summaryrefslogtreecommitdiff
path: root/thirdparty/linux/include/opencv2/dnn/dnn.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/linux/include/opencv2/dnn/dnn.hpp')
-rw-r--r--thirdparty/linux/include/opencv2/dnn/dnn.hpp350
1 files changed, 350 insertions, 0 deletions
diff --git a/thirdparty/linux/include/opencv2/dnn/dnn.hpp b/thirdparty/linux/include/opencv2/dnn/dnn.hpp
new file mode 100644
index 0000000..41d975b
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/dnn/dnn.hpp
@@ -0,0 +1,350 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_DNN_DNN_HPP__
+#define __OPENCV_DNN_DNN_HPP__
+
+#include <vector>
+#include <opencv2/core.hpp>
+#include <opencv2/dnn/dict.hpp>
+#include <opencv2/dnn/blob.hpp>
+
+namespace cv
+{
+namespace dnn //! This namespace is used for dnn module functionlaity.
+{
+//! @addtogroup dnn
+//! @{
+
+ /** @brief Initialize dnn module and built-in layers.
+ *
+ * This function automatically called on most of OpenCV builds,
+ * but you need to call it manually on some specific configurations (iOS for example).
+ */
+ CV_EXPORTS_W void initModule();
+
+ /** @brief This class provides all data needed to initialize layer.
+ *
+ * It includes dictionary with scalar params (which can be readed by using Dict interface),
+ * blob params #blobs and optional meta information: #name and #type of layer instance.
+ */
+ class CV_EXPORTS LayerParams : public Dict
+ {
+ public:
+ //TODO: Add ability to name blob params
+ std::vector<Blob> blobs; //!< List of learned parameters stored as blobs.
+
+ String name; //!< Name of the layer instance (optional, can be used internal purposes).
+ String type; //!< Type name which was used for creating layer by layer factory (optional).
+ };
+
+ /** @brief This interface class allows to build new Layers - are building blocks of networks.
+ *
+ * Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs.
+ * Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros.
+ */
+ class CV_EXPORTS_W Layer
+ {
+ public:
+
+ //! List of learned parameters must be stored here to allow read them by using Net::getParam().
+ CV_PROP_RW std::vector<Blob> blobs;
+
+ /** @brief Allocates internal buffers and output blobs with respect to the shape of inputs.
+ * @param[in] input vector of already allocated input blobs
+ * @param[out] output vector of output blobs, which must be allocated
+ *
+ * This method must create each produced blob according to shape of @p input blobs and internal layer params.
+ * If this method is called first time then @p output vector consists from empty blobs and its size determined by number of output connections.
+ * This method can be called multiple times if size of any @p input blob was changed.
+ */
+ virtual void allocate(const std::vector<Blob*> &input, std::vector<Blob> &output) = 0;
+
+ /** @brief Given the @p input blobs, computes the output @p blobs.
+ * @param[in] input the input blobs.
+ * @param[out] output allocated output blobs, which will store results of the computation.
+ */
+ virtual void forward(std::vector<Blob*> &input, std::vector<Blob> &output) = 0;
+
+ /** @brief @overload */
+ CV_WRAP void allocate(const std::vector<Blob> &inputs, CV_OUT std::vector<Blob> &outputs);
+
+ /** @brief @overload */
+ CV_WRAP std::vector<Blob> allocate(const std::vector<Blob> &inputs);
+
+ /** @brief @overload */
+ CV_WRAP void forward(const std::vector<Blob> &inputs, CV_IN_OUT std::vector<Blob> &outputs);
+
+ /** @brief Allocates layer and computes output. */
+ CV_WRAP void run(const std::vector<Blob> &inputs, CV_OUT std::vector<Blob> &outputs);
+
+ /** @brief Returns index of input blob into the input array.
+ * @param inputName label of input blob
+ *
+ * Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation.
+ * This method maps label of input blob to its index into input vector.
+ */
+ virtual int inputNameToIndex(String inputName);
+ /** @brief Returns index of output blob in output array.
+ * @see inputNameToIndex()
+ */
+ virtual int outputNameToIndex(String outputName);
+
+ CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes.
+ CV_PROP String type; //!< Type name which was used for creating layer by layer factory.
+
+ Layer();
+ explicit Layer(const LayerParams &params); //!< Initializes only #name, #type and #blobs fields.
+ void setParamsFrom(const LayerParams &params); //!< Initializes only #name, #type and #blobs fields.
+ virtual ~Layer();
+ };
+
+ /** @brief This class allows to create and manipulate comprehensive artificial neural networks.
+ *
+ * Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances,
+ * and edges specify relationships between layers inputs and outputs.
+ *
+ * Each network layer has unique integer id and unique string name inside its network.
+ * LayerId can store either layer name or layer id.
+ *
+ * This class supports reference counting of its instances, i. e. copies point to the same instance.
+ */
+ class CV_EXPORTS_W_SIMPLE Net
+ {
+ public:
+
+ CV_WRAP Net(); //!< Default constructor.
+ CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore.
+
+ /** Returns true if there are no layers in the network. */
+ CV_WRAP bool empty() const;
+
+ /** @brief Adds new layer to the net.
+ * @param name unique name of the adding layer.
+ * @param type typename of the adding layer (type must be registered in LayerRegister).
+ * @param params parameters which will be used to initialize the creating layer.
+ * @returns unique identifier of created layer, or -1 if a failure will happen.
+ */
+ int addLayer(const String &name, const String &type, LayerParams &params);
+ /** @brief Adds new layer and connects its first input to the first output of previously added layer.
+ * @see addLayer()
+ */
+ int addLayerToPrev(const String &name, const String &type, LayerParams &params);
+
+ /** @brief Converts string name of the layer to the integer identifier.
+ * @returns id of the layer, or -1 if the layer wasn't found.
+ */
+ CV_WRAP int getLayerId(const String &layer);
+
+ CV_WRAP std::vector<String> getLayerNames() const;
+
+ /** @brief Container for strings and integers. */
+ typedef DictValue LayerId;
+
+ /** @brief Returns pointer to layer with specified name which the network use. */
+ CV_WRAP Ptr<Layer> getLayer(LayerId layerId);
+
+ /** @brief Delete layer for the network (not implemented yet) */
+ CV_WRAP void deleteLayer(LayerId layer);
+
+ /** @brief Connects output of the first layer to input of the second layer.
+ * @param outPin descriptor of the first layer output.
+ * @param inpPin descriptor of the second layer input.
+ *
+ * Descriptors have the following template <DFN>&lt;layer_name&gt;[.input_number]</DFN>:
+ * - the first part of the template <DFN>layer_name</DFN> is sting name of the added layer.
+ * If this part is empty then the network input pseudo layer will be used;
+ * - the second optional part of the template <DFN>input_number</DFN>
+ * is either number of the layer input, either label one.
+ * If this part is omitted then the first layer input will be used.
+ *
+ * @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex()
+ */
+ CV_WRAP void connect(String outPin, String inpPin);
+
+ /** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer.
+ * @param outLayerId identifier of the first layer
+ * @param inpLayerId identifier of the second layer
+ * @param outNum number of the first layer output
+ * @param inpNum number of the second layer input
+ */
+ void connect(int outLayerId, int outNum, int inpLayerId, int inpNum);
+
+ /** @brief Sets outputs names of the network input pseudo layer.
+ *
+ * Each net always has special own the network input pseudo layer with id=0.
+ * This layer stores the user blobs only and don't make any computations.
+ * In fact, this layer provides the only way to pass user data into the network.
+ * As any other layer, this layer can label its outputs and this function provides an easy way to do this.
+ */
+ CV_WRAP void setNetInputs(const std::vector<String> &inputBlobNames);
+
+ /** @brief Initializes and allocates all layers. */
+ CV_WRAP void allocate();
+
+ /** @brief Runs forward pass to compute output of layer @p toLayer.
+ * @details By default runs forward pass for the whole network.
+ */
+ CV_WRAP void forward(LayerId toLayer = String());
+ /** @brief Runs forward pass to compute output of layer @p toLayer, but computations start from @p startLayer */
+ void forward(LayerId startLayer, LayerId toLayer);
+ /** @overload */
+ void forward(const std::vector<LayerId> &startLayers, const std::vector<LayerId> &toLayers);
+
+ //TODO:
+ /** @brief Optimized forward.
+ * @warning Not implemented yet.
+ * @details Makes forward only those layers which weren't changed after previous forward().
+ */
+ void forwardOpt(LayerId toLayer);
+ /** @overload */
+ void forwardOpt(const std::vector<LayerId> &toLayers);
+
+ /** @brief Sets the new value for the layer output blob
+ * @param outputName descriptor of the updating layer output blob.
+ * @param blob new blob.
+ * @see connect(String, String) to know format of the descriptor.
+ * @note If updating blob is not empty then @p blob must have the same shape,
+ * because network reshaping is not implemented yet.
+ */
+ CV_WRAP void setBlob(String outputName, const Blob &blob);
+
+ /** @brief Returns the layer output blob.
+ * @param outputName the descriptor of the returning layer output blob.
+ * @see connect(String, String)
+ */
+ CV_WRAP Blob getBlob(String outputName);
+
+ /** @brief Sets the new value for the learned param of the layer.
+ * @param layer name or id of the layer.
+ * @param numParam index of the layer parameter in the Layer::blobs array.
+ * @param blob the new value.
+ * @see Layer::blobs
+ * @note If shape of the new blob differs from the previous shape,
+ * then the following forward pass may fail.
+ */
+ CV_WRAP void setParam(LayerId layer, int numParam, const Blob &blob);
+
+ /** @brief Returns parameter blob of the layer.
+ * @param layer name or id of the layer.
+ * @param numParam index of the layer parameter in the Layer::blobs array.
+ * @see Layer::blobs
+ */
+ CV_WRAP Blob getParam(LayerId layer, int numParam = 0);
+
+ /** @brief Returns indexes of layers with unconnected outputs.
+ */
+ CV_WRAP std::vector<int> getUnconnectedOutLayers() const;
+ private:
+
+ struct Impl;
+ Ptr<Impl> impl;
+ };
+
+ /** @brief Small interface class for loading trained serialized models of different dnn-frameworks. */
+ class CV_EXPORTS_W Importer
+ {
+ public:
+
+ /** @brief Adds loaded layers into the @p net and sets connections between them. */
+ CV_WRAP virtual void populateNet(Net net) = 0;
+
+ virtual ~Importer();
+ };
+
+ /** @brief Creates the importer of <a href="http://caffe.berkeleyvision.org">Caffe</a> framework network.
+ * @param prototxt path to the .prototxt file with text description of the network architecture.
+ * @param caffeModel path to the .caffemodel file with learned network.
+ * @returns Pointer to the created importer, NULL in failure cases.
+ */
+ CV_EXPORTS_W Ptr<Importer> createCaffeImporter(const String &prototxt, const String &caffeModel = String());
+
+ /** @brief Reads a network model stored in Caffe model files.
+ * @details This is shortcut consisting from createCaffeImporter and Net::populateNet calls.
+ */
+ CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String());
+
+ /** @brief Creates the importer of <a href="http://www.tensorflow.org">TensorFlow</a> framework network.
+ * @param model path to the .pb file with binary protobuf description of the network architecture.
+ * @returns Pointer to the created importer, NULL in failure cases.
+ */
+ CV_EXPORTS Ptr<Importer> createTensorflowImporter(const String &model);
+
+ /** @brief Creates the importer of <a href="http://torch.ch">Torch7</a> framework network.
+ * @param filename path to the file, dumped from Torch by using torch.save() function.
+ * @param isBinary specifies whether the network was serialized in ascii mode or binary.
+ * @returns Pointer to the created importer, NULL in failure cases.
+ *
+ * @warning Torch7 importer is experimental now, you need explicitly set CMake `opencv_dnn_BUILD_TORCH_IMPORTER` flag to compile its.
+ *
+ * @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language,
+ * which has various bit-length on different systems.
+ *
+ * The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object
+ * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.
+ *
+ * List of supported layers (i.e. object instances derived from Torch nn.Module class):
+ * - nn.Sequential
+ * - nn.Parallel
+ * - nn.Concat
+ * - nn.Linear
+ * - nn.SpatialConvolution
+ * - nn.SpatialMaxPooling, nn.SpatialAveragePooling
+ * - nn.ReLU, nn.TanH, nn.Sigmoid
+ * - nn.Reshape
+ *
+ * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
+ */
+ CV_EXPORTS_W Ptr<Importer> createTorchImporter(const String &filename, bool isBinary = true);
+
+ /** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework.
+ * @warning This function has the same limitations as createTorchImporter().
+ */
+ CV_EXPORTS_W Blob readTorchBlob(const String &filename, bool isBinary = true);
+
+//! @}
+}
+}
+
+#include <opencv2/dnn/layer.hpp>
+#include <opencv2/dnn/dnn.inl.hpp>
+
+#endif /* __OPENCV_DNN_DNN_HPP__ */