float(r1))); #resistivity of dielectric in Ω-m\n",
+ " \n",
+ "#result\n",
+ "print'resistivity=%3.3e'%p,'Ω-m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.12,Page No:6.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "insulation resistance =1.606537e+08 Ω\n",
+ " Note: calculation mistake in textbook in calculating insulating resistance\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d1 = 0.05; #inner diametr in m\n",
+ "d2 = 0.07; #outer diameter in m \n",
+ "l = 2000; #length in m\n",
+ "p = 6*10**12; #specific resistance in Ω-m\n",
+ " \n",
+ "#calculations\n",
+ "r1 = d1/float(2); #inner radius in m\n",
+ "r2 = d2/float(2); #outer radius in m\n",
+ "R = (p/float(2*math.pi*l))*(math.log(r2/float(r1))); #insulation resistance\n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'insulation resistance =%1e'%R,'Ω';\n",
+ "print' Note: calculation mistake in textbook in calculating insulating resistance';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.13,Page No:6.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "capacitance =2.68e-10 F\n",
+ " charge=6.696e-06 C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 110*10**-3; #area in m**2\n",
+ "d = 2; #thickness in mm\n",
+ "er = 5; #relative permitivity\n",
+ "E = 12.5*10**3; #electric field strength in V/mm\n",
+ "e0 = 8.854*10**-12; #charge of electron in coulombs\n",
+ " \n",
+ " \n",
+ "#calculations\n",
+ "A = a*a; #area in m**2\n",
+ "C = e0*((er*A)/float(d*10**-3)) #capacitance in F\n",
+ "V = E*(d);\n",
+ "Q = (C)*(V) #charge on capacitor in C\n",
+ " \n",
+ "#result\n",
+ "print'capacitance =%3.2e'%C,'F';\n",
+ "print' charge=%3.3e'%Q,'C';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.14,Page No:6.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "charge=7.50e-02 C\n",
+ " electric flux=75.000 mc\n",
+ " electric flux density=5.21 c/m**2\n",
+ " electric field strength=1.000e+06 V/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "I = 15*10**-3; #current in A\n",
+ "t = 5; #time in s\n",
+ "V = 1000; #voltage in volts\n",
+ "d = 10**-3; #thickness in m\n",
+ "a = 120*10**-3;\n",
+ "\n",
+ "#calculation\n",
+ "A = a**2 #area in m**2\n",
+ "Q = I*t; #charge on capacitor in C\n",
+ "#since charge and electric field are equal\n",
+ "phi = Q; #electric flux in mc\n",
+ "D = Q/float(A); #electric flux density in c/m**2\n",
+ "E = V/float(d); #electric field strength in dielectric\n",
+ "\n",
+ "#result\n",
+ "print'charge=%3.2e'%Q,'C';\n",
+ "print' electric flux=%4.3f'%(phi*10**3),'mc';\n",
+ "print' electric flux density=%3.2f'%D,'c/m**2';\n",
+ "print' electric field strength=%2.3e'%E,'V/m';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.15,Page No:6.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "capacitance=7.0124e-09 F\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n = 12; #number of plates\n",
+ "er = 4; #relative permitivty \n",
+ "d = 1.0*10**-3; #distance between plates in m\n",
+ "A = 120*150*10**-6; #area in m**2\n",
+ "e0 = 8.854*10**-12; # in F/m\n",
+ "\n",
+ "#calculation\n",
+ "c = (n-1)*e0*er*A/float(d); #capacitance in F\n",
+ " \n",
+ "#result\n",
+ "print'capacitance=%3.4e'%c,'F';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.16,Page No:6.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "thickness=0.82 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e0 = 40000; #dielectric strength in volts/m\n",
+ "d = 33000; #thickness in kV\n",
+ "\n",
+ "#calculations\n",
+ "t = d/float(e0); #required thickness of insulation in mm\n",
+ " \n",
+ "#result\n",
+ "print'thickness=%3.2f'%t,'mm';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 6.17,Page No:6.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "area = 1.30 m**2\n",
+ " breakdown voltage=1.8e+04 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math \n",
+ "\n",
+ "#variable declaration\n",
+ "C = 0.03*10**-6; #capacitance in F\n",
+ "d = 0.001; #thickness in m\n",
+ "er = 2.6; #dielectric constant\n",
+ "e0 = 8.85*10**-12; #dielectric strength \n",
+ "E0 = 1.8*10**7 \n",
+ " \n",
+ "#formula\n",
+ "#C=e0*er*A/d\n",
+ "#e0=v/d\n",
+ "#calculation\n",
+ "A = (C*d)/float(e0*er); #area of dielectric needed in m**2\n",
+ "Vb = E0*d; #breakdown voltage in m\n",
+ "\n",
+ "#result\n",
+ "print'area = %3.2f'%A,'m**2';\n",
+ "print' breakdown voltage=%3.1e'%Vb,'V';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.18,Page No:6.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric loss=5684.1 watts\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "C = 0.035*10**-6; #capacitance in F\n",
+ "tangent = 5*10**-4; #power factor \n",
+ "f = 25*10**3; #frequency in Hz\n",
+ "I = 250; #current in A\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "V = I/float(2*math.pi*f*C) #voltage across capacitor in volts\n",
+ "P = V*I*tangent; #dielectric loss in watts\n",
+ "\n",
+ "#result\n",
+ "print'dielectric loss=%3.1f'%P,'watts';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 6.19,Page No:6.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "area=1.129433e-02 m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Q = 20*10**-6; #charge of electron in coulomb\n",
+ "V = 10*10**3; #potential in V\n",
+ "e0 = 8.854*10**-12; #absolute permitivity\n",
+ "d = 5*10**-4; #separation between plates in m\n",
+ "er = 10; #dielectric constant\n",
+ "\n",
+ "#formula\n",
+ "#Q=CV\n",
+ "#C=er*e0*A/d\n",
+ "C = Q/float(V);\n",
+ "A = (C*d)/float(er*e0); #area in m**2\n",
+ " \n",
+ "#result\n",
+ "print'area=%1e'%A,'m**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 6.20,Page No:6.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electrial conductivity=2.53e+07 (Ω-m)**-1\n",
+ "lorentz number = 185.33 W/mK\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n = 3.0*10**28; #number of electrons per m**3\n",
+ "t = 3*10**-14; #time in s\n",
+ "m = 9.1*10**-31; #mass of electron in kg\n",
+ "L = 2.44*10**-8; #lorentz number in ohm W/K**2\n",
+ "T = 300; #temperature in kelvin \n",
+ "e = 1.6*10**-19; #charge of electron in coulomb\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "sigma = (n*(e**2)*t)/float(m); #electrical conductivity in (ohm-m)**-1\n",
+ "K = sigma*T*L;\n",
+ " \n",
+ "#result\n",
+ "print'electrial conductivity=%3.2e'%sigma,'(Ω-m)**-1';\n",
+ "print'lorentz number = %3.2f'%K,'W/mK';\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6_2.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6_2.ipynb
new file mode 100644
index 00000000..e7b833fc
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6_2.ipynb
@@ -0,0 +1,714 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6:Electrical Conducting and Insulating Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1,Page No:6.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature coefficient =0.00082 K**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R75 = 57.2; #resistance at 75 C in Ω\n",
+ "R25 = 55; #resistance at 25 C in Ω\n",
+ "t1 = 25; #temperature in C\n",
+ "t2 = 75 # temperature in C\n",
+ "\n",
+ "#formula\n",
+ "#Rt = R0*(1+(alpha*t))\n",
+ "#calculation\n",
+ "alpha = (R25-R75)/float((25*R75)-(75*R25)); #temperature cofficient\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'temperature coefficient =%3.5f'%alpha,'K**-1';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2,Page No:6.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature coefficient of resistance =65.06 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R1 = 50; #resistance in ohm at temperature 15°C\n",
+ "R2 = 60; # resistance in ohm temperature 15°C\n",
+ "t1 = 15; #temperature in °C\n",
+ "alpha = 0.00425; #temperature coefficient of resistance\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#Rt = R0*(1+(alpha*t))\n",
+ "#Rt1/Rt2 = R0*(1+(alpha*t1))/R0*(1+(alpha*t2))\n",
+ "#calculation\n",
+ "R = R2/float(R1); #resistance in Ω\n",
+ "X = 1+(alpha*t1);\n",
+ "t2 = ((R*X)-1)/float(alpha); #temperature coefficient of resistance in °C\n",
+ " \n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'temperature coefficient of resistance =%3.2f'%t2,'°C';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3,Page No:6.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hence temperature under normal condition is 3320.00 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "t1 = 20; #temperature in °C\n",
+ "alpha = 5*10**-3; #average temperature coefficient at 20°C \n",
+ "R1 = 8; #resistance in Ω\n",
+ "R2 = 140; #resistaance in Ω\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "t2 = t1+((R2-R1)/float(R1*alpha)); #temperature in °C\n",
+ " \n",
+ "#result\n",
+ "print'Hence temperature under normal condition is %3.2f'%t2,'°C';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4,Page No:6.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity=4.80e-05 Ω-m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "l = 100; #length in cm\n",
+ "d = 0.008; #diameter of wire in cm\n",
+ "R = 95.5; #resistance in Ω\n",
+ "d = 0.008; #diameter in cm\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#R=p*l/A\n",
+ "#calculation\n",
+ "A = (math.pi*d*d)/float(4); #cross-sectional area\n",
+ "p = (R*A)/float(l); #resistivity of wire in Ω-cm\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'resistivity=%3.2e'%p,'Ω-m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5,Page No:6.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "percentage conductivity=93.59 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R0 =17.5; #resistance at 0 degree c in Ω\n",
+ "alpha =0.00428; #temperature coefficient of copper in per °C\n",
+ "t =16; #temperature in °C\n",
+ "\n",
+ "\n",
+ "#calculations\n",
+ "Rt = R0*(1+(alpha*t)); #resistance at 16 °C\n",
+ "P = (R0/float(Rt))*100; #percentage conductivity at 16 °C\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'percentage conductivity=%3.2f'%P,'%';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.10,Page No:6.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "insulation resistance= 16 Ω\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "l = 60; #length in m\n",
+ "r2 = 38/float(2); #radius of outer cylinder in m\n",
+ "r1 = 18/float(2); #radius of inner cylinder in m\n",
+ "p = 8000; #specific resistance in Ω-m\n",
+ "\n",
+ "#calculation\n",
+ "R = (p/float(2*math.pi*l))*math.log(r2/float(r1)); #insulation resistance of liquid resistor in Ω\n",
+ "\n",
+ "#result\n",
+ "print'insulation resistance=%3.0f '%R,'Ω';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.11,Page No:6.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity=3.358e+13 Ω-m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d1 = 0.0018; #inner diameter in m\n",
+ "d2 = 0.005; # outer diameter in m\n",
+ "R = 1820*10**6; #insulation resistance in Ω\n",
+ "l = 3000; #length in m\n",
+ "\n",
+ "#calculations\n",
+ "r1 = d1/float(2); #inner radius in m\n",
+ "r2 = d2/float(2); #outer radius in m\n",
+ "p = (2*math.pi*l*R)/float(math.log(r2/float(r1))); #resistivity of dielectric in Ω-m\n",
+ " \n",
+ "#result\n",
+ "print'resistivity=%3.3e'%p,'Ω-m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.12,Page No:6.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "insulation resistance =1.606537e+08 Ω\n",
+ " Note: calculation mistake in textbook in calculating insulating resistance\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d1 = 0.05; #inner diametr in m\n",
+ "d2 = 0.07; #outer diameter in m \n",
+ "l = 2000; #length in m\n",
+ "p = 6*10**12; #specific resistance in Ω-m\n",
+ " \n",
+ "#calculations\n",
+ "r1 = d1/float(2); #inner radius in m\n",
+ "r2 = d2/float(2); #outer radius in m\n",
+ "R = (p/float(2*math.pi*l))*(math.log(r2/float(r1))); #insulation resistance\n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'insulation resistance =%1e'%R,'Ω';\n",
+ "print' Note: calculation mistake in textbook in calculating insulating resistance';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.13,Page No:6.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "capacitance =2.68e-10 F\n",
+ " charge=6.696e-06 C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 110*10**-3; #area in m**2\n",
+ "d = 2; #thickness in mm\n",
+ "er = 5; #relative permitivity\n",
+ "E = 12.5*10**3; #electric field strength in V/mm\n",
+ "e0 = 8.854*10**-12; #charge of electron in coulombs\n",
+ " \n",
+ " \n",
+ "#calculations\n",
+ "A = a*a; #area in m**2\n",
+ "C = e0*((er*A)/float(d*10**-3)) #capacitance in F\n",
+ "V = E*(d);\n",
+ "Q = (C)*(V) #charge on capacitor in C\n",
+ " \n",
+ "#result\n",
+ "print'capacitance =%3.2e'%C,'F';\n",
+ "print' charge=%3.3e'%Q,'C';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.14,Page No:6.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "charge=7.50e-02 C\n",
+ " electric flux=75.000 mc\n",
+ " electric flux density=5.21 c/m**2\n",
+ " electric field strength=1.000e+06 V/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "I = 15*10**-3; #current in A\n",
+ "t = 5; #time in s\n",
+ "V = 1000; #voltage in volts\n",
+ "d = 10**-3; #thickness in m\n",
+ "a = 120*10**-3;\n",
+ "\n",
+ "#calculation\n",
+ "A = a**2 #area in m**2\n",
+ "Q = I*t; #charge on capacitor in C\n",
+ "#since charge and electric field are equal\n",
+ "phi = Q; #electric flux in mc\n",
+ "D = Q/float(A); #electric flux density in c/m**2\n",
+ "E = V/float(d); #electric field strength in dielectric\n",
+ "\n",
+ "#result\n",
+ "print'charge=%3.2e'%Q,'C';\n",
+ "print' electric flux=%4.3f'%(phi*10**3),'mc';\n",
+ "print' electric flux density=%3.2f'%D,'c/m**2';\n",
+ "print' electric field strength=%2.3e'%E,'V/m';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.15,Page No:6.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "capacitance=7.0124e-09 F\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n = 12; #number of plates\n",
+ "er = 4; #relative permitivty \n",
+ "d = 1.0*10**-3; #distance between plates in m\n",
+ "A = 120*150*10**-6; #area in m**2\n",
+ "e0 = 8.854*10**-12; # in F/m\n",
+ "\n",
+ "#calculation\n",
+ "c = (n-1)*e0*er*A/float(d); #capacitance in F\n",
+ " \n",
+ "#result\n",
+ "print'capacitance=%3.4e'%c,'F';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.16,Page No:6.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "thickness=0.82 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e0 = 40000; #dielectric strength in volts/m\n",
+ "d = 33000; #thickness in kV\n",
+ "\n",
+ "#calculations\n",
+ "t = d/float(e0); #required thickness of insulation in mm\n",
+ " \n",
+ "#result\n",
+ "print'thickness=%3.2f'%t,'mm';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 6.17,Page No:6.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "area = 1.30 m**2\n",
+ " breakdown voltage=1.8e+04 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math \n",
+ "\n",
+ "#variable declaration\n",
+ "C = 0.03*10**-6; #capacitance in F\n",
+ "d = 0.001; #thickness in m\n",
+ "er = 2.6; #dielectric constant\n",
+ "e0 = 8.85*10**-12; #dielectric strength \n",
+ "E0 = 1.8*10**7 \n",
+ " \n",
+ "#formula\n",
+ "#C=e0*er*A/d\n",
+ "#e0=v/d\n",
+ "#calculation\n",
+ "A = (C*d)/float(e0*er); #area of dielectric needed in m**2\n",
+ "Vb = E0*d; #breakdown voltage in m\n",
+ "\n",
+ "#result\n",
+ "print'area = %3.2f'%A,'m**2';\n",
+ "print' breakdown voltage=%3.1e'%Vb,'V';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.18,Page No:6.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric loss=5684.1 watts\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "C = 0.035*10**-6; #capacitance in F\n",
+ "tangent = 5*10**-4; #power factor \n",
+ "f = 25*10**3; #frequency in Hz\n",
+ "I = 250; #current in A\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "V = I/float(2*math.pi*f*C) #voltage across capacitor in volts\n",
+ "P = V*I*tangent; #dielectric loss in watts\n",
+ "\n",
+ "#result\n",
+ "print'dielectric loss=%3.1f'%P,'watts';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 6.19,Page No:6.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "area=1.129433e-02 m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Q = 20*10**-6; #charge of electron in coulomb\n",
+ "V = 10*10**3; #potential in V\n",
+ "e0 = 8.854*10**-12; #absolute permitivity\n",
+ "d = 5*10**-4; #separation between plates in m\n",
+ "er = 10; #dielectric constant\n",
+ "\n",
+ "#formula\n",
+ "#Q=CV\n",
+ "#C=er*e0*A/d\n",
+ "C = Q/float(V);\n",
+ "A = (C*d)/float(er*e0); #area in m**2\n",
+ " \n",
+ "#result\n",
+ "print'area=%1e'%A,'m**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 6.20,Page No:6.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electrial conductivity=2.53e+07 (Ω-m)**-1\n",
+ "lorentz number = 185.33 W/mK\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n = 3.0*10**28; #number of electrons per m**3\n",
+ "t = 3*10**-14; #time in s\n",
+ "m = 9.1*10**-31; #mass of electron in kg\n",
+ "L = 2.44*10**-8; #lorentz number in ohm W/K**2\n",
+ "T = 300; #temperature in kelvin \n",
+ "e = 1.6*10**-19; #charge of electron in coulomb\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "sigma = (n*(e**2)*t)/float(m); #electrical conductivity in (ohm-m)**-1\n",
+ "K = sigma*T*L;\n",
+ " \n",
+ "#result\n",
+ "print'electrial conductivity=%3.2e'%sigma,'(Ω-m)**-1';\n",
+ "print'lorentz number = %3.2f'%K,'W/mK';\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6_3.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6_3.ipynb
new file mode 100644
index 00000000..50f98373
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6_3.ipynb
@@ -0,0 +1,705 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6:Electrical Conducting and Insulating Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1,Page No:6.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature coefficient =0.00082 K**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R75 = 57.2; #resistance at 75 C in Ω\n",
+ "R25 = 55; #resistance at 25 C in Ω\n",
+ "t1 = 25; #temperature in C\n",
+ "t2 = 75 # temperature in C\n",
+ "\n",
+ "#formula\n",
+ "#Rt = R0*(1+(alpha*t))\n",
+ "#calculation\n",
+ "alpha = (R25-R75)/float((25*R75)-(75*R25)); #temperature cofficient\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'temperature coefficient =%3.5f'%alpha,'K**-1';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2,Page No:6.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature coefficient of resistance =65.06 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R1 = 50; #resistance in ohm at temperature 15°C\n",
+ "R2 = 60; # resistance in ohm temperature 15°C\n",
+ "t1 = 15; #temperature in °C\n",
+ "alpha = 0.00425; #temperature coefficient of resistance\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#Rt = R0*(1+(alpha*t))\n",
+ "#Rt1/Rt2 = R0*(1+(alpha*t1))/R0*(1+(alpha*t2))\n",
+ "#calculation\n",
+ "R = R2/float(R1); #resistance in Ω\n",
+ "X = 1+(alpha*t1);\n",
+ "t2 = ((R*X)-1)/float(alpha); #temperature coefficient of resistance in °C\n",
+ " \n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'temperature coefficient of resistance =%3.2f'%t2,'°C';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3,Page No:6.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hence temperature under normal condition is 3320.00 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "t1 = 20; #temperature in °C\n",
+ "alpha = 5*10**-3; #average temperature coefficient at 20°C \n",
+ "R1 = 8; #resistance in Ω\n",
+ "R2 = 140; #resistaance in Ω\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "t2 = t1+((R2-R1)/float(R1*alpha)); #temperature in °C\n",
+ " \n",
+ "#result\n",
+ "print'Hence temperature under normal condition is %3.2f'%t2,'°C';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4,Page No:6.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity=4.80e-05 Ω-m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "l = 100; #length in cm\n",
+ "d = 0.008; #diameter of wire in cm\n",
+ "R = 95.5; #resistance in Ω\n",
+ "d = 0.008; #diameter in cm\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#R=p*l/A\n",
+ "#calculation\n",
+ "A = (math.pi*d*d)/float(4); #cross-sectional area\n",
+ "p = (R*A)/float(l); #resistivity of wire in Ω-cm\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'resistivity=%3.2e'%p,'Ω-m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5,Page No:6.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "percentage conductivity=93.59 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R0 =17.5; #resistance at 0 degree c in Ω\n",
+ "alpha =0.00428; #temperature coefficient of copper in per °C\n",
+ "t =16; #temperature in °C\n",
+ "\n",
+ "\n",
+ "#calculations\n",
+ "Rt = R0*(1+(alpha*t)); #resistance at 16 °C\n",
+ "P = (R0/float(Rt))*100; #percentage conductivity at 16 °C\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'percentage conductivity=%3.2f'%P,'%';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.10,Page No:6.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "insulation resistance= 16 Ω\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "l = 60; #length in m\n",
+ "r2 = 38/float(2); #radius of outer cylinder in m\n",
+ "r1 = 18/float(2); #radius of inner cylinder in m\n",
+ "p = 8000; #specific resistance in Ω-m\n",
+ "\n",
+ "#calculation\n",
+ "R = (p/float(2*math.pi*l))*math.log(r2/float(r1)); #insulation resistance of liquid resistor in Ω\n",
+ "\n",
+ "#result\n",
+ "print'insulation resistance=%3.0f '%R,'Ω';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.11,Page No:6.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity=3.358e+13 Ω-m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d1 = 0.0018; #inner diameter in m\n",
+ "d2 = 0.005; # outer diameter in m\n",
+ "R = 1820*10**6; #insulation resistance in Ω\n",
+ "l = 3000; #length in m\n",
+ "\n",
+ "#calculations\n",
+ "r1 = d1/float(2); #inner radius in m\n",
+ "r2 = d2/float(2); #outer radius in m\n",
+ "p = (2*math.pi*l*R)/float(math.log(r2/float(r1))); #resistivity of dielectric in Ω-m\n",
+ " \n",
+ "#result\n",
+ "print'resistivity=%3.3e'%p,'Ω-m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.12,Page No:6.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "insulation resistance =1.606537e+08 Ω\n",
+ " Note: calculation mistake in textbook in calculating insulating resistance\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d1 = 0.05; #inner diametr in m\n",
+ "d2 = 0.07; #outer diameter in m \n",
+ "l = 2000; #length in m\n",
+ "p = 6*10**12; #specific resistance in Ω-m\n",
+ " \n",
+ "#calculations\n",
+ "r1 = d1/float(2); #inner radius in m\n",
+ "r2 = d2/float(2); #outer radius in m\n",
+ "R = (p/float(2*math.pi*l))*(math.log(r2/float(r1))); #insulation resistance\n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'insulation resistance =%1e'%R,'Ω';\n",
+ "print' Note: calculation mistake in textbook in calculating insulating resistance';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.13,Page No:6.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "capacitance =2.68e-10 F\n",
+ " charge=6.696e-06 C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 110*10**-3; #area in m**2\n",
+ "d = 2; #thickness in mm\n",
+ "er = 5; #relative permitivity\n",
+ "E = 12.5*10**3; #electric field strength in V/mm\n",
+ "e0 = 8.854*10**-12; #charge of electron in coulombs\n",
+ " \n",
+ " \n",
+ "#calculations\n",
+ "A = a*a; #area in m**2\n",
+ "C = e0*((er*A)/float(d*10**-3)) #capacitance in F\n",
+ "V = E*(d);\n",
+ "Q = (C)*(V) #charge on capacitor in C\n",
+ " \n",
+ "#result\n",
+ "print'capacitance =%3.2e'%C,'F';\n",
+ "print' charge=%3.3e'%Q,'C';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.14,Page No:6.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "charge=7.50e-02 C\n",
+ " electric flux=75.000 mc\n",
+ " electric flux density=5.21 c/m**2\n",
+ " electric field strength=1.000e+06 V/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "I = 15*10**-3; #current in A\n",
+ "t = 5; #time in s\n",
+ "V = 1000; #voltage in volts\n",
+ "d = 10**-3; #thickness in m\n",
+ "a = 120*10**-3;\n",
+ "\n",
+ "#calculation\n",
+ "A = a**2 #area in m**2\n",
+ "Q = I*t; #charge on capacitor in C\n",
+ "#since charge and electric field are equal\n",
+ "phi = Q; #electric flux in mc\n",
+ "D = Q/float(A); #electric flux density in c/m**2\n",
+ "E = V/float(d); #electric field strength in dielectric\n",
+ "\n",
+ "#result\n",
+ "print'charge=%3.2e'%Q,'C';\n",
+ "print' electric flux=%4.3f'%(phi*10**3),'mc';\n",
+ "print' electric flux density=%3.2f'%D,'c/m**2';\n",
+ "print' electric field strength=%2.3e'%E,'V/m';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.15,Page No:6.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "capacitance=7.0124e-09 F\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n = 12; #number of plates\n",
+ "er = 4; #relative permitivty \n",
+ "d = 1.0*10**-3; #distance between plates in m\n",
+ "A = 120*150*10**-6; #area in m**2\n",
+ "e0 = 8.854*10**-12; # in F/m\n",
+ "\n",
+ "#calculation\n",
+ "c = (n-1)*e0*er*A/float(d); #capacitance in F\n",
+ " \n",
+ "#result\n",
+ "print'capacitance=%3.4e'%c,'F';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.16,Page No:6.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "thickness=0.82 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e0 = 40000; #dielectric strength in volts/m\n",
+ "d = 33000; #thickness in kV\n",
+ "\n",
+ "#calculations\n",
+ "t = d/float(e0); #required thickness of insulation in mm\n",
+ " \n",
+ "#result\n",
+ "print'thickness=%3.2f'%t,'mm';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 6.17,Page No:6.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "area = 1.30 m**2\n",
+ " breakdown voltage=1.8e+04 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math \n",
+ "\n",
+ "#variable declaration\n",
+ "C = 0.03*10**-6; #capacitance in F\n",
+ "d = 0.001; #thickness in m\n",
+ "er = 2.6; #dielectric constant\n",
+ "e0 = 8.85*10**-12; #dielectric strength \n",
+ "E0 = 1.8*10**7 \n",
+ " \n",
+ "#formula\n",
+ "#C=e0*er*A/d\n",
+ "#e0=v/d\n",
+ "#calculation\n",
+ "A = (C*d)/float(e0*er); #area of dielectric needed in m**2\n",
+ "Vb = E0*d; #breakdown voltage in m\n",
+ "\n",
+ "#result\n",
+ "print'area = %3.2f'%A,'m**2';\n",
+ "print' breakdown voltage=%3.1e'%Vb,'V';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.18,Page No:6.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric loss=5684.1 watts\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "C = 0.035*10**-6; #capacitance in F\n",
+ "tangent = 5*10**-4; #power factor \n",
+ "f = 25*10**3; #frequency in Hz\n",
+ "I = 250; #current in A\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "V = I/float(2*math.pi*f*C) #voltage across capacitor in volts\n",
+ "P = V*I*tangent; #dielectric loss in watts\n",
+ "\n",
+ "#result\n",
+ "print'dielectric loss=%3.1f'%P,'watts';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.19,Page No:6.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "area=1.129433e-02 m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Q = 20*10**-6; #charge of electron in coulomb\n",
+ "V = 10*10**3; #potential in V\n",
+ "e0 = 8.854*10**-12; #absolute permitivity\n",
+ "d = 5*10**-4; #separation between plates in m\n",
+ "er = 10; #dielectric constant\n",
+ "\n",
+ "#formula\n",
+ "#Q=CV\n",
+ "#C=er*e0*A/d\n",
+ "C = Q/float(V);\n",
+ "A = (C*d)/float(er*e0); #area in m**2\n",
+ " \n",
+ "#result\n",
+ "print'area=%1e'%A,'m**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.20,Page No:6.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electrial conductivity=2.53e+07 (Ω-m)**-1\n",
+ "lorentz number = 185.33 W/mK\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n = 3.0*10**28; #number of electrons per m**3\n",
+ "t = 3*10**-14; #time in s\n",
+ "m = 9.1*10**-31; #mass of electron in kg\n",
+ "L = 2.44*10**-8; #lorentz number in ohm W/K**2\n",
+ "T = 300; #temperature in kelvin \n",
+ "e = 1.6*10**-19; #charge of electron in coulomb\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "sigma = (n*(e**2)*t)/float(m); #electrical conductivity in (ohm-m)**-1\n",
+ "K = sigma*T*L;\n",
+ " \n",
+ "#result\n",
+ "print'electrial conductivity=%3.2e'%sigma,'(Ω-m)**-1';\n",
+ "print'lorentz number = %3.2f'%K,'W/mK';\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6_4.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6_4.ipynb
new file mode 100644
index 00000000..50f98373
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6_4.ipynb
@@ -0,0 +1,705 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6:Electrical Conducting and Insulating Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1,Page No:6.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature coefficient =0.00082 K**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R75 = 57.2; #resistance at 75 C in Ω\n",
+ "R25 = 55; #resistance at 25 C in Ω\n",
+ "t1 = 25; #temperature in C\n",
+ "t2 = 75 # temperature in C\n",
+ "\n",
+ "#formula\n",
+ "#Rt = R0*(1+(alpha*t))\n",
+ "#calculation\n",
+ "alpha = (R25-R75)/float((25*R75)-(75*R25)); #temperature cofficient\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'temperature coefficient =%3.5f'%alpha,'K**-1';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2,Page No:6.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature coefficient of resistance =65.06 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R1 = 50; #resistance in ohm at temperature 15°C\n",
+ "R2 = 60; # resistance in ohm temperature 15°C\n",
+ "t1 = 15; #temperature in °C\n",
+ "alpha = 0.00425; #temperature coefficient of resistance\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#Rt = R0*(1+(alpha*t))\n",
+ "#Rt1/Rt2 = R0*(1+(alpha*t1))/R0*(1+(alpha*t2))\n",
+ "#calculation\n",
+ "R = R2/float(R1); #resistance in Ω\n",
+ "X = 1+(alpha*t1);\n",
+ "t2 = ((R*X)-1)/float(alpha); #temperature coefficient of resistance in °C\n",
+ " \n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'temperature coefficient of resistance =%3.2f'%t2,'°C';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3,Page No:6.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hence temperature under normal condition is 3320.00 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "t1 = 20; #temperature in °C\n",
+ "alpha = 5*10**-3; #average temperature coefficient at 20°C \n",
+ "R1 = 8; #resistance in Ω\n",
+ "R2 = 140; #resistaance in Ω\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "t2 = t1+((R2-R1)/float(R1*alpha)); #temperature in °C\n",
+ " \n",
+ "#result\n",
+ "print'Hence temperature under normal condition is %3.2f'%t2,'°C';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4,Page No:6.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity=4.80e-05 Ω-m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "l = 100; #length in cm\n",
+ "d = 0.008; #diameter of wire in cm\n",
+ "R = 95.5; #resistance in Ω\n",
+ "d = 0.008; #diameter in cm\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#R=p*l/A\n",
+ "#calculation\n",
+ "A = (math.pi*d*d)/float(4); #cross-sectional area\n",
+ "p = (R*A)/float(l); #resistivity of wire in Ω-cm\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'resistivity=%3.2e'%p,'Ω-m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5,Page No:6.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "percentage conductivity=93.59 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R0 =17.5; #resistance at 0 degree c in Ω\n",
+ "alpha =0.00428; #temperature coefficient of copper in per °C\n",
+ "t =16; #temperature in °C\n",
+ "\n",
+ "\n",
+ "#calculations\n",
+ "Rt = R0*(1+(alpha*t)); #resistance at 16 °C\n",
+ "P = (R0/float(Rt))*100; #percentage conductivity at 16 °C\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'percentage conductivity=%3.2f'%P,'%';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.10,Page No:6.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "insulation resistance= 16 Ω\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "l = 60; #length in m\n",
+ "r2 = 38/float(2); #radius of outer cylinder in m\n",
+ "r1 = 18/float(2); #radius of inner cylinder in m\n",
+ "p = 8000; #specific resistance in Ω-m\n",
+ "\n",
+ "#calculation\n",
+ "R = (p/float(2*math.pi*l))*math.log(r2/float(r1)); #insulation resistance of liquid resistor in Ω\n",
+ "\n",
+ "#result\n",
+ "print'insulation resistance=%3.0f '%R,'Ω';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.11,Page No:6.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity=3.358e+13 Ω-m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d1 = 0.0018; #inner diameter in m\n",
+ "d2 = 0.005; # outer diameter in m\n",
+ "R = 1820*10**6; #insulation resistance in Ω\n",
+ "l = 3000; #length in m\n",
+ "\n",
+ "#calculations\n",
+ "r1 = d1/float(2); #inner radius in m\n",
+ "r2 = d2/float(2); #outer radius in m\n",
+ "p = (2*math.pi*l*R)/float(math.log(r2/float(r1))); #resistivity of dielectric in Ω-m\n",
+ " \n",
+ "#result\n",
+ "print'resistivity=%3.3e'%p,'Ω-m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.12,Page No:6.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "insulation resistance =1.606537e+08 Ω\n",
+ " Note: calculation mistake in textbook in calculating insulating resistance\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d1 = 0.05; #inner diametr in m\n",
+ "d2 = 0.07; #outer diameter in m \n",
+ "l = 2000; #length in m\n",
+ "p = 6*10**12; #specific resistance in Ω-m\n",
+ " \n",
+ "#calculations\n",
+ "r1 = d1/float(2); #inner radius in m\n",
+ "r2 = d2/float(2); #outer radius in m\n",
+ "R = (p/float(2*math.pi*l))*(math.log(r2/float(r1))); #insulation resistance\n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'insulation resistance =%1e'%R,'Ω';\n",
+ "print' Note: calculation mistake in textbook in calculating insulating resistance';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.13,Page No:6.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "capacitance =2.68e-10 F\n",
+ " charge=6.696e-06 C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 110*10**-3; #area in m**2\n",
+ "d = 2; #thickness in mm\n",
+ "er = 5; #relative permitivity\n",
+ "E = 12.5*10**3; #electric field strength in V/mm\n",
+ "e0 = 8.854*10**-12; #charge of electron in coulombs\n",
+ " \n",
+ " \n",
+ "#calculations\n",
+ "A = a*a; #area in m**2\n",
+ "C = e0*((er*A)/float(d*10**-3)) #capacitance in F\n",
+ "V = E*(d);\n",
+ "Q = (C)*(V) #charge on capacitor in C\n",
+ " \n",
+ "#result\n",
+ "print'capacitance =%3.2e'%C,'F';\n",
+ "print' charge=%3.3e'%Q,'C';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.14,Page No:6.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "charge=7.50e-02 C\n",
+ " electric flux=75.000 mc\n",
+ " electric flux density=5.21 c/m**2\n",
+ " electric field strength=1.000e+06 V/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "I = 15*10**-3; #current in A\n",
+ "t = 5; #time in s\n",
+ "V = 1000; #voltage in volts\n",
+ "d = 10**-3; #thickness in m\n",
+ "a = 120*10**-3;\n",
+ "\n",
+ "#calculation\n",
+ "A = a**2 #area in m**2\n",
+ "Q = I*t; #charge on capacitor in C\n",
+ "#since charge and electric field are equal\n",
+ "phi = Q; #electric flux in mc\n",
+ "D = Q/float(A); #electric flux density in c/m**2\n",
+ "E = V/float(d); #electric field strength in dielectric\n",
+ "\n",
+ "#result\n",
+ "print'charge=%3.2e'%Q,'C';\n",
+ "print' electric flux=%4.3f'%(phi*10**3),'mc';\n",
+ "print' electric flux density=%3.2f'%D,'c/m**2';\n",
+ "print' electric field strength=%2.3e'%E,'V/m';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.15,Page No:6.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "capacitance=7.0124e-09 F\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n = 12; #number of plates\n",
+ "er = 4; #relative permitivty \n",
+ "d = 1.0*10**-3; #distance between plates in m\n",
+ "A = 120*150*10**-6; #area in m**2\n",
+ "e0 = 8.854*10**-12; # in F/m\n",
+ "\n",
+ "#calculation\n",
+ "c = (n-1)*e0*er*A/float(d); #capacitance in F\n",
+ " \n",
+ "#result\n",
+ "print'capacitance=%3.4e'%c,'F';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.16,Page No:6.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "thickness=0.82 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e0 = 40000; #dielectric strength in volts/m\n",
+ "d = 33000; #thickness in kV\n",
+ "\n",
+ "#calculations\n",
+ "t = d/float(e0); #required thickness of insulation in mm\n",
+ " \n",
+ "#result\n",
+ "print'thickness=%3.2f'%t,'mm';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 6.17,Page No:6.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "area = 1.30 m**2\n",
+ " breakdown voltage=1.8e+04 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math \n",
+ "\n",
+ "#variable declaration\n",
+ "C = 0.03*10**-6; #capacitance in F\n",
+ "d = 0.001; #thickness in m\n",
+ "er = 2.6; #dielectric constant\n",
+ "e0 = 8.85*10**-12; #dielectric strength \n",
+ "E0 = 1.8*10**7 \n",
+ " \n",
+ "#formula\n",
+ "#C=e0*er*A/d\n",
+ "#e0=v/d\n",
+ "#calculation\n",
+ "A = (C*d)/float(e0*er); #area of dielectric needed in m**2\n",
+ "Vb = E0*d; #breakdown voltage in m\n",
+ "\n",
+ "#result\n",
+ "print'area = %3.2f'%A,'m**2';\n",
+ "print' breakdown voltage=%3.1e'%Vb,'V';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.18,Page No:6.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric loss=5684.1 watts\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "C = 0.035*10**-6; #capacitance in F\n",
+ "tangent = 5*10**-4; #power factor \n",
+ "f = 25*10**3; #frequency in Hz\n",
+ "I = 250; #current in A\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "V = I/float(2*math.pi*f*C) #voltage across capacitor in volts\n",
+ "P = V*I*tangent; #dielectric loss in watts\n",
+ "\n",
+ "#result\n",
+ "print'dielectric loss=%3.1f'%P,'watts';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.19,Page No:6.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "area=1.129433e-02 m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Q = 20*10**-6; #charge of electron in coulomb\n",
+ "V = 10*10**3; #potential in V\n",
+ "e0 = 8.854*10**-12; #absolute permitivity\n",
+ "d = 5*10**-4; #separation between plates in m\n",
+ "er = 10; #dielectric constant\n",
+ "\n",
+ "#formula\n",
+ "#Q=CV\n",
+ "#C=er*e0*A/d\n",
+ "C = Q/float(V);\n",
+ "A = (C*d)/float(er*e0); #area in m**2\n",
+ " \n",
+ "#result\n",
+ "print'area=%1e'%A,'m**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.20,Page No:6.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electrial conductivity=2.53e+07 (Ω-m)**-1\n",
+ "lorentz number = 185.33 W/mK\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n = 3.0*10**28; #number of electrons per m**3\n",
+ "t = 3*10**-14; #time in s\n",
+ "m = 9.1*10**-31; #mass of electron in kg\n",
+ "L = 2.44*10**-8; #lorentz number in ohm W/K**2\n",
+ "T = 300; #temperature in kelvin \n",
+ "e = 1.6*10**-19; #charge of electron in coulomb\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "sigma = (n*(e**2)*t)/float(m); #electrical conductivity in (ohm-m)**-1\n",
+ "K = sigma*T*L;\n",
+ " \n",
+ "#result\n",
+ "print'electrial conductivity=%3.2e'%sigma,'(Ω-m)**-1';\n",
+ "print'lorentz number = %3.2f'%K,'W/mK';\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6_5.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6_5.ipynb
new file mode 100644
index 00000000..50f98373
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter6_5.ipynb
@@ -0,0 +1,705 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6:Electrical Conducting and Insulating Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1,Page No:6.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature coefficient =0.00082 K**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R75 = 57.2; #resistance at 75 C in Ω\n",
+ "R25 = 55; #resistance at 25 C in Ω\n",
+ "t1 = 25; #temperature in C\n",
+ "t2 = 75 # temperature in C\n",
+ "\n",
+ "#formula\n",
+ "#Rt = R0*(1+(alpha*t))\n",
+ "#calculation\n",
+ "alpha = (R25-R75)/float((25*R75)-(75*R25)); #temperature cofficient\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'temperature coefficient =%3.5f'%alpha,'K**-1';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2,Page No:6.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature coefficient of resistance =65.06 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R1 = 50; #resistance in ohm at temperature 15°C\n",
+ "R2 = 60; # resistance in ohm temperature 15°C\n",
+ "t1 = 15; #temperature in °C\n",
+ "alpha = 0.00425; #temperature coefficient of resistance\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#Rt = R0*(1+(alpha*t))\n",
+ "#Rt1/Rt2 = R0*(1+(alpha*t1))/R0*(1+(alpha*t2))\n",
+ "#calculation\n",
+ "R = R2/float(R1); #resistance in Ω\n",
+ "X = 1+(alpha*t1);\n",
+ "t2 = ((R*X)-1)/float(alpha); #temperature coefficient of resistance in °C\n",
+ " \n",
+ " \n",
+ "\n",
+ "#result\n",
+ "print'temperature coefficient of resistance =%3.2f'%t2,'°C';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3,Page No:6.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hence temperature under normal condition is 3320.00 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "t1 = 20; #temperature in °C\n",
+ "alpha = 5*10**-3; #average temperature coefficient at 20°C \n",
+ "R1 = 8; #resistance in Ω\n",
+ "R2 = 140; #resistaance in Ω\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "t2 = t1+((R2-R1)/float(R1*alpha)); #temperature in °C\n",
+ " \n",
+ "#result\n",
+ "print'Hence temperature under normal condition is %3.2f'%t2,'°C';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4,Page No:6.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity=4.80e-05 Ω-m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "l = 100; #length in cm\n",
+ "d = 0.008; #diameter of wire in cm\n",
+ "R = 95.5; #resistance in Ω\n",
+ "d = 0.008; #diameter in cm\n",
+ "\n",
+ "\n",
+ "#formula\n",
+ "#R=p*l/A\n",
+ "#calculation\n",
+ "A = (math.pi*d*d)/float(4); #cross-sectional area\n",
+ "p = (R*A)/float(l); #resistivity of wire in Ω-cm\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'resistivity=%3.2e'%p,'Ω-m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5,Page No:6.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "percentage conductivity=93.59 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "R0 =17.5; #resistance at 0 degree c in Ω\n",
+ "alpha =0.00428; #temperature coefficient of copper in per °C\n",
+ "t =16; #temperature in °C\n",
+ "\n",
+ "\n",
+ "#calculations\n",
+ "Rt = R0*(1+(alpha*t)); #resistance at 16 °C\n",
+ "P = (R0/float(Rt))*100; #percentage conductivity at 16 °C\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'percentage conductivity=%3.2f'%P,'%';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.10,Page No:6.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "insulation resistance= 16 Ω\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "l = 60; #length in m\n",
+ "r2 = 38/float(2); #radius of outer cylinder in m\n",
+ "r1 = 18/float(2); #radius of inner cylinder in m\n",
+ "p = 8000; #specific resistance in Ω-m\n",
+ "\n",
+ "#calculation\n",
+ "R = (p/float(2*math.pi*l))*math.log(r2/float(r1)); #insulation resistance of liquid resistor in Ω\n",
+ "\n",
+ "#result\n",
+ "print'insulation resistance=%3.0f '%R,'Ω';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.11,Page No:6.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity=3.358e+13 Ω-m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d1 = 0.0018; #inner diameter in m\n",
+ "d2 = 0.005; # outer diameter in m\n",
+ "R = 1820*10**6; #insulation resistance in Ω\n",
+ "l = 3000; #length in m\n",
+ "\n",
+ "#calculations\n",
+ "r1 = d1/float(2); #inner radius in m\n",
+ "r2 = d2/float(2); #outer radius in m\n",
+ "p = (2*math.pi*l*R)/float(math.log(r2/float(r1))); #resistivity of dielectric in Ω-m\n",
+ " \n",
+ "#result\n",
+ "print'resistivity=%3.3e'%p,'Ω-m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.12,Page No:6.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "insulation resistance =1.606537e+08 Ω\n",
+ " Note: calculation mistake in textbook in calculating insulating resistance\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "d1 = 0.05; #inner diametr in m\n",
+ "d2 = 0.07; #outer diameter in m \n",
+ "l = 2000; #length in m\n",
+ "p = 6*10**12; #specific resistance in Ω-m\n",
+ " \n",
+ "#calculations\n",
+ "r1 = d1/float(2); #inner radius in m\n",
+ "r2 = d2/float(2); #outer radius in m\n",
+ "R = (p/float(2*math.pi*l))*(math.log(r2/float(r1))); #insulation resistance\n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'insulation resistance =%1e'%R,'Ω';\n",
+ "print' Note: calculation mistake in textbook in calculating insulating resistance';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.13,Page No:6.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "capacitance =2.68e-10 F\n",
+ " charge=6.696e-06 C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 110*10**-3; #area in m**2\n",
+ "d = 2; #thickness in mm\n",
+ "er = 5; #relative permitivity\n",
+ "E = 12.5*10**3; #electric field strength in V/mm\n",
+ "e0 = 8.854*10**-12; #charge of electron in coulombs\n",
+ " \n",
+ " \n",
+ "#calculations\n",
+ "A = a*a; #area in m**2\n",
+ "C = e0*((er*A)/float(d*10**-3)) #capacitance in F\n",
+ "V = E*(d);\n",
+ "Q = (C)*(V) #charge on capacitor in C\n",
+ " \n",
+ "#result\n",
+ "print'capacitance =%3.2e'%C,'F';\n",
+ "print' charge=%3.3e'%Q,'C';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.14,Page No:6.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "charge=7.50e-02 C\n",
+ " electric flux=75.000 mc\n",
+ " electric flux density=5.21 c/m**2\n",
+ " electric field strength=1.000e+06 V/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "I = 15*10**-3; #current in A\n",
+ "t = 5; #time in s\n",
+ "V = 1000; #voltage in volts\n",
+ "d = 10**-3; #thickness in m\n",
+ "a = 120*10**-3;\n",
+ "\n",
+ "#calculation\n",
+ "A = a**2 #area in m**2\n",
+ "Q = I*t; #charge on capacitor in C\n",
+ "#since charge and electric field are equal\n",
+ "phi = Q; #electric flux in mc\n",
+ "D = Q/float(A); #electric flux density in c/m**2\n",
+ "E = V/float(d); #electric field strength in dielectric\n",
+ "\n",
+ "#result\n",
+ "print'charge=%3.2e'%Q,'C';\n",
+ "print' electric flux=%4.3f'%(phi*10**3),'mc';\n",
+ "print' electric flux density=%3.2f'%D,'c/m**2';\n",
+ "print' electric field strength=%2.3e'%E,'V/m';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.15,Page No:6.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "capacitance=7.0124e-09 F\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n = 12; #number of plates\n",
+ "er = 4; #relative permitivty \n",
+ "d = 1.0*10**-3; #distance between plates in m\n",
+ "A = 120*150*10**-6; #area in m**2\n",
+ "e0 = 8.854*10**-12; # in F/m\n",
+ "\n",
+ "#calculation\n",
+ "c = (n-1)*e0*er*A/float(d); #capacitance in F\n",
+ " \n",
+ "#result\n",
+ "print'capacitance=%3.4e'%c,'F';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.16,Page No:6.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "thickness=0.82 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e0 = 40000; #dielectric strength in volts/m\n",
+ "d = 33000; #thickness in kV\n",
+ "\n",
+ "#calculations\n",
+ "t = d/float(e0); #required thickness of insulation in mm\n",
+ " \n",
+ "#result\n",
+ "print'thickness=%3.2f'%t,'mm';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example 6.17,Page No:6.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "area = 1.30 m**2\n",
+ " breakdown voltage=1.8e+04 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math \n",
+ "\n",
+ "#variable declaration\n",
+ "C = 0.03*10**-6; #capacitance in F\n",
+ "d = 0.001; #thickness in m\n",
+ "er = 2.6; #dielectric constant\n",
+ "e0 = 8.85*10**-12; #dielectric strength \n",
+ "E0 = 1.8*10**7 \n",
+ " \n",
+ "#formula\n",
+ "#C=e0*er*A/d\n",
+ "#e0=v/d\n",
+ "#calculation\n",
+ "A = (C*d)/float(e0*er); #area of dielectric needed in m**2\n",
+ "Vb = E0*d; #breakdown voltage in m\n",
+ "\n",
+ "#result\n",
+ "print'area = %3.2f'%A,'m**2';\n",
+ "print' breakdown voltage=%3.1e'%Vb,'V';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.18,Page No:6.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric loss=5684.1 watts\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "C = 0.035*10**-6; #capacitance in F\n",
+ "tangent = 5*10**-4; #power factor \n",
+ "f = 25*10**3; #frequency in Hz\n",
+ "I = 250; #current in A\n",
+ " \n",
+ " \n",
+ "#calculation\n",
+ "V = I/float(2*math.pi*f*C) #voltage across capacitor in volts\n",
+ "P = V*I*tangent; #dielectric loss in watts\n",
+ "\n",
+ "#result\n",
+ "print'dielectric loss=%3.1f'%P,'watts';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.19,Page No:6.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "area=1.129433e-02 m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Q = 20*10**-6; #charge of electron in coulomb\n",
+ "V = 10*10**3; #potential in V\n",
+ "e0 = 8.854*10**-12; #absolute permitivity\n",
+ "d = 5*10**-4; #separation between plates in m\n",
+ "er = 10; #dielectric constant\n",
+ "\n",
+ "#formula\n",
+ "#Q=CV\n",
+ "#C=er*e0*A/d\n",
+ "C = Q/float(V);\n",
+ "A = (C*d)/float(er*e0); #area in m**2\n",
+ " \n",
+ "#result\n",
+ "print'area=%1e'%A,'m**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.20,Page No:6.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electrial conductivity=2.53e+07 (Ω-m)**-1\n",
+ "lorentz number = 185.33 W/mK\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "n = 3.0*10**28; #number of electrons per m**3\n",
+ "t = 3*10**-14; #time in s\n",
+ "m = 9.1*10**-31; #mass of electron in kg\n",
+ "L = 2.44*10**-8; #lorentz number in ohm W/K**2\n",
+ "T = 300; #temperature in kelvin \n",
+ "e = 1.6*10**-19; #charge of electron in coulomb\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "sigma = (n*(e**2)*t)/float(m); #electrical conductivity in (ohm-m)**-1\n",
+ "K = sigma*T*L;\n",
+ " \n",
+ "#result\n",
+ "print'electrial conductivity=%3.2e'%sigma,'(Ω-m)**-1';\n",
+ "print'lorentz number = %3.2f'%K,'W/mK';\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7.ipynb
new file mode 100755
index 00000000..41199be9
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7.ipynb
@@ -0,0 +1,637 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7:Junction Rectifier,Transistos and Devices"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 7.2,Page No:7.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Increase in temperature necessary to increase Is by a factor by 150 is 72.29 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "#given Is2/Is1 =150\n",
+ "#Is2/Is1 =2**(T2-T1)/10\n",
+ "#dT=10ln(I)/ln(2)\n",
+ "I = 150;\n",
+ " \n",
+ "\n",
+ "#Calculations\n",
+ "dT = 10*math.log(I)/float(math.log(2)); #increase in temperature in °C\n",
+ "\n",
+ "#Result\n",
+ "print'Increase in temperature necessary to increase Is by a factor by 150 is %3.2f '%dT,'°C';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 7.3,Page No:7.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current flowing through germanium diode = 25.0067 uA\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Io = 0.25*10**-6; # large reverse biased current in A\n",
+ "V = 0.12; # applied voltage in V\n",
+ "Vt = 0.026; # Volt-equivalent of temperature in V\n",
+ "\n",
+ "# Calculations\n",
+ "I = Io*(math.exp(V/float(Vt))-1); #current in A \n",
+ "\n",
+ "# Result\n",
+ "print'Current flowing through germanium diode = %g '%(I*10**6),'uA';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 7.4,Page No:7.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Diffusion co-efficients of electrons = 4.92e-03 m**2/s\n",
+ "Diffusion co-efficients of holes = 6.99e-04 m**2/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "k = 1.38*10**-23; # boltzmann constant (m**2)*(kg)*(s**-2)*(K**-1)\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "ue = 0.19 # mobility of electron in m**2.V**-1.s**-1\n",
+ "uh = 0.027; # mobilty of holes in m**2.V**-1.s**-1\n",
+ "T = 300; # temperature in K\n",
+ "\n",
+ "#Calculations\n",
+ "Dn = ((k*T)/float(e))*ue; # diffusion constant of electrons in cm**2/s\n",
+ "Dh = (k*T/float(e))*uh; # diffusion constant of holes in cm**2/s\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print'Diffusion co-efficients of electrons = %3.2e'%Dn,'m**2/s';\n",
+ "print'Diffusion co-efficients of holes = %3.2e '%Dh,'m**2/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 7.6,Page No:7.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistance = 10 ohm\n",
+ "Vreb = 1.0e+07 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "I1 = 20; #current in mA\n",
+ "V1 = 0.8; #voltage in volts\n",
+ "V2 = 0.7; #voltage in volts\n",
+ "I2 = 10; # current in mA\n",
+ "v3 = -10; #voltage in volts\n",
+ "I3 = -1*10**-6; # current in mA\n",
+ "\n",
+ "# Calculations\n",
+ "R = (V1 - V2)/(I1 - I2); #resistance in ohm\n",
+ "Vreb = v3/I3; #velocity in volts\n",
+ "\n",
+ "#Result\n",
+ "print'resistance = %d'%(R*10**3),'ohm';\n",
+ "print'Vreb = %3.1e'%Vreb,'ohm';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 7.7,Page No:7.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Diffusion constant of electrons = 94.3 cm**2/s\n",
+ "Diffusion constant of electrons = 44.4 cm**2/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "T = 300; # temp in kelvin\n",
+ "k = 1.38*10**-23; # Boltzmann constant (m**2)*(kg)*(s**-2)*(K**-1)\n",
+ "e = 1.602*10**-19; # charge of electron in coulombs\n",
+ "ue = 3650; # mobility of electrons \n",
+ "uh = 1720; # mobility of holes\n",
+ "\n",
+ "#Calculations\n",
+ "De = (ue*k*T)/float(e); # diffusion constant of electrons in cm**2/s\n",
+ "Dh = (uh*k*T)/float(e); # diffusion constant of holes in cm**2/s\n",
+ "\n",
+ "# Result\n",
+ "print'Diffusion constant of electrons = %3.1f'%De,'cm**2/s';\n",
+ "print'Diffusion constant of electrons = %3.1f'%Dh,'cm**2/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 7.8,Page No:7.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Pinch-off voltage = 3.92e-02 V\n",
+ " Note:calculation mistake in text book ,e value is taken as 14.16*10**-12 instead of 141.6*10**-12\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 2; # resistivity in ohm-m\n",
+ "er = 16; #relative dielectrivity of Ge cm**2/s\n",
+ "up = 1800; # mobility of holes in cm**2/s\n",
+ "e0 = 8.85*10**-12; #permitivity in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "a = 2*10**-4; #channel height in m\n",
+ "\n",
+ "# Calculations\n",
+ "qNa = 1/float(up*p);\n",
+ "e = e0*er; #permitivity in F/cm\n",
+ "Vp = (qNa*(a**2))/float(2*e); # pinch-off voltage in V\n",
+ "\n",
+ "#Result\n",
+ "print'Pinch-off voltage = %3.2e'%Vp,'V';\n",
+ "print' Note:calculation mistake in text book ,e value is taken as 14.16*10**-12 instead of 141.6*10**-12';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 7.9,Page No:7.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "pinch off velocity =9.2 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 3.5*10**-6; #channel width in m\n",
+ "N = 10**21; #number of electrons in electrons/m**3\n",
+ "q = 1.6*10**-19; #charge of electron in coulombs\n",
+ "er = 12; #dielectric constant F/m\n",
+ "e0 = 8.85*10**-12; #dielectric constant F/m\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "e = (e0)*(er); #permitivityin F/m\n",
+ "Vp = (q*(a**2)*N)/float(2*e); #pinch off voltage in V\n",
+ "\n",
+ "\n",
+ "#result \n",
+ "print'pinch off velocity =%2.1f'%Vp,'V';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 7.10,Page No:7.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =2.24 m*A/V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "IDSS = 10; #current in mA\n",
+ "IDS =2.; # current in mA\n",
+ "Vp = -4.0; #pinch off voltage in V\n",
+ "\n",
+ "#formula\n",
+ "#IDS = IDSS*((1-(VGS/Vp))**2)\n",
+ "#calculation\n",
+ "VGS = Vp*(1-(math.sqrt(IDS/float(IDSS))));\n",
+ "gm = ((-2*IDSS)/float(Vp))*(1-(VGS/float(Vp))); #transconductance in m*A/V\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2f'%gm,'m*A/V';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 7.11,Page No:7.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current =1.60 mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "VGS = -3; #pinch off voltage in V\n",
+ "IDSS =10*10**-3; # current in A\n",
+ "Vp = -5.0; #pinch off voltage in V\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "IDS = IDSS*((1-(VGS/float(Vp)))**2); #current in mA\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'current =%3.2f'%(IDS*10**3),'mA';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 7.12,Page No:7.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =2.05 m S\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "IDS = 2*10**-3; #current in mA\n",
+ "IDSS = 8*10**-3; # current in mA\n",
+ "Vp = -4.5; #pinch off voltage in V\n",
+ "VGS1 = -1.902; #pinch off voltage when IDS =3*10**-3 A\n",
+ "\n",
+ "#formula\n",
+ "#IDS = IDSS*((1-(VGS/Vp))**2)\n",
+ "#calculation\n",
+ "VGS = Vp*(1-(math.sqrt(IDS/float(IDSS))));\n",
+ "gm = ((-2*IDSS)/float(Vp))*(1-(VGS1/float(Vp))); #transconductance in m S\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2f'%(gm/10**-3),'m S';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 7.13,Page No:7.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistance =1.62e+10 ohms\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "VGS = 26; #gate source voltage in V\n",
+ "IG = 1.6*10**-9; #gate current in A\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "R = VGS/float(IG); #gate to current resistance in ohms\n",
+ "\n",
+ "\n",
+ "#result \n",
+ "print'resistance =%3.2e'%R,'ohms';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 7.14,Page No:7.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =2.20e-03 ohm\n",
+ "Note:wrong answer in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "ID1 = 1; #current in A\n",
+ "ID2 = 2.1; # current in A\n",
+ "VGS1 = 3.0; #pinch off voltage in V\n",
+ "VGS2 = 3.5; #pinch off voltage in V\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "dID = ID2-ID1;\n",
+ "dVGS = VGS2-VGS1;\n",
+ "gm = (dID*10**-3)/float(dVGS); #transconductance in mho\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2e '%gm,'ohm';\n",
+ "print'Note:wrong answer in textbook';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 7.15,Page No:7.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ac drain resistnce =30.00 k-ohms\n",
+ "transconductance =4000 u mhos\n",
+ "amplification factor=120.00\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "ID1 = 8; #drain current in mA\n",
+ "ID2 = 8.3; #drain current in mA\n",
+ "VDS1 = 5; #drainn source voltage in V\n",
+ "VDS2 = 14; #drain source voltage in V\n",
+ "ID3 = 7.1; #drain current when VDS constant VGS change\n",
+ "ID4 = 8.3; #drain current when VDS constant VGS change\n",
+ "VGS1 = 0.1; #drain source voltage in V\n",
+ "VGS2 = 0.4; #drain source voltage in V\n",
+ "\n",
+ "#calculation\n",
+ "dID1 = ID2-ID1;\n",
+ "dVDS = VDS2-VDS1;\n",
+ "rd = dVDS/float(dID1); #ac drain resistance\n",
+ "dID2 = ID4-ID3;\n",
+ "dVGS = VGS2-VGS1;\n",
+ "gm = dID2/float(dVGS); #transconductance mhos\n",
+ "u = rd*gm; #amplification factor\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'ac drain resistnce =%3.2f'%rd,'k-ohms';\n",
+ "print'transconductance =%3.2d'%(gm/10**-3),'u mhos';\n",
+ "print'amplification factor=%3.2f'%u;\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 7.16,Page No:7.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =3.03 mmhos\n",
+ "Note:transconductance value is wrongly printed in terms of umhos\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "u = 100; #amplification factor \n",
+ "rd = 33*10**3; #drain resistance in ohms\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "gm = u/float(rd); #transconductance in mhos\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2f'%(gm*10**3),' mmhos';\n",
+ "print'Note:transconductance value is wrongly printed in terms of umhos';\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7_(1).ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7_(1).ipynb
new file mode 100644
index 00000000..9f8fe79f
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7_(1).ipynb
@@ -0,0 +1,619 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7:Junction Rectifier,Transistors and Devices"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2,Page No:7.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Increase in temperature necessary to increase Is by a factor by 150 is 72.29 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "#given Is2/Is1 =150\n",
+ "#Is2/Is1 =2**(T2-T1)/10\n",
+ "#dT=10ln(I)/ln(2)\n",
+ "I = 150;\n",
+ " \n",
+ "\n",
+ "#Calculations\n",
+ "dT = 10*math.log(I)/float(math.log(2)); #increase in temperature in °C\n",
+ "\n",
+ "#Result\n",
+ "print'Increase in temperature necessary to increase Is by a factor by 150 is %3.2f '%dT,'°C';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3,Page No:7.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current flowing through germanium diode = 25.0067 uA\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Io = 0.25*10**-6; # large reverse biased current in A\n",
+ "V = 0.12; # applied voltage in V\n",
+ "Vt = 0.026; # Volt-equivalent of temperature in V\n",
+ "\n",
+ "# Calculations\n",
+ "I = Io*(math.exp(V/float(Vt))-1); #current in A \n",
+ "\n",
+ "# Result\n",
+ "print'Current flowing through germanium diode = %g '%(I*10**6),'uA';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4,Page No:7.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Diffusion co-efficients of electrons = 4.92e-03 m**2/s\n",
+ "Diffusion co-efficients of holes = 6.99e-04 m**2/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "k = 1.38*10**-23; # boltzmann constant (m**2)*(kg)*(s**-2)*(K**-1)\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "ue = 0.19 # mobility of electron in m**2.V**-1.s**-1\n",
+ "uh = 0.027; # mobilty of holes in m**2.V**-1.s**-1\n",
+ "T = 300; # temperature in K\n",
+ "\n",
+ "#Calculations\n",
+ "Dn = ((k*T)/float(e))*ue; # diffusion constant of electrons in cm**2/s\n",
+ "Dh = (k*T/float(e))*uh; # diffusion constant of holes in cm**2/s\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print'Diffusion co-efficients of electrons = %3.2e'%Dn,'m**2/s';\n",
+ "print'Diffusion co-efficients of holes = %3.2e '%Dh,'m**2/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6,Page No:7.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistance = 10 ohm\n",
+ "Vreb = 1.0e+07 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "I1 = 20; #current in mA\n",
+ "V1 = 0.8; #voltage in volts\n",
+ "V2 = 0.7; #voltage in volts\n",
+ "I2 = 10; # current in mA\n",
+ "v3 = -10; #voltage in volts\n",
+ "I3 = -1*10**-6; # current in mA\n",
+ "\n",
+ "# Calculations\n",
+ "R = (V1 - V2)/(I1 - I2); #resistance in ohm\n",
+ "Vreb = v3/I3; #velocity in volts\n",
+ "\n",
+ "#Result\n",
+ "print'resistance = %d'%(R*10**3),'ohm';\n",
+ "print'Vreb = %3.1e'%Vreb,'ohm';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7,Page No:7.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Diffusion constant of electrons = 94.3 cm**2/s\n",
+ "Diffusion constant of electrons = 44.4 cm**2/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "T = 300; # temp in kelvin\n",
+ "k = 1.38*10**-23; # Boltzmann constant (m**2)*(kg)*(s**-2)*(K**-1)\n",
+ "e = 1.602*10**-19; # charge of electron in coulombs\n",
+ "ue = 3650; # mobility of electrons \n",
+ "uh = 1720; # mobility of holes\n",
+ "\n",
+ "#Calculations\n",
+ "De = (ue*k*T)/float(e); # diffusion constant of electrons in cm**2/s\n",
+ "Dh = (uh*k*T)/float(e); # diffusion constant of holes in cm**2/s\n",
+ "\n",
+ "# Result\n",
+ "print'Diffusion constant of electrons = %3.1f'%De,'cm**2/s';\n",
+ "print'Diffusion constant of electrons = %3.1f'%Dh,'cm**2/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.8,Page No:7.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Pinch-off voltage = 3.92e-02 V\n",
+ " Note:calculation mistake in text book ,e value is taken as 14.16*10**-12 instead of 141.6*10**-12\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 2; # resistivity in ohm-m\n",
+ "er = 16; #relative dielectrivity of Ge cm**2/s\n",
+ "up = 1800; # mobility of holes in cm**2/s\n",
+ "e0 = 8.85*10**-12; #permitivity in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "a = 2*10**-4; #channel height in m\n",
+ "\n",
+ "# Calculations\n",
+ "qNa = 1/float(up*p);\n",
+ "e = e0*er; #permitivity in F/cm\n",
+ "Vp = (qNa*(a**2))/float(2*e); # pinch-off voltage in V\n",
+ "\n",
+ "#Result\n",
+ "print'Pinch-off voltage = %3.2e'%Vp,'V';\n",
+ "print' Note:calculation mistake in text book ,e value is taken as 14.16*10**-12 instead of 141.6*10**-12';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.9,Page No:7.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "pinch off velocity =9.2 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 3.5*10**-6; #channel width in m\n",
+ "N = 10**21; #number of electrons in electrons/m**3\n",
+ "q = 1.6*10**-19; #charge of electron in coulombs\n",
+ "er = 12; #dielectric constant F/m\n",
+ "e0 = 8.85*10**-12; #dielectric constant F/m\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "e = (e0)*(er); #permitivityin F/m\n",
+ "Vp = (q*(a**2)*N)/float(2*e); #pinch off voltage in V\n",
+ "\n",
+ "\n",
+ "#result \n",
+ "print'pinch off velocity =%2.1f'%Vp,'V';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.10,Page No:7.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =2.24 m*A/V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "IDSS = 10; #current in mA\n",
+ "IDS =2.; # current in mA\n",
+ "Vp = -4.0; #pinch off voltage in V\n",
+ "\n",
+ "#formula\n",
+ "#IDS = IDSS*((1-(VGS/Vp))**2)\n",
+ "#calculation\n",
+ "VGS = Vp*(1-(math.sqrt(IDS/float(IDSS))));\n",
+ "gm = ((-2*IDSS)/float(Vp))*(1-(VGS/float(Vp))); #transconductance in m*A/V\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2f'%gm,'m*A/V';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.11,Page No:7.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current =1.60 mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "VGS = -3; #pinch off voltage in V\n",
+ "IDSS =10*10**-3; # current in A\n",
+ "Vp = -5.0; #pinch off voltage in V\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "IDS = IDSS*((1-(VGS/float(Vp)))**2); #current in mA\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'current =%3.2f'%(IDS*10**3),'mA';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.12,Page No:7.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =2.05 m S\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "IDS = 2*10**-3; #current in mA\n",
+ "IDSS = 8*10**-3; # current in mA\n",
+ "Vp = -4.5; #pinch off voltage in V\n",
+ "VGS1 = -1.902; #pinch off voltage when IDS =3*10**-3 A\n",
+ "\n",
+ "#formula\n",
+ "#IDS = IDSS*((1-(VGS/Vp))**2)\n",
+ "#calculation\n",
+ "VGS = Vp*(1-(math.sqrt(IDS/float(IDSS))));\n",
+ "gm = ((-2*IDSS)/float(Vp))*(1-(VGS1/float(Vp))); #transconductance in m S\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2f'%(gm/10**-3),'m S';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.13,Page No:7.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistance =1.62e+10 ohms\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "VGS = 26; #gate source voltage in V\n",
+ "IG = 1.6*10**-9; #gate current in A\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "R = VGS/float(IG); #gate to current resistance in ohms\n",
+ "\n",
+ "\n",
+ "#result \n",
+ "print'resistance =%3.2e'%R,'ohms';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.14,Page No:7.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =2.20e-03 ohm\n",
+ "Note:wrong answer in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "ID1 = 1; #current in A\n",
+ "ID2 = 2.1; # current in A\n",
+ "VGS1 = 3.0; #pinch off voltage in V\n",
+ "VGS2 = 3.5; #pinch off voltage in V\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "dID = ID2-ID1;\n",
+ "dVGS = VGS2-VGS1;\n",
+ "gm = (dID*10**-3)/float(dVGS); #transconductance in mho\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2e '%gm,'ohm';\n",
+ "print'Note:wrong answer in textbook';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.15,Page No:7.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ac drain resistnce =30.00 k-ohms\n",
+ "transconductance =4000 u mhos\n",
+ "amplification factor=120.00\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "ID1 = 8; #drain current in mA\n",
+ "ID2 = 8.3; #drain current in mA\n",
+ "VDS1 = 5; #drainn source voltage in V\n",
+ "VDS2 = 14; #drain source voltage in V\n",
+ "ID3 = 7.1; #drain current when VDS constant VGS change\n",
+ "ID4 = 8.3; #drain current when VDS constant VGS change\n",
+ "VGS1 = 0.1; #drain source voltage in V\n",
+ "VGS2 = 0.4; #drain source voltage in V\n",
+ "\n",
+ "#calculation\n",
+ "dID1 = ID2-ID1;\n",
+ "dVDS = VDS2-VDS1;\n",
+ "rd = dVDS/float(dID1); #ac drain resistance\n",
+ "dID2 = ID4-ID3;\n",
+ "dVGS = VGS2-VGS1;\n",
+ "gm = dID2/float(dVGS); #transconductance mhos\n",
+ "u = rd*gm; #amplification factor\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'ac drain resistnce =%3.2f'%rd,'k-ohms';\n",
+ "print'transconductance =%3.2d'%(gm/10**-3),'u mhos';\n",
+ "print'amplification factor=%3.2f'%u;\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.16,Page No:7.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =3.03 mmhos\n",
+ "Note:transconductance value is wrongly printed in terms of umhos\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "u = 100; #amplification factor \n",
+ "rd = 33*10**3; #drain resistance in ohms\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "gm = u/float(rd); #transconductance in mhos\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2f'%(gm*10**3),' mmhos';\n",
+ "print'Note:transconductance value is wrongly printed in terms of umhos';\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7_1.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7_1.ipynb
new file mode 100644
index 00000000..e716836b
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7_1.ipynb
@@ -0,0 +1,619 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7:Junction Rectifier,Transistos and Devices"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2,Page No:7.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Increase in temperature necessary to increase Is by a factor by 150 is 72.29 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "#given Is2/Is1 =150\n",
+ "#Is2/Is1 =2**(T2-T1)/10\n",
+ "#dT=10ln(I)/ln(2)\n",
+ "I = 150;\n",
+ " \n",
+ "\n",
+ "#Calculations\n",
+ "dT = 10*math.log(I)/float(math.log(2)); #increase in temperature in °C\n",
+ "\n",
+ "#Result\n",
+ "print'Increase in temperature necessary to increase Is by a factor by 150 is %3.2f '%dT,'°C';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3,Page No:7.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current flowing through germanium diode = 25.0067 uA\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Io = 0.25*10**-6; # large reverse biased current in A\n",
+ "V = 0.12; # applied voltage in V\n",
+ "Vt = 0.026; # Volt-equivalent of temperature in V\n",
+ "\n",
+ "# Calculations\n",
+ "I = Io*(math.exp(V/float(Vt))-1); #current in A \n",
+ "\n",
+ "# Result\n",
+ "print'Current flowing through germanium diode = %g '%(I*10**6),'uA';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4,Page No:7.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Diffusion co-efficients of electrons = 4.92e-03 m**2/s\n",
+ "Diffusion co-efficients of holes = 6.99e-04 m**2/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "k = 1.38*10**-23; # boltzmann constant (m**2)*(kg)*(s**-2)*(K**-1)\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "ue = 0.19 # mobility of electron in m**2.V**-1.s**-1\n",
+ "uh = 0.027; # mobilty of holes in m**2.V**-1.s**-1\n",
+ "T = 300; # temperature in K\n",
+ "\n",
+ "#Calculations\n",
+ "Dn = ((k*T)/float(e))*ue; # diffusion constant of electrons in cm**2/s\n",
+ "Dh = (k*T/float(e))*uh; # diffusion constant of holes in cm**2/s\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print'Diffusion co-efficients of electrons = %3.2e'%Dn,'m**2/s';\n",
+ "print'Diffusion co-efficients of holes = %3.2e '%Dh,'m**2/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6,Page No:7.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistance = 10 ohm\n",
+ "Vreb = 1.0e+07 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "I1 = 20; #current in mA\n",
+ "V1 = 0.8; #voltage in volts\n",
+ "V2 = 0.7; #voltage in volts\n",
+ "I2 = 10; # current in mA\n",
+ "v3 = -10; #voltage in volts\n",
+ "I3 = -1*10**-6; # current in mA\n",
+ "\n",
+ "# Calculations\n",
+ "R = (V1 - V2)/(I1 - I2); #resistance in ohm\n",
+ "Vreb = v3/I3; #velocity in volts\n",
+ "\n",
+ "#Result\n",
+ "print'resistance = %d'%(R*10**3),'ohm';\n",
+ "print'Vreb = %3.1e'%Vreb,'ohm';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7,Page No:7.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Diffusion constant of electrons = 94.3 cm**2/s\n",
+ "Diffusion constant of electrons = 44.4 cm**2/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "T = 300; # temp in kelvin\n",
+ "k = 1.38*10**-23; # Boltzmann constant (m**2)*(kg)*(s**-2)*(K**-1)\n",
+ "e = 1.602*10**-19; # charge of electron in coulombs\n",
+ "ue = 3650; # mobility of electrons \n",
+ "uh = 1720; # mobility of holes\n",
+ "\n",
+ "#Calculations\n",
+ "De = (ue*k*T)/float(e); # diffusion constant of electrons in cm**2/s\n",
+ "Dh = (uh*k*T)/float(e); # diffusion constant of holes in cm**2/s\n",
+ "\n",
+ "# Result\n",
+ "print'Diffusion constant of electrons = %3.1f'%De,'cm**2/s';\n",
+ "print'Diffusion constant of electrons = %3.1f'%Dh,'cm**2/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.8,Page No:7.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Pinch-off voltage = 3.92e-02 V\n",
+ " Note:calculation mistake in text book ,e value is taken as 14.16*10**-12 instead of 141.6*10**-12\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 2; # resistivity in ohm-m\n",
+ "er = 16; #relative dielectrivity of Ge cm**2/s\n",
+ "up = 1800; # mobility of holes in cm**2/s\n",
+ "e0 = 8.85*10**-12; #permitivity in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "a = 2*10**-4; #channel height in m\n",
+ "\n",
+ "# Calculations\n",
+ "qNa = 1/float(up*p);\n",
+ "e = e0*er; #permitivity in F/cm\n",
+ "Vp = (qNa*(a**2))/float(2*e); # pinch-off voltage in V\n",
+ "\n",
+ "#Result\n",
+ "print'Pinch-off voltage = %3.2e'%Vp,'V';\n",
+ "print' Note:calculation mistake in text book ,e value is taken as 14.16*10**-12 instead of 141.6*10**-12';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.9,Page No:7.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "pinch off velocity =9.2 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 3.5*10**-6; #channel width in m\n",
+ "N = 10**21; #number of electrons in electrons/m**3\n",
+ "q = 1.6*10**-19; #charge of electron in coulombs\n",
+ "er = 12; #dielectric constant F/m\n",
+ "e0 = 8.85*10**-12; #dielectric constant F/m\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "e = (e0)*(er); #permitivityin F/m\n",
+ "Vp = (q*(a**2)*N)/float(2*e); #pinch off voltage in V\n",
+ "\n",
+ "\n",
+ "#result \n",
+ "print'pinch off velocity =%2.1f'%Vp,'V';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.10,Page No:7.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =2.24 m*A/V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "IDSS = 10; #current in mA\n",
+ "IDS =2.; # current in mA\n",
+ "Vp = -4.0; #pinch off voltage in V\n",
+ "\n",
+ "#formula\n",
+ "#IDS = IDSS*((1-(VGS/Vp))**2)\n",
+ "#calculation\n",
+ "VGS = Vp*(1-(math.sqrt(IDS/float(IDSS))));\n",
+ "gm = ((-2*IDSS)/float(Vp))*(1-(VGS/float(Vp))); #transconductance in m*A/V\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2f'%gm,'m*A/V';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.11,Page No:7.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current =1.60 mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "VGS = -3; #pinch off voltage in V\n",
+ "IDSS =10*10**-3; # current in A\n",
+ "Vp = -5.0; #pinch off voltage in V\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "IDS = IDSS*((1-(VGS/float(Vp)))**2); #current in mA\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'current =%3.2f'%(IDS*10**3),'mA';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.12,Page No:7.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =2.05 m S\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "IDS = 2*10**-3; #current in mA\n",
+ "IDSS = 8*10**-3; # current in mA\n",
+ "Vp = -4.5; #pinch off voltage in V\n",
+ "VGS1 = -1.902; #pinch off voltage when IDS =3*10**-3 A\n",
+ "\n",
+ "#formula\n",
+ "#IDS = IDSS*((1-(VGS/Vp))**2)\n",
+ "#calculation\n",
+ "VGS = Vp*(1-(math.sqrt(IDS/float(IDSS))));\n",
+ "gm = ((-2*IDSS)/float(Vp))*(1-(VGS1/float(Vp))); #transconductance in m S\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2f'%(gm/10**-3),'m S';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.13,Page No:7.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistance =1.62e+10 ohms\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "VGS = 26; #gate source voltage in V\n",
+ "IG = 1.6*10**-9; #gate current in A\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "R = VGS/float(IG); #gate to current resistance in ohms\n",
+ "\n",
+ "\n",
+ "#result \n",
+ "print'resistance =%3.2e'%R,'ohms';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.14,Page No:7.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =2.20e-03 ohm\n",
+ "Note:wrong answer in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "ID1 = 1; #current in A\n",
+ "ID2 = 2.1; # current in A\n",
+ "VGS1 = 3.0; #pinch off voltage in V\n",
+ "VGS2 = 3.5; #pinch off voltage in V\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "dID = ID2-ID1;\n",
+ "dVGS = VGS2-VGS1;\n",
+ "gm = (dID*10**-3)/float(dVGS); #transconductance in mho\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2e '%gm,'ohm';\n",
+ "print'Note:wrong answer in textbook';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.15,Page No:7.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ac drain resistnce =30.00 k-ohms\n",
+ "transconductance =4000 u mhos\n",
+ "amplification factor=120.00\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "ID1 = 8; #drain current in mA\n",
+ "ID2 = 8.3; #drain current in mA\n",
+ "VDS1 = 5; #drainn source voltage in V\n",
+ "VDS2 = 14; #drain source voltage in V\n",
+ "ID3 = 7.1; #drain current when VDS constant VGS change\n",
+ "ID4 = 8.3; #drain current when VDS constant VGS change\n",
+ "VGS1 = 0.1; #drain source voltage in V\n",
+ "VGS2 = 0.4; #drain source voltage in V\n",
+ "\n",
+ "#calculation\n",
+ "dID1 = ID2-ID1;\n",
+ "dVDS = VDS2-VDS1;\n",
+ "rd = dVDS/float(dID1); #ac drain resistance\n",
+ "dID2 = ID4-ID3;\n",
+ "dVGS = VGS2-VGS1;\n",
+ "gm = dID2/float(dVGS); #transconductance mhos\n",
+ "u = rd*gm; #amplification factor\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'ac drain resistnce =%3.2f'%rd,'k-ohms';\n",
+ "print'transconductance =%3.2d'%(gm/10**-3),'u mhos';\n",
+ "print'amplification factor=%3.2f'%u;\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.16,Page No:7.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =3.03 mmhos\n",
+ "Note:transconductance value is wrongly printed in terms of umhos\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "u = 100; #amplification factor \n",
+ "rd = 33*10**3; #drain resistance in ohms\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "gm = u/float(rd); #transconductance in mhos\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2f'%(gm*10**3),' mmhos';\n",
+ "print'Note:transconductance value is wrongly printed in terms of umhos';\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7_2.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7_2.ipynb
new file mode 100644
index 00000000..0348a194
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7_2.ipynb
@@ -0,0 +1,619 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7:Junction Rectifier,Transistos and Devices"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2,Page No:7.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Increase in temperature necessary to increase Is by a factor by 150 is 72.29 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "#given Is2/Is1 =150\n",
+ "#Is2/Is1 =2**(T2-T1)/10\n",
+ "#dT=10ln(I)/ln(2)\n",
+ "I = 150;\n",
+ " \n",
+ "\n",
+ "#Calculations\n",
+ "dT = 10*math.log(I)/float(math.log(2)); #increase in temperature in °C\n",
+ "\n",
+ "#Result\n",
+ "print'Increase in temperature necessary to increase Is by a factor by 150 is %3.2f '%dT,'°C';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3,Page No:7.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current flowing through germanium diode = 25.0067 uA\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Io = 0.25*10**-6; # large reverse biased current in A\n",
+ "V = 0.12; # applied voltage in V\n",
+ "Vt = 0.026; # Volt-equivalent of temperature in V\n",
+ "\n",
+ "# Calculations\n",
+ "I = Io*(math.exp(V/float(Vt))-1); #current in A \n",
+ "\n",
+ "# Result\n",
+ "print'Current flowing through germanium diode = %g '%(I*10**6),'uA';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4,Page No:7.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Diffusion co-efficients of electrons = 4.92e-03 m**2/s\n",
+ "Diffusion co-efficients of holes = 6.99e-04 m**2/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "k = 1.38*10**-23; # boltzmann constant (m**2)*(kg)*(s**-2)*(K**-1)\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "ue = 0.19 # mobility of electron in m**2.V**-1.s**-1\n",
+ "uh = 0.027; # mobilty of holes in m**2.V**-1.s**-1\n",
+ "T = 300; # temperature in K\n",
+ "\n",
+ "#Calculations\n",
+ "Dn = ((k*T)/float(e))*ue; # diffusion constant of electrons in cm**2/s\n",
+ "Dh = (k*T/float(e))*uh; # diffusion constant of holes in cm**2/s\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print'Diffusion co-efficients of electrons = %3.2e'%Dn,'m**2/s';\n",
+ "print'Diffusion co-efficients of holes = %3.2e '%Dh,'m**2/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6,Page No:7.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistance = 10 ohm\n",
+ "Vreb = 1.0e+07 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "I1 = 20; #current in mA\n",
+ "V1 = 0.8; #voltage in volts\n",
+ "V2 = 0.7; #voltage in volts\n",
+ "I2 = 10; # current in mA\n",
+ "v3 = -10; #voltage in volts\n",
+ "I3 = -1*10**-6; # current in mA\n",
+ "\n",
+ "# Calculations\n",
+ "R = (V1 - V2)/(I1 - I2); #resistance in ohm\n",
+ "Vreb = v3/I3; #velocity in volts\n",
+ "\n",
+ "#Result\n",
+ "print'resistance = %d'%(R*10**3),'ohm';\n",
+ "print'Vreb = %3.1e'%Vreb,'ohm';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7,Page No:7.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Diffusion constant of electrons = 94.3 cm**2/s\n",
+ "Diffusion constant of electrons = 44.4 cm**2/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "T = 300; # temp in kelvin\n",
+ "k = 1.38*10**-23; # Boltzmann constant (m**2)*(kg)*(s**-2)*(K**-1)\n",
+ "e = 1.602*10**-19; # charge of electron in coulombs\n",
+ "ue = 3650; # mobility of electrons \n",
+ "uh = 1720; # mobility of holes\n",
+ "\n",
+ "#Calculations\n",
+ "De = (ue*k*T)/float(e); # diffusion constant of electrons in cm**2/s\n",
+ "Dh = (uh*k*T)/float(e); # diffusion constant of holes in cm**2/s\n",
+ "\n",
+ "# Result\n",
+ "print'Diffusion constant of electrons = %3.1f'%De,'cm**2/s';\n",
+ "print'Diffusion constant of electrons = %3.1f'%Dh,'cm**2/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.8,Page No:7.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Pinch-off voltage = 3.92e-02 V\n",
+ " Note:calculation mistake in text book ,e value is taken as 14.16*10**-12 instead of 141.6*10**-12\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 2; # resistivity in ohm-m\n",
+ "er = 16; #relative dielectrivity of Ge cm**2/s\n",
+ "up = 1800; # mobility of holes in cm**2/s\n",
+ "e0 = 8.85*10**-12; #permitivity in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "a = 2*10**-4; #channel height in m\n",
+ "\n",
+ "# Calculations\n",
+ "qNa = 1/float(up*p);\n",
+ "e = e0*er; #permitivity in F/cm\n",
+ "Vp = (qNa*(a**2))/float(2*e); # pinch-off voltage in V\n",
+ "\n",
+ "#Result\n",
+ "print'Pinch-off voltage = %3.2e'%Vp,'V';\n",
+ "print' Note:calculation mistake in text book ,e value is taken as 14.16*10**-12 instead of 141.6*10**-12';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.9,Page No:7.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "pinch off velocity =9.2 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 3.5*10**-6; #channel width in m\n",
+ "N = 10**21; #number of electrons in electrons/m**3\n",
+ "q = 1.6*10**-19; #charge of electron in coulombs\n",
+ "er = 12; #dielectric constant F/m\n",
+ "e0 = 8.85*10**-12; #dielectric constant F/m\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "e = (e0)*(er); #permitivityin F/m\n",
+ "Vp = (q*(a**2)*N)/float(2*e); #pinch off voltage in V\n",
+ "\n",
+ "\n",
+ "#result \n",
+ "print'pinch off velocity =%2.1f'%Vp,'V';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.10,Page No:7.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =2.24 m*A/V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "IDSS = 10; #current in mA\n",
+ "IDS =2.; # current in mA\n",
+ "Vp = -4.0; #pinch off voltage in V\n",
+ "\n",
+ "#formula\n",
+ "#IDS = IDSS*((1-(VGS/Vp))**2)\n",
+ "#calculation\n",
+ "VGS = Vp*(1-(math.sqrt(IDS/float(IDSS))));\n",
+ "gm = ((-2*IDSS)/float(Vp))*(1-(VGS/float(Vp))); #transconductance in m*A/V\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2f'%gm,'m*A/V';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.11,Page No:7.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current =1.60 mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "VGS = -3; #pinch off voltage in V\n",
+ "IDSS =10*10**-3; # current in A\n",
+ "Vp = -5.0; #pinch off voltage in V\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "IDS = IDSS*((1-(VGS/float(Vp)))**2); #current in mA\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'current =%3.2f'%(IDS*10**3),'mA';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.12,Page No:7.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =2.05 m S\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "IDS = 2*10**-3; #current in mA\n",
+ "IDSS = 8*10**-3; # current in mA\n",
+ "Vp = -4.5; #pinch off voltage in V\n",
+ "VGS1 = -1.902; #pinch off voltage when IDS =3*10**-3 A\n",
+ "\n",
+ "#formula\n",
+ "#IDS = IDSS*((1-(VGS/Vp))**2)\n",
+ "#calculation\n",
+ "VGS = Vp*(1-(math.sqrt(IDS/float(IDSS))));\n",
+ "gm = ((-2*IDSS)/float(Vp))*(1-(VGS1/float(Vp))); #transconductance in m S\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2f'%(gm/10**-3),'m S';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.13,Page No:7.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistance =1.62e+10 ohms\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "VGS = 26; #gate source voltage in V\n",
+ "IG = 1.6*10**-9; #gate current in A\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "R = VGS/float(IG); #gate to current resistance in ohms\n",
+ "\n",
+ "\n",
+ "#result \n",
+ "print'resistance =%3.2e'%R,'ohms';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.14,Page No:7.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =2.20e-03 ohm\n",
+ "Note:wrong answer in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "ID1 = 1; #current in A\n",
+ "ID2 = 2.1; # current in A\n",
+ "VGS1 = 3.0; #pinch off voltage in V\n",
+ "VGS2 = 3.5; #pinch off voltage in V\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "dID = ID2-ID1;\n",
+ "dVGS = VGS2-VGS1;\n",
+ "gm = (dID*10**-3)/float(dVGS); #transconductance in mho\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2e '%gm,'ohm';\n",
+ "print'Note:wrong answer in textbook';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.15,Page No:7.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ac drain resistnce =30.00 k-ohms\n",
+ "transconductance =4000 u mhos\n",
+ "amplification factor=120.00\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "ID1 = 8; #drain current in mA\n",
+ "ID2 = 8.3; #drain current in mA\n",
+ "VDS1 = 5; #drainn source voltage in V\n",
+ "VDS2 = 14; #drain source voltage in V\n",
+ "ID3 = 7.1; #drain current when VDS constant VGS change\n",
+ "ID4 = 8.3; #drain current when VDS constant VGS change\n",
+ "VGS1 = 0.1; #drain source voltage in V\n",
+ "VGS2 = 0.4; #drain source voltage in V\n",
+ "\n",
+ "#calculation\n",
+ "dID1 = ID2-ID1;\n",
+ "dVDS = VDS2-VDS1;\n",
+ "rd = dVDS/float(dID1); #ac drain resistance\n",
+ "dID2 = ID4-ID3;\n",
+ "dVGS = VGS2-VGS1;\n",
+ "gm = dID2/float(dVGS); #transconductance mhos\n",
+ "u = rd*gm; #amplification factor\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'ac drain resistnce =%3.2f'%rd,'k-ohms';\n",
+ "print'transconductance =%3.2d'%(gm/10**-3),'u mhos';\n",
+ "print'amplification factor=%3.2f'%u;\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.16,Page No:7.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =3.03 mmhos\n",
+ "Note:transconductance value is wrongly printed in terms of umhos\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "u = 100; #amplification factor \n",
+ "rd = 33*10**3; #drain resistance in ohms\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "gm = u/float(rd); #transconductance in mhos\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2f'%(gm*10**3),' mmhos';\n",
+ "print'Note:transconductance value is wrongly printed in terms of umhos';\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7_3.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7_3.ipynb
new file mode 100644
index 00000000..0348a194
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7_3.ipynb
@@ -0,0 +1,619 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7:Junction Rectifier,Transistos and Devices"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2,Page No:7.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Increase in temperature necessary to increase Is by a factor by 150 is 72.29 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "#given Is2/Is1 =150\n",
+ "#Is2/Is1 =2**(T2-T1)/10\n",
+ "#dT=10ln(I)/ln(2)\n",
+ "I = 150;\n",
+ " \n",
+ "\n",
+ "#Calculations\n",
+ "dT = 10*math.log(I)/float(math.log(2)); #increase in temperature in °C\n",
+ "\n",
+ "#Result\n",
+ "print'Increase in temperature necessary to increase Is by a factor by 150 is %3.2f '%dT,'°C';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3,Page No:7.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current flowing through germanium diode = 25.0067 uA\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Io = 0.25*10**-6; # large reverse biased current in A\n",
+ "V = 0.12; # applied voltage in V\n",
+ "Vt = 0.026; # Volt-equivalent of temperature in V\n",
+ "\n",
+ "# Calculations\n",
+ "I = Io*(math.exp(V/float(Vt))-1); #current in A \n",
+ "\n",
+ "# Result\n",
+ "print'Current flowing through germanium diode = %g '%(I*10**6),'uA';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4,Page No:7.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Diffusion co-efficients of electrons = 4.92e-03 m**2/s\n",
+ "Diffusion co-efficients of holes = 6.99e-04 m**2/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "k = 1.38*10**-23; # boltzmann constant (m**2)*(kg)*(s**-2)*(K**-1)\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "ue = 0.19 # mobility of electron in m**2.V**-1.s**-1\n",
+ "uh = 0.027; # mobilty of holes in m**2.V**-1.s**-1\n",
+ "T = 300; # temperature in K\n",
+ "\n",
+ "#Calculations\n",
+ "Dn = ((k*T)/float(e))*ue; # diffusion constant of electrons in cm**2/s\n",
+ "Dh = (k*T/float(e))*uh; # diffusion constant of holes in cm**2/s\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print'Diffusion co-efficients of electrons = %3.2e'%Dn,'m**2/s';\n",
+ "print'Diffusion co-efficients of holes = %3.2e '%Dh,'m**2/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6,Page No:7.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistance = 10 ohm\n",
+ "Vreb = 1.0e+07 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "I1 = 20; #current in mA\n",
+ "V1 = 0.8; #voltage in volts\n",
+ "V2 = 0.7; #voltage in volts\n",
+ "I2 = 10; # current in mA\n",
+ "v3 = -10; #voltage in volts\n",
+ "I3 = -1*10**-6; # current in mA\n",
+ "\n",
+ "# Calculations\n",
+ "R = (V1 - V2)/(I1 - I2); #resistance in ohm\n",
+ "Vreb = v3/I3; #velocity in volts\n",
+ "\n",
+ "#Result\n",
+ "print'resistance = %d'%(R*10**3),'ohm';\n",
+ "print'Vreb = %3.1e'%Vreb,'ohm';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7,Page No:7.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Diffusion constant of electrons = 94.3 cm**2/s\n",
+ "Diffusion constant of electrons = 44.4 cm**2/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "T = 300; # temp in kelvin\n",
+ "k = 1.38*10**-23; # Boltzmann constant (m**2)*(kg)*(s**-2)*(K**-1)\n",
+ "e = 1.602*10**-19; # charge of electron in coulombs\n",
+ "ue = 3650; # mobility of electrons \n",
+ "uh = 1720; # mobility of holes\n",
+ "\n",
+ "#Calculations\n",
+ "De = (ue*k*T)/float(e); # diffusion constant of electrons in cm**2/s\n",
+ "Dh = (uh*k*T)/float(e); # diffusion constant of holes in cm**2/s\n",
+ "\n",
+ "# Result\n",
+ "print'Diffusion constant of electrons = %3.1f'%De,'cm**2/s';\n",
+ "print'Diffusion constant of electrons = %3.1f'%Dh,'cm**2/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.8,Page No:7.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Pinch-off voltage = 3.92e-02 V\n",
+ " Note:calculation mistake in text book ,e value is taken as 14.16*10**-12 instead of 141.6*10**-12\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 2; # resistivity in ohm-m\n",
+ "er = 16; #relative dielectrivity of Ge cm**2/s\n",
+ "up = 1800; # mobility of holes in cm**2/s\n",
+ "e0 = 8.85*10**-12; #permitivity in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "a = 2*10**-4; #channel height in m\n",
+ "\n",
+ "# Calculations\n",
+ "qNa = 1/float(up*p);\n",
+ "e = e0*er; #permitivity in F/cm\n",
+ "Vp = (qNa*(a**2))/float(2*e); # pinch-off voltage in V\n",
+ "\n",
+ "#Result\n",
+ "print'Pinch-off voltage = %3.2e'%Vp,'V';\n",
+ "print' Note:calculation mistake in text book ,e value is taken as 14.16*10**-12 instead of 141.6*10**-12';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.9,Page No:7.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "pinch off velocity =9.2 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 3.5*10**-6; #channel width in m\n",
+ "N = 10**21; #number of electrons in electrons/m**3\n",
+ "q = 1.6*10**-19; #charge of electron in coulombs\n",
+ "er = 12; #dielectric constant F/m\n",
+ "e0 = 8.85*10**-12; #dielectric constant F/m\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "e = (e0)*(er); #permitivityin F/m\n",
+ "Vp = (q*(a**2)*N)/float(2*e); #pinch off voltage in V\n",
+ "\n",
+ "\n",
+ "#result \n",
+ "print'pinch off velocity =%2.1f'%Vp,'V';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.10,Page No:7.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =2.24 m*A/V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "IDSS = 10; #current in mA\n",
+ "IDS =2.; # current in mA\n",
+ "Vp = -4.0; #pinch off voltage in V\n",
+ "\n",
+ "#formula\n",
+ "#IDS = IDSS*((1-(VGS/Vp))**2)\n",
+ "#calculation\n",
+ "VGS = Vp*(1-(math.sqrt(IDS/float(IDSS))));\n",
+ "gm = ((-2*IDSS)/float(Vp))*(1-(VGS/float(Vp))); #transconductance in m*A/V\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2f'%gm,'m*A/V';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.11,Page No:7.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current =1.60 mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "VGS = -3; #pinch off voltage in V\n",
+ "IDSS =10*10**-3; # current in A\n",
+ "Vp = -5.0; #pinch off voltage in V\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "IDS = IDSS*((1-(VGS/float(Vp)))**2); #current in mA\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'current =%3.2f'%(IDS*10**3),'mA';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.12,Page No:7.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =2.05 m S\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "IDS = 2*10**-3; #current in mA\n",
+ "IDSS = 8*10**-3; # current in mA\n",
+ "Vp = -4.5; #pinch off voltage in V\n",
+ "VGS1 = -1.902; #pinch off voltage when IDS =3*10**-3 A\n",
+ "\n",
+ "#formula\n",
+ "#IDS = IDSS*((1-(VGS/Vp))**2)\n",
+ "#calculation\n",
+ "VGS = Vp*(1-(math.sqrt(IDS/float(IDSS))));\n",
+ "gm = ((-2*IDSS)/float(Vp))*(1-(VGS1/float(Vp))); #transconductance in m S\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2f'%(gm/10**-3),'m S';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.13,Page No:7.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistance =1.62e+10 ohms\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "VGS = 26; #gate source voltage in V\n",
+ "IG = 1.6*10**-9; #gate current in A\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "R = VGS/float(IG); #gate to current resistance in ohms\n",
+ "\n",
+ "\n",
+ "#result \n",
+ "print'resistance =%3.2e'%R,'ohms';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.14,Page No:7.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =2.20e-03 ohm\n",
+ "Note:wrong answer in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "ID1 = 1; #current in A\n",
+ "ID2 = 2.1; # current in A\n",
+ "VGS1 = 3.0; #pinch off voltage in V\n",
+ "VGS2 = 3.5; #pinch off voltage in V\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "dID = ID2-ID1;\n",
+ "dVGS = VGS2-VGS1;\n",
+ "gm = (dID*10**-3)/float(dVGS); #transconductance in mho\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2e '%gm,'ohm';\n",
+ "print'Note:wrong answer in textbook';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.15,Page No:7.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ac drain resistnce =30.00 k-ohms\n",
+ "transconductance =4000 u mhos\n",
+ "amplification factor=120.00\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "ID1 = 8; #drain current in mA\n",
+ "ID2 = 8.3; #drain current in mA\n",
+ "VDS1 = 5; #drainn source voltage in V\n",
+ "VDS2 = 14; #drain source voltage in V\n",
+ "ID3 = 7.1; #drain current when VDS constant VGS change\n",
+ "ID4 = 8.3; #drain current when VDS constant VGS change\n",
+ "VGS1 = 0.1; #drain source voltage in V\n",
+ "VGS2 = 0.4; #drain source voltage in V\n",
+ "\n",
+ "#calculation\n",
+ "dID1 = ID2-ID1;\n",
+ "dVDS = VDS2-VDS1;\n",
+ "rd = dVDS/float(dID1); #ac drain resistance\n",
+ "dID2 = ID4-ID3;\n",
+ "dVGS = VGS2-VGS1;\n",
+ "gm = dID2/float(dVGS); #transconductance mhos\n",
+ "u = rd*gm; #amplification factor\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'ac drain resistnce =%3.2f'%rd,'k-ohms';\n",
+ "print'transconductance =%3.2d'%(gm/10**-3),'u mhos';\n",
+ "print'amplification factor=%3.2f'%u;\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.16,Page No:7.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =3.03 mmhos\n",
+ "Note:transconductance value is wrongly printed in terms of umhos\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "u = 100; #amplification factor \n",
+ "rd = 33*10**3; #drain resistance in ohms\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "gm = u/float(rd); #transconductance in mhos\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2f'%(gm*10**3),' mmhos';\n",
+ "print'Note:transconductance value is wrongly printed in terms of umhos';\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7_4.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7_4.ipynb
new file mode 100644
index 00000000..0348a194
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter7_4.ipynb
@@ -0,0 +1,619 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7:Junction Rectifier,Transistos and Devices"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2,Page No:7.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Increase in temperature necessary to increase Is by a factor by 150 is 72.29 °C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "#given Is2/Is1 =150\n",
+ "#Is2/Is1 =2**(T2-T1)/10\n",
+ "#dT=10ln(I)/ln(2)\n",
+ "I = 150;\n",
+ " \n",
+ "\n",
+ "#Calculations\n",
+ "dT = 10*math.log(I)/float(math.log(2)); #increase in temperature in °C\n",
+ "\n",
+ "#Result\n",
+ "print'Increase in temperature necessary to increase Is by a factor by 150 is %3.2f '%dT,'°C';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3,Page No:7.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current flowing through germanium diode = 25.0067 uA\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Io = 0.25*10**-6; # large reverse biased current in A\n",
+ "V = 0.12; # applied voltage in V\n",
+ "Vt = 0.026; # Volt-equivalent of temperature in V\n",
+ "\n",
+ "# Calculations\n",
+ "I = Io*(math.exp(V/float(Vt))-1); #current in A \n",
+ "\n",
+ "# Result\n",
+ "print'Current flowing through germanium diode = %g '%(I*10**6),'uA';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4,Page No:7.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Diffusion co-efficients of electrons = 4.92e-03 m**2/s\n",
+ "Diffusion co-efficients of holes = 6.99e-04 m**2/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "k = 1.38*10**-23; # boltzmann constant (m**2)*(kg)*(s**-2)*(K**-1)\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "ue = 0.19 # mobility of electron in m**2.V**-1.s**-1\n",
+ "uh = 0.027; # mobilty of holes in m**2.V**-1.s**-1\n",
+ "T = 300; # temperature in K\n",
+ "\n",
+ "#Calculations\n",
+ "Dn = ((k*T)/float(e))*ue; # diffusion constant of electrons in cm**2/s\n",
+ "Dh = (k*T/float(e))*uh; # diffusion constant of holes in cm**2/s\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print'Diffusion co-efficients of electrons = %3.2e'%Dn,'m**2/s';\n",
+ "print'Diffusion co-efficients of holes = %3.2e '%Dh,'m**2/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6,Page No:7.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistance = 10 ohm\n",
+ "Vreb = 1.0e+07 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "I1 = 20; #current in mA\n",
+ "V1 = 0.8; #voltage in volts\n",
+ "V2 = 0.7; #voltage in volts\n",
+ "I2 = 10; # current in mA\n",
+ "v3 = -10; #voltage in volts\n",
+ "I3 = -1*10**-6; # current in mA\n",
+ "\n",
+ "# Calculations\n",
+ "R = (V1 - V2)/(I1 - I2); #resistance in ohm\n",
+ "Vreb = v3/I3; #velocity in volts\n",
+ "\n",
+ "#Result\n",
+ "print'resistance = %d'%(R*10**3),'ohm';\n",
+ "print'Vreb = %3.1e'%Vreb,'ohm';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7,Page No:7.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Diffusion constant of electrons = 94.3 cm**2/s\n",
+ "Diffusion constant of electrons = 44.4 cm**2/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "T = 300; # temp in kelvin\n",
+ "k = 1.38*10**-23; # Boltzmann constant (m**2)*(kg)*(s**-2)*(K**-1)\n",
+ "e = 1.602*10**-19; # charge of electron in coulombs\n",
+ "ue = 3650; # mobility of electrons \n",
+ "uh = 1720; # mobility of holes\n",
+ "\n",
+ "#Calculations\n",
+ "De = (ue*k*T)/float(e); # diffusion constant of electrons in cm**2/s\n",
+ "Dh = (uh*k*T)/float(e); # diffusion constant of holes in cm**2/s\n",
+ "\n",
+ "# Result\n",
+ "print'Diffusion constant of electrons = %3.1f'%De,'cm**2/s';\n",
+ "print'Diffusion constant of electrons = %3.1f'%Dh,'cm**2/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.8,Page No:7.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Pinch-off voltage = 3.92e-02 V\n",
+ " Note:calculation mistake in text book ,e value is taken as 14.16*10**-12 instead of 141.6*10**-12\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 2; # resistivity in ohm-m\n",
+ "er = 16; #relative dielectrivity of Ge cm**2/s\n",
+ "up = 1800; # mobility of holes in cm**2/s\n",
+ "e0 = 8.85*10**-12; #permitivity in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
+ "a = 2*10**-4; #channel height in m\n",
+ "\n",
+ "# Calculations\n",
+ "qNa = 1/float(up*p);\n",
+ "e = e0*er; #permitivity in F/cm\n",
+ "Vp = (qNa*(a**2))/float(2*e); # pinch-off voltage in V\n",
+ "\n",
+ "#Result\n",
+ "print'Pinch-off voltage = %3.2e'%Vp,'V';\n",
+ "print' Note:calculation mistake in text book ,e value is taken as 14.16*10**-12 instead of 141.6*10**-12';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.9,Page No:7.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "pinch off velocity =9.2 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a = 3.5*10**-6; #channel width in m\n",
+ "N = 10**21; #number of electrons in electrons/m**3\n",
+ "q = 1.6*10**-19; #charge of electron in coulombs\n",
+ "er = 12; #dielectric constant F/m\n",
+ "e0 = 8.85*10**-12; #dielectric constant F/m\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "e = (e0)*(er); #permitivityin F/m\n",
+ "Vp = (q*(a**2)*N)/float(2*e); #pinch off voltage in V\n",
+ "\n",
+ "\n",
+ "#result \n",
+ "print'pinch off velocity =%2.1f'%Vp,'V';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.10,Page No:7.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =2.24 m*A/V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "IDSS = 10; #current in mA\n",
+ "IDS =2.; # current in mA\n",
+ "Vp = -4.0; #pinch off voltage in V\n",
+ "\n",
+ "#formula\n",
+ "#IDS = IDSS*((1-(VGS/Vp))**2)\n",
+ "#calculation\n",
+ "VGS = Vp*(1-(math.sqrt(IDS/float(IDSS))));\n",
+ "gm = ((-2*IDSS)/float(Vp))*(1-(VGS/float(Vp))); #transconductance in m*A/V\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2f'%gm,'m*A/V';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.11,Page No:7.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current =1.60 mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "VGS = -3; #pinch off voltage in V\n",
+ "IDSS =10*10**-3; # current in A\n",
+ "Vp = -5.0; #pinch off voltage in V\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "IDS = IDSS*((1-(VGS/float(Vp)))**2); #current in mA\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'current =%3.2f'%(IDS*10**3),'mA';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.12,Page No:7.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =2.05 m S\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "IDS = 2*10**-3; #current in mA\n",
+ "IDSS = 8*10**-3; # current in mA\n",
+ "Vp = -4.5; #pinch off voltage in V\n",
+ "VGS1 = -1.902; #pinch off voltage when IDS =3*10**-3 A\n",
+ "\n",
+ "#formula\n",
+ "#IDS = IDSS*((1-(VGS/Vp))**2)\n",
+ "#calculation\n",
+ "VGS = Vp*(1-(math.sqrt(IDS/float(IDSS))));\n",
+ "gm = ((-2*IDSS)/float(Vp))*(1-(VGS1/float(Vp))); #transconductance in m S\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2f'%(gm/10**-3),'m S';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.13,Page No:7.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistance =1.62e+10 ohms\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "VGS = 26; #gate source voltage in V\n",
+ "IG = 1.6*10**-9; #gate current in A\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "R = VGS/float(IG); #gate to current resistance in ohms\n",
+ "\n",
+ "\n",
+ "#result \n",
+ "print'resistance =%3.2e'%R,'ohms';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.14,Page No:7.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =2.20e-03 ohm\n",
+ "Note:wrong answer in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "ID1 = 1; #current in A\n",
+ "ID2 = 2.1; # current in A\n",
+ "VGS1 = 3.0; #pinch off voltage in V\n",
+ "VGS2 = 3.5; #pinch off voltage in V\n",
+ " \n",
+ "\n",
+ "#calculation\n",
+ "dID = ID2-ID1;\n",
+ "dVGS = VGS2-VGS1;\n",
+ "gm = (dID*10**-3)/float(dVGS); #transconductance in mho\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2e '%gm,'ohm';\n",
+ "print'Note:wrong answer in textbook';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.15,Page No:7.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ac drain resistnce =30.00 k-ohms\n",
+ "transconductance =4000 u mhos\n",
+ "amplification factor=120.00\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "ID1 = 8; #drain current in mA\n",
+ "ID2 = 8.3; #drain current in mA\n",
+ "VDS1 = 5; #drainn source voltage in V\n",
+ "VDS2 = 14; #drain source voltage in V\n",
+ "ID3 = 7.1; #drain current when VDS constant VGS change\n",
+ "ID4 = 8.3; #drain current when VDS constant VGS change\n",
+ "VGS1 = 0.1; #drain source voltage in V\n",
+ "VGS2 = 0.4; #drain source voltage in V\n",
+ "\n",
+ "#calculation\n",
+ "dID1 = ID2-ID1;\n",
+ "dVDS = VDS2-VDS1;\n",
+ "rd = dVDS/float(dID1); #ac drain resistance\n",
+ "dID2 = ID4-ID3;\n",
+ "dVGS = VGS2-VGS1;\n",
+ "gm = dID2/float(dVGS); #transconductance mhos\n",
+ "u = rd*gm; #amplification factor\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'ac drain resistnce =%3.2f'%rd,'k-ohms';\n",
+ "print'transconductance =%3.2d'%(gm/10**-3),'u mhos';\n",
+ "print'amplification factor=%3.2f'%u;\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.16,Page No:7.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "transconductance =3.03 mmhos\n",
+ "Note:transconductance value is wrongly printed in terms of umhos\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "u = 100; #amplification factor \n",
+ "rd = 33*10**3; #drain resistance in ohms\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "gm = u/float(rd); #transconductance in mhos\n",
+ "\n",
+ "#result\n",
+ "print'transconductance =%3.2f'%(gm*10**3),' mmhos';\n",
+ "print'Note:transconductance value is wrongly printed in terms of umhos';\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8.ipynb
new file mode 100755
index 00000000..20076dfa
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8.ipynb
@@ -0,0 +1,918 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8:Mechanism of Conduction in Semiconductors"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8.1,Page No:8.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Kinetic Energy = 0.1 eV\n",
+ "Momentum of electrons = 4.5e-26 kg m/s\n",
+ "Momentum of holes = 4.4e-26 kg m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Ephoton = 1.5; # energy of photon in eV\n",
+ "Eg = 1.4; # energy gap in eV\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "me_GaAs = 0.07; #times of electro mass in kilograms\n",
+ "mh_GaAs = 0.068; #times of electro mass in kilograms\n",
+ "\n",
+ "# Calculations\n",
+ "Eke = Ephoton - Eg; #energy on eV\n",
+ "pe = math.sqrt(2*m*me_GaAs*Eke*e) # momentum of electrons in kg m/s\n",
+ "ph = math.sqrt(2*m*mh_GaAs*Eke*e) # momentum of electrons in kg m/s\n",
+ "\n",
+ "# Result\n",
+ "print'Kinetic Energy = %3.1f'%Eke,'eV';\n",
+ "print'Momentum of electrons = %3.1e'%pe,'kg m/s';\n",
+ "print'Momentum of holes = %3.1e'%ph,'kg m/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8.2,Page No:8.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Thermal equilibrium hole concentration = 1.15e+16 cm**-3\n",
+ "Note: Calculation mistake in textbook Nv is not multiplied by exponentiation\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "T1 = 300; # temperature in kelvin\n",
+ "nv = 1.04*10**19; #in cm**-3\n",
+ "T2 = 400; #temperature in K\n",
+ "fl = 0.25; #fermi level position in eV\n",
+ "\n",
+ "#Calculations\n",
+ "Nv = (1.04*10**19)*(T2/float(T1))**(3/float(2)); #Nv at 400 k in cm**-3\n",
+ "kT = (0.0259)*(T2/float(T1)); #kT in eV\n",
+ "po = Nv*math.exp(-(fl)/float(kT)); #hole oncentration in cm**-3\n",
+ "\n",
+ "\n",
+ "# Result\n",
+ "print'Thermal equilibrium hole concentration = %3.2e '%po,'cm**-3';\n",
+ "print'Note: Calculation mistake in textbook Nv is not multiplied by exponentiation';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8.3,Page No:8.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Intrinsic Carrier Concentration at 300K = 1.95e+06 cm**-3\n",
+ "Intrinsic Carrier Concentration at 300K = 3.34e+10 cm**-3\n",
+ " Note : Calculation mistake in textbook in finding carrier conc. at 450K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Nc = 3.8*10**17; #constant in cm**-3\n",
+ "Nv = 6.5*10**18; #constant in cm**-3\n",
+ "Eg = 1.42; # band gap energy in eV\n",
+ "KT1 = 0.03885; # kt value at 450K\n",
+ "T1 = 300; #temperature in K\n",
+ "T2 = 450; #temperature in K\n",
+ "\n",
+ "# calculation\n",
+ "n1i = math.sqrt(Nc*Nv*math.exp(-Eg/float(0.0259))); #intrinsic carrier concentration in cm**-3\n",
+ "n2i = math.sqrt(Nc*Nv*((T2/float(T1))**3) *math.exp(-Eg/float(KT1))); # intrinsic carrier conc at 450K in cm**-3\n",
+ "\n",
+ "# Result\n",
+ "print'Intrinsic Carrier Concentration at 300K = %3.2e'%n1i,'cm**-3';\n",
+ "print'Intrinsic Carrier Concentration at 300K = %3.2e'%n2i,'cm**-3';\n",
+ "print' Note : Calculation mistake in textbook in finding carrier conc. at 450K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8.4,Page No:8.28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The position of Fermi level with respect to middle of the bandgap is -12.7 meV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "mh = 0.56; #masses interms of m0\n",
+ "me = 1.08; #masses interms of m0\n",
+ "t = 27; #temperature in °C\n",
+ "k = 8.62*10**-5;\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "T = t+273; #temperature in K\n",
+ "fl = (3/float(4))*k*T*math.log(mh/float(me)); #position of fermi level in eV\n",
+ "\n",
+ "#result\n",
+ "print'The position of Fermi level with respect to middle of the bandgap is %3.1f'%(fl*10**3),'meV';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8.5,Page No:8.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Donor binding energy = 0.0052 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "mo = 9.11*10**-31; #mass of electron inkilograms\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "er = 13.2; #relative permitivity in F/m\n",
+ "eo = 8.85*10**-12; # permitivity in F/m\n",
+ "h = 6.63*10**-34; # plancks constant J.s\n",
+ " \n",
+ "\n",
+ "# Calculations\n",
+ "me = 0.067*mo; \n",
+ "E = (me*(e**4))/float((8*(eo*er)**2)*(h**2)*e); #energy in eV \n",
+ "\n",
+ "# Result\n",
+ "print'Donor binding energy = %3.4f'%E,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8.6,Page No:8.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Equlibrium hole concentration = 2.25e+03 cm**-3\n",
+ "Position of fermi energy level = 0.177 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "no = 10**17; # doping carrier conc\n",
+ "ni = 1.5*10**10; #intrinsic concentration\n",
+ "kT = 0.0259\n",
+ "\n",
+ "#Calculations\n",
+ "po = (ni**2)/float(no); #Equlibrium hole concentration in cm**-3\n",
+ "fl = kT*math.log10(no/float(ni)); #Position of fermi energy level in eV\n",
+ "\n",
+ "#Result\n",
+ "print'Equlibrium hole concentration = %3.2e'%po,'cm**-3';\n",
+ "print'Position of fermi energy level = %3.3f'%fl,'eV';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8.7,Page No:8.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 62,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electrical conductivity of pure silicon =2.39e+03 ohm**-1.m**-1\n",
+ "Note:calculation mistake in electrical conductivity,and units of conductivity\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "k = 8.62*10**-5; #in eV/K\n",
+ "Eg = 1.10; #energy in eV\n",
+ "t1 = 200; #temperature in °C\n",
+ "t2 = 27; #temperature in °C\n",
+ "psi = 2.3*10**3;\n",
+ "\n",
+ "# Calculations\n",
+ "# sigma = sigmao*exp(-Eg/(2kT))\n",
+ "# k = sigma_473/sigma_300;\n",
+ "\n",
+ "t3 = t1+273; #temperature in K\n",
+ "t4 = t2+273; #temperature in K\n",
+ "k1 = math.exp((-Eg)/float(2*k*t3)); #electrical conductivity in cm**-1.m**-1\n",
+ "k2 = math.exp((-Eg)/float(2*k*t4)); #lectrical conductivity in cm**-1.m**-1\n",
+ "k = k1/float(k2);\n",
+ "pm = k/float(psi);\n",
+ "\n",
+ "#Result\n",
+ "\n",
+ "print'electrical conductivity of pure silicon =%3.2e'%k,'ohm**-1.m**-1';\n",
+ "print'Note:calculation mistake in electrical conductivity,and units of conductivity';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8.8,Page No:8.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resistivity = 0.5 Ω-m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "ni = 2.5*10**19; # carrier density in per m**3\n",
+ "q = 1.6*10**-19; # charge of electron in coulombs\n",
+ "un = 0.35; #mobility of electrons in m**2/V-s\n",
+ "up = 0.15; #mobility of electrons in m**2/V-s\n",
+ "\n",
+ "# Calculations\n",
+ "sigma = ni*q*(un + up); #conductivity in per Ω-m\n",
+ "p = 1/float(sigma); #resistivity in Ω-m\n",
+ "\n",
+ "\n",
+ "# Result\n",
+ "print'Resistivity = %3.1f'%p,'Ω-m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8.9,Page No:8.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Intrinsic Carrier Concentration = 1.04e+16 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 3.16*10**3; # resistivity Ω-m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "ue = 0.14; #mobility of electrons in m**2/V-s\n",
+ "uh = 0.05; #mobility of holes in m**2/V-s\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "n = 1/float((p*e)*(ue + uh)); #carrier density in m**-3\n",
+ "\n",
+ "# Result\n",
+ "print'Intrinsic Carrier Concentration = %3.2e'%n,'m**-3';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8.10,Page No:8.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The factor by which the majority conc. is more than the intrinsic carrier conc = 2942\n",
+ "Hole concentration = 5.1e+15 m**-3\n",
+ "Conductivity = 2542 ohm**-1 m**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 5.32*10**3; #density of germanium\n",
+ "Nav = 6.023*10**26; # Avagadros number\n",
+ "AW = 72.59; # atomic wt\n",
+ "ni = 1.5*10**19; # carrier density\n",
+ "ue = 0.36;\n",
+ "uh = 0.18;\n",
+ "e = 1.6*10**-19;\n",
+ "\n",
+ "# calculations\n",
+ "N = (p*Nav)/float(AW); # no of germanium atoms per unit volume\n",
+ "Nd = N*10**-6 ; # no of pentavalent impurity atoms/m**3\n",
+ "f = Nd/float(ni);\n",
+ "nh = (ni**2)/float(Nd); # hole concentration\n",
+ "sigma = e*((Nd*ue)+(nh*uh));\n",
+ "\n",
+ "#Result\n",
+ "print'The factor by which the majority conc. is more than the intrinsic carrier conc = %d'%f;\n",
+ "print'Hole concentration = %3.1e'%nh,'m**-3';\n",
+ "print'Conductivity = %d'%sigma,'ohm**-1 m**-1';\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8.11,Page No:8.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Carrier Density = 3.1e+21 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 5*10**-3; # resistivity in Ω-m\n",
+ "ue = 0.3; # electron mobility m**2/volt-s\n",
+ "uh = 0.1; # hole mobility m**2/volt-s\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "\n",
+ "# calculations\n",
+ "sigma = 1/float(p); # conductivity in per Ω -m\n",
+ "n = sigma/float(e*(ue + uh)); # carrier density per m**3\n",
+ "\n",
+ "#Result\n",
+ "print'Carrier Density = %3.1e'%n,'m**-3';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8.12,Page No:8.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Drift velocity = 10 m/s\n",
+ " time = 1e-05 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Jd = 500; # current density A/m**2\n",
+ "p = 0.05; # resistivity in Ω-m\n",
+ "l = 100*10**-6; # travel length m\n",
+ "ue = 0.4; # electron mobility m**2/Vs\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "ne = 1/float(p*e*ue); #in per m**3\n",
+ "vd = Jd/float(ne*e); #drift velocity in m/s\n",
+ "t = l/float(vd); #time teken in s\n",
+ "\n",
+ "#result\n",
+ "print'Drift velocity = %d'%vd,'m/s';\n",
+ "print' time = %3.0e'%t,'s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8.13,Page No:8.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 68,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature rise is of = 5.91 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "#psi1 is increased by 30%, psi1/ps2 is 130/100\n",
+ "a = 1.3; #ratio of psi1/psi2\n",
+ "K = 8.82*10**-5; #constant in eV/K\n",
+ "Eg = 0.719; #band gap in eV/K\n",
+ "T = 300; #temperature in K\n",
+ "\n",
+ "#calculation\n",
+ "d=1/float((1/float(T))-((2*K/float(Eg))*math.log(1.3)));\n",
+ "dT=d-T; #temperature rise in K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'temperature rise is of = %3.2f'%dT,'K';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8.14,Page No:8.39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 69,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Conductivity of the compensated p-type semiconductor is 0.492\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "v = 5; # voltage in volts\n",
+ "r = 10; # resistance in k-ohm\n",
+ "J = 60; # current density in A/cm**2\n",
+ "E = 100; # electric field in V.m**-1\n",
+ "Nd = 5*10**15; # in cm**-3\n",
+ "up = 410; # approx hole mobility cm**2/V-s\n",
+ "Na = 1.25*10**16; # approx in cm**-3\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "\n",
+ "#Calculations\n",
+ "I = v/float(r); # total current A\n",
+ "A = I/float(J); # cross sectional area cm**2\n",
+ "L = v/float(E) # length of resistor cm\n",
+ "sigma = L/float(r*A); #conductivity in (Ω-cm)**-1\n",
+ "sigma_comp = e*up*(Na - Nd); #conductivity in (Ω-cm)**-1\n",
+ "\n",
+ "# Result\n",
+ "print'Conductivity of the compensated p-type semiconductor is %3.3f'%sigma_comp;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8.15,Page No:8.39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 70,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Diffusion Current Density = 120 A/cm**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "Dn = 250; # electron diffusion co-efficient cm**2/s\n",
+ "n1 = 10**18; # electron conc. in cm**-3\n",
+ "n2 = 7*10**17; # electron conc. in cm**-3\n",
+ "dx = 0.10; # distance in cm\n",
+ "\n",
+ "# Calculations\n",
+ "Jdiff = e*Dn*((n1-n2)/float(dx)); #diffusion current density A/cm**2\n",
+ "\n",
+ "#Result\n",
+ "print'Diffusion Current Density = %d '%Jdiff,'A/cm**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8.16,Page No:8.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 71,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Wavelength at which Ge starts to absorb light = 16550 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "Eg = 0.75; #bandgap energy eV\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "h = 6.62*10**-34; # plancks constant in J.s\n",
+ "\n",
+ "# Calculations\n",
+ "lamda = (h*c)/float(Eg*e); # wavelength in Å\n",
+ "\n",
+ "#Result\n",
+ "print'Wavelength at which Ge starts to absorb light = %d '%(lamda*10**10),'Å';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8.17,Page No:8.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 72,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "cutoff wavelength =0.92 um\n"
+ ]
+ }
+ ],
+ "source": [
+ "# import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Eg = 1.35*1.6*10**-19; #energy in eV\n",
+ "h = 6.63*10**-34; #plancks constant in J.s\n",
+ "c = 3*10**8; #velocity in m\n",
+ " \n",
+ "#calculation\n",
+ "lamda = (h*c)/float(Eg); #wavelength in m\n",
+ " \n",
+ "#result\n",
+ "print'cutoff wavelength =%3.2f '%(lamda*10**6),'um';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8.18,Page No:8.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 73,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "bandgap energy = 0.701 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.62*10**-34 # plancks constant J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "lamda = 1771*10**-9; # wavelengthg in m\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "\n",
+ "# Calculations\n",
+ "Eg = (h*c)/float(lamda*e); #bandgap energy eV\n",
+ "\n",
+ "#Result\n",
+ "print'bandgap energy = %3.3f'%Eg,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8.19,Page No:8.45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 74,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hall Voltage = 5.6 mV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Nd = 10**21; # donar density per in m**3\n",
+ "H = 0.6; # magnetic field in T\n",
+ "J = 500; # current density A/m**2\n",
+ "d = 3*10**-3; # width in m\n",
+ "e = 1.6*10**-19 # charge of electron coulombs\n",
+ "\n",
+ "#Calculations\n",
+ "Ey = (J*H)/float(Nd*e); # field in V/m \n",
+ "vh = Ey*d; # hall voltage V\n",
+ "\n",
+ "#Result\n",
+ "print'Hall Voltage = %3.1f '%(vh*10**3),'mV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8.20,Page No:8.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 75,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current density = 2304 Ampere/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e = 1.6*10**-19; # charge of electron in coulomb\n",
+ "Rh = -0.0125; # hall co-efficient\n",
+ "ue = 0.36; # electron mobility\n",
+ "E = 80; # electric field\n",
+ "\n",
+ "# Calculations\n",
+ "n = -1/float(Rh*e);\n",
+ "J = n*e*ue*E # current density in Ampere/m**2\n",
+ "\n",
+ "# Result\n",
+ "print'Current density = %d '%J,'Ampere/m**2';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 8.21,Page No:8.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 76,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hall angle = 1.1740 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 0.00893; # resistivity in ohm-m \n",
+ "Hz = 0.5; # field in weber/m**2\n",
+ "Rh = 3.66*10**-4; # hall co-efficient hall coefficient in m**3\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "u = Rh/float(p); #mobility of charge cerrier in m**2*(V**-1)*s**-1\n",
+ "theta_h = (math.atan(u*Hz))*(180/float(math.pi)); # hall angle in degrees\n",
+ "\n",
+ "# Result\n",
+ "print'Hall angle = %3.4f '%theta_h,'°';"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8_1.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8_1.ipynb
new file mode 100644
index 00000000..d31fdb5a
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8_1.ipynb
@@ -0,0 +1,909 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8:Mechanism of Conduction in Semiconductors"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1,Page No:8.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Kinetic Energy = 0.1 eV\n",
+ "Momentum of electrons = 4.5e-26 kg m/s\n",
+ "Momentum of holes = 4.4e-26 kg m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Ephoton = 1.5; # energy of photon in eV\n",
+ "Eg = 1.4; # energy gap in eV\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "me_GaAs = 0.07; #times of electro mass in kilograms\n",
+ "mh_GaAs = 0.068; #times of electro mass in kilograms\n",
+ "\n",
+ "# Calculations\n",
+ "Eke = Ephoton - Eg; #energy on eV\n",
+ "pe = math.sqrt(2*m*me_GaAs*Eke*e) # momentum of electrons in kg m/s\n",
+ "ph = math.sqrt(2*m*mh_GaAs*Eke*e) # momentum of electrons in kg m/s\n",
+ "\n",
+ "# Result\n",
+ "print'Kinetic Energy = %3.1f'%Eke,'eV';\n",
+ "print'Momentum of electrons = %3.1e'%pe,'kg m/s';\n",
+ "print'Momentum of holes = %3.1e'%ph,'kg m/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2,Page No:8.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Thermal equilibrium hole concentration = 1.15e+16 cm**-3\n",
+ "Note: Calculation mistake in textbook Nv is not multiplied by exponentiation\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "T1 = 300; # temperature in kelvin\n",
+ "nv = 1.04*10**19; #in cm**-3\n",
+ "T2 = 400; #temperature in K\n",
+ "fl = 0.25; #fermi level position in eV\n",
+ "\n",
+ "#Calculations\n",
+ "Nv = (1.04*10**19)*(T2/float(T1))**(3/float(2)); #Nv at 400 k in cm**-3\n",
+ "kT = (0.0259)*(T2/float(T1)); #kT in eV\n",
+ "po = Nv*math.exp(-(fl)/float(kT)); #hole oncentration in cm**-3\n",
+ "\n",
+ "\n",
+ "# Result\n",
+ "print'Thermal equilibrium hole concentration = %3.2e '%po,'cm**-3';\n",
+ "print'Note: Calculation mistake in textbook Nv is not multiplied by exponentiation';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3,Page No:8.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Intrinsic Carrier Concentration at 300K = 1.95e+06 cm**-3\n",
+ "Intrinsic Carrier Concentration at 300K = 3.34e+10 cm**-3\n",
+ " Note : Calculation mistake in textbook in finding carrier conc. at 450K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Nc = 3.8*10**17; #constant in cm**-3\n",
+ "Nv = 6.5*10**18; #constant in cm**-3\n",
+ "Eg = 1.42; # band gap energy in eV\n",
+ "KT1 = 0.03885; # kt value at 450K\n",
+ "T1 = 300; #temperature in K\n",
+ "T2 = 450; #temperature in K\n",
+ "\n",
+ "# calculation\n",
+ "n1i = math.sqrt(Nc*Nv*math.exp(-Eg/float(0.0259))); #intrinsic carrier concentration in cm**-3\n",
+ "n2i = math.sqrt(Nc*Nv*((T2/float(T1))**3) *math.exp(-Eg/float(KT1))); # intrinsic carrier conc at 450K in cm**-3\n",
+ "\n",
+ "# Result\n",
+ "print'Intrinsic Carrier Concentration at 300K = %3.2e'%n1i,'cm**-3';\n",
+ "print'Intrinsic Carrier Concentration at 300K = %3.2e'%n2i,'cm**-3';\n",
+ "print' Note : Calculation mistake in textbook in finding carrier conc. at 450K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4,Page No:8.28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The position of Fermi level with respect to middle of the bandgap is -12.7 meV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "mh = 0.56; #masses interms of m0\n",
+ "me = 1.08; #masses interms of m0\n",
+ "t = 27; #temperature in °C\n",
+ "k = 8.62*10**-5;\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "T = t+273; #temperature in K\n",
+ "fl = (3/float(4))*k*T*math.log(mh/float(me)); #position of fermi level in eV\n",
+ "\n",
+ "#result\n",
+ "print'The position of Fermi level with respect to middle of the bandgap is %3.1f'%(fl*10**3),'meV';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5,Page No:8.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Donor binding energy = 0.0052 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "mo = 9.11*10**-31; #mass of electron inkilograms\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "er = 13.2; #relative permitivity in F/m\n",
+ "eo = 8.85*10**-12; # permitivity in F/m\n",
+ "h = 6.63*10**-34; # plancks constant J.s\n",
+ " \n",
+ "\n",
+ "# Calculations\n",
+ "me = 0.067*mo; \n",
+ "E = (me*(e**4))/float((8*(eo*er)**2)*(h**2)*e); #energy in eV \n",
+ "\n",
+ "# Result\n",
+ "print'Donor binding energy = %3.4f'%E,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6,Page No:8.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Equlibrium hole concentration = 2.25e+03 cm**-3\n",
+ "Position of fermi energy level = 0.177 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "no = 10**17; # doping carrier conc\n",
+ "ni = 1.5*10**10; #intrinsic concentration\n",
+ "kT = 0.0259\n",
+ "\n",
+ "#Calculations\n",
+ "po = (ni**2)/float(no); #Equlibrium hole concentration in cm**-3\n",
+ "fl = kT*math.log10(no/float(ni)); #Position of fermi energy level in eV\n",
+ "\n",
+ "#Result\n",
+ "print'Equlibrium hole concentration = %3.2e'%po,'cm**-3';\n",
+ "print'Position of fermi energy level = %3.3f'%fl,'eV';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.7,Page No:8.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electrical conductivity of pure silicon =2.39e+03 ohm**-1.m**-1\n",
+ "Note:calculation mistake in electrical conductivity,and units of conductivity\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "k = 8.62*10**-5; #in eV/K\n",
+ "Eg = 1.10; #energy in eV\n",
+ "t1 = 200; #temperature in °C\n",
+ "t2 = 27; #temperature in °C\n",
+ "psi = 2.3*10**3;\n",
+ "\n",
+ "# Calculations\n",
+ "# sigma = sigmao*exp(-Eg/(2kT))\n",
+ "# k = sigma_473/sigma_300;\n",
+ "\n",
+ "t3 = t1+273; #temperature in K\n",
+ "t4 = t2+273; #temperature in K\n",
+ "k1 = math.exp((-Eg)/float(2*k*t3)); #electrical conductivity in cm**-1.m**-1\n",
+ "k2 = math.exp((-Eg)/float(2*k*t4)); #lectrical conductivity in cm**-1.m**-1\n",
+ "k = k1/float(k2);\n",
+ "pm = k/float(psi);\n",
+ "\n",
+ "#Result\n",
+ "\n",
+ "print'electrical conductivity of pure silicon =%3.2e'%k,'ohm**-1.m**-1';\n",
+ "print'Note:calculation mistake in electrical conductivity,and units of conductivity';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.8,Page No:8.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resistivity = 0.5 Ω-m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "ni = 2.5*10**19; # carrier density in per m**3\n",
+ "q = 1.6*10**-19; # charge of electron in coulombs\n",
+ "un = 0.35; #mobility of electrons in m**2/V-s\n",
+ "up = 0.15; #mobility of electrons in m**2/V-s\n",
+ "\n",
+ "# Calculations\n",
+ "sigma = ni*q*(un + up); #conductivity in per Ω-m\n",
+ "p = 1/float(sigma); #resistivity in Ω-m\n",
+ "\n",
+ "\n",
+ "# Result\n",
+ "print'Resistivity = %3.1f'%p,'Ω-m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.9,Page No:8.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Intrinsic Carrier Concentration = 1.04e+16 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 3.16*10**3; # resistivity Ω-m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "ue = 0.14; #mobility of electrons in m**2/V-s\n",
+ "uh = 0.05; #mobility of holes in m**2/V-s\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "n = 1/float((p*e)*(ue + uh)); #carrier density in m**-3\n",
+ "\n",
+ "# Result\n",
+ "print'Intrinsic Carrier Concentration = %3.2e'%n,'m**-3';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.10,Page No:8.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The factor by which the majority conc. is more than the intrinsic carrier conc = 2942\n",
+ "Hole concentration = 5.1e+15 m**-3\n",
+ "Conductivity = 2542 ohm**-1 m**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 5.32*10**3; #density of germanium\n",
+ "Nav = 6.023*10**26; # Avagadros number\n",
+ "AW = 72.59; # atomic wt\n",
+ "ni = 1.5*10**19; # carrier density\n",
+ "ue = 0.36;\n",
+ "uh = 0.18;\n",
+ "e = 1.6*10**-19;\n",
+ "\n",
+ "# calculations\n",
+ "N = (p*Nav)/float(AW); # no of germanium atoms per unit volume\n",
+ "Nd = N*10**-6 ; # no of pentavalent impurity atoms/m**3\n",
+ "f = Nd/float(ni);\n",
+ "nh = (ni**2)/float(Nd); # hole concentration\n",
+ "sigma = e*((Nd*ue)+(nh*uh));\n",
+ "\n",
+ "#Result\n",
+ "print'The factor by which the majority conc. is more than the intrinsic carrier conc = %d'%f;\n",
+ "print'Hole concentration = %3.1e'%nh,'m**-3';\n",
+ "print'Conductivity = %d'%sigma,'ohm**-1 m**-1';\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.11,Page No:8.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Carrier Density = 3.1e+21 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 5*10**-3; # resistivity in Ω-m\n",
+ "ue = 0.3; # electron mobility m**2/volt-s\n",
+ "uh = 0.1; # hole mobility m**2/volt-s\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "\n",
+ "# calculations\n",
+ "sigma = 1/float(p); # conductivity in per Ω -m\n",
+ "n = sigma/float(e*(ue + uh)); # carrier density per m**3\n",
+ "\n",
+ "#Result\n",
+ "print'Carrier Density = %3.1e'%n,'m**-3';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.12,Page No:8.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Drift velocity = 10 m/s\n",
+ " time = 1e-05 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Jd = 500; # current density A/m**2\n",
+ "p = 0.05; # resistivity in Ω-m\n",
+ "l = 100*10**-6; # travel length m\n",
+ "ue = 0.4; # electron mobility m**2/Vs\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "ne = 1/float(p*e*ue); #in per m**3\n",
+ "vd = Jd/float(ne*e); #drift velocity in m/s\n",
+ "t = l/float(vd); #time teken in s\n",
+ "\n",
+ "#result\n",
+ "print'Drift velocity = %d'%vd,'m/s';\n",
+ "print' time = %3.0e'%t,'s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.13,Page No:8.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature rise is of = 5.91 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "#psi1 is increased by 30%, psi1/ps2 is 130/100\n",
+ "a = 1.3; #ratio of psi1/psi2\n",
+ "K = 8.82*10**-5; #constant in eV/K\n",
+ "Eg = 0.719; #band gap in eV/K\n",
+ "T = 300; #temperature in K\n",
+ "\n",
+ "#calculation\n",
+ "d=1/float((1/float(T))-((2*K/float(Eg))*math.log(1.3)));\n",
+ "dT=d-T; #temperature rise in K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'temperature rise is of = %3.2f'%dT,'K';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.14,Page No:8.39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Conductivity of the compensated p-type semiconductor is 0.492\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "v = 5; # voltage in volts\n",
+ "r = 10; # resistance in k-ohm\n",
+ "J = 60; # current density in A/cm**2\n",
+ "E = 100; # electric field in V.m**-1\n",
+ "Nd = 5*10**15; # in cm**-3\n",
+ "up = 410; # approx hole mobility cm**2/V-s\n",
+ "Na = 1.25*10**16; # approx in cm**-3\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "\n",
+ "#Calculations\n",
+ "I = v/float(r); # total current A\n",
+ "A = I/float(J); # cross sectional area cm**2\n",
+ "L = v/float(E) # length of resistor cm\n",
+ "sigma = L/float(r*A); #conductivity in (Ω-cm)**-1\n",
+ "sigma_comp = e*up*(Na - Nd); #conductivity in (Ω-cm)**-1\n",
+ "\n",
+ "# Result\n",
+ "print'Conductivity of the compensated p-type semiconductor is %3.3f'%sigma_comp;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.15,Page No:8.39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Diffusion Current Density = 120 A/cm**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "Dn = 250; # electron diffusion co-efficient cm**2/s\n",
+ "n1 = 10**18; # electron conc. in cm**-3\n",
+ "n2 = 7*10**17; # electron conc. in cm**-3\n",
+ "dx = 0.10; # distance in cm\n",
+ "\n",
+ "# Calculations\n",
+ "Jdiff = e*Dn*((n1-n2)/float(dx)); #diffusion current density A/cm**2\n",
+ "\n",
+ "#Result\n",
+ "print'Diffusion Current Density = %d '%Jdiff,'A/cm**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.16,Page No:8.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Wavelength at which Ge starts to absorb light = 16550 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "Eg = 0.75; #bandgap energy eV\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "h = 6.62*10**-34; # plancks constant in J.s\n",
+ "\n",
+ "# Calculations\n",
+ "lamda = (h*c)/float(Eg*e); # wavelength in Å\n",
+ "\n",
+ "#Result\n",
+ "print'Wavelength at which Ge starts to absorb light = %d '%(lamda*10**10),'Å';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.17,Page No:8.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "cutoff wavelength =0.92 um\n"
+ ]
+ }
+ ],
+ "source": [
+ "# import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Eg = 1.35*1.6*10**-19; #energy in eV\n",
+ "h = 6.63*10**-34; #plancks constant in J.s\n",
+ "c = 3*10**8; #velocity in m\n",
+ " \n",
+ "#calculation\n",
+ "lamda = (h*c)/float(Eg); #wavelength in m\n",
+ " \n",
+ "#result\n",
+ "print'cutoff wavelength =%3.2f '%(lamda*10**6),'um';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.18,Page No:8.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "bandgap energy = 0.701 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.62*10**-34 # plancks constant J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "lamda = 1771*10**-9; # wavelengthg in m\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "\n",
+ "# Calculations\n",
+ "Eg = (h*c)/float(lamda*e); #bandgap energy eV\n",
+ "\n",
+ "#Result\n",
+ "print'bandgap energy = %3.3f'%Eg,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.19,Page No:8.45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hall Voltage = 5.6 mV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Nd = 10**21; # donar density per in m**3\n",
+ "H = 0.6; # magnetic field in T\n",
+ "J = 500; # current density A/m**2\n",
+ "d = 3*10**-3; # width in m\n",
+ "e = 1.6*10**-19 # charge of electron coulombs\n",
+ "\n",
+ "#Calculations\n",
+ "Ey = (J*H)/float(Nd*e); # field in V/m \n",
+ "vh = Ey*d; # hall voltage V\n",
+ "\n",
+ "#Result\n",
+ "print'Hall Voltage = %3.1f '%(vh*10**3),'mV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.20,Page No:8.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current density = 2304 Ampere/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e = 1.6*10**-19; # charge of electron in coulomb\n",
+ "Rh = -0.0125; # hall co-efficient\n",
+ "ue = 0.36; # electron mobility\n",
+ "E = 80; # electric field\n",
+ "\n",
+ "# Calculations\n",
+ "n = -1/float(Rh*e);\n",
+ "J = n*e*ue*E # current density in Ampere/m**2\n",
+ "\n",
+ "# Result\n",
+ "print'Current density = %d '%J,'Ampere/m**2';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.21,Page No:8.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hall angle = 1.1740 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 0.00893; # resistivity in ohm-m \n",
+ "Hz = 0.5; # field in weber/m**2\n",
+ "Rh = 3.66*10**-4; # hall co-efficient hall coefficient in m**3\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "u = Rh/float(p); #mobility of charge cerrier in m**2*(V**-1)*s**-1\n",
+ "theta_h = (math.atan(u*Hz))*(180/float(math.pi)); # hall angle in degrees\n",
+ "\n",
+ "# Result\n",
+ "print'Hall angle = %3.4f '%theta_h,'°';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8_2.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8_2.ipynb
new file mode 100644
index 00000000..d31fdb5a
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8_2.ipynb
@@ -0,0 +1,909 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8:Mechanism of Conduction in Semiconductors"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1,Page No:8.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Kinetic Energy = 0.1 eV\n",
+ "Momentum of electrons = 4.5e-26 kg m/s\n",
+ "Momentum of holes = 4.4e-26 kg m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Ephoton = 1.5; # energy of photon in eV\n",
+ "Eg = 1.4; # energy gap in eV\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "me_GaAs = 0.07; #times of electro mass in kilograms\n",
+ "mh_GaAs = 0.068; #times of electro mass in kilograms\n",
+ "\n",
+ "# Calculations\n",
+ "Eke = Ephoton - Eg; #energy on eV\n",
+ "pe = math.sqrt(2*m*me_GaAs*Eke*e) # momentum of electrons in kg m/s\n",
+ "ph = math.sqrt(2*m*mh_GaAs*Eke*e) # momentum of electrons in kg m/s\n",
+ "\n",
+ "# Result\n",
+ "print'Kinetic Energy = %3.1f'%Eke,'eV';\n",
+ "print'Momentum of electrons = %3.1e'%pe,'kg m/s';\n",
+ "print'Momentum of holes = %3.1e'%ph,'kg m/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2,Page No:8.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Thermal equilibrium hole concentration = 1.15e+16 cm**-3\n",
+ "Note: Calculation mistake in textbook Nv is not multiplied by exponentiation\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "T1 = 300; # temperature in kelvin\n",
+ "nv = 1.04*10**19; #in cm**-3\n",
+ "T2 = 400; #temperature in K\n",
+ "fl = 0.25; #fermi level position in eV\n",
+ "\n",
+ "#Calculations\n",
+ "Nv = (1.04*10**19)*(T2/float(T1))**(3/float(2)); #Nv at 400 k in cm**-3\n",
+ "kT = (0.0259)*(T2/float(T1)); #kT in eV\n",
+ "po = Nv*math.exp(-(fl)/float(kT)); #hole oncentration in cm**-3\n",
+ "\n",
+ "\n",
+ "# Result\n",
+ "print'Thermal equilibrium hole concentration = %3.2e '%po,'cm**-3';\n",
+ "print'Note: Calculation mistake in textbook Nv is not multiplied by exponentiation';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3,Page No:8.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Intrinsic Carrier Concentration at 300K = 1.95e+06 cm**-3\n",
+ "Intrinsic Carrier Concentration at 300K = 3.34e+10 cm**-3\n",
+ " Note : Calculation mistake in textbook in finding carrier conc. at 450K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Nc = 3.8*10**17; #constant in cm**-3\n",
+ "Nv = 6.5*10**18; #constant in cm**-3\n",
+ "Eg = 1.42; # band gap energy in eV\n",
+ "KT1 = 0.03885; # kt value at 450K\n",
+ "T1 = 300; #temperature in K\n",
+ "T2 = 450; #temperature in K\n",
+ "\n",
+ "# calculation\n",
+ "n1i = math.sqrt(Nc*Nv*math.exp(-Eg/float(0.0259))); #intrinsic carrier concentration in cm**-3\n",
+ "n2i = math.sqrt(Nc*Nv*((T2/float(T1))**3) *math.exp(-Eg/float(KT1))); # intrinsic carrier conc at 450K in cm**-3\n",
+ "\n",
+ "# Result\n",
+ "print'Intrinsic Carrier Concentration at 300K = %3.2e'%n1i,'cm**-3';\n",
+ "print'Intrinsic Carrier Concentration at 300K = %3.2e'%n2i,'cm**-3';\n",
+ "print' Note : Calculation mistake in textbook in finding carrier conc. at 450K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4,Page No:8.28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The position of Fermi level with respect to middle of the bandgap is -12.7 meV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "mh = 0.56; #masses interms of m0\n",
+ "me = 1.08; #masses interms of m0\n",
+ "t = 27; #temperature in °C\n",
+ "k = 8.62*10**-5;\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "T = t+273; #temperature in K\n",
+ "fl = (3/float(4))*k*T*math.log(mh/float(me)); #position of fermi level in eV\n",
+ "\n",
+ "#result\n",
+ "print'The position of Fermi level with respect to middle of the bandgap is %3.1f'%(fl*10**3),'meV';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5,Page No:8.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Donor binding energy = 0.0052 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "mo = 9.11*10**-31; #mass of electron inkilograms\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "er = 13.2; #relative permitivity in F/m\n",
+ "eo = 8.85*10**-12; # permitivity in F/m\n",
+ "h = 6.63*10**-34; # plancks constant J.s\n",
+ " \n",
+ "\n",
+ "# Calculations\n",
+ "me = 0.067*mo; \n",
+ "E = (me*(e**4))/float((8*(eo*er)**2)*(h**2)*e); #energy in eV \n",
+ "\n",
+ "# Result\n",
+ "print'Donor binding energy = %3.4f'%E,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6,Page No:8.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Equlibrium hole concentration = 2.25e+03 cm**-3\n",
+ "Position of fermi energy level = 0.177 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "no = 10**17; # doping carrier conc\n",
+ "ni = 1.5*10**10; #intrinsic concentration\n",
+ "kT = 0.0259\n",
+ "\n",
+ "#Calculations\n",
+ "po = (ni**2)/float(no); #Equlibrium hole concentration in cm**-3\n",
+ "fl = kT*math.log10(no/float(ni)); #Position of fermi energy level in eV\n",
+ "\n",
+ "#Result\n",
+ "print'Equlibrium hole concentration = %3.2e'%po,'cm**-3';\n",
+ "print'Position of fermi energy level = %3.3f'%fl,'eV';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.7,Page No:8.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electrical conductivity of pure silicon =2.39e+03 ohm**-1.m**-1\n",
+ "Note:calculation mistake in electrical conductivity,and units of conductivity\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "k = 8.62*10**-5; #in eV/K\n",
+ "Eg = 1.10; #energy in eV\n",
+ "t1 = 200; #temperature in °C\n",
+ "t2 = 27; #temperature in °C\n",
+ "psi = 2.3*10**3;\n",
+ "\n",
+ "# Calculations\n",
+ "# sigma = sigmao*exp(-Eg/(2kT))\n",
+ "# k = sigma_473/sigma_300;\n",
+ "\n",
+ "t3 = t1+273; #temperature in K\n",
+ "t4 = t2+273; #temperature in K\n",
+ "k1 = math.exp((-Eg)/float(2*k*t3)); #electrical conductivity in cm**-1.m**-1\n",
+ "k2 = math.exp((-Eg)/float(2*k*t4)); #lectrical conductivity in cm**-1.m**-1\n",
+ "k = k1/float(k2);\n",
+ "pm = k/float(psi);\n",
+ "\n",
+ "#Result\n",
+ "\n",
+ "print'electrical conductivity of pure silicon =%3.2e'%k,'ohm**-1.m**-1';\n",
+ "print'Note:calculation mistake in electrical conductivity,and units of conductivity';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.8,Page No:8.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resistivity = 0.5 Ω-m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "ni = 2.5*10**19; # carrier density in per m**3\n",
+ "q = 1.6*10**-19; # charge of electron in coulombs\n",
+ "un = 0.35; #mobility of electrons in m**2/V-s\n",
+ "up = 0.15; #mobility of electrons in m**2/V-s\n",
+ "\n",
+ "# Calculations\n",
+ "sigma = ni*q*(un + up); #conductivity in per Ω-m\n",
+ "p = 1/float(sigma); #resistivity in Ω-m\n",
+ "\n",
+ "\n",
+ "# Result\n",
+ "print'Resistivity = %3.1f'%p,'Ω-m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.9,Page No:8.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Intrinsic Carrier Concentration = 1.04e+16 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 3.16*10**3; # resistivity Ω-m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "ue = 0.14; #mobility of electrons in m**2/V-s\n",
+ "uh = 0.05; #mobility of holes in m**2/V-s\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "n = 1/float((p*e)*(ue + uh)); #carrier density in m**-3\n",
+ "\n",
+ "# Result\n",
+ "print'Intrinsic Carrier Concentration = %3.2e'%n,'m**-3';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.10,Page No:8.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The factor by which the majority conc. is more than the intrinsic carrier conc = 2942\n",
+ "Hole concentration = 5.1e+15 m**-3\n",
+ "Conductivity = 2542 ohm**-1 m**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 5.32*10**3; #density of germanium\n",
+ "Nav = 6.023*10**26; # Avagadros number\n",
+ "AW = 72.59; # atomic wt\n",
+ "ni = 1.5*10**19; # carrier density\n",
+ "ue = 0.36;\n",
+ "uh = 0.18;\n",
+ "e = 1.6*10**-19;\n",
+ "\n",
+ "# calculations\n",
+ "N = (p*Nav)/float(AW); # no of germanium atoms per unit volume\n",
+ "Nd = N*10**-6 ; # no of pentavalent impurity atoms/m**3\n",
+ "f = Nd/float(ni);\n",
+ "nh = (ni**2)/float(Nd); # hole concentration\n",
+ "sigma = e*((Nd*ue)+(nh*uh));\n",
+ "\n",
+ "#Result\n",
+ "print'The factor by which the majority conc. is more than the intrinsic carrier conc = %d'%f;\n",
+ "print'Hole concentration = %3.1e'%nh,'m**-3';\n",
+ "print'Conductivity = %d'%sigma,'ohm**-1 m**-1';\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.11,Page No:8.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Carrier Density = 3.1e+21 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 5*10**-3; # resistivity in Ω-m\n",
+ "ue = 0.3; # electron mobility m**2/volt-s\n",
+ "uh = 0.1; # hole mobility m**2/volt-s\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "\n",
+ "# calculations\n",
+ "sigma = 1/float(p); # conductivity in per Ω -m\n",
+ "n = sigma/float(e*(ue + uh)); # carrier density per m**3\n",
+ "\n",
+ "#Result\n",
+ "print'Carrier Density = %3.1e'%n,'m**-3';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.12,Page No:8.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Drift velocity = 10 m/s\n",
+ " time = 1e-05 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Jd = 500; # current density A/m**2\n",
+ "p = 0.05; # resistivity in Ω-m\n",
+ "l = 100*10**-6; # travel length m\n",
+ "ue = 0.4; # electron mobility m**2/Vs\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "ne = 1/float(p*e*ue); #in per m**3\n",
+ "vd = Jd/float(ne*e); #drift velocity in m/s\n",
+ "t = l/float(vd); #time teken in s\n",
+ "\n",
+ "#result\n",
+ "print'Drift velocity = %d'%vd,'m/s';\n",
+ "print' time = %3.0e'%t,'s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.13,Page No:8.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature rise is of = 5.91 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "#psi1 is increased by 30%, psi1/ps2 is 130/100\n",
+ "a = 1.3; #ratio of psi1/psi2\n",
+ "K = 8.82*10**-5; #constant in eV/K\n",
+ "Eg = 0.719; #band gap in eV/K\n",
+ "T = 300; #temperature in K\n",
+ "\n",
+ "#calculation\n",
+ "d=1/float((1/float(T))-((2*K/float(Eg))*math.log(1.3)));\n",
+ "dT=d-T; #temperature rise in K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'temperature rise is of = %3.2f'%dT,'K';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.14,Page No:8.39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Conductivity of the compensated p-type semiconductor is 0.492\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "v = 5; # voltage in volts\n",
+ "r = 10; # resistance in k-ohm\n",
+ "J = 60; # current density in A/cm**2\n",
+ "E = 100; # electric field in V.m**-1\n",
+ "Nd = 5*10**15; # in cm**-3\n",
+ "up = 410; # approx hole mobility cm**2/V-s\n",
+ "Na = 1.25*10**16; # approx in cm**-3\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "\n",
+ "#Calculations\n",
+ "I = v/float(r); # total current A\n",
+ "A = I/float(J); # cross sectional area cm**2\n",
+ "L = v/float(E) # length of resistor cm\n",
+ "sigma = L/float(r*A); #conductivity in (Ω-cm)**-1\n",
+ "sigma_comp = e*up*(Na - Nd); #conductivity in (Ω-cm)**-1\n",
+ "\n",
+ "# Result\n",
+ "print'Conductivity of the compensated p-type semiconductor is %3.3f'%sigma_comp;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.15,Page No:8.39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Diffusion Current Density = 120 A/cm**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "Dn = 250; # electron diffusion co-efficient cm**2/s\n",
+ "n1 = 10**18; # electron conc. in cm**-3\n",
+ "n2 = 7*10**17; # electron conc. in cm**-3\n",
+ "dx = 0.10; # distance in cm\n",
+ "\n",
+ "# Calculations\n",
+ "Jdiff = e*Dn*((n1-n2)/float(dx)); #diffusion current density A/cm**2\n",
+ "\n",
+ "#Result\n",
+ "print'Diffusion Current Density = %d '%Jdiff,'A/cm**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.16,Page No:8.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Wavelength at which Ge starts to absorb light = 16550 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "Eg = 0.75; #bandgap energy eV\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "h = 6.62*10**-34; # plancks constant in J.s\n",
+ "\n",
+ "# Calculations\n",
+ "lamda = (h*c)/float(Eg*e); # wavelength in Å\n",
+ "\n",
+ "#Result\n",
+ "print'Wavelength at which Ge starts to absorb light = %d '%(lamda*10**10),'Å';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.17,Page No:8.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "cutoff wavelength =0.92 um\n"
+ ]
+ }
+ ],
+ "source": [
+ "# import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Eg = 1.35*1.6*10**-19; #energy in eV\n",
+ "h = 6.63*10**-34; #plancks constant in J.s\n",
+ "c = 3*10**8; #velocity in m\n",
+ " \n",
+ "#calculation\n",
+ "lamda = (h*c)/float(Eg); #wavelength in m\n",
+ " \n",
+ "#result\n",
+ "print'cutoff wavelength =%3.2f '%(lamda*10**6),'um';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.18,Page No:8.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "bandgap energy = 0.701 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.62*10**-34 # plancks constant J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "lamda = 1771*10**-9; # wavelengthg in m\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "\n",
+ "# Calculations\n",
+ "Eg = (h*c)/float(lamda*e); #bandgap energy eV\n",
+ "\n",
+ "#Result\n",
+ "print'bandgap energy = %3.3f'%Eg,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.19,Page No:8.45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hall Voltage = 5.6 mV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Nd = 10**21; # donar density per in m**3\n",
+ "H = 0.6; # magnetic field in T\n",
+ "J = 500; # current density A/m**2\n",
+ "d = 3*10**-3; # width in m\n",
+ "e = 1.6*10**-19 # charge of electron coulombs\n",
+ "\n",
+ "#Calculations\n",
+ "Ey = (J*H)/float(Nd*e); # field in V/m \n",
+ "vh = Ey*d; # hall voltage V\n",
+ "\n",
+ "#Result\n",
+ "print'Hall Voltage = %3.1f '%(vh*10**3),'mV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.20,Page No:8.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current density = 2304 Ampere/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e = 1.6*10**-19; # charge of electron in coulomb\n",
+ "Rh = -0.0125; # hall co-efficient\n",
+ "ue = 0.36; # electron mobility\n",
+ "E = 80; # electric field\n",
+ "\n",
+ "# Calculations\n",
+ "n = -1/float(Rh*e);\n",
+ "J = n*e*ue*E # current density in Ampere/m**2\n",
+ "\n",
+ "# Result\n",
+ "print'Current density = %d '%J,'Ampere/m**2';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.21,Page No:8.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hall angle = 1.1740 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 0.00893; # resistivity in ohm-m \n",
+ "Hz = 0.5; # field in weber/m**2\n",
+ "Rh = 3.66*10**-4; # hall co-efficient hall coefficient in m**3\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "u = Rh/float(p); #mobility of charge cerrier in m**2*(V**-1)*s**-1\n",
+ "theta_h = (math.atan(u*Hz))*(180/float(math.pi)); # hall angle in degrees\n",
+ "\n",
+ "# Result\n",
+ "print'Hall angle = %3.4f '%theta_h,'°';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8_3.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8_3.ipynb
new file mode 100644
index 00000000..f08902b6
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8_3.ipynb
@@ -0,0 +1,909 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8:Mechanism of Conduction in Semiconductors"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1,Page No:8.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Kinetic Energy = 0.1 eV\n",
+ "Momentum of electrons = 4.5e-26 kg m/s\n",
+ "Momentum of holes = 4.4e-26 kg m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Ephoton = 1.5; # energy of photon in eV\n",
+ "Eg = 1.4; # energy gap in eV\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "me_GaAs = 0.07; #times of electro mass in kilograms\n",
+ "mh_GaAs = 0.068; #times of electro mass in kilograms\n",
+ "\n",
+ "# Calculations\n",
+ "Eke = Ephoton - Eg; #energy on eV\n",
+ "pe = math.sqrt(2*m*me_GaAs*Eke*e) # momentum of electrons in kg m/s\n",
+ "ph = math.sqrt(2*m*mh_GaAs*Eke*e) # momentum of electrons in kg m/s\n",
+ "\n",
+ "# Result\n",
+ "print'Kinetic Energy = %3.1f'%Eke,'eV';\n",
+ "print'Momentum of electrons = %3.1e'%pe,'kg m/s';\n",
+ "print'Momentum of holes = %3.1e'%ph,'kg m/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2,Page No:8.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Thermal equilibrium hole concentration = 1.15e+16 cm**-3\n",
+ "Note: Calculation mistake in textbook Nv is not multiplied by exponentiation\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "T1 = 300; # temperature in kelvin\n",
+ "nv = 1.04*10**19; #in cm**-3\n",
+ "T2 = 400; #temperature in K\n",
+ "fl = 0.25; #fermi level position in eV\n",
+ "\n",
+ "#Calculations\n",
+ "Nv = (1.04*10**19)*(T2/float(T1))**(3/float(2)); #Nv at 400 k in cm**-3\n",
+ "kT = (0.0259)*(T2/float(T1)); #kT in eV\n",
+ "po = Nv*math.exp(-(fl)/float(kT)); #hole oncentration in cm**-3\n",
+ "\n",
+ "\n",
+ "# Result\n",
+ "print'Thermal equilibrium hole concentration = %3.2e '%po,'cm**-3';\n",
+ "print'Note: Calculation mistake in textbook Nv is not multiplied by exponentiation';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3,Page No:8.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Intrinsic Carrier Concentration at 300K = 1.95e+06 cm**-3\n",
+ "Intrinsic Carrier Concentration at 300K = 3.34e+10 cm**-3\n",
+ " Note : Calculation mistake in textbook in finding carrier conc. at 450K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Nc = 3.8*10**17; #constant in cm**-3\n",
+ "Nv = 6.5*10**18; #constant in cm**-3\n",
+ "Eg = 1.42; # band gap energy in eV\n",
+ "KT1 = 0.03885; # kt value at 450K\n",
+ "T1 = 300; #temperature in K\n",
+ "T2 = 450; #temperature in K\n",
+ "\n",
+ "# calculation\n",
+ "n1i = math.sqrt(Nc*Nv*math.exp(-Eg/float(0.0259))); #intrinsic carrier concentration in cm**-3\n",
+ "n2i = math.sqrt(Nc*Nv*((T2/float(T1))**3) *math.exp(-Eg/float(KT1))); # intrinsic carrier conc at 450K in cm**-3\n",
+ "\n",
+ "# Result\n",
+ "print'Intrinsic Carrier Concentration at 300K = %3.2e'%n1i,'cm**-3';\n",
+ "print'Intrinsic Carrier Concentration at 300K = %3.2e'%n2i,'cm**-3';\n",
+ "print' Note : Calculation mistake in textbook in finding carrier conc. at 450K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4,Page No:8.28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The position of Fermi level with respect to middle of the bandgap is -12.7 meV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "mh = 0.56; #masses interms of m0\n",
+ "me = 1.08; #masses interms of m0\n",
+ "t = 27; #temperature in °C\n",
+ "k = 8.62*10**-5;\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "T = t+273; #temperature in K\n",
+ "fl = (3/float(4))*k*T*math.log(mh/float(me)); #position of fermi level in eV\n",
+ "\n",
+ "#result\n",
+ "print'The position of Fermi level with respect to middle of the bandgap is %3.1f'%(fl*10**3),'meV';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5,Page No:8.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Donor binding energy = 0.0052 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "mo = 9.11*10**-31; #mass of electron inkilograms\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "er = 13.2; #relative permitivity in F/m\n",
+ "eo = 8.85*10**-12; # permitivity in F/m\n",
+ "h = 6.63*10**-34; # plancks constant J.s\n",
+ " \n",
+ "\n",
+ "# Calculations\n",
+ "me = 0.067*mo; \n",
+ "E = (me*(e**4))/float((8*(eo*er)**2)*(h**2)*e); #energy in eV \n",
+ "\n",
+ "# Result\n",
+ "print'Donor binding energy = %3.4f'%E,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6,Page No:8.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Equlibrium hole concentration = 2.25e+03 cm**-3\n",
+ "Position of fermi energy level = 0.177 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "no = 10**17; # doping carrier conc\n",
+ "ni = 1.5*10**10; #intrinsic concentration\n",
+ "kT = 0.0259\n",
+ "\n",
+ "#Calculations\n",
+ "po = (ni**2)/float(no); #Equlibrium hole concentration in cm**-3\n",
+ "fl = kT*math.log10(no/float(ni)); #Position of fermi energy level in eV\n",
+ "\n",
+ "#Result\n",
+ "print'Equlibrium hole concentration = %3.2e'%po,'cm**-3';\n",
+ "print'Position of fermi energy level = %3.3f'%fl,'eV';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.7,Page No:8.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electrical conductivity of pure silicon =2.39e+03 ohm**-1.m**-1\n",
+ "Note:calculation mistake in electrical conductivity,and units of conductivity\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "k = 8.62*10**-5; #in eV/K\n",
+ "Eg = 1.10; #energy in eV\n",
+ "t1 = 200; #temperature in °C\n",
+ "t2 = 27; #temperature in °C\n",
+ "psi = 2.3*10**3;\n",
+ "\n",
+ "# Calculations\n",
+ "# sigma = sigmao*exp(-Eg/(2kT))\n",
+ "# k = sigma_473/sigma_300;\n",
+ "\n",
+ "t3 = t1+273; #temperature in K\n",
+ "t4 = t2+273; #temperature in K\n",
+ "k1 = math.exp((-Eg)/float(2*k*t3)); #electrical conductivity in cm**-1.m**-1\n",
+ "k2 = math.exp((-Eg)/float(2*k*t4)); #lectrical conductivity in cm**-1.m**-1\n",
+ "k = k1/float(k2);\n",
+ "pm = k/float(psi);\n",
+ "\n",
+ "#Result\n",
+ "\n",
+ "print'electrical conductivity of pure silicon =%3.2e'%k,'ohm**-1.m**-1';\n",
+ "print'Note:calculation mistake in electrical conductivity,and units of conductivity';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.8,Page No:8.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resistivity = 0.5 Ω-m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "ni = 2.5*10**19; # carrier density in per m**3\n",
+ "q = 1.6*10**-19; # charge of electron in coulombs\n",
+ "un = 0.35; #mobility of electrons in m**2/V-s\n",
+ "up = 0.15; #mobility of electrons in m**2/V-s\n",
+ "\n",
+ "# Calculations\n",
+ "sigma = ni*q*(un + up); #conductivity in per Ω-m\n",
+ "p = 1/float(sigma); #resistivity in Ω-m\n",
+ "\n",
+ "\n",
+ "# Result\n",
+ "print'Resistivity = %3.1f'%p,'Ω-m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.9,Page No:8.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Intrinsic Carrier Concentration = 1.04e+16 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 3.16*10**3; # resistivity Ω-m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "ue = 0.14; #mobility of electrons in m**2/V-s\n",
+ "uh = 0.05; #mobility of holes in m**2/V-s\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "n = 1/float((p*e)*(ue + uh)); #carrier density in m**-3\n",
+ "\n",
+ "# Result\n",
+ "print'Intrinsic Carrier Concentration = %3.2e'%n,'m**-3';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.10,Page No:8.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The factor by which the majority conc. is more than the intrinsic carrier conc = 2942\n",
+ "Hole concentration = 5.1e+15 m**-3\n",
+ "Conductivity = 2542 ohm**-1 m**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 5.32*10**3; #density of germanium\n",
+ "Nav = 6.023*10**26; # Avagadros number\n",
+ "AW = 72.59; # atomic wt\n",
+ "ni = 1.5*10**19; # carrier density\n",
+ "ue = 0.36;\n",
+ "uh = 0.18;\n",
+ "e = 1.6*10**-19;\n",
+ "\n",
+ "# calculations\n",
+ "N = (p*Nav)/float(AW); # no of germanium atoms per unit volume\n",
+ "Nd = N*10**-6 ; # no of pentavalent impurity atoms/m**3\n",
+ "f = Nd/float(ni);\n",
+ "nh = (ni**2)/float(Nd); # hole concentration\n",
+ "sigma = e*((Nd*ue)+(nh*uh));\n",
+ "\n",
+ "#Result\n",
+ "print'The factor by which the majority conc. is more than the intrinsic carrier conc = %d'%f;\n",
+ "print'Hole concentration = %3.1e'%nh,'m**-3';\n",
+ "print'Conductivity = %d'%sigma,'ohm**-1 m**-1';\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.11,Page No:8.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Carrier Density = 3.1e+21 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 5*10**-3; # resistivity in Ω-m\n",
+ "ue = 0.3; # electron mobility m**2/volt-s\n",
+ "uh = 0.1; # hole mobility m**2/volt-s\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "\n",
+ "# calculations\n",
+ "sigma = 1/float(p); # conductivity in per Ω -m\n",
+ "n = sigma/float(e*(ue + uh)); # carrier density per m**3\n",
+ "\n",
+ "#Result\n",
+ "print'Carrier Density = %3.1e'%n,'m**-3';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.12,Page No:8.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Drift velocity = 10 m/s\n",
+ " time = 1e-05 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Jd = 500; # current density A/m**2\n",
+ "p = 0.05; # resistivity in Ω-m\n",
+ "l = 100*10**-6; # travel length m\n",
+ "ue = 0.4; # electron mobility m**2/Vs\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "ne = 1/float(p*e*ue); #in per m**3\n",
+ "vd = Jd/float(ne*e); #drift velocity in m/s\n",
+ "t = l/float(vd); #time teken in s\n",
+ "\n",
+ "#result\n",
+ "print'Drift velocity = %d'%vd,'m/s';\n",
+ "print' time = %3.0e'%t,'s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.13,Page No:8.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature rise is of = 5.91 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "#psi1 is increased by 30%, psi1/ps2 is 130/100\n",
+ "a = 1.3; #ratio of psi1/psi2\n",
+ "K = 8.82*10**-5; #constant in eV/K\n",
+ "Eg = 0.719; #band gap in eV/K\n",
+ "T = 300; #temperature in K\n",
+ "\n",
+ "#calculation\n",
+ "d=1/float((1/float(T))-((2*K/float(Eg))*math.log(1.3)));\n",
+ "dT=d-T; #temperature rise in K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'temperature rise is of = %3.2f'%dT,'K';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.14,Page No:8.39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Conductivity of the compensated p-type semiconductor is 0.492\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "v = 5; # voltage in volts\n",
+ "r = 10; # resistance in k-ohm\n",
+ "J = 60; # current density in A/cm**2\n",
+ "E = 100; # electric field in V.m**-1\n",
+ "Nd = 5*10**15; # in cm**-3\n",
+ "up = 410; # approx hole mobility cm**2/V-s\n",
+ "Na = 1.25*10**16; # approx in cm**-3\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "\n",
+ "#Calculations\n",
+ "I = v/float(r); # total current A\n",
+ "A = I/float(J); # cross sectional area cm**2\n",
+ "L = v/float(E) # length of resistor cm\n",
+ "sigma = L/float(r*A); #conductivity in (Ω-cm)**-1\n",
+ "sigma_comp = e*up*(Na - Nd); #conductivity in (Ω-cm)**-1\n",
+ "\n",
+ "# Result\n",
+ "print'Conductivity of the compensated p-type semiconductor is %3.3f'%sigma_comp;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.15,Page No:8.39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Diffusion Current Density = 120 A/cm**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "Dn = 250; # electron diffusion co-efficient cm**2/s\n",
+ "n1 = 10**18; # electron conc. in cm**-3\n",
+ "n2 = 7*10**17; # electron conc. in cm**-3\n",
+ "dx = 0.10; # distance in cm\n",
+ "\n",
+ "# Calculations\n",
+ "Jdiff = e*Dn*((n1-n2)/float(dx)); #diffusion current density A/cm**2\n",
+ "\n",
+ "#Result\n",
+ "print'Diffusion Current Density = %d '%Jdiff,'A/cm**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.16,Page No:8.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Wavelength at which Ge starts to absorb light = 16550 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "Eg = 0.75; #bandgap energy eV\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "h = 6.62*10**-34; # plancks constant in J.s\n",
+ "\n",
+ "# Calculations\n",
+ "lamda = (h*c)/float(Eg*e); # wavelength in Å\n",
+ "\n",
+ "#Result\n",
+ "print'Wavelength at which Ge starts to absorb light = %d '%(lamda*10**10),'Å';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.17,Page No:8.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "cutoff wavelength =0.92 um\n"
+ ]
+ }
+ ],
+ "source": [
+ "# import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Eg = 1.35*1.6*10**-19; #energy in eV\n",
+ "h = 6.63*10**-34; #plancks constant in J.s\n",
+ "c = 3*10**8; #velocity in m\n",
+ " \n",
+ "#calculation\n",
+ "lamda = (h*c)/float(Eg); #wavelength in m\n",
+ " \n",
+ "#result\n",
+ "print'cutoff wavelength =%3.2f '%(lamda*10**6),'um';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.18,Page No:8.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "bandgap energy = 0.701 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.62*10**-34 # plancks constant J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "lamda = 1771*10**-9; # wavelengthg in m\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "\n",
+ "# Calculations\n",
+ "Eg = (h*c)/float(lamda*e); #bandgap energy eV\n",
+ "\n",
+ "#Result\n",
+ "print'bandgap energy = %3.3f'%Eg,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.19,Page No:8.45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hall Voltage = 5.6 mV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Nd = 10**21; # donar density per in m**3\n",
+ "H = 0.6; # magnetic field in T\n",
+ "J = 500; # current density A/m**2\n",
+ "d = 3*10**-3; # width in m\n",
+ "e = 1.6*10**-19 # charge of electron coulombs\n",
+ "\n",
+ "#Calculations\n",
+ "Ey = (J*H)/float(Nd*e); # field in V/m \n",
+ "vh = Ey*d; # hall voltage V\n",
+ "\n",
+ "#Result\n",
+ "print'Hall Voltage = %3.1f '%(vh*10**3),'mV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.20,Page No:8.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current density = 2304 Ampere/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e = 1.6*10**-19; # charge of electron in coulomb\n",
+ "Rh = -0.0125; # hall co-efficient\n",
+ "ue = 0.36; # electron mobility\n",
+ "E = 80; # electric field\n",
+ "\n",
+ "# Calculations\n",
+ "n = -1/float(Rh*e);\n",
+ "J = n*e*ue*E # current density in Ampere/m**2\n",
+ "\n",
+ "# Result\n",
+ "print'Current density = %d '%J,'Ampere/m**2';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.21,Page No:8.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hall angle = 1.1740 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 0.00893; # resistivity in ohm-m \n",
+ "Hz = 0.5; # field in weber/m**2\n",
+ "Rh = 3.66*10**-4; # hall co-efficient hall coefficient in m**3\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "u = Rh/float(p); #mobility of charge cerrier in m**2*(V**-1)*s**-1\n",
+ "theta_h = (math.atan(u*Hz))*(180/float(math.pi)); # hall angle in degrees\n",
+ "\n",
+ "# Result\n",
+ "print'Hall angle = %3.4f '%theta_h,'°';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8_4.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8_4.ipynb
new file mode 100644
index 00000000..f08902b6
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8_4.ipynb
@@ -0,0 +1,909 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8:Mechanism of Conduction in Semiconductors"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1,Page No:8.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Kinetic Energy = 0.1 eV\n",
+ "Momentum of electrons = 4.5e-26 kg m/s\n",
+ "Momentum of holes = 4.4e-26 kg m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Ephoton = 1.5; # energy of photon in eV\n",
+ "Eg = 1.4; # energy gap in eV\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "me_GaAs = 0.07; #times of electro mass in kilograms\n",
+ "mh_GaAs = 0.068; #times of electro mass in kilograms\n",
+ "\n",
+ "# Calculations\n",
+ "Eke = Ephoton - Eg; #energy on eV\n",
+ "pe = math.sqrt(2*m*me_GaAs*Eke*e) # momentum of electrons in kg m/s\n",
+ "ph = math.sqrt(2*m*mh_GaAs*Eke*e) # momentum of electrons in kg m/s\n",
+ "\n",
+ "# Result\n",
+ "print'Kinetic Energy = %3.1f'%Eke,'eV';\n",
+ "print'Momentum of electrons = %3.1e'%pe,'kg m/s';\n",
+ "print'Momentum of holes = %3.1e'%ph,'kg m/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2,Page No:8.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Thermal equilibrium hole concentration = 1.15e+16 cm**-3\n",
+ "Note: Calculation mistake in textbook Nv is not multiplied by exponentiation\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "T1 = 300; # temperature in kelvin\n",
+ "nv = 1.04*10**19; #in cm**-3\n",
+ "T2 = 400; #temperature in K\n",
+ "fl = 0.25; #fermi level position in eV\n",
+ "\n",
+ "#Calculations\n",
+ "Nv = (1.04*10**19)*(T2/float(T1))**(3/float(2)); #Nv at 400 k in cm**-3\n",
+ "kT = (0.0259)*(T2/float(T1)); #kT in eV\n",
+ "po = Nv*math.exp(-(fl)/float(kT)); #hole oncentration in cm**-3\n",
+ "\n",
+ "\n",
+ "# Result\n",
+ "print'Thermal equilibrium hole concentration = %3.2e '%po,'cm**-3';\n",
+ "print'Note: Calculation mistake in textbook Nv is not multiplied by exponentiation';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3,Page No:8.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Intrinsic Carrier Concentration at 300K = 1.95e+06 cm**-3\n",
+ "Intrinsic Carrier Concentration at 300K = 3.34e+10 cm**-3\n",
+ " Note : Calculation mistake in textbook in finding carrier conc. at 450K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Nc = 3.8*10**17; #constant in cm**-3\n",
+ "Nv = 6.5*10**18; #constant in cm**-3\n",
+ "Eg = 1.42; # band gap energy in eV\n",
+ "KT1 = 0.03885; # kt value at 450K\n",
+ "T1 = 300; #temperature in K\n",
+ "T2 = 450; #temperature in K\n",
+ "\n",
+ "# calculation\n",
+ "n1i = math.sqrt(Nc*Nv*math.exp(-Eg/float(0.0259))); #intrinsic carrier concentration in cm**-3\n",
+ "n2i = math.sqrt(Nc*Nv*((T2/float(T1))**3) *math.exp(-Eg/float(KT1))); # intrinsic carrier conc at 450K in cm**-3\n",
+ "\n",
+ "# Result\n",
+ "print'Intrinsic Carrier Concentration at 300K = %3.2e'%n1i,'cm**-3';\n",
+ "print'Intrinsic Carrier Concentration at 300K = %3.2e'%n2i,'cm**-3';\n",
+ "print' Note : Calculation mistake in textbook in finding carrier conc. at 450K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4,Page No:8.28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The position of Fermi level with respect to middle of the bandgap is -12.7 meV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "mh = 0.56; #masses interms of m0\n",
+ "me = 1.08; #masses interms of m0\n",
+ "t = 27; #temperature in °C\n",
+ "k = 8.62*10**-5;\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "T = t+273; #temperature in K\n",
+ "fl = (3/float(4))*k*T*math.log(mh/float(me)); #position of fermi level in eV\n",
+ "\n",
+ "#result\n",
+ "print'The position of Fermi level with respect to middle of the bandgap is %3.1f'%(fl*10**3),'meV';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5,Page No:8.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Donor binding energy = 0.0052 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "mo = 9.11*10**-31; #mass of electron inkilograms\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "er = 13.2; #relative permitivity in F/m\n",
+ "eo = 8.85*10**-12; # permitivity in F/m\n",
+ "h = 6.63*10**-34; # plancks constant J.s\n",
+ " \n",
+ "\n",
+ "# Calculations\n",
+ "me = 0.067*mo; \n",
+ "E = (me*(e**4))/float((8*(eo*er)**2)*(h**2)*e); #energy in eV \n",
+ "\n",
+ "# Result\n",
+ "print'Donor binding energy = %3.4f'%E,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6,Page No:8.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Equlibrium hole concentration = 2.25e+03 cm**-3\n",
+ "Position of fermi energy level = 0.177 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "no = 10**17; # doping carrier conc\n",
+ "ni = 1.5*10**10; #intrinsic concentration\n",
+ "kT = 0.0259\n",
+ "\n",
+ "#Calculations\n",
+ "po = (ni**2)/float(no); #Equlibrium hole concentration in cm**-3\n",
+ "fl = kT*math.log10(no/float(ni)); #Position of fermi energy level in eV\n",
+ "\n",
+ "#Result\n",
+ "print'Equlibrium hole concentration = %3.2e'%po,'cm**-3';\n",
+ "print'Position of fermi energy level = %3.3f'%fl,'eV';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.7,Page No:8.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electrical conductivity of pure silicon =2.39e+03 ohm**-1.m**-1\n",
+ "Note:calculation mistake in electrical conductivity,and units of conductivity\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "k = 8.62*10**-5; #in eV/K\n",
+ "Eg = 1.10; #energy in eV\n",
+ "t1 = 200; #temperature in °C\n",
+ "t2 = 27; #temperature in °C\n",
+ "psi = 2.3*10**3;\n",
+ "\n",
+ "# Calculations\n",
+ "# sigma = sigmao*exp(-Eg/(2kT))\n",
+ "# k = sigma_473/sigma_300;\n",
+ "\n",
+ "t3 = t1+273; #temperature in K\n",
+ "t4 = t2+273; #temperature in K\n",
+ "k1 = math.exp((-Eg)/float(2*k*t3)); #electrical conductivity in cm**-1.m**-1\n",
+ "k2 = math.exp((-Eg)/float(2*k*t4)); #lectrical conductivity in cm**-1.m**-1\n",
+ "k = k1/float(k2);\n",
+ "pm = k/float(psi);\n",
+ "\n",
+ "#Result\n",
+ "\n",
+ "print'electrical conductivity of pure silicon =%3.2e'%k,'ohm**-1.m**-1';\n",
+ "print'Note:calculation mistake in electrical conductivity,and units of conductivity';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.8,Page No:8.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resistivity = 0.5 Ω-m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "ni = 2.5*10**19; # carrier density in per m**3\n",
+ "q = 1.6*10**-19; # charge of electron in coulombs\n",
+ "un = 0.35; #mobility of electrons in m**2/V-s\n",
+ "up = 0.15; #mobility of electrons in m**2/V-s\n",
+ "\n",
+ "# Calculations\n",
+ "sigma = ni*q*(un + up); #conductivity in per Ω-m\n",
+ "p = 1/float(sigma); #resistivity in Ω-m\n",
+ "\n",
+ "\n",
+ "# Result\n",
+ "print'Resistivity = %3.1f'%p,'Ω-m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.9,Page No:8.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Intrinsic Carrier Concentration = 1.04e+16 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 3.16*10**3; # resistivity Ω-m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "ue = 0.14; #mobility of electrons in m**2/V-s\n",
+ "uh = 0.05; #mobility of holes in m**2/V-s\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "n = 1/float((p*e)*(ue + uh)); #carrier density in m**-3\n",
+ "\n",
+ "# Result\n",
+ "print'Intrinsic Carrier Concentration = %3.2e'%n,'m**-3';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.10,Page No:8.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The factor by which the majority conc. is more than the intrinsic carrier conc = 2942\n",
+ "Hole concentration = 5.1e+15 m**-3\n",
+ "Conductivity = 2542 ohm**-1 m**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 5.32*10**3; #density of germanium\n",
+ "Nav = 6.023*10**26; # Avagadros number\n",
+ "AW = 72.59; # atomic wt\n",
+ "ni = 1.5*10**19; # carrier density\n",
+ "ue = 0.36;\n",
+ "uh = 0.18;\n",
+ "e = 1.6*10**-19;\n",
+ "\n",
+ "# calculations\n",
+ "N = (p*Nav)/float(AW); # no of germanium atoms per unit volume\n",
+ "Nd = N*10**-6 ; # no of pentavalent impurity atoms/m**3\n",
+ "f = Nd/float(ni);\n",
+ "nh = (ni**2)/float(Nd); # hole concentration\n",
+ "sigma = e*((Nd*ue)+(nh*uh));\n",
+ "\n",
+ "#Result\n",
+ "print'The factor by which the majority conc. is more than the intrinsic carrier conc = %d'%f;\n",
+ "print'Hole concentration = %3.1e'%nh,'m**-3';\n",
+ "print'Conductivity = %d'%sigma,'ohm**-1 m**-1';\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.11,Page No:8.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Carrier Density = 3.1e+21 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 5*10**-3; # resistivity in Ω-m\n",
+ "ue = 0.3; # electron mobility m**2/volt-s\n",
+ "uh = 0.1; # hole mobility m**2/volt-s\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "\n",
+ "# calculations\n",
+ "sigma = 1/float(p); # conductivity in per Ω -m\n",
+ "n = sigma/float(e*(ue + uh)); # carrier density per m**3\n",
+ "\n",
+ "#Result\n",
+ "print'Carrier Density = %3.1e'%n,'m**-3';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.12,Page No:8.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Drift velocity = 10 m/s\n",
+ " time = 1e-05 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Jd = 500; # current density A/m**2\n",
+ "p = 0.05; # resistivity in Ω-m\n",
+ "l = 100*10**-6; # travel length m\n",
+ "ue = 0.4; # electron mobility m**2/Vs\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "ne = 1/float(p*e*ue); #in per m**3\n",
+ "vd = Jd/float(ne*e); #drift velocity in m/s\n",
+ "t = l/float(vd); #time teken in s\n",
+ "\n",
+ "#result\n",
+ "print'Drift velocity = %d'%vd,'m/s';\n",
+ "print' time = %3.0e'%t,'s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.13,Page No:8.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature rise is of = 5.91 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "#psi1 is increased by 30%, psi1/ps2 is 130/100\n",
+ "a = 1.3; #ratio of psi1/psi2\n",
+ "K = 8.82*10**-5; #constant in eV/K\n",
+ "Eg = 0.719; #band gap in eV/K\n",
+ "T = 300; #temperature in K\n",
+ "\n",
+ "#calculation\n",
+ "d=1/float((1/float(T))-((2*K/float(Eg))*math.log(1.3)));\n",
+ "dT=d-T; #temperature rise in K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'temperature rise is of = %3.2f'%dT,'K';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.14,Page No:8.39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Conductivity of the compensated p-type semiconductor is 0.492\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "v = 5; # voltage in volts\n",
+ "r = 10; # resistance in k-ohm\n",
+ "J = 60; # current density in A/cm**2\n",
+ "E = 100; # electric field in V.m**-1\n",
+ "Nd = 5*10**15; # in cm**-3\n",
+ "up = 410; # approx hole mobility cm**2/V-s\n",
+ "Na = 1.25*10**16; # approx in cm**-3\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "\n",
+ "#Calculations\n",
+ "I = v/float(r); # total current A\n",
+ "A = I/float(J); # cross sectional area cm**2\n",
+ "L = v/float(E) # length of resistor cm\n",
+ "sigma = L/float(r*A); #conductivity in (Ω-cm)**-1\n",
+ "sigma_comp = e*up*(Na - Nd); #conductivity in (Ω-cm)**-1\n",
+ "\n",
+ "# Result\n",
+ "print'Conductivity of the compensated p-type semiconductor is %3.3f'%sigma_comp;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.15,Page No:8.39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Diffusion Current Density = 120 A/cm**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "Dn = 250; # electron diffusion co-efficient cm**2/s\n",
+ "n1 = 10**18; # electron conc. in cm**-3\n",
+ "n2 = 7*10**17; # electron conc. in cm**-3\n",
+ "dx = 0.10; # distance in cm\n",
+ "\n",
+ "# Calculations\n",
+ "Jdiff = e*Dn*((n1-n2)/float(dx)); #diffusion current density A/cm**2\n",
+ "\n",
+ "#Result\n",
+ "print'Diffusion Current Density = %d '%Jdiff,'A/cm**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.16,Page No:8.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Wavelength at which Ge starts to absorb light = 16550 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "Eg = 0.75; #bandgap energy eV\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "h = 6.62*10**-34; # plancks constant in J.s\n",
+ "\n",
+ "# Calculations\n",
+ "lamda = (h*c)/float(Eg*e); # wavelength in Å\n",
+ "\n",
+ "#Result\n",
+ "print'Wavelength at which Ge starts to absorb light = %d '%(lamda*10**10),'Å';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.17,Page No:8.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "cutoff wavelength =0.92 um\n"
+ ]
+ }
+ ],
+ "source": [
+ "# import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Eg = 1.35*1.6*10**-19; #energy in eV\n",
+ "h = 6.63*10**-34; #plancks constant in J.s\n",
+ "c = 3*10**8; #velocity in m\n",
+ " \n",
+ "#calculation\n",
+ "lamda = (h*c)/float(Eg); #wavelength in m\n",
+ " \n",
+ "#result\n",
+ "print'cutoff wavelength =%3.2f '%(lamda*10**6),'um';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.18,Page No:8.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "bandgap energy = 0.701 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.62*10**-34 # plancks constant J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "lamda = 1771*10**-9; # wavelengthg in m\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "\n",
+ "# Calculations\n",
+ "Eg = (h*c)/float(lamda*e); #bandgap energy eV\n",
+ "\n",
+ "#Result\n",
+ "print'bandgap energy = %3.3f'%Eg,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.19,Page No:8.45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hall Voltage = 5.6 mV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Nd = 10**21; # donar density per in m**3\n",
+ "H = 0.6; # magnetic field in T\n",
+ "J = 500; # current density A/m**2\n",
+ "d = 3*10**-3; # width in m\n",
+ "e = 1.6*10**-19 # charge of electron coulombs\n",
+ "\n",
+ "#Calculations\n",
+ "Ey = (J*H)/float(Nd*e); # field in V/m \n",
+ "vh = Ey*d; # hall voltage V\n",
+ "\n",
+ "#Result\n",
+ "print'Hall Voltage = %3.1f '%(vh*10**3),'mV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.20,Page No:8.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current density = 2304 Ampere/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e = 1.6*10**-19; # charge of electron in coulomb\n",
+ "Rh = -0.0125; # hall co-efficient\n",
+ "ue = 0.36; # electron mobility\n",
+ "E = 80; # electric field\n",
+ "\n",
+ "# Calculations\n",
+ "n = -1/float(Rh*e);\n",
+ "J = n*e*ue*E # current density in Ampere/m**2\n",
+ "\n",
+ "# Result\n",
+ "print'Current density = %d '%J,'Ampere/m**2';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.21,Page No:8.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hall angle = 1.1740 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 0.00893; # resistivity in ohm-m \n",
+ "Hz = 0.5; # field in weber/m**2\n",
+ "Rh = 3.66*10**-4; # hall co-efficient hall coefficient in m**3\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "u = Rh/float(p); #mobility of charge cerrier in m**2*(V**-1)*s**-1\n",
+ "theta_h = (math.atan(u*Hz))*(180/float(math.pi)); # hall angle in degrees\n",
+ "\n",
+ "# Result\n",
+ "print'Hall angle = %3.4f '%theta_h,'°';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8_5.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8_5.ipynb
new file mode 100644
index 00000000..f08902b6
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter8_5.ipynb
@@ -0,0 +1,909 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8:Mechanism of Conduction in Semiconductors"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1,Page No:8.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Kinetic Energy = 0.1 eV\n",
+ "Momentum of electrons = 4.5e-26 kg m/s\n",
+ "Momentum of holes = 4.4e-26 kg m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Ephoton = 1.5; # energy of photon in eV\n",
+ "Eg = 1.4; # energy gap in eV\n",
+ "m = 9.1*10**-31; # mass of electron in kg\n",
+ "e = 1.6*10**-19; #charge of electron in coulombs\n",
+ "me_GaAs = 0.07; #times of electro mass in kilograms\n",
+ "mh_GaAs = 0.068; #times of electro mass in kilograms\n",
+ "\n",
+ "# Calculations\n",
+ "Eke = Ephoton - Eg; #energy on eV\n",
+ "pe = math.sqrt(2*m*me_GaAs*Eke*e) # momentum of electrons in kg m/s\n",
+ "ph = math.sqrt(2*m*mh_GaAs*Eke*e) # momentum of electrons in kg m/s\n",
+ "\n",
+ "# Result\n",
+ "print'Kinetic Energy = %3.1f'%Eke,'eV';\n",
+ "print'Momentum of electrons = %3.1e'%pe,'kg m/s';\n",
+ "print'Momentum of holes = %3.1e'%ph,'kg m/s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2,Page No:8.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Thermal equilibrium hole concentration = 1.15e+16 cm**-3\n",
+ "Note: Calculation mistake in textbook Nv is not multiplied by exponentiation\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "T1 = 300; # temperature in kelvin\n",
+ "nv = 1.04*10**19; #in cm**-3\n",
+ "T2 = 400; #temperature in K\n",
+ "fl = 0.25; #fermi level position in eV\n",
+ "\n",
+ "#Calculations\n",
+ "Nv = (1.04*10**19)*(T2/float(T1))**(3/float(2)); #Nv at 400 k in cm**-3\n",
+ "kT = (0.0259)*(T2/float(T1)); #kT in eV\n",
+ "po = Nv*math.exp(-(fl)/float(kT)); #hole oncentration in cm**-3\n",
+ "\n",
+ "\n",
+ "# Result\n",
+ "print'Thermal equilibrium hole concentration = %3.2e '%po,'cm**-3';\n",
+ "print'Note: Calculation mistake in textbook Nv is not multiplied by exponentiation';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3,Page No:8.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Intrinsic Carrier Concentration at 300K = 1.95e+06 cm**-3\n",
+ "Intrinsic Carrier Concentration at 300K = 3.34e+10 cm**-3\n",
+ " Note : Calculation mistake in textbook in finding carrier conc. at 450K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Nc = 3.8*10**17; #constant in cm**-3\n",
+ "Nv = 6.5*10**18; #constant in cm**-3\n",
+ "Eg = 1.42; # band gap energy in eV\n",
+ "KT1 = 0.03885; # kt value at 450K\n",
+ "T1 = 300; #temperature in K\n",
+ "T2 = 450; #temperature in K\n",
+ "\n",
+ "# calculation\n",
+ "n1i = math.sqrt(Nc*Nv*math.exp(-Eg/float(0.0259))); #intrinsic carrier concentration in cm**-3\n",
+ "n2i = math.sqrt(Nc*Nv*((T2/float(T1))**3) *math.exp(-Eg/float(KT1))); # intrinsic carrier conc at 450K in cm**-3\n",
+ "\n",
+ "# Result\n",
+ "print'Intrinsic Carrier Concentration at 300K = %3.2e'%n1i,'cm**-3';\n",
+ "print'Intrinsic Carrier Concentration at 300K = %3.2e'%n2i,'cm**-3';\n",
+ "print' Note : Calculation mistake in textbook in finding carrier conc. at 450K';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4,Page No:8.28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The position of Fermi level with respect to middle of the bandgap is -12.7 meV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "mh = 0.56; #masses interms of m0\n",
+ "me = 1.08; #masses interms of m0\n",
+ "t = 27; #temperature in °C\n",
+ "k = 8.62*10**-5;\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "T = t+273; #temperature in K\n",
+ "fl = (3/float(4))*k*T*math.log(mh/float(me)); #position of fermi level in eV\n",
+ "\n",
+ "#result\n",
+ "print'The position of Fermi level with respect to middle of the bandgap is %3.1f'%(fl*10**3),'meV';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5,Page No:8.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Donor binding energy = 0.0052 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "mo = 9.11*10**-31; #mass of electron inkilograms\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "er = 13.2; #relative permitivity in F/m\n",
+ "eo = 8.85*10**-12; # permitivity in F/m\n",
+ "h = 6.63*10**-34; # plancks constant J.s\n",
+ " \n",
+ "\n",
+ "# Calculations\n",
+ "me = 0.067*mo; \n",
+ "E = (me*(e**4))/float((8*(eo*er)**2)*(h**2)*e); #energy in eV \n",
+ "\n",
+ "# Result\n",
+ "print'Donor binding energy = %3.4f'%E,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6,Page No:8.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Equlibrium hole concentration = 2.25e+03 cm**-3\n",
+ "Position of fermi energy level = 0.177 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "no = 10**17; # doping carrier conc\n",
+ "ni = 1.5*10**10; #intrinsic concentration\n",
+ "kT = 0.0259\n",
+ "\n",
+ "#Calculations\n",
+ "po = (ni**2)/float(no); #Equlibrium hole concentration in cm**-3\n",
+ "fl = kT*math.log10(no/float(ni)); #Position of fermi energy level in eV\n",
+ "\n",
+ "#Result\n",
+ "print'Equlibrium hole concentration = %3.2e'%po,'cm**-3';\n",
+ "print'Position of fermi energy level = %3.3f'%fl,'eV';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.7,Page No:8.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electrical conductivity of pure silicon =2.39e+03 ohm**-1.m**-1\n",
+ "Note:calculation mistake in electrical conductivity,and units of conductivity\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "k = 8.62*10**-5; #in eV/K\n",
+ "Eg = 1.10; #energy in eV\n",
+ "t1 = 200; #temperature in °C\n",
+ "t2 = 27; #temperature in °C\n",
+ "psi = 2.3*10**3;\n",
+ "\n",
+ "# Calculations\n",
+ "# sigma = sigmao*exp(-Eg/(2kT))\n",
+ "# k = sigma_473/sigma_300;\n",
+ "\n",
+ "t3 = t1+273; #temperature in K\n",
+ "t4 = t2+273; #temperature in K\n",
+ "k1 = math.exp((-Eg)/float(2*k*t3)); #electrical conductivity in cm**-1.m**-1\n",
+ "k2 = math.exp((-Eg)/float(2*k*t4)); #lectrical conductivity in cm**-1.m**-1\n",
+ "k = k1/float(k2);\n",
+ "pm = k/float(psi);\n",
+ "\n",
+ "#Result\n",
+ "\n",
+ "print'electrical conductivity of pure silicon =%3.2e'%k,'ohm**-1.m**-1';\n",
+ "print'Note:calculation mistake in electrical conductivity,and units of conductivity';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.8,Page No:8.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resistivity = 0.5 Ω-m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "ni = 2.5*10**19; # carrier density in per m**3\n",
+ "q = 1.6*10**-19; # charge of electron in coulombs\n",
+ "un = 0.35; #mobility of electrons in m**2/V-s\n",
+ "up = 0.15; #mobility of electrons in m**2/V-s\n",
+ "\n",
+ "# Calculations\n",
+ "sigma = ni*q*(un + up); #conductivity in per Ω-m\n",
+ "p = 1/float(sigma); #resistivity in Ω-m\n",
+ "\n",
+ "\n",
+ "# Result\n",
+ "print'Resistivity = %3.1f'%p,'Ω-m';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.9,Page No:8.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Intrinsic Carrier Concentration = 1.04e+16 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 3.16*10**3; # resistivity Ω-m\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "ue = 0.14; #mobility of electrons in m**2/V-s\n",
+ "uh = 0.05; #mobility of holes in m**2/V-s\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "n = 1/float((p*e)*(ue + uh)); #carrier density in m**-3\n",
+ "\n",
+ "# Result\n",
+ "print'Intrinsic Carrier Concentration = %3.2e'%n,'m**-3';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.10,Page No:8.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The factor by which the majority conc. is more than the intrinsic carrier conc = 2942\n",
+ "Hole concentration = 5.1e+15 m**-3\n",
+ "Conductivity = 2542 ohm**-1 m**-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 5.32*10**3; #density of germanium\n",
+ "Nav = 6.023*10**26; # Avagadros number\n",
+ "AW = 72.59; # atomic wt\n",
+ "ni = 1.5*10**19; # carrier density\n",
+ "ue = 0.36;\n",
+ "uh = 0.18;\n",
+ "e = 1.6*10**-19;\n",
+ "\n",
+ "# calculations\n",
+ "N = (p*Nav)/float(AW); # no of germanium atoms per unit volume\n",
+ "Nd = N*10**-6 ; # no of pentavalent impurity atoms/m**3\n",
+ "f = Nd/float(ni);\n",
+ "nh = (ni**2)/float(Nd); # hole concentration\n",
+ "sigma = e*((Nd*ue)+(nh*uh));\n",
+ "\n",
+ "#Result\n",
+ "print'The factor by which the majority conc. is more than the intrinsic carrier conc = %d'%f;\n",
+ "print'Hole concentration = %3.1e'%nh,'m**-3';\n",
+ "print'Conductivity = %d'%sigma,'ohm**-1 m**-1';\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.11,Page No:8.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Carrier Density = 3.1e+21 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 5*10**-3; # resistivity in Ω-m\n",
+ "ue = 0.3; # electron mobility m**2/volt-s\n",
+ "uh = 0.1; # hole mobility m**2/volt-s\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "\n",
+ "# calculations\n",
+ "sigma = 1/float(p); # conductivity in per Ω -m\n",
+ "n = sigma/float(e*(ue + uh)); # carrier density per m**3\n",
+ "\n",
+ "#Result\n",
+ "print'Carrier Density = %3.1e'%n,'m**-3';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.12,Page No:8.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Drift velocity = 10 m/s\n",
+ " time = 1e-05 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Jd = 500; # current density A/m**2\n",
+ "p = 0.05; # resistivity in Ω-m\n",
+ "l = 100*10**-6; # travel length m\n",
+ "ue = 0.4; # electron mobility m**2/Vs\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "\n",
+ "\n",
+ "# Calculations\n",
+ "ne = 1/float(p*e*ue); #in per m**3\n",
+ "vd = Jd/float(ne*e); #drift velocity in m/s\n",
+ "t = l/float(vd); #time teken in s\n",
+ "\n",
+ "#result\n",
+ "print'Drift velocity = %d'%vd,'m/s';\n",
+ "print' time = %3.0e'%t,'s';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.13,Page No:8.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature rise is of = 5.91 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "\n",
+ "#psi1 is increased by 30%, psi1/ps2 is 130/100\n",
+ "a = 1.3; #ratio of psi1/psi2\n",
+ "K = 8.82*10**-5; #constant in eV/K\n",
+ "Eg = 0.719; #band gap in eV/K\n",
+ "T = 300; #temperature in K\n",
+ "\n",
+ "#calculation\n",
+ "d=1/float((1/float(T))-((2*K/float(Eg))*math.log(1.3)));\n",
+ "dT=d-T; #temperature rise in K\n",
+ "\n",
+ "\n",
+ "#result\n",
+ "print'temperature rise is of = %3.2f'%dT,'K';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.14,Page No:8.39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Conductivity of the compensated p-type semiconductor is 0.492\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "v = 5; # voltage in volts\n",
+ "r = 10; # resistance in k-ohm\n",
+ "J = 60; # current density in A/cm**2\n",
+ "E = 100; # electric field in V.m**-1\n",
+ "Nd = 5*10**15; # in cm**-3\n",
+ "up = 410; # approx hole mobility cm**2/V-s\n",
+ "Na = 1.25*10**16; # approx in cm**-3\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "\n",
+ "#Calculations\n",
+ "I = v/float(r); # total current A\n",
+ "A = I/float(J); # cross sectional area cm**2\n",
+ "L = v/float(E) # length of resistor cm\n",
+ "sigma = L/float(r*A); #conductivity in (Ω-cm)**-1\n",
+ "sigma_comp = e*up*(Na - Nd); #conductivity in (Ω-cm)**-1\n",
+ "\n",
+ "# Result\n",
+ "print'Conductivity of the compensated p-type semiconductor is %3.3f'%sigma_comp;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.15,Page No:8.39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Diffusion Current Density = 120 A/cm**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "Dn = 250; # electron diffusion co-efficient cm**2/s\n",
+ "n1 = 10**18; # electron conc. in cm**-3\n",
+ "n2 = 7*10**17; # electron conc. in cm**-3\n",
+ "dx = 0.10; # distance in cm\n",
+ "\n",
+ "# Calculations\n",
+ "Jdiff = e*Dn*((n1-n2)/float(dx)); #diffusion current density A/cm**2\n",
+ "\n",
+ "#Result\n",
+ "print'Diffusion Current Density = %d '%Jdiff,'A/cm**2';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.16,Page No:8.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Wavelength at which Ge starts to absorb light = 16550 Å\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variable declaration\n",
+ "e = 1.6*10**-19; # charge of electron in coulombs\n",
+ "Eg = 0.75; #bandgap energy eV\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "h = 6.62*10**-34; # plancks constant in J.s\n",
+ "\n",
+ "# Calculations\n",
+ "lamda = (h*c)/float(Eg*e); # wavelength in Å\n",
+ "\n",
+ "#Result\n",
+ "print'Wavelength at which Ge starts to absorb light = %d '%(lamda*10**10),'Å';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.17,Page No:8.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "cutoff wavelength =0.92 um\n"
+ ]
+ }
+ ],
+ "source": [
+ "# import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Eg = 1.35*1.6*10**-19; #energy in eV\n",
+ "h = 6.63*10**-34; #plancks constant in J.s\n",
+ "c = 3*10**8; #velocity in m\n",
+ " \n",
+ "#calculation\n",
+ "lamda = (h*c)/float(Eg); #wavelength in m\n",
+ " \n",
+ "#result\n",
+ "print'cutoff wavelength =%3.2f '%(lamda*10**6),'um';\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.18,Page No:8.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "bandgap energy = 0.701 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.62*10**-34 # plancks constant J.s\n",
+ "c = 3*10**8; # velocity of light in m\n",
+ "lamda = 1771*10**-9; # wavelengthg in m\n",
+ "e = 1.6*10**-19 # charge of electron in coulombs\n",
+ "\n",
+ "# Calculations\n",
+ "Eg = (h*c)/float(lamda*e); #bandgap energy eV\n",
+ "\n",
+ "#Result\n",
+ "print'bandgap energy = %3.3f'%Eg,'eV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.19,Page No:8.45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hall Voltage = 5.6 mV\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Nd = 10**21; # donar density per in m**3\n",
+ "H = 0.6; # magnetic field in T\n",
+ "J = 500; # current density A/m**2\n",
+ "d = 3*10**-3; # width in m\n",
+ "e = 1.6*10**-19 # charge of electron coulombs\n",
+ "\n",
+ "#Calculations\n",
+ "Ey = (J*H)/float(Nd*e); # field in V/m \n",
+ "vh = Ey*d; # hall voltage V\n",
+ "\n",
+ "#Result\n",
+ "print'Hall Voltage = %3.1f '%(vh*10**3),'mV';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.20,Page No:8.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current density = 2304 Ampere/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "e = 1.6*10**-19; # charge of electron in coulomb\n",
+ "Rh = -0.0125; # hall co-efficient\n",
+ "ue = 0.36; # electron mobility\n",
+ "E = 80; # electric field\n",
+ "\n",
+ "# Calculations\n",
+ "n = -1/float(Rh*e);\n",
+ "J = n*e*ue*E # current density in Ampere/m**2\n",
+ "\n",
+ "# Result\n",
+ "print'Current density = %d '%J,'Ampere/m**2';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.21,Page No:8.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hall angle = 1.1740 °\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "p = 0.00893; # resistivity in ohm-m \n",
+ "Hz = 0.5; # field in weber/m**2\n",
+ "Rh = 3.66*10**-4; # hall co-efficient hall coefficient in m**3\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "u = Rh/float(p); #mobility of charge cerrier in m**2*(V**-1)*s**-1\n",
+ "theta_h = (math.atan(u*Hz))*(180/float(math.pi)); # hall angle in degrees\n",
+ "\n",
+ "# Result\n",
+ "print'Hall angle = %3.4f '%theta_h,'°';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9.ipynb
new file mode 100755
index 00000000..d5460e65
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9.ipynb
@@ -0,0 +1,206 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9:Mechanical Properties of Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 9.1,Page No:9.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Elongation = 0.435 mm\n",
+ "Lateral contraction = 1.30 um\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "F = 8482; # Tensile force in newtons\n",
+ "lo = 0.30; # length of steel wire in cm\n",
+ "Y = 207*10**9; # Youngs modulus of steel Gpa\n",
+ "r = 3*10**-3; # radius of steel wire in m\n",
+ "v = 0.30; # poisson ratio\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "dl = (F*lo)/float(Y*math.pi*r**2); #elongation in mm\n",
+ "e1 = dl/float(lo); #longitudanl strain \n",
+ "e2 = v*e1 # lateral strain \n",
+ "dr = e2*r; # lateral contraction in m\n",
+ " \n",
+ "# Result\n",
+ "print'Elongation = %3.3f'%(dl*10**3),'mm';\n",
+ "print'Lateral contraction = %3.2f '%(dr*10**6),'um';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 9.3,Page No:9.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Engineering stress = 14.15 MPa\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "P = 400; # tensile force in newtons \n",
+ "d = 6*10**-3; # diameter of steel rod m\n",
+ "\n",
+ "# Calculations\n",
+ "r =d/float(2);\n",
+ "E_stress = (P)/float((math.pi/float(4))*d*d); #e_stress in N/m**2\n",
+ "\n",
+ "#Result\n",
+ "\n",
+ "print'Engineering stress = %3.2f '%(E_stress*10**-6),'MPa';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 9.4,Page No:9.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percentage of elongation = 5.75 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Lf = 42.3; #guage length after strain mm\n",
+ "Lo = 40; # guage length in mm\n",
+ "\n",
+ "# Calculations\n",
+ "e = ((Lf - Lo)/float(Lo))*100 #Engineering Strain in %\n",
+ "\n",
+ "#Result\n",
+ "print'Percentage of elongation = %3.2f '%e,'%';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 9.5,Page No:9.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percent reduction in area = 30.1 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "dr = 12.8; # original diameter of steel wire in mm\n",
+ "df = 10.7; # diameter at fracture in mm\n",
+ "\n",
+ "# Calculations\n",
+ "percent_red = (((math.pi*dr*dr) - (math.pi*df*df))/float(math.pi*dr*dr))*100; #Percent reduction in area in %\n",
+ "\n",
+ "\n",
+ "# Result\n",
+ "print'Percent reduction in area = %3.1f'%percent_red,'%';"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9_1.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9_1.ipynb
new file mode 100644
index 00000000..62ec71d4
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9_1.ipynb
@@ -0,0 +1,188 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9:Mechanical Properties of Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1,Page No:9.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Elongation = 0.435 mm\n",
+ "Lateral contraction = 1.30 um\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "F = 8482; # Tensile force in newtons\n",
+ "lo = 0.30; # length of steel wire in cm\n",
+ "Y = 207*10**9; # Youngs modulus of steel Gpa\n",
+ "r = 3*10**-3; # radius of steel wire in m\n",
+ "v = 0.30; # poisson ratio\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "dl = (F*lo)/float(Y*math.pi*r**2); #elongation in mm\n",
+ "e1 = dl/float(lo); #longitudanl strain \n",
+ "e2 = v*e1 # lateral strain \n",
+ "dr = e2*r; # lateral contraction in m\n",
+ " \n",
+ "# Result\n",
+ "print'Elongation = %3.3f'%(dl*10**3),'mm';\n",
+ "print'Lateral contraction = %3.2f '%(dr*10**6),'um';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.3,Page No:9.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Engineering stress = 14.15 MPa\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "P = 400; # tensile force in newtons \n",
+ "d = 6*10**-3; # diameter of steel rod m\n",
+ "\n",
+ "# Calculations\n",
+ "r =d/float(2);\n",
+ "E_stress = (P)/float((math.pi/float(4))*d*d); #e_stress in N/m**2\n",
+ "\n",
+ "#Result\n",
+ "\n",
+ "print'Engineering stress = %3.2f '%(E_stress*10**-6),'MPa';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4,Page No:9.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percentage of elongation = 5.75 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Lf = 42.3; #guage length after strain mm\n",
+ "Lo = 40; # guage length in mm\n",
+ "\n",
+ "# Calculations\n",
+ "e = ((Lf - Lo)/float(Lo))*100 #Engineering Strain in %\n",
+ "\n",
+ "#Result\n",
+ "print'Percentage of elongation = %3.2f '%e,'%';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5,Page No:9.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percent reduction in area = 30.1 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "dr = 12.8; # original diameter of steel wire in mm\n",
+ "df = 10.7; # diameter at fracture in mm\n",
+ "\n",
+ "# Calculations\n",
+ "percent_red = (((math.pi*dr*dr) - (math.pi*df*df))/float(math.pi*dr*dr))*100; #Percent reduction in area in %\n",
+ "\n",
+ "\n",
+ "# Result\n",
+ "print'Percent reduction in area = %3.1f'%percent_red,'%';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9_2.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9_2.ipynb
new file mode 100644
index 00000000..62ec71d4
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9_2.ipynb
@@ -0,0 +1,188 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9:Mechanical Properties of Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1,Page No:9.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Elongation = 0.435 mm\n",
+ "Lateral contraction = 1.30 um\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "F = 8482; # Tensile force in newtons\n",
+ "lo = 0.30; # length of steel wire in cm\n",
+ "Y = 207*10**9; # Youngs modulus of steel Gpa\n",
+ "r = 3*10**-3; # radius of steel wire in m\n",
+ "v = 0.30; # poisson ratio\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "dl = (F*lo)/float(Y*math.pi*r**2); #elongation in mm\n",
+ "e1 = dl/float(lo); #longitudanl strain \n",
+ "e2 = v*e1 # lateral strain \n",
+ "dr = e2*r; # lateral contraction in m\n",
+ " \n",
+ "# Result\n",
+ "print'Elongation = %3.3f'%(dl*10**3),'mm';\n",
+ "print'Lateral contraction = %3.2f '%(dr*10**6),'um';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.3,Page No:9.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Engineering stress = 14.15 MPa\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "P = 400; # tensile force in newtons \n",
+ "d = 6*10**-3; # diameter of steel rod m\n",
+ "\n",
+ "# Calculations\n",
+ "r =d/float(2);\n",
+ "E_stress = (P)/float((math.pi/float(4))*d*d); #e_stress in N/m**2\n",
+ "\n",
+ "#Result\n",
+ "\n",
+ "print'Engineering stress = %3.2f '%(E_stress*10**-6),'MPa';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4,Page No:9.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percentage of elongation = 5.75 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Lf = 42.3; #guage length after strain mm\n",
+ "Lo = 40; # guage length in mm\n",
+ "\n",
+ "# Calculations\n",
+ "e = ((Lf - Lo)/float(Lo))*100 #Engineering Strain in %\n",
+ "\n",
+ "#Result\n",
+ "print'Percentage of elongation = %3.2f '%e,'%';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5,Page No:9.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percent reduction in area = 30.1 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "dr = 12.8; # original diameter of steel wire in mm\n",
+ "df = 10.7; # diameter at fracture in mm\n",
+ "\n",
+ "# Calculations\n",
+ "percent_red = (((math.pi*dr*dr) - (math.pi*df*df))/float(math.pi*dr*dr))*100; #Percent reduction in area in %\n",
+ "\n",
+ "\n",
+ "# Result\n",
+ "print'Percent reduction in area = %3.1f'%percent_red,'%';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9_3.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9_3.ipynb
new file mode 100644
index 00000000..62ec71d4
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9_3.ipynb
@@ -0,0 +1,188 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9:Mechanical Properties of Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1,Page No:9.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Elongation = 0.435 mm\n",
+ "Lateral contraction = 1.30 um\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "F = 8482; # Tensile force in newtons\n",
+ "lo = 0.30; # length of steel wire in cm\n",
+ "Y = 207*10**9; # Youngs modulus of steel Gpa\n",
+ "r = 3*10**-3; # radius of steel wire in m\n",
+ "v = 0.30; # poisson ratio\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "dl = (F*lo)/float(Y*math.pi*r**2); #elongation in mm\n",
+ "e1 = dl/float(lo); #longitudanl strain \n",
+ "e2 = v*e1 # lateral strain \n",
+ "dr = e2*r; # lateral contraction in m\n",
+ " \n",
+ "# Result\n",
+ "print'Elongation = %3.3f'%(dl*10**3),'mm';\n",
+ "print'Lateral contraction = %3.2f '%(dr*10**6),'um';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.3,Page No:9.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Engineering stress = 14.15 MPa\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "P = 400; # tensile force in newtons \n",
+ "d = 6*10**-3; # diameter of steel rod m\n",
+ "\n",
+ "# Calculations\n",
+ "r =d/float(2);\n",
+ "E_stress = (P)/float((math.pi/float(4))*d*d); #e_stress in N/m**2\n",
+ "\n",
+ "#Result\n",
+ "\n",
+ "print'Engineering stress = %3.2f '%(E_stress*10**-6),'MPa';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4,Page No:9.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percentage of elongation = 5.75 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Lf = 42.3; #guage length after strain mm\n",
+ "Lo = 40; # guage length in mm\n",
+ "\n",
+ "# Calculations\n",
+ "e = ((Lf - Lo)/float(Lo))*100 #Engineering Strain in %\n",
+ "\n",
+ "#Result\n",
+ "print'Percentage of elongation = %3.2f '%e,'%';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5,Page No:9.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percent reduction in area = 30.1 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "dr = 12.8; # original diameter of steel wire in mm\n",
+ "df = 10.7; # diameter at fracture in mm\n",
+ "\n",
+ "# Calculations\n",
+ "percent_red = (((math.pi*dr*dr) - (math.pi*df*df))/float(math.pi*dr*dr))*100; #Percent reduction in area in %\n",
+ "\n",
+ "\n",
+ "# Result\n",
+ "print'Percent reduction in area = %3.1f'%percent_red,'%';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9_4.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9_4.ipynb
new file mode 100644
index 00000000..62ec71d4
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9_4.ipynb
@@ -0,0 +1,188 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9:Mechanical Properties of Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1,Page No:9.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Elongation = 0.435 mm\n",
+ "Lateral contraction = 1.30 um\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "F = 8482; # Tensile force in newtons\n",
+ "lo = 0.30; # length of steel wire in cm\n",
+ "Y = 207*10**9; # Youngs modulus of steel Gpa\n",
+ "r = 3*10**-3; # radius of steel wire in m\n",
+ "v = 0.30; # poisson ratio\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "dl = (F*lo)/float(Y*math.pi*r**2); #elongation in mm\n",
+ "e1 = dl/float(lo); #longitudanl strain \n",
+ "e2 = v*e1 # lateral strain \n",
+ "dr = e2*r; # lateral contraction in m\n",
+ " \n",
+ "# Result\n",
+ "print'Elongation = %3.3f'%(dl*10**3),'mm';\n",
+ "print'Lateral contraction = %3.2f '%(dr*10**6),'um';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.3,Page No:9.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Engineering stress = 14.15 MPa\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "P = 400; # tensile force in newtons \n",
+ "d = 6*10**-3; # diameter of steel rod m\n",
+ "\n",
+ "# Calculations\n",
+ "r =d/float(2);\n",
+ "E_stress = (P)/float((math.pi/float(4))*d*d); #e_stress in N/m**2\n",
+ "\n",
+ "#Result\n",
+ "\n",
+ "print'Engineering stress = %3.2f '%(E_stress*10**-6),'MPa';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4,Page No:9.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percentage of elongation = 5.75 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Lf = 42.3; #guage length after strain mm\n",
+ "Lo = 40; # guage length in mm\n",
+ "\n",
+ "# Calculations\n",
+ "e = ((Lf - Lo)/float(Lo))*100 #Engineering Strain in %\n",
+ "\n",
+ "#Result\n",
+ "print'Percentage of elongation = %3.2f '%e,'%';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5,Page No:9.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percent reduction in area = 30.1 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "dr = 12.8; # original diameter of steel wire in mm\n",
+ "df = 10.7; # diameter at fracture in mm\n",
+ "\n",
+ "# Calculations\n",
+ "percent_red = (((math.pi*dr*dr) - (math.pi*df*df))/float(math.pi*dr*dr))*100; #Percent reduction in area in %\n",
+ "\n",
+ "\n",
+ "# Result\n",
+ "print'Percent reduction in area = %3.1f'%percent_red,'%';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9_5.ipynb b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9_5.ipynb
new file mode 100644
index 00000000..62ec71d4
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/Chapter9_5.ipynb
@@ -0,0 +1,188 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9:Mechanical Properties of Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1,Page No:9.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Elongation = 0.435 mm\n",
+ "Lateral contraction = 1.30 um\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "F = 8482; # Tensile force in newtons\n",
+ "lo = 0.30; # length of steel wire in cm\n",
+ "Y = 207*10**9; # Youngs modulus of steel Gpa\n",
+ "r = 3*10**-3; # radius of steel wire in m\n",
+ "v = 0.30; # poisson ratio\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "dl = (F*lo)/float(Y*math.pi*r**2); #elongation in mm\n",
+ "e1 = dl/float(lo); #longitudanl strain \n",
+ "e2 = v*e1 # lateral strain \n",
+ "dr = e2*r; # lateral contraction in m\n",
+ " \n",
+ "# Result\n",
+ "print'Elongation = %3.3f'%(dl*10**3),'mm';\n",
+ "print'Lateral contraction = %3.2f '%(dr*10**6),'um';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.3,Page No:9.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Engineering stress = 14.15 MPa\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "P = 400; # tensile force in newtons \n",
+ "d = 6*10**-3; # diameter of steel rod m\n",
+ "\n",
+ "# Calculations\n",
+ "r =d/float(2);\n",
+ "E_stress = (P)/float((math.pi/float(4))*d*d); #e_stress in N/m**2\n",
+ "\n",
+ "#Result\n",
+ "\n",
+ "print'Engineering stress = %3.2f '%(E_stress*10**-6),'MPa';\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4,Page No:9.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percentage of elongation = 5.75 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "Lf = 42.3; #guage length after strain mm\n",
+ "Lo = 40; # guage length in mm\n",
+ "\n",
+ "# Calculations\n",
+ "e = ((Lf - Lo)/float(Lo))*100 #Engineering Strain in %\n",
+ "\n",
+ "#Result\n",
+ "print'Percentage of elongation = %3.2f '%e,'%';"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5,Page No:9.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percent reduction in area = 30.1 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "dr = 12.8; # original diameter of steel wire in mm\n",
+ "df = 10.7; # diameter at fracture in mm\n",
+ "\n",
+ "# Calculations\n",
+ "percent_red = (((math.pi*dr*dr) - (math.pi*df*df))/float(math.pi*dr*dr))*100; #Percent reduction in area in %\n",
+ "\n",
+ "\n",
+ "# Result\n",
+ "print'Percent reduction in area = %3.1f'%percent_red,'%';"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/README.txt b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/README.txt
new file mode 100644
index 00000000..34ae49a2
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/README.txt
@@ -0,0 +1,10 @@
+Contributed By: keerthi vani gundla
+Course: be
+College/Institute/Organization: matrusri enginnering college
+Department/Designation: ece
+Book Title: ELECTRICAL ENGINEERING MATERIALS
+Author: R.K.Shukla
+Publisher: Tata McGraw hill education private limited ,new delhi
+Year of publication: 2012
+Isbn: 978-1-25-90062-03
+Edition: 1st \ No newline at end of file
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter4.png b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter4.png
new file mode 100644
index 00000000..106927af
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter4.png
Binary files differ
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter4_1.png b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter4_1.png
new file mode 100644
index 00000000..106927af
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter4_1.png
Binary files differ
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter4_2.png b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter4_2.png
new file mode 100644
index 00000000..106927af
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter4_2.png
Binary files differ
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter8.png b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter8.png
new file mode 100644
index 00000000..523adeb5
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter8.png
Binary files differ
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter8_1.png b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter8_1.png
new file mode 100644
index 00000000..523adeb5
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter8_1.png
Binary files differ
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter8_2.png b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter8_2.png
new file mode 100644
index 00000000..523adeb5
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter8_2.png
Binary files differ
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter9.png b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter9.png
new file mode 100644
index 00000000..ab9b0bc1
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter9.png
Binary files differ
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter9_1.png b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter9_1.png
new file mode 100644
index 00000000..ab9b0bc1
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter9_1.png
Binary files differ
diff --git a/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter9_2.png b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter9_2.png
new file mode 100644
index 00000000..ab9b0bc1
--- /dev/null
+++ b/ELECTRICAL_ENGINEERING_MATERIALS_by_R.K.Shukla/screenshots/chapter9_2.png
Binary files differ