1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"# Chapter 2:Band Theory of Solids"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## Example 2.1,Page No:2.2"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Lowest three permissable quantum energies are E1 = 6 eV\n",
" E2 = 24 eV\n",
" E3 = 54 eV\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"h = 6.63*10**-34; # plancks constant in J.s\n",
"m = 9.1*10**-31; # mass of electron in kg\n",
"a = 2.5*10**-10; # width of infinite square well\n",
"e = 1.6*10**-19; # charge of electron coulombs\n",
"n2 = 2; #number of permiissable quantum\n",
"n3 = 3; #number of permiissable quantum\n",
"\n",
"# Calculations\n",
"E1 = (h**2)/float(8*m*a**2*e); # first lowest permissable quantum energy in eV\n",
"E2 = n2**2 *E1; # second lowest permissable quantum energy in eV\n",
"E3 = n3**2 *E1; # second lowest permissable quantum energy in eV\n",
"\n",
"# Result\n",
"print'Lowest three permissable quantum energies are E1 = %d'%E1,'eV';\n",
"print' E2 = %d'%E2,'eV';\n",
"print' E3 = %d'%E3,'eV';"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.2,Page No:2.4"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Energy Difference = 113.21 eV\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"h = 6.63*10**-34; # plancks constant in J.s\n",
"m = 9.1*10**-31; # mass of electron in kg\n",
"a = 10**-10; # width of infinite square well in m\n",
"e = 1.6*10**-19; # charge of electron in coulombs\n",
"n1 = 1; #energy level constant\n",
"n2 = 2; #energy level constant\n",
"\n",
"# calculations\n",
"E1 = ((n1**2)*(h**2))/float(8*m*(a**2)*e); # ground state energy in eV\n",
"E2 = ((n2**2)*(h**2))/float(8*m*(a**2)*e); # first excited state in energy in eV\n",
"dE = E2-E1 # difference between first excited and ground state(E2 - E1)\n",
"\n",
"#Result\n",
"print'Energy Difference = %3.2f '%dE,'eV';\n",
"\n",
" \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.3,Page No:2.5"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"First Three Energy levels are \n",
" E1 = 1.51 eV\n",
" E2 = 6 eV\n",
" E3 = 13.59 eV\n",
"\n",
" Above calculation shows that the energy of the bound electron cannot be continuous\n"
]
}
],
"source": [
"import math\n",
"\n",
"# Variable declaration\n",
"h = 6.63*10**-34; # plancks constant in J.s\n",
"m = 9.1*10**-31; # mass of electron in kg\n",
"a = 5*10**-10; # width of infinite potential well in m\n",
"e = 1.6*10**-19; # charge of electron in coulombs\n",
"n1 = 1; # energy level constant\n",
"n2 = 2; # energy level constant\n",
"n3 = 3; # energy level constant\n",
"\n",
"#Calculations\n",
"E1 = ((n1**2)*(h**2))/(8*m*(a**2)*e); # first energy level in eV\n",
"E2 = ((n2**2)*(h**2))/(8*m*(a**2)*e); # second energy level in eV\n",
"E3 = ((n3**2)*(h**2))/(8*m*(a**2)*e); # third energy level in eV\n",
"\n",
"# Result\n",
"print'First Three Energy levels are \\n E1 = %3.2f'%E1,'eV';\n",
"print' E2 = %d'%E2,'eV';\n",
"print' E3 = %3.2f'%E3,'eV';\n",
"print'\\n Above calculation shows that the energy of the bound electron cannot be continuous';\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.4,Page No:2.5"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Lowest energy bandwidth = 0.452 eV\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"h = 1.054*10**-34; #plancks constant in J.s\n",
"m = 9.1*10**-31; #mass of electron in kg\n",
"a = 5*10**-10; #width of infinite potential well in m\n",
"e = 1.6*10**-19; # charge of electron coulombs\n",
"\n",
"# Calculations\n",
"#cos(ka) = ((Psin(alpha*a))/(alpha*a)) + cos(alpha*a)\n",
"#to find the lowest allowed energy bandwidth,we have to find the difference in αa values, as ka changes from 0 to π\n",
"# for ka = 0 in above eq becomes\n",
"# 1 = 10*sin(αa))/(αa)) + cos(αa)\n",
"# This gives αa = 2.628 rad\n",
"# ka = π , αa = π\n",
"# sqrt((2*m*E2)/h**2)*a = π\n",
"\n",
"E2 = ((math.pi*math.pi)*h**2)/(2*m*a**2*e); #energy in eV\n",
"E1 = ((2.628**2)*h**2)/(2*m*a**2*e); #for αa = 2.628 rad energy in eV\n",
"dE = E2 - E1; #lowest energy bandwidth in eV\n",
"\n",
"# Result\n",
"print'Lowest energy bandwidth = %3.3f'%dE,'eV';\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.5,Page No:2.8"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Electron Momentum for first Brillouin zone appearance = 1.105e-24 eV\n",
"\n",
" Energy of free electron with this momentum = 4.2 eV\n",
"\n",
" Note: in Textbook Momentum value is wrongly printed as 1.1*10**-10\n"
]
}
],
"source": [
"import math\n",
"\n",
"# Variable declaration\n",
"a = 3*10**-10; # side of 2d square lattice in m\n",
"h = 6.63*10**-34; # plancks constant in J.s\n",
"e = 1.6*10**-19 # charge of electron in coulombs\n",
"m = 9.1*10**-31; # mass of electron in kg\n",
"\n",
"# calculations\n",
"#p = h*k # momentum of the electron\n",
"k = math.pi/float(a); # first Brillouin zone\n",
"p = (h/float(2*math.pi))*(math.pi/float(a)); # momentum of electron\n",
"E = (p**2)/float(2*m*e) # Energyin eV\n",
"\n",
"#Result\n",
"print'Electron Momentum for first Brillouin zone appearance = %g'%p,'eV';\n",
"print'\\n Energy of free electron with this momentum = %4.1f'%E,'eV';\n",
"print'\\n Note: in Textbook Momentum value is wrongly printed as 1.1*10**-10';"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|