/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_DNN_DNN_HPP__ #define __OPENCV_DNN_DNN_HPP__ #include #include #include #include namespace cv { namespace dnn //! This namespace is used for dnn module functionlaity. { //! @addtogroup dnn //! @{ /** @brief Initialize dnn module and built-in layers. * * This function automatically called on most of OpenCV builds, * but you need to call it manually on some specific configurations (iOS for example). */ CV_EXPORTS_W void initModule(); /** @brief This class provides all data needed to initialize layer. * * It includes dictionary with scalar params (which can be readed by using Dict interface), * blob params #blobs and optional meta information: #name and #type of layer instance. */ class CV_EXPORTS LayerParams : public Dict { public: //TODO: Add ability to name blob params std::vector blobs; //!< List of learned parameters stored as blobs. String name; //!< Name of the layer instance (optional, can be used internal purposes). String type; //!< Type name which was used for creating layer by layer factory (optional). }; /** @brief This interface class allows to build new Layers - are building blocks of networks. * * Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs. * Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros. */ class CV_EXPORTS_W Layer { public: //! List of learned parameters must be stored here to allow read them by using Net::getParam(). CV_PROP_RW std::vector blobs; /** @brief Allocates internal buffers and output blobs with respect to the shape of inputs. * @param[in] input vector of already allocated input blobs * @param[out] output vector of output blobs, which must be allocated * * This method must create each produced blob according to shape of @p input blobs and internal layer params. * If this method is called first time then @p output vector consists from empty blobs and its size determined by number of output connections. * This method can be called multiple times if size of any @p input blob was changed. */ virtual void allocate(const std::vector &input, std::vector &output) = 0; /** @brief Given the @p input blobs, computes the output @p blobs. * @param[in] input the input blobs. * @param[out] output allocated output blobs, which will store results of the computation. */ virtual void forward(std::vector &input, std::vector &output) = 0; /** @brief @overload */ CV_WRAP void allocate(const std::vector &inputs, CV_OUT std::vector &outputs); /** @brief @overload */ CV_WRAP std::vector allocate(const std::vector &inputs); /** @brief @overload */ CV_WRAP void forward(const std::vector &inputs, CV_IN_OUT std::vector &outputs); /** @brief Allocates layer and computes output. */ CV_WRAP void run(const std::vector &inputs, CV_OUT std::vector &outputs); /** @brief Returns index of input blob into the input array. * @param inputName label of input blob * * Each layer input and output can be labeled to easily identify them using "%[.output_name]" notation. * This method maps label of input blob to its index into input vector. */ virtual int inputNameToIndex(String inputName); /** @brief Returns index of output blob in output array. * @see inputNameToIndex() */ virtual int outputNameToIndex(String outputName); CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes. CV_PROP String type; //!< Type name which was used for creating layer by layer factory. Layer(); explicit Layer(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields. void setParamsFrom(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields. virtual ~Layer(); }; /** @brief This class allows to create and manipulate comprehensive artificial neural networks. * * Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances, * and edges specify relationships between layers inputs and outputs. * * Each network layer has unique integer id and unique string name inside its network. * LayerId can store either layer name or layer id. * * This class supports reference counting of its instances, i. e. copies point to the same instance. */ class CV_EXPORTS_W_SIMPLE Net { public: CV_WRAP Net(); //!< Default constructor. CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore. /** Returns true if there are no layers in the network. */ CV_WRAP bool empty() const; /** @brief Adds new layer to the net. * @param name unique name of the adding layer. * @param type typename of the adding layer (type must be registered in LayerRegister). * @param params parameters which will be used to initialize the creating layer. * @returns unique identifier of created layer, or -1 if a failure will happen. */ int addLayer(const String &name, const String &type, LayerParams ¶ms); /** @brief Adds new layer and connects its first input to the first output of previously added layer. * @see addLayer() */ int addLayerToPrev(const String &name, const String &type, LayerParams ¶ms); /** @brief Converts string name of the layer to the integer identifier. * @returns id of the layer, or -1 if the layer wasn't found. */ CV_WRAP int getLayerId(const String &layer); CV_WRAP std::vector getLayerNames() const; /** @brief Container for strings and integers. */ typedef DictValue LayerId; /** @brief Returns pointer to layer with specified name which the network use. */ CV_WRAP Ptr getLayer(LayerId layerId); /** @brief Delete layer for the network (not implemented yet) */ CV_WRAP void deleteLayer(LayerId layer); /** @brief Connects output of the first layer to input of the second layer. * @param outPin descriptor of the first layer output. * @param inpPin descriptor of the second layer input. * * Descriptors have the following template <layer_name>[.input_number]: * - the first part of the template layer_name is sting name of the added layer. * If this part is empty then the network input pseudo layer will be used; * - the second optional part of the template input_number * is either number of the layer input, either label one. * If this part is omitted then the first layer input will be used. * * @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex() */ CV_WRAP void connect(String outPin, String inpPin); /** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer. * @param outLayerId identifier of the first layer * @param inpLayerId identifier of the second layer * @param outNum number of the first layer output * @param inpNum number of the second layer input */ void connect(int outLayerId, int outNum, int inpLayerId, int inpNum); /** @brief Sets outputs names of the network input pseudo layer. * * Each net always has special own the network input pseudo layer with id=0. * This layer stores the user blobs only and don't make any computations. * In fact, this layer provides the only way to pass user data into the network. * As any other layer, this layer can label its outputs and this function provides an easy way to do this. */ CV_WRAP void setNetInputs(const std::vector &inputBlobNames); /** @brief Initializes and allocates all layers. */ CV_WRAP void allocate(); /** @brief Runs forward pass to compute output of layer @p toLayer. * @details By default runs forward pass for the whole network. */ CV_WRAP void forward(LayerId toLayer = String()); /** @brief Runs forward pass to compute output of layer @p toLayer, but computations start from @p startLayer */ void forward(LayerId startLayer, LayerId toLayer); /** @overload */ void forward(const std::vector &startLayers, const std::vector &toLayers); //TODO: /** @brief Optimized forward. * @warning Not implemented yet. * @details Makes forward only those layers which weren't changed after previous forward(). */ void forwardOpt(LayerId toLayer); /** @overload */ void forwardOpt(const std::vector &toLayers); /** @brief Sets the new value for the layer output blob * @param outputName descriptor of the updating layer output blob. * @param blob new blob. * @see connect(String, String) to know format of the descriptor. * @note If updating blob is not empty then @p blob must have the same shape, * because network reshaping is not implemented yet. */ CV_WRAP void setBlob(String outputName, const Blob &blob); /** @brief Returns the layer output blob. * @param outputName the descriptor of the returning layer output blob. * @see connect(String, String) */ CV_WRAP Blob getBlob(String outputName); /** @brief Sets the new value for the learned param of the layer. * @param layer name or id of the layer. * @param numParam index of the layer parameter in the Layer::blobs array. * @param blob the new value. * @see Layer::blobs * @note If shape of the new blob differs from the previous shape, * then the following forward pass may fail. */ CV_WRAP void setParam(LayerId layer, int numParam, const Blob &blob); /** @brief Returns parameter blob of the layer. * @param layer name or id of the layer. * @param numParam index of the layer parameter in the Layer::blobs array. * @see Layer::blobs */ CV_WRAP Blob getParam(LayerId layer, int numParam = 0); /** @brief Returns indexes of layers with unconnected outputs. */ CV_WRAP std::vector getUnconnectedOutLayers() const; private: struct Impl; Ptr impl; }; /** @brief Small interface class for loading trained serialized models of different dnn-frameworks. */ class CV_EXPORTS_W Importer { public: /** @brief Adds loaded layers into the @p net and sets connections between them. */ CV_WRAP virtual void populateNet(Net net) = 0; virtual ~Importer(); }; /** @brief Creates the importer of Caffe framework network. * @param prototxt path to the .prototxt file with text description of the network architecture. * @param caffeModel path to the .caffemodel file with learned network. * @returns Pointer to the created importer, NULL in failure cases. */ CV_EXPORTS_W Ptr createCaffeImporter(const String &prototxt, const String &caffeModel = String()); /** @brief Reads a network model stored in Caffe model files. * @details This is shortcut consisting from createCaffeImporter and Net::populateNet calls. */ CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String()); /** @brief Creates the importer of TensorFlow framework network. * @param model path to the .pb file with binary protobuf description of the network architecture. * @returns Pointer to the created importer, NULL in failure cases. */ CV_EXPORTS Ptr createTensorflowImporter(const String &model); /** @brief Creates the importer of Torch7 framework network. * @param filename path to the file, dumped from Torch by using torch.save() function. * @param isBinary specifies whether the network was serialized in ascii mode or binary. * @returns Pointer to the created importer, NULL in failure cases. * * @warning Torch7 importer is experimental now, you need explicitly set CMake `opencv_dnn_BUILD_TORCH_IMPORTER` flag to compile its. * * @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language, * which has various bit-length on different systems. * * The loading file must contain serialized nn.Module object * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors. * * List of supported layers (i.e. object instances derived from Torch nn.Module class): * - nn.Sequential * - nn.Parallel * - nn.Concat * - nn.Linear * - nn.SpatialConvolution * - nn.SpatialMaxPooling, nn.SpatialAveragePooling * - nn.ReLU, nn.TanH, nn.Sigmoid * - nn.Reshape * * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported. */ CV_EXPORTS_W Ptr createTorchImporter(const String &filename, bool isBinary = true); /** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework. * @warning This function has the same limitations as createTorchImporter(). */ CV_EXPORTS_W Blob readTorchBlob(const String &filename, bool isBinary = true); //! @} } } #include #include #endif /* __OPENCV_DNN_DNN_HPP__ */