summaryrefslogtreecommitdiff
path: root/thirdparty/linux/include/opencv2/dnn/dnn.hpp
blob: 41d975bdf68bb7ccf8ab27a8321e70e03db1cb80 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_DNN_DNN_HPP__
#define __OPENCV_DNN_DNN_HPP__

#include <vector>
#include <opencv2/core.hpp>
#include <opencv2/dnn/dict.hpp>
#include <opencv2/dnn/blob.hpp>

namespace cv
{
namespace dnn //! This namespace is used for dnn module functionlaity.
{
//! @addtogroup dnn
//! @{

    /** @brief Initialize dnn module and built-in layers.
     *
     * This function automatically called on most of OpenCV builds,
     * but you need to call it manually on some specific configurations (iOS for example).
     */
    CV_EXPORTS_W void initModule();

    /** @brief This class provides all data needed to initialize layer.
     *
     * It includes dictionary with scalar params (which can be readed by using Dict interface),
     * blob params #blobs and optional meta information: #name and #type of layer instance.
    */
    class CV_EXPORTS LayerParams : public Dict
    {
    public:
        //TODO: Add ability to name blob params
        std::vector<Blob> blobs; //!< List of learned parameters stored as blobs.

        String name; //!< Name of the layer instance (optional, can be used internal purposes).
        String type; //!< Type name which was used for creating layer by layer factory (optional).
    };

    /** @brief This interface class allows to build new Layers - are building blocks of networks.
     *
     * Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs.
     * Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros.
     */
    class CV_EXPORTS_W Layer
    {
    public:

        //! List of learned parameters must be stored here to allow read them by using Net::getParam().
        CV_PROP_RW std::vector<Blob> blobs;

        /** @brief Allocates internal buffers and output blobs with respect to the shape of inputs.
         *  @param[in]  input  vector of already allocated input blobs
         *  @param[out] output vector of output blobs, which must be allocated
         *
         * This method must create each produced blob according to shape of @p input blobs and internal layer params.
         * If this method is called first time then @p output vector consists from empty blobs and its size determined by number of output connections.
         * This method can be called multiple times if size of any @p input blob was changed.
         */
        virtual void allocate(const std::vector<Blob*> &input, std::vector<Blob> &output) = 0;

        /** @brief Given the @p input blobs, computes the output @p blobs.
         *  @param[in]  input  the input blobs.
         *  @param[out] output allocated output blobs, which will store results of the computation.
         */
        virtual void forward(std::vector<Blob*> &input, std::vector<Blob> &output) = 0;

        /** @brief @overload */
        CV_WRAP void allocate(const std::vector<Blob> &inputs, CV_OUT std::vector<Blob> &outputs);

        /** @brief @overload */
        CV_WRAP std::vector<Blob> allocate(const std::vector<Blob> &inputs);

        /** @brief @overload */
        CV_WRAP void forward(const std::vector<Blob> &inputs, CV_IN_OUT std::vector<Blob> &outputs);

        /** @brief Allocates layer and computes output. */
        CV_WRAP void run(const std::vector<Blob> &inputs, CV_OUT std::vector<Blob> &outputs);

        /** @brief Returns index of input blob into the input array.
         *  @param inputName label of input blob
         *
         * Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation.
         * This method maps label of input blob to its index into input vector.
         */
        virtual int inputNameToIndex(String inputName);
        /** @brief Returns index of output blob in output array.
         *  @see inputNameToIndex()
         */
        virtual int outputNameToIndex(String outputName);

        CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes.
        CV_PROP String type; //!< Type name which was used for creating layer by layer factory.

        Layer();
        explicit Layer(const LayerParams &params);      //!< Initializes only #name, #type and #blobs fields.
        void setParamsFrom(const LayerParams &params);  //!< Initializes only #name, #type and #blobs fields.
        virtual ~Layer();
    };

    /** @brief This class allows to create and manipulate comprehensive artificial neural networks.
     *
     * Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances,
     * and edges specify relationships between layers inputs and outputs.
     *
     * Each network layer has unique integer id and unique string name inside its network.
     * LayerId can store either layer name or layer id.
     *
     * This class supports reference counting of its instances, i. e. copies point to the same instance.
     */
    class CV_EXPORTS_W_SIMPLE Net
    {
    public:

        CV_WRAP Net();  //!< Default constructor.
        CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore.

        /** Returns true if there are no layers in the network. */
        CV_WRAP bool empty() const;

        /** @brief Adds new layer to the net.
         *  @param name   unique name of the adding layer.
         *  @param type   typename of the adding layer (type must be registered in LayerRegister).
         *  @param params parameters which will be used to initialize the creating layer.
         *  @returns unique identifier of created layer, or -1 if a failure will happen.
         */
        int addLayer(const String &name, const String &type, LayerParams &params);
        /** @brief Adds new layer and connects its first input to the first output of previously added layer.
         *  @see addLayer()
         */
        int addLayerToPrev(const String &name, const String &type, LayerParams &params);

        /** @brief Converts string name of the layer to the integer identifier.
         *  @returns id of the layer, or -1 if the layer wasn't found.
         */
        CV_WRAP int getLayerId(const String &layer);

        CV_WRAP std::vector<String> getLayerNames() const;

        /** @brief Container for strings and integers. */
        typedef DictValue LayerId;

        /** @brief Returns pointer to layer with specified name which the network use. */
        CV_WRAP Ptr<Layer> getLayer(LayerId layerId);

        /** @brief Delete layer for the network (not implemented yet) */
        CV_WRAP void deleteLayer(LayerId layer);

        /** @brief Connects output of the first layer to input of the second layer.
         *  @param outPin descriptor of the first layer output.
         *  @param inpPin descriptor of the second layer input.
         *
         * Descriptors have the following template <DFN>&lt;layer_name&gt;[.input_number]</DFN>:
         * - the first part of the template <DFN>layer_name</DFN> is sting name of the added layer.
         *   If this part is empty then the network input pseudo layer will be used;
         * - the second optional part of the template <DFN>input_number</DFN>
         *   is either number of the layer input, either label one.
         *   If this part is omitted then the first layer input will be used.
         *
         *  @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex()
         */
        CV_WRAP void connect(String outPin, String inpPin);

        /** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer.
         *  @param outLayerId identifier of the first layer
         *  @param inpLayerId identifier of the second layer
         *  @param outNum number of the first layer output
         *  @param inpNum number of the second layer input
         */
        void connect(int outLayerId, int outNum, int inpLayerId, int inpNum);

        /** @brief Sets outputs names of the network input pseudo layer.
         *
         * Each net always has special own the network input pseudo layer with id=0.
         * This layer stores the user blobs only and don't make any computations.
         * In fact, this layer provides the only way to pass user data into the network.
         * As any other layer, this layer can label its outputs and this function provides an easy way to do this.
         */
        CV_WRAP void setNetInputs(const std::vector<String> &inputBlobNames);

        /** @brief Initializes and allocates all layers. */
        CV_WRAP void allocate();

        /** @brief Runs forward pass to compute output of layer @p toLayer.
          * @details By default runs forward pass for the whole network.
          */
        CV_WRAP void forward(LayerId toLayer = String());
        /** @brief Runs forward pass to compute output of layer @p toLayer, but computations start from @p startLayer */
        void forward(LayerId startLayer, LayerId toLayer);
        /** @overload */
        void forward(const std::vector<LayerId> &startLayers, const std::vector<LayerId> &toLayers);

        //TODO:
        /** @brief Optimized forward.
         *  @warning Not implemented yet.
         *  @details Makes forward only those layers which weren't changed after previous forward().
         */
        void forwardOpt(LayerId toLayer);
        /** @overload */
        void forwardOpt(const std::vector<LayerId> &toLayers);

        /** @brief Sets the new value for the layer output blob
         *  @param outputName descriptor of the updating layer output blob.
         *  @param blob new blob.
         *  @see connect(String, String) to know format of the descriptor.
         *  @note If updating blob is not empty then @p blob must have the same shape,
         *  because network reshaping is not implemented yet.
         */
        CV_WRAP void setBlob(String outputName, const Blob &blob);

        /** @brief Returns the layer output blob.
         *  @param outputName the descriptor of the returning layer output blob.
         *  @see connect(String, String)
         */
        CV_WRAP Blob getBlob(String outputName);

        /** @brief Sets the new value for the learned param of the layer.
         *  @param layer name or id of the layer.
         *  @param numParam index of the layer parameter in the Layer::blobs array.
         *  @param blob the new value.
         *  @see Layer::blobs
         *  @note If shape of the new blob differs from the previous shape,
         *  then the following forward pass may fail.
        */
        CV_WRAP void setParam(LayerId layer, int numParam, const Blob &blob);

        /** @brief Returns parameter blob of the layer.
         *  @param layer name or id of the layer.
         *  @param numParam index of the layer parameter in the Layer::blobs array.
         *  @see Layer::blobs
         */
        CV_WRAP Blob getParam(LayerId layer, int numParam = 0);

        /** @brief Returns indexes of layers with unconnected outputs.
         */
        CV_WRAP std::vector<int> getUnconnectedOutLayers() const;
    private:

        struct Impl;
        Ptr<Impl> impl;
    };

    /** @brief Small interface class for loading trained serialized models of different dnn-frameworks. */
    class CV_EXPORTS_W Importer
    {
    public:

        /** @brief Adds loaded layers into the @p net and sets connections between them. */
        CV_WRAP virtual void populateNet(Net net) = 0;

        virtual ~Importer();
    };

    /** @brief Creates the importer of <a href="http://caffe.berkeleyvision.org">Caffe</a> framework network.
     *  @param prototxt   path to the .prototxt file with text description of the network architecture.
     *  @param caffeModel path to the .caffemodel file with learned network.
     *  @returns Pointer to the created importer, NULL in failure cases.
     */
    CV_EXPORTS_W Ptr<Importer> createCaffeImporter(const String &prototxt, const String &caffeModel = String());

    /** @brief Reads a network model stored in Caffe model files.
      * @details This is shortcut consisting from createCaffeImporter and Net::populateNet calls.
      */
    CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String());

    /** @brief Creates the importer of <a href="http://www.tensorflow.org">TensorFlow</a> framework network.
     *  @param model   path to the .pb file with binary protobuf description of the network architecture.
     *  @returns Pointer to the created importer, NULL in failure cases.
     */
    CV_EXPORTS Ptr<Importer> createTensorflowImporter(const String &model);

    /** @brief Creates the importer of <a href="http://torch.ch">Torch7</a> framework network.
     *  @param filename path to the file, dumped from Torch by using torch.save() function.
     *  @param isBinary specifies whether the network was serialized in ascii mode or binary.
     *  @returns Pointer to the created importer, NULL in failure cases.
     *
     *  @warning Torch7 importer is experimental now, you need explicitly set CMake `opencv_dnn_BUILD_TORCH_IMPORTER` flag to compile its.
     *
     *  @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language,
     *  which has various bit-length on different systems.
     *
     * The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object
     * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.
     *
     * List of supported layers (i.e. object instances derived from Torch nn.Module class):
     * - nn.Sequential
     * - nn.Parallel
     * - nn.Concat
     * - nn.Linear
     * - nn.SpatialConvolution
     * - nn.SpatialMaxPooling, nn.SpatialAveragePooling
     * - nn.ReLU, nn.TanH, nn.Sigmoid
     * - nn.Reshape
     *
     * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
     */
    CV_EXPORTS_W Ptr<Importer> createTorchImporter(const String &filename, bool isBinary = true);

    /** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework.
     *  @warning This function has the same limitations as createTorchImporter().
     */
    CV_EXPORTS_W Blob readTorchBlob(const String &filename, bool isBinary = true);

//! @}
}
}

#include <opencv2/dnn/layer.hpp>
#include <opencv2/dnn/dnn.inl.hpp>

#endif  /* __OPENCV_DNN_DNN_HPP__ */