diff options
author | shamikam | 2017-01-16 02:56:17 +0530 |
---|---|---|
committer | shamikam | 2017-01-16 02:56:17 +0530 |
commit | a6df67e8bcd5159cde27556f4f6a315f8dc2215f (patch) | |
tree | e806e966b06a53388fb300d89534354b222c2cad /thirdparty/linux/include/opencv2/dnn/dnn.hpp | |
download | FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.gz FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.bz2 FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.zip |
Diffstat (limited to 'thirdparty/linux/include/opencv2/dnn/dnn.hpp')
-rw-r--r-- | thirdparty/linux/include/opencv2/dnn/dnn.hpp | 350 |
1 files changed, 350 insertions, 0 deletions
diff --git a/thirdparty/linux/include/opencv2/dnn/dnn.hpp b/thirdparty/linux/include/opencv2/dnn/dnn.hpp new file mode 100644 index 0000000..41d975b --- /dev/null +++ b/thirdparty/linux/include/opencv2/dnn/dnn.hpp @@ -0,0 +1,350 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_DNN_DNN_HPP__ +#define __OPENCV_DNN_DNN_HPP__ + +#include <vector> +#include <opencv2/core.hpp> +#include <opencv2/dnn/dict.hpp> +#include <opencv2/dnn/blob.hpp> + +namespace cv +{ +namespace dnn //! This namespace is used for dnn module functionlaity. +{ +//! @addtogroup dnn +//! @{ + + /** @brief Initialize dnn module and built-in layers. + * + * This function automatically called on most of OpenCV builds, + * but you need to call it manually on some specific configurations (iOS for example). + */ + CV_EXPORTS_W void initModule(); + + /** @brief This class provides all data needed to initialize layer. + * + * It includes dictionary with scalar params (which can be readed by using Dict interface), + * blob params #blobs and optional meta information: #name and #type of layer instance. + */ + class CV_EXPORTS LayerParams : public Dict + { + public: + //TODO: Add ability to name blob params + std::vector<Blob> blobs; //!< List of learned parameters stored as blobs. + + String name; //!< Name of the layer instance (optional, can be used internal purposes). + String type; //!< Type name which was used for creating layer by layer factory (optional). + }; + + /** @brief This interface class allows to build new Layers - are building blocks of networks. + * + * Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs. + * Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros. + */ + class CV_EXPORTS_W Layer + { + public: + + //! List of learned parameters must be stored here to allow read them by using Net::getParam(). + CV_PROP_RW std::vector<Blob> blobs; + + /** @brief Allocates internal buffers and output blobs with respect to the shape of inputs. + * @param[in] input vector of already allocated input blobs + * @param[out] output vector of output blobs, which must be allocated + * + * This method must create each produced blob according to shape of @p input blobs and internal layer params. + * If this method is called first time then @p output vector consists from empty blobs and its size determined by number of output connections. + * This method can be called multiple times if size of any @p input blob was changed. + */ + virtual void allocate(const std::vector<Blob*> &input, std::vector<Blob> &output) = 0; + + /** @brief Given the @p input blobs, computes the output @p blobs. + * @param[in] input the input blobs. + * @param[out] output allocated output blobs, which will store results of the computation. + */ + virtual void forward(std::vector<Blob*> &input, std::vector<Blob> &output) = 0; + + /** @brief @overload */ + CV_WRAP void allocate(const std::vector<Blob> &inputs, CV_OUT std::vector<Blob> &outputs); + + /** @brief @overload */ + CV_WRAP std::vector<Blob> allocate(const std::vector<Blob> &inputs); + + /** @brief @overload */ + CV_WRAP void forward(const std::vector<Blob> &inputs, CV_IN_OUT std::vector<Blob> &outputs); + + /** @brief Allocates layer and computes output. */ + CV_WRAP void run(const std::vector<Blob> &inputs, CV_OUT std::vector<Blob> &outputs); + + /** @brief Returns index of input blob into the input array. + * @param inputName label of input blob + * + * Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation. + * This method maps label of input blob to its index into input vector. + */ + virtual int inputNameToIndex(String inputName); + /** @brief Returns index of output blob in output array. + * @see inputNameToIndex() + */ + virtual int outputNameToIndex(String outputName); + + CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes. + CV_PROP String type; //!< Type name which was used for creating layer by layer factory. + + Layer(); + explicit Layer(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields. + void setParamsFrom(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields. + virtual ~Layer(); + }; + + /** @brief This class allows to create and manipulate comprehensive artificial neural networks. + * + * Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances, + * and edges specify relationships between layers inputs and outputs. + * + * Each network layer has unique integer id and unique string name inside its network. + * LayerId can store either layer name or layer id. + * + * This class supports reference counting of its instances, i. e. copies point to the same instance. + */ + class CV_EXPORTS_W_SIMPLE Net + { + public: + + CV_WRAP Net(); //!< Default constructor. + CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore. + + /** Returns true if there are no layers in the network. */ + CV_WRAP bool empty() const; + + /** @brief Adds new layer to the net. + * @param name unique name of the adding layer. + * @param type typename of the adding layer (type must be registered in LayerRegister). + * @param params parameters which will be used to initialize the creating layer. + * @returns unique identifier of created layer, or -1 if a failure will happen. + */ + int addLayer(const String &name, const String &type, LayerParams ¶ms); + /** @brief Adds new layer and connects its first input to the first output of previously added layer. + * @see addLayer() + */ + int addLayerToPrev(const String &name, const String &type, LayerParams ¶ms); + + /** @brief Converts string name of the layer to the integer identifier. + * @returns id of the layer, or -1 if the layer wasn't found. + */ + CV_WRAP int getLayerId(const String &layer); + + CV_WRAP std::vector<String> getLayerNames() const; + + /** @brief Container for strings and integers. */ + typedef DictValue LayerId; + + /** @brief Returns pointer to layer with specified name which the network use. */ + CV_WRAP Ptr<Layer> getLayer(LayerId layerId); + + /** @brief Delete layer for the network (not implemented yet) */ + CV_WRAP void deleteLayer(LayerId layer); + + /** @brief Connects output of the first layer to input of the second layer. + * @param outPin descriptor of the first layer output. + * @param inpPin descriptor of the second layer input. + * + * Descriptors have the following template <DFN><layer_name>[.input_number]</DFN>: + * - the first part of the template <DFN>layer_name</DFN> is sting name of the added layer. + * If this part is empty then the network input pseudo layer will be used; + * - the second optional part of the template <DFN>input_number</DFN> + * is either number of the layer input, either label one. + * If this part is omitted then the first layer input will be used. + * + * @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex() + */ + CV_WRAP void connect(String outPin, String inpPin); + + /** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer. + * @param outLayerId identifier of the first layer + * @param inpLayerId identifier of the second layer + * @param outNum number of the first layer output + * @param inpNum number of the second layer input + */ + void connect(int outLayerId, int outNum, int inpLayerId, int inpNum); + + /** @brief Sets outputs names of the network input pseudo layer. + * + * Each net always has special own the network input pseudo layer with id=0. + * This layer stores the user blobs only and don't make any computations. + * In fact, this layer provides the only way to pass user data into the network. + * As any other layer, this layer can label its outputs and this function provides an easy way to do this. + */ + CV_WRAP void setNetInputs(const std::vector<String> &inputBlobNames); + + /** @brief Initializes and allocates all layers. */ + CV_WRAP void allocate(); + + /** @brief Runs forward pass to compute output of layer @p toLayer. + * @details By default runs forward pass for the whole network. + */ + CV_WRAP void forward(LayerId toLayer = String()); + /** @brief Runs forward pass to compute output of layer @p toLayer, but computations start from @p startLayer */ + void forward(LayerId startLayer, LayerId toLayer); + /** @overload */ + void forward(const std::vector<LayerId> &startLayers, const std::vector<LayerId> &toLayers); + + //TODO: + /** @brief Optimized forward. + * @warning Not implemented yet. + * @details Makes forward only those layers which weren't changed after previous forward(). + */ + void forwardOpt(LayerId toLayer); + /** @overload */ + void forwardOpt(const std::vector<LayerId> &toLayers); + + /** @brief Sets the new value for the layer output blob + * @param outputName descriptor of the updating layer output blob. + * @param blob new blob. + * @see connect(String, String) to know format of the descriptor. + * @note If updating blob is not empty then @p blob must have the same shape, + * because network reshaping is not implemented yet. + */ + CV_WRAP void setBlob(String outputName, const Blob &blob); + + /** @brief Returns the layer output blob. + * @param outputName the descriptor of the returning layer output blob. + * @see connect(String, String) + */ + CV_WRAP Blob getBlob(String outputName); + + /** @brief Sets the new value for the learned param of the layer. + * @param layer name or id of the layer. + * @param numParam index of the layer parameter in the Layer::blobs array. + * @param blob the new value. + * @see Layer::blobs + * @note If shape of the new blob differs from the previous shape, + * then the following forward pass may fail. + */ + CV_WRAP void setParam(LayerId layer, int numParam, const Blob &blob); + + /** @brief Returns parameter blob of the layer. + * @param layer name or id of the layer. + * @param numParam index of the layer parameter in the Layer::blobs array. + * @see Layer::blobs + */ + CV_WRAP Blob getParam(LayerId layer, int numParam = 0); + + /** @brief Returns indexes of layers with unconnected outputs. + */ + CV_WRAP std::vector<int> getUnconnectedOutLayers() const; + private: + + struct Impl; + Ptr<Impl> impl; + }; + + /** @brief Small interface class for loading trained serialized models of different dnn-frameworks. */ + class CV_EXPORTS_W Importer + { + public: + + /** @brief Adds loaded layers into the @p net and sets connections between them. */ + CV_WRAP virtual void populateNet(Net net) = 0; + + virtual ~Importer(); + }; + + /** @brief Creates the importer of <a href="http://caffe.berkeleyvision.org">Caffe</a> framework network. + * @param prototxt path to the .prototxt file with text description of the network architecture. + * @param caffeModel path to the .caffemodel file with learned network. + * @returns Pointer to the created importer, NULL in failure cases. + */ + CV_EXPORTS_W Ptr<Importer> createCaffeImporter(const String &prototxt, const String &caffeModel = String()); + + /** @brief Reads a network model stored in Caffe model files. + * @details This is shortcut consisting from createCaffeImporter and Net::populateNet calls. + */ + CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String()); + + /** @brief Creates the importer of <a href="http://www.tensorflow.org">TensorFlow</a> framework network. + * @param model path to the .pb file with binary protobuf description of the network architecture. + * @returns Pointer to the created importer, NULL in failure cases. + */ + CV_EXPORTS Ptr<Importer> createTensorflowImporter(const String &model); + + /** @brief Creates the importer of <a href="http://torch.ch">Torch7</a> framework network. + * @param filename path to the file, dumped from Torch by using torch.save() function. + * @param isBinary specifies whether the network was serialized in ascii mode or binary. + * @returns Pointer to the created importer, NULL in failure cases. + * + * @warning Torch7 importer is experimental now, you need explicitly set CMake `opencv_dnn_BUILD_TORCH_IMPORTER` flag to compile its. + * + * @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language, + * which has various bit-length on different systems. + * + * The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object + * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors. + * + * List of supported layers (i.e. object instances derived from Torch nn.Module class): + * - nn.Sequential + * - nn.Parallel + * - nn.Concat + * - nn.Linear + * - nn.SpatialConvolution + * - nn.SpatialMaxPooling, nn.SpatialAveragePooling + * - nn.ReLU, nn.TanH, nn.Sigmoid + * - nn.Reshape + * + * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported. + */ + CV_EXPORTS_W Ptr<Importer> createTorchImporter(const String &filename, bool isBinary = true); + + /** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework. + * @warning This function has the same limitations as createTorchImporter(). + */ + CV_EXPORTS_W Blob readTorchBlob(const String &filename, bool isBinary = true); + +//! @} +} +} + +#include <opencv2/dnn/layer.hpp> +#include <opencv2/dnn/dnn.inl.hpp> + +#endif /* __OPENCV_DNN_DNN_HPP__ */ |