summaryrefslogtreecommitdiff
path: root/thirdparty/linux/include/opencv2/flann
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/linux/include/opencv2/flann')
-rw-r--r--thirdparty/linux/include/opencv2/flann/all_indices.h155
-rw-r--r--thirdparty/linux/include/opencv2/flann/allocator.h188
-rw-r--r--thirdparty/linux/include/opencv2/flann/any.h324
-rw-r--r--thirdparty/linux/include/opencv2/flann/autotuned_index.h588
-rw-r--r--thirdparty/linux/include/opencv2/flann/composite_index.h194
-rw-r--r--thirdparty/linux/include/opencv2/flann/config.h38
-rw-r--r--thirdparty/linux/include/opencv2/flann/defines.h177
-rw-r--r--thirdparty/linux/include/opencv2/flann/dist.h905
-rw-r--r--thirdparty/linux/include/opencv2/flann/dummy.h16
-rw-r--r--thirdparty/linux/include/opencv2/flann/dynamic_bitset.h159
-rw-r--r--thirdparty/linux/include/opencv2/flann/flann.hpp48
-rw-r--r--thirdparty/linux/include/opencv2/flann/flann_base.hpp290
-rw-r--r--thirdparty/linux/include/opencv2/flann/general.h50
-rw-r--r--thirdparty/linux/include/opencv2/flann/ground_truth.h94
-rw-r--r--thirdparty/linux/include/opencv2/flann/hdf5.h231
-rw-r--r--thirdparty/linux/include/opencv2/flann/heap.h165
-rw-r--r--thirdparty/linux/include/opencv2/flann/hierarchical_clustering_index.h848
-rw-r--r--thirdparty/linux/include/opencv2/flann/index_testing.h318
-rw-r--r--thirdparty/linux/include/opencv2/flann/kdtree_index.h621
-rw-r--r--thirdparty/linux/include/opencv2/flann/kdtree_single_index.h634
-rw-r--r--thirdparty/linux/include/opencv2/flann/kmeans_index.h1171
-rw-r--r--thirdparty/linux/include/opencv2/flann/linear_index.h132
-rw-r--r--thirdparty/linux/include/opencv2/flann/logger.h130
-rw-r--r--thirdparty/linux/include/opencv2/flann/lsh_index.h392
-rw-r--r--thirdparty/linux/include/opencv2/flann/lsh_table.h492
-rw-r--r--thirdparty/linux/include/opencv2/flann/matrix.h116
-rw-r--r--thirdparty/linux/include/opencv2/flann/miniflann.hpp158
-rw-r--r--thirdparty/linux/include/opencv2/flann/nn_index.h177
-rw-r--r--thirdparty/linux/include/opencv2/flann/object_factory.h91
-rw-r--r--thirdparty/linux/include/opencv2/flann/params.h99
-rw-r--r--thirdparty/linux/include/opencv2/flann/random.h133
-rw-r--r--thirdparty/linux/include/opencv2/flann/result_set.h543
-rw-r--r--thirdparty/linux/include/opencv2/flann/sampling.h81
-rw-r--r--thirdparty/linux/include/opencv2/flann/saving.h187
-rw-r--r--thirdparty/linux/include/opencv2/flann/simplex_downhill.h186
-rw-r--r--thirdparty/linux/include/opencv2/flann/timer.h94
36 files changed, 10225 insertions, 0 deletions
diff --git a/thirdparty/linux/include/opencv2/flann/all_indices.h b/thirdparty/linux/include/opencv2/flann/all_indices.h
new file mode 100644
index 0000000..ff53fd8
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/all_indices.h
@@ -0,0 +1,155 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+
+#ifndef OPENCV_FLANN_ALL_INDICES_H_
+#define OPENCV_FLANN_ALL_INDICES_H_
+
+#include "general.h"
+
+#include "nn_index.h"
+#include "kdtree_index.h"
+#include "kdtree_single_index.h"
+#include "kmeans_index.h"
+#include "composite_index.h"
+#include "linear_index.h"
+#include "hierarchical_clustering_index.h"
+#include "lsh_index.h"
+#include "autotuned_index.h"
+
+
+namespace cvflann
+{
+
+template<typename KDTreeCapability, typename VectorSpace, typename Distance>
+struct index_creator
+{
+ static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
+ {
+ flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
+
+ NNIndex<Distance>* nnIndex;
+ switch (index_type) {
+ case FLANN_INDEX_LINEAR:
+ nnIndex = new LinearIndex<Distance>(dataset, params, distance);
+ break;
+ case FLANN_INDEX_KDTREE_SINGLE:
+ nnIndex = new KDTreeSingleIndex<Distance>(dataset, params, distance);
+ break;
+ case FLANN_INDEX_KDTREE:
+ nnIndex = new KDTreeIndex<Distance>(dataset, params, distance);
+ break;
+ case FLANN_INDEX_KMEANS:
+ nnIndex = new KMeansIndex<Distance>(dataset, params, distance);
+ break;
+ case FLANN_INDEX_COMPOSITE:
+ nnIndex = new CompositeIndex<Distance>(dataset, params, distance);
+ break;
+ case FLANN_INDEX_AUTOTUNED:
+ nnIndex = new AutotunedIndex<Distance>(dataset, params, distance);
+ break;
+ case FLANN_INDEX_HIERARCHICAL:
+ nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance);
+ break;
+ case FLANN_INDEX_LSH:
+ nnIndex = new LshIndex<Distance>(dataset, params, distance);
+ break;
+ default:
+ throw FLANNException("Unknown index type");
+ }
+
+ return nnIndex;
+ }
+};
+
+template<typename VectorSpace, typename Distance>
+struct index_creator<False,VectorSpace,Distance>
+{
+ static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
+ {
+ flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
+
+ NNIndex<Distance>* nnIndex;
+ switch (index_type) {
+ case FLANN_INDEX_LINEAR:
+ nnIndex = new LinearIndex<Distance>(dataset, params, distance);
+ break;
+ case FLANN_INDEX_KMEANS:
+ nnIndex = new KMeansIndex<Distance>(dataset, params, distance);
+ break;
+ case FLANN_INDEX_HIERARCHICAL:
+ nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance);
+ break;
+ case FLANN_INDEX_LSH:
+ nnIndex = new LshIndex<Distance>(dataset, params, distance);
+ break;
+ default:
+ throw FLANNException("Unknown index type");
+ }
+
+ return nnIndex;
+ }
+};
+
+template<typename Distance>
+struct index_creator<False,False,Distance>
+{
+ static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
+ {
+ flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
+
+ NNIndex<Distance>* nnIndex;
+ switch (index_type) {
+ case FLANN_INDEX_LINEAR:
+ nnIndex = new LinearIndex<Distance>(dataset, params, distance);
+ break;
+ case FLANN_INDEX_HIERARCHICAL:
+ nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance);
+ break;
+ case FLANN_INDEX_LSH:
+ nnIndex = new LshIndex<Distance>(dataset, params, distance);
+ break;
+ default:
+ throw FLANNException("Unknown index type");
+ }
+
+ return nnIndex;
+ }
+};
+
+template<typename Distance>
+NNIndex<Distance>* create_index_by_type(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
+{
+ return index_creator<typename Distance::is_kdtree_distance,
+ typename Distance::is_vector_space_distance,
+ Distance>::create(dataset, params,distance);
+}
+
+}
+
+#endif /* OPENCV_FLANN_ALL_INDICES_H_ */
diff --git a/thirdparty/linux/include/opencv2/flann/allocator.h b/thirdparty/linux/include/opencv2/flann/allocator.h
new file mode 100644
index 0000000..26091d0
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/allocator.h
@@ -0,0 +1,188 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_ALLOCATOR_H_
+#define OPENCV_FLANN_ALLOCATOR_H_
+
+#include <stdlib.h>
+#include <stdio.h>
+
+
+namespace cvflann
+{
+
+/**
+ * Allocates (using C's malloc) a generic type T.
+ *
+ * Params:
+ * count = number of instances to allocate.
+ * Returns: pointer (of type T*) to memory buffer
+ */
+template <typename T>
+T* allocate(size_t count = 1)
+{
+ T* mem = (T*) ::malloc(sizeof(T)*count);
+ return mem;
+}
+
+
+/**
+ * Pooled storage allocator
+ *
+ * The following routines allow for the efficient allocation of storage in
+ * small chunks from a specified pool. Rather than allowing each structure
+ * to be freed individually, an entire pool of storage is freed at once.
+ * This method has two advantages over just using malloc() and free(). First,
+ * it is far more efficient for allocating small objects, as there is
+ * no overhead for remembering all the information needed to free each
+ * object or consolidating fragmented memory. Second, the decision about
+ * how long to keep an object is made at the time of allocation, and there
+ * is no need to track down all the objects to free them.
+ *
+ */
+
+const size_t WORDSIZE=16;
+const size_t BLOCKSIZE=8192;
+
+class PooledAllocator
+{
+ /* We maintain memory alignment to word boundaries by requiring that all
+ allocations be in multiples of the machine wordsize. */
+ /* Size of machine word in bytes. Must be power of 2. */
+ /* Minimum number of bytes requested at a time from the system. Must be multiple of WORDSIZE. */
+
+
+ int remaining; /* Number of bytes left in current block of storage. */
+ void* base; /* Pointer to base of current block of storage. */
+ void* loc; /* Current location in block to next allocate memory. */
+ int blocksize;
+
+
+public:
+ int usedMemory;
+ int wastedMemory;
+
+ /**
+ Default constructor. Initializes a new pool.
+ */
+ PooledAllocator(int blockSize = BLOCKSIZE)
+ {
+ blocksize = blockSize;
+ remaining = 0;
+ base = NULL;
+
+ usedMemory = 0;
+ wastedMemory = 0;
+ }
+
+ /**
+ * Destructor. Frees all the memory allocated in this pool.
+ */
+ ~PooledAllocator()
+ {
+ void* prev;
+
+ while (base != NULL) {
+ prev = *((void**) base); /* Get pointer to prev block. */
+ ::free(base);
+ base = prev;
+ }
+ }
+
+ /**
+ * Returns a pointer to a piece of new memory of the given size in bytes
+ * allocated from the pool.
+ */
+ void* allocateMemory(int size)
+ {
+ int blockSize;
+
+ /* Round size up to a multiple of wordsize. The following expression
+ only works for WORDSIZE that is a power of 2, by masking last bits of
+ incremented size to zero.
+ */
+ size = (size + (WORDSIZE - 1)) & ~(WORDSIZE - 1);
+
+ /* Check whether a new block must be allocated. Note that the first word
+ of a block is reserved for a pointer to the previous block.
+ */
+ if (size > remaining) {
+
+ wastedMemory += remaining;
+
+ /* Allocate new storage. */
+ blockSize = (size + sizeof(void*) + (WORDSIZE-1) > BLOCKSIZE) ?
+ size + sizeof(void*) + (WORDSIZE-1) : BLOCKSIZE;
+
+ // use the standard C malloc to allocate memory
+ void* m = ::malloc(blockSize);
+ if (!m) {
+ fprintf(stderr,"Failed to allocate memory.\n");
+ return NULL;
+ }
+
+ /* Fill first word of new block with pointer to previous block. */
+ ((void**) m)[0] = base;
+ base = m;
+
+ int shift = 0;
+ //int shift = (WORDSIZE - ( (((size_t)m) + sizeof(void*)) & (WORDSIZE-1))) & (WORDSIZE-1);
+
+ remaining = blockSize - sizeof(void*) - shift;
+ loc = ((char*)m + sizeof(void*) + shift);
+ }
+ void* rloc = loc;
+ loc = (char*)loc + size;
+ remaining -= size;
+
+ usedMemory += size;
+
+ return rloc;
+ }
+
+ /**
+ * Allocates (using this pool) a generic type T.
+ *
+ * Params:
+ * count = number of instances to allocate.
+ * Returns: pointer (of type T*) to memory buffer
+ */
+ template <typename T>
+ T* allocate(size_t count = 1)
+ {
+ T* mem = (T*) this->allocateMemory((int)(sizeof(T)*count));
+ return mem;
+ }
+
+};
+
+}
+
+#endif //OPENCV_FLANN_ALLOCATOR_H_
diff --git a/thirdparty/linux/include/opencv2/flann/any.h b/thirdparty/linux/include/opencv2/flann/any.h
new file mode 100644
index 0000000..bfe06c8
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/any.h
@@ -0,0 +1,324 @@
+#ifndef OPENCV_FLANN_ANY_H_
+#define OPENCV_FLANN_ANY_H_
+/*
+ * (C) Copyright Christopher Diggins 2005-2011
+ * (C) Copyright Pablo Aguilar 2005
+ * (C) Copyright Kevlin Henney 2001
+ *
+ * Distributed under the Boost Software License, Version 1.0. (See
+ * accompanying file LICENSE_1_0.txt or copy at
+ * http://www.boost.org/LICENSE_1_0.txt
+ *
+ * Adapted for FLANN by Marius Muja
+ */
+
+#include "defines.h"
+#include <stdexcept>
+#include <ostream>
+#include <typeinfo>
+
+namespace cvflann
+{
+
+namespace anyimpl
+{
+
+struct bad_any_cast
+{
+};
+
+struct empty_any
+{
+};
+
+inline std::ostream& operator <<(std::ostream& out, const empty_any&)
+{
+ out << "[empty_any]";
+ return out;
+}
+
+struct base_any_policy
+{
+ virtual void static_delete(void** x) = 0;
+ virtual void copy_from_value(void const* src, void** dest) = 0;
+ virtual void clone(void* const* src, void** dest) = 0;
+ virtual void move(void* const* src, void** dest) = 0;
+ virtual void* get_value(void** src) = 0;
+ virtual const void* get_value(void* const * src) = 0;
+ virtual ::size_t get_size() = 0;
+ virtual const std::type_info& type() = 0;
+ virtual void print(std::ostream& out, void* const* src) = 0;
+ virtual ~base_any_policy() {}
+};
+
+template<typename T>
+struct typed_base_any_policy : base_any_policy
+{
+ virtual ::size_t get_size() { return sizeof(T); }
+ virtual const std::type_info& type() { return typeid(T); }
+
+};
+
+template<typename T>
+struct small_any_policy : typed_base_any_policy<T>
+{
+ virtual void static_delete(void**) { }
+ virtual void copy_from_value(void const* src, void** dest)
+ {
+ new (dest) T(* reinterpret_cast<T const*>(src));
+ }
+ virtual void clone(void* const* src, void** dest) { *dest = *src; }
+ virtual void move(void* const* src, void** dest) { *dest = *src; }
+ virtual void* get_value(void** src) { return reinterpret_cast<void*>(src); }
+ virtual const void* get_value(void* const * src) { return reinterpret_cast<const void*>(src); }
+ virtual void print(std::ostream& out, void* const* src) { out << *reinterpret_cast<T const*>(src); }
+};
+
+template<typename T>
+struct big_any_policy : typed_base_any_policy<T>
+{
+ virtual void static_delete(void** x)
+ {
+ if (* x) delete (* reinterpret_cast<T**>(x));
+ *x = NULL;
+ }
+ virtual void copy_from_value(void const* src, void** dest)
+ {
+ *dest = new T(*reinterpret_cast<T const*>(src));
+ }
+ virtual void clone(void* const* src, void** dest)
+ {
+ *dest = new T(**reinterpret_cast<T* const*>(src));
+ }
+ virtual void move(void* const* src, void** dest)
+ {
+ (*reinterpret_cast<T**>(dest))->~T();
+ **reinterpret_cast<T**>(dest) = **reinterpret_cast<T* const*>(src);
+ }
+ virtual void* get_value(void** src) { return *src; }
+ virtual const void* get_value(void* const * src) { return *src; }
+ virtual void print(std::ostream& out, void* const* src) { out << *reinterpret_cast<T const*>(*src); }
+};
+
+template<> inline void big_any_policy<flann_centers_init_t>::print(std::ostream& out, void* const* src)
+{
+ out << int(*reinterpret_cast<flann_centers_init_t const*>(*src));
+}
+
+template<> inline void big_any_policy<flann_algorithm_t>::print(std::ostream& out, void* const* src)
+{
+ out << int(*reinterpret_cast<flann_algorithm_t const*>(*src));
+}
+
+template<> inline void big_any_policy<cv::String>::print(std::ostream& out, void* const* src)
+{
+ out << (*reinterpret_cast<cv::String const*>(*src)).c_str();
+}
+
+template<typename T>
+struct choose_policy
+{
+ typedef big_any_policy<T> type;
+};
+
+template<typename T>
+struct choose_policy<T*>
+{
+ typedef small_any_policy<T*> type;
+};
+
+struct any;
+
+/// Choosing the policy for an any type is illegal, but should never happen.
+/// This is designed to throw a compiler error.
+template<>
+struct choose_policy<any>
+{
+ typedef void type;
+};
+
+/// Specializations for small types.
+#define SMALL_POLICY(TYPE) \
+ template<> \
+ struct choose_policy<TYPE> { typedef small_any_policy<TYPE> type; \
+ }
+
+SMALL_POLICY(signed char);
+SMALL_POLICY(unsigned char);
+SMALL_POLICY(signed short);
+SMALL_POLICY(unsigned short);
+SMALL_POLICY(signed int);
+SMALL_POLICY(unsigned int);
+SMALL_POLICY(signed long);
+SMALL_POLICY(unsigned long);
+SMALL_POLICY(float);
+SMALL_POLICY(bool);
+
+#undef SMALL_POLICY
+
+template <typename T>
+class SinglePolicy
+{
+ SinglePolicy();
+ SinglePolicy(const SinglePolicy& other);
+ SinglePolicy& operator=(const SinglePolicy& other);
+
+public:
+ static base_any_policy* get_policy();
+
+private:
+ static typename choose_policy<T>::type policy;
+};
+
+template <typename T>
+typename choose_policy<T>::type SinglePolicy<T>::policy;
+
+/// This function will return a different policy for each type.
+template <typename T>
+inline base_any_policy* SinglePolicy<T>::get_policy() { return &policy; }
+
+} // namespace anyimpl
+
+struct any
+{
+private:
+ // fields
+ anyimpl::base_any_policy* policy;
+ void* object;
+
+public:
+ /// Initializing constructor.
+ template <typename T>
+ any(const T& x)
+ : policy(anyimpl::SinglePolicy<anyimpl::empty_any>::get_policy()), object(NULL)
+ {
+ assign(x);
+ }
+
+ /// Empty constructor.
+ any()
+ : policy(anyimpl::SinglePolicy<anyimpl::empty_any>::get_policy()), object(NULL)
+ { }
+
+ /// Special initializing constructor for string literals.
+ any(const char* x)
+ : policy(anyimpl::SinglePolicy<anyimpl::empty_any>::get_policy()), object(NULL)
+ {
+ assign(x);
+ }
+
+ /// Copy constructor.
+ any(const any& x)
+ : policy(anyimpl::SinglePolicy<anyimpl::empty_any>::get_policy()), object(NULL)
+ {
+ assign(x);
+ }
+
+ /// Destructor.
+ ~any()
+ {
+ policy->static_delete(&object);
+ }
+
+ /// Assignment function from another any.
+ any& assign(const any& x)
+ {
+ reset();
+ policy = x.policy;
+ policy->clone(&x.object, &object);
+ return *this;
+ }
+
+ /// Assignment function.
+ template <typename T>
+ any& assign(const T& x)
+ {
+ reset();
+ policy = anyimpl::SinglePolicy<T>::get_policy();
+ policy->copy_from_value(&x, &object);
+ return *this;
+ }
+
+ /// Assignment operator.
+ template<typename T>
+ any& operator=(const T& x)
+ {
+ return assign(x);
+ }
+
+ /// Assignment operator, specialed for literal strings.
+ /// They have types like const char [6] which don't work as expected.
+ any& operator=(const char* x)
+ {
+ return assign(x);
+ }
+
+ /// Utility functions
+ any& swap(any& x)
+ {
+ std::swap(policy, x.policy);
+ std::swap(object, x.object);
+ return *this;
+ }
+
+ /// Cast operator. You can only cast to the original type.
+ template<typename T>
+ T& cast()
+ {
+ if (policy->type() != typeid(T)) throw anyimpl::bad_any_cast();
+ T* r = reinterpret_cast<T*>(policy->get_value(&object));
+ return *r;
+ }
+
+ /// Cast operator. You can only cast to the original type.
+ template<typename T>
+ const T& cast() const
+ {
+ if (policy->type() != typeid(T)) throw anyimpl::bad_any_cast();
+ const T* r = reinterpret_cast<const T*>(policy->get_value(&object));
+ return *r;
+ }
+
+ /// Returns true if the any contains no value.
+ bool empty() const
+ {
+ return policy->type() == typeid(anyimpl::empty_any);
+ }
+
+ /// Frees any allocated memory, and sets the value to NULL.
+ void reset()
+ {
+ policy->static_delete(&object);
+ policy = anyimpl::SinglePolicy<anyimpl::empty_any>::get_policy();
+ }
+
+ /// Returns true if the two types are the same.
+ bool compatible(const any& x) const
+ {
+ return policy->type() == x.policy->type();
+ }
+
+ /// Returns if the type is compatible with the policy
+ template<typename T>
+ bool has_type()
+ {
+ return policy->type() == typeid(T);
+ }
+
+ const std::type_info& type() const
+ {
+ return policy->type();
+ }
+
+ friend std::ostream& operator <<(std::ostream& out, const any& any_val);
+};
+
+inline std::ostream& operator <<(std::ostream& out, const any& any_val)
+{
+ any_val.policy->print(out,&any_val.object);
+ return out;
+}
+
+}
+
+#endif // OPENCV_FLANN_ANY_H_
diff --git a/thirdparty/linux/include/opencv2/flann/autotuned_index.h b/thirdparty/linux/include/opencv2/flann/autotuned_index.h
new file mode 100644
index 0000000..6ffb929
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/autotuned_index.h
@@ -0,0 +1,588 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+#ifndef OPENCV_FLANN_AUTOTUNED_INDEX_H_
+#define OPENCV_FLANN_AUTOTUNED_INDEX_H_
+
+#include "general.h"
+#include "nn_index.h"
+#include "ground_truth.h"
+#include "index_testing.h"
+#include "sampling.h"
+#include "kdtree_index.h"
+#include "kdtree_single_index.h"
+#include "kmeans_index.h"
+#include "composite_index.h"
+#include "linear_index.h"
+#include "logger.h"
+
+namespace cvflann
+{
+
+template<typename Distance>
+NNIndex<Distance>* create_index_by_type(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance);
+
+
+struct AutotunedIndexParams : public IndexParams
+{
+ AutotunedIndexParams(float target_precision = 0.8, float build_weight = 0.01, float memory_weight = 0, float sample_fraction = 0.1)
+ {
+ (*this)["algorithm"] = FLANN_INDEX_AUTOTUNED;
+ // precision desired (used for autotuning, -1 otherwise)
+ (*this)["target_precision"] = target_precision;
+ // build tree time weighting factor
+ (*this)["build_weight"] = build_weight;
+ // index memory weighting factor
+ (*this)["memory_weight"] = memory_weight;
+ // what fraction of the dataset to use for autotuning
+ (*this)["sample_fraction"] = sample_fraction;
+ }
+};
+
+
+template <typename Distance>
+class AutotunedIndex : public NNIndex<Distance>
+{
+public:
+ typedef typename Distance::ElementType ElementType;
+ typedef typename Distance::ResultType DistanceType;
+
+ AutotunedIndex(const Matrix<ElementType>& inputData, const IndexParams& params = AutotunedIndexParams(), Distance d = Distance()) :
+ dataset_(inputData), distance_(d)
+ {
+ target_precision_ = get_param(params, "target_precision",0.8f);
+ build_weight_ = get_param(params,"build_weight", 0.01f);
+ memory_weight_ = get_param(params, "memory_weight", 0.0f);
+ sample_fraction_ = get_param(params,"sample_fraction", 0.1f);
+ bestIndex_ = NULL;
+ }
+
+ AutotunedIndex(const AutotunedIndex&);
+ AutotunedIndex& operator=(const AutotunedIndex&);
+
+ virtual ~AutotunedIndex()
+ {
+ if (bestIndex_ != NULL) {
+ delete bestIndex_;
+ bestIndex_ = NULL;
+ }
+ }
+
+ /**
+ * Method responsible with building the index.
+ */
+ virtual void buildIndex()
+ {
+ std::ostringstream stream;
+ bestParams_ = estimateBuildParams();
+ print_params(bestParams_, stream);
+ Logger::info("----------------------------------------------------\n");
+ Logger::info("Autotuned parameters:\n");
+ Logger::info("%s", stream.str().c_str());
+ Logger::info("----------------------------------------------------\n");
+
+ bestIndex_ = create_index_by_type(dataset_, bestParams_, distance_);
+ bestIndex_->buildIndex();
+ speedup_ = estimateSearchParams(bestSearchParams_);
+ stream.str(std::string());
+ print_params(bestSearchParams_, stream);
+ Logger::info("----------------------------------------------------\n");
+ Logger::info("Search parameters:\n");
+ Logger::info("%s", stream.str().c_str());
+ Logger::info("----------------------------------------------------\n");
+ }
+
+ /**
+ * Saves the index to a stream
+ */
+ virtual void saveIndex(FILE* stream)
+ {
+ save_value(stream, (int)bestIndex_->getType());
+ bestIndex_->saveIndex(stream);
+ save_value(stream, get_param<int>(bestSearchParams_, "checks"));
+ }
+
+ /**
+ * Loads the index from a stream
+ */
+ virtual void loadIndex(FILE* stream)
+ {
+ int index_type;
+
+ load_value(stream, index_type);
+ IndexParams params;
+ params["algorithm"] = (flann_algorithm_t)index_type;
+ bestIndex_ = create_index_by_type<Distance>(dataset_, params, distance_);
+ bestIndex_->loadIndex(stream);
+ int checks;
+ load_value(stream, checks);
+ bestSearchParams_["checks"] = checks;
+ }
+
+ /**
+ * Method that searches for nearest-neighbors
+ */
+ virtual void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
+ {
+ int checks = get_param<int>(searchParams,"checks",FLANN_CHECKS_AUTOTUNED);
+ if (checks == FLANN_CHECKS_AUTOTUNED) {
+ bestIndex_->findNeighbors(result, vec, bestSearchParams_);
+ }
+ else {
+ bestIndex_->findNeighbors(result, vec, searchParams);
+ }
+ }
+
+
+ IndexParams getParameters() const
+ {
+ return bestIndex_->getParameters();
+ }
+
+ SearchParams getSearchParameters() const
+ {
+ return bestSearchParams_;
+ }
+
+ float getSpeedup() const
+ {
+ return speedup_;
+ }
+
+
+ /**
+ * Number of features in this index.
+ */
+ virtual size_t size() const
+ {
+ return bestIndex_->size();
+ }
+
+ /**
+ * The length of each vector in this index.
+ */
+ virtual size_t veclen() const
+ {
+ return bestIndex_->veclen();
+ }
+
+ /**
+ * The amount of memory (in bytes) this index uses.
+ */
+ virtual int usedMemory() const
+ {
+ return bestIndex_->usedMemory();
+ }
+
+ /**
+ * Algorithm name
+ */
+ virtual flann_algorithm_t getType() const
+ {
+ return FLANN_INDEX_AUTOTUNED;
+ }
+
+private:
+
+ struct CostData
+ {
+ float searchTimeCost;
+ float buildTimeCost;
+ float memoryCost;
+ float totalCost;
+ IndexParams params;
+ };
+
+ void evaluate_kmeans(CostData& cost)
+ {
+ StartStopTimer t;
+ int checks;
+ const int nn = 1;
+
+ Logger::info("KMeansTree using params: max_iterations=%d, branching=%d\n",
+ get_param<int>(cost.params,"iterations"),
+ get_param<int>(cost.params,"branching"));
+ KMeansIndex<Distance> kmeans(sampledDataset_, cost.params, distance_);
+ // measure index build time
+ t.start();
+ kmeans.buildIndex();
+ t.stop();
+ float buildTime = (float)t.value;
+
+ // measure search time
+ float searchTime = test_index_precision(kmeans, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn);
+
+ float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float));
+ cost.memoryCost = (kmeans.usedMemory() + datasetMemory) / datasetMemory;
+ cost.searchTimeCost = searchTime;
+ cost.buildTimeCost = buildTime;
+ Logger::info("KMeansTree buildTime=%g, searchTime=%g, build_weight=%g\n", buildTime, searchTime, build_weight_);
+ }
+
+
+ void evaluate_kdtree(CostData& cost)
+ {
+ StartStopTimer t;
+ int checks;
+ const int nn = 1;
+
+ Logger::info("KDTree using params: trees=%d\n", get_param<int>(cost.params,"trees"));
+ KDTreeIndex<Distance> kdtree(sampledDataset_, cost.params, distance_);
+
+ t.start();
+ kdtree.buildIndex();
+ t.stop();
+ float buildTime = (float)t.value;
+
+ //measure search time
+ float searchTime = test_index_precision(kdtree, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn);
+
+ float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float));
+ cost.memoryCost = (kdtree.usedMemory() + datasetMemory) / datasetMemory;
+ cost.searchTimeCost = searchTime;
+ cost.buildTimeCost = buildTime;
+ Logger::info("KDTree buildTime=%g, searchTime=%g\n", buildTime, searchTime);
+ }
+
+
+ // struct KMeansSimpleDownhillFunctor {
+ //
+ // Autotune& autotuner;
+ // KMeansSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {}
+ //
+ // float operator()(int* params) {
+ //
+ // float maxFloat = numeric_limits<float>::max();
+ //
+ // if (params[0]<2) return maxFloat;
+ // if (params[1]<0) return maxFloat;
+ //
+ // CostData c;
+ // c.params["algorithm"] = KMEANS;
+ // c.params["centers-init"] = CENTERS_RANDOM;
+ // c.params["branching"] = params[0];
+ // c.params["max-iterations"] = params[1];
+ //
+ // autotuner.evaluate_kmeans(c);
+ //
+ // return c.timeCost;
+ //
+ // }
+ // };
+ //
+ // struct KDTreeSimpleDownhillFunctor {
+ //
+ // Autotune& autotuner;
+ // KDTreeSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {}
+ //
+ // float operator()(int* params) {
+ // float maxFloat = numeric_limits<float>::max();
+ //
+ // if (params[0]<1) return maxFloat;
+ //
+ // CostData c;
+ // c.params["algorithm"] = KDTREE;
+ // c.params["trees"] = params[0];
+ //
+ // autotuner.evaluate_kdtree(c);
+ //
+ // return c.timeCost;
+ //
+ // }
+ // };
+
+
+
+ void optimizeKMeans(std::vector<CostData>& costs)
+ {
+ Logger::info("KMEANS, Step 1: Exploring parameter space\n");
+
+ // explore kmeans parameters space using combinations of the parameters below
+ int maxIterations[] = { 1, 5, 10, 15 };
+ int branchingFactors[] = { 16, 32, 64, 128, 256 };
+
+ int kmeansParamSpaceSize = FLANN_ARRAY_LEN(maxIterations) * FLANN_ARRAY_LEN(branchingFactors);
+ costs.reserve(costs.size() + kmeansParamSpaceSize);
+
+ // evaluate kmeans for all parameter combinations
+ for (size_t i = 0; i < FLANN_ARRAY_LEN(maxIterations); ++i) {
+ for (size_t j = 0; j < FLANN_ARRAY_LEN(branchingFactors); ++j) {
+ CostData cost;
+ cost.params["algorithm"] = FLANN_INDEX_KMEANS;
+ cost.params["centers_init"] = FLANN_CENTERS_RANDOM;
+ cost.params["iterations"] = maxIterations[i];
+ cost.params["branching"] = branchingFactors[j];
+
+ evaluate_kmeans(cost);
+ costs.push_back(cost);
+ }
+ }
+
+ // Logger::info("KMEANS, Step 2: simplex-downhill optimization\n");
+ //
+ // const int n = 2;
+ // // choose initial simplex points as the best parameters so far
+ // int kmeansNMPoints[n*(n+1)];
+ // float kmeansVals[n+1];
+ // for (int i=0;i<n+1;++i) {
+ // kmeansNMPoints[i*n] = (int)kmeansCosts[i].params["branching"];
+ // kmeansNMPoints[i*n+1] = (int)kmeansCosts[i].params["max-iterations"];
+ // kmeansVals[i] = kmeansCosts[i].timeCost;
+ // }
+ // KMeansSimpleDownhillFunctor kmeans_cost_func(*this);
+ // // run optimization
+ // optimizeSimplexDownhill(kmeansNMPoints,n,kmeans_cost_func,kmeansVals);
+ // // store results
+ // for (int i=0;i<n+1;++i) {
+ // kmeansCosts[i].params["branching"] = kmeansNMPoints[i*2];
+ // kmeansCosts[i].params["max-iterations"] = kmeansNMPoints[i*2+1];
+ // kmeansCosts[i].timeCost = kmeansVals[i];
+ // }
+ }
+
+
+ void optimizeKDTree(std::vector<CostData>& costs)
+ {
+ Logger::info("KD-TREE, Step 1: Exploring parameter space\n");
+
+ // explore kd-tree parameters space using the parameters below
+ int testTrees[] = { 1, 4, 8, 16, 32 };
+
+ // evaluate kdtree for all parameter combinations
+ for (size_t i = 0; i < FLANN_ARRAY_LEN(testTrees); ++i) {
+ CostData cost;
+ cost.params["algorithm"] = FLANN_INDEX_KDTREE;
+ cost.params["trees"] = testTrees[i];
+
+ evaluate_kdtree(cost);
+ costs.push_back(cost);
+ }
+
+ // Logger::info("KD-TREE, Step 2: simplex-downhill optimization\n");
+ //
+ // const int n = 1;
+ // // choose initial simplex points as the best parameters so far
+ // int kdtreeNMPoints[n*(n+1)];
+ // float kdtreeVals[n+1];
+ // for (int i=0;i<n+1;++i) {
+ // kdtreeNMPoints[i] = (int)kdtreeCosts[i].params["trees"];
+ // kdtreeVals[i] = kdtreeCosts[i].timeCost;
+ // }
+ // KDTreeSimpleDownhillFunctor kdtree_cost_func(*this);
+ // // run optimization
+ // optimizeSimplexDownhill(kdtreeNMPoints,n,kdtree_cost_func,kdtreeVals);
+ // // store results
+ // for (int i=0;i<n+1;++i) {
+ // kdtreeCosts[i].params["trees"] = kdtreeNMPoints[i];
+ // kdtreeCosts[i].timeCost = kdtreeVals[i];
+ // }
+ }
+
+ /**
+ * Chooses the best nearest-neighbor algorithm and estimates the optimal
+ * parameters to use when building the index (for a given precision).
+ * Returns a dictionary with the optimal parameters.
+ */
+ IndexParams estimateBuildParams()
+ {
+ std::vector<CostData> costs;
+
+ int sampleSize = int(sample_fraction_ * dataset_.rows);
+ int testSampleSize = std::min(sampleSize / 10, 1000);
+
+ Logger::info("Entering autotuning, dataset size: %d, sampleSize: %d, testSampleSize: %d, target precision: %g\n", dataset_.rows, sampleSize, testSampleSize, target_precision_);
+
+ // For a very small dataset, it makes no sense to build any fancy index, just
+ // use linear search
+ if (testSampleSize < 10) {
+ Logger::info("Choosing linear, dataset too small\n");
+ return LinearIndexParams();
+ }
+
+ // We use a fraction of the original dataset to speedup the autotune algorithm
+ sampledDataset_ = random_sample(dataset_, sampleSize);
+ // We use a cross-validation approach, first we sample a testset from the dataset
+ testDataset_ = random_sample(sampledDataset_, testSampleSize, true);
+
+ // We compute the ground truth using linear search
+ Logger::info("Computing ground truth... \n");
+ gt_matches_ = Matrix<int>(new int[testDataset_.rows], testDataset_.rows, 1);
+ StartStopTimer t;
+ t.start();
+ compute_ground_truth<Distance>(sampledDataset_, testDataset_, gt_matches_, 0, distance_);
+ t.stop();
+
+ CostData linear_cost;
+ linear_cost.searchTimeCost = (float)t.value;
+ linear_cost.buildTimeCost = 0;
+ linear_cost.memoryCost = 0;
+ linear_cost.params["algorithm"] = FLANN_INDEX_LINEAR;
+
+ costs.push_back(linear_cost);
+
+ // Start parameter autotune process
+ Logger::info("Autotuning parameters...\n");
+
+ optimizeKMeans(costs);
+ optimizeKDTree(costs);
+
+ float bestTimeCost = costs[0].searchTimeCost;
+ for (size_t i = 0; i < costs.size(); ++i) {
+ float timeCost = costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost;
+ if (timeCost < bestTimeCost) {
+ bestTimeCost = timeCost;
+ }
+ }
+
+ float bestCost = costs[0].searchTimeCost / bestTimeCost;
+ IndexParams bestParams = costs[0].params;
+ if (bestTimeCost > 0) {
+ for (size_t i = 0; i < costs.size(); ++i) {
+ float crtCost = (costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost) / bestTimeCost +
+ memory_weight_ * costs[i].memoryCost;
+ if (crtCost < bestCost) {
+ bestCost = crtCost;
+ bestParams = costs[i].params;
+ }
+ }
+ }
+
+ delete[] gt_matches_.data;
+ delete[] testDataset_.data;
+ delete[] sampledDataset_.data;
+
+ return bestParams;
+ }
+
+
+
+ /**
+ * Estimates the search time parameters needed to get the desired precision.
+ * Precondition: the index is built
+ * Postcondition: the searchParams will have the optimum params set, also the speedup obtained over linear search.
+ */
+ float estimateSearchParams(SearchParams& searchParams)
+ {
+ const int nn = 1;
+ const size_t SAMPLE_COUNT = 1000;
+
+ assert(bestIndex_ != NULL); // must have a valid index
+
+ float speedup = 0;
+
+ int samples = (int)std::min(dataset_.rows / 10, SAMPLE_COUNT);
+ if (samples > 0) {
+ Matrix<ElementType> testDataset = random_sample(dataset_, samples);
+
+ Logger::info("Computing ground truth\n");
+
+ // we need to compute the ground truth first
+ Matrix<int> gt_matches(new int[testDataset.rows], testDataset.rows, 1);
+ StartStopTimer t;
+ t.start();
+ compute_ground_truth<Distance>(dataset_, testDataset, gt_matches, 1, distance_);
+ t.stop();
+ float linear = (float)t.value;
+
+ int checks;
+ Logger::info("Estimating number of checks\n");
+
+ float searchTime;
+ float cb_index;
+ if (bestIndex_->getType() == FLANN_INDEX_KMEANS) {
+ Logger::info("KMeans algorithm, estimating cluster border factor\n");
+ KMeansIndex<Distance>* kmeans = (KMeansIndex<Distance>*)bestIndex_;
+ float bestSearchTime = -1;
+ float best_cb_index = -1;
+ int best_checks = -1;
+ for (cb_index = 0; cb_index < 1.1f; cb_index += 0.2f) {
+ kmeans->set_cb_index(cb_index);
+ searchTime = test_index_precision(*kmeans, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1);
+ if ((searchTime < bestSearchTime) || (bestSearchTime == -1)) {
+ bestSearchTime = searchTime;
+ best_cb_index = cb_index;
+ best_checks = checks;
+ }
+ }
+ searchTime = bestSearchTime;
+ cb_index = best_cb_index;
+ checks = best_checks;
+
+ kmeans->set_cb_index(best_cb_index);
+ Logger::info("Optimum cb_index: %g\n", cb_index);
+ bestParams_["cb_index"] = cb_index;
+ }
+ else {
+ searchTime = test_index_precision(*bestIndex_, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1);
+ }
+
+ Logger::info("Required number of checks: %d \n", checks);
+ searchParams["checks"] = checks;
+
+ speedup = linear / searchTime;
+
+ delete[] gt_matches.data;
+ delete[] testDataset.data;
+ }
+
+ return speedup;
+ }
+
+private:
+ NNIndex<Distance>* bestIndex_;
+
+ IndexParams bestParams_;
+ SearchParams bestSearchParams_;
+
+ Matrix<ElementType> sampledDataset_;
+ Matrix<ElementType> testDataset_;
+ Matrix<int> gt_matches_;
+
+ float speedup_;
+
+ /**
+ * The dataset used by this index
+ */
+ const Matrix<ElementType> dataset_;
+
+ /**
+ * Index parameters
+ */
+ float target_precision_;
+ float build_weight_;
+ float memory_weight_;
+ float sample_fraction_;
+
+ Distance distance_;
+
+
+};
+}
+
+#endif /* OPENCV_FLANN_AUTOTUNED_INDEX_H_ */
diff --git a/thirdparty/linux/include/opencv2/flann/composite_index.h b/thirdparty/linux/include/opencv2/flann/composite_index.h
new file mode 100644
index 0000000..527ca1a
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/composite_index.h
@@ -0,0 +1,194 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_COMPOSITE_INDEX_H_
+#define OPENCV_FLANN_COMPOSITE_INDEX_H_
+
+#include "general.h"
+#include "nn_index.h"
+#include "kdtree_index.h"
+#include "kmeans_index.h"
+
+namespace cvflann
+{
+
+/**
+ * Index parameters for the CompositeIndex.
+ */
+struct CompositeIndexParams : public IndexParams
+{
+ CompositeIndexParams(int trees = 4, int branching = 32, int iterations = 11,
+ flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 )
+ {
+ (*this)["algorithm"] = FLANN_INDEX_KMEANS;
+ // number of randomized trees to use (for kdtree)
+ (*this)["trees"] = trees;
+ // branching factor
+ (*this)["branching"] = branching;
+ // max iterations to perform in one kmeans clustering (kmeans tree)
+ (*this)["iterations"] = iterations;
+ // algorithm used for picking the initial cluster centers for kmeans tree
+ (*this)["centers_init"] = centers_init;
+ // cluster boundary index. Used when searching the kmeans tree
+ (*this)["cb_index"] = cb_index;
+ }
+};
+
+
+/**
+ * This index builds a kd-tree index and a k-means index and performs nearest
+ * neighbour search both indexes. This gives a slight boost in search performance
+ * as some of the neighbours that are missed by one index are found by the other.
+ */
+template <typename Distance>
+class CompositeIndex : public NNIndex<Distance>
+{
+public:
+ typedef typename Distance::ElementType ElementType;
+ typedef typename Distance::ResultType DistanceType;
+
+ /**
+ * Index constructor
+ * @param inputData dataset containing the points to index
+ * @param params Index parameters
+ * @param d Distance functor
+ * @return
+ */
+ CompositeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = CompositeIndexParams(),
+ Distance d = Distance()) : index_params_(params)
+ {
+ kdtree_index_ = new KDTreeIndex<Distance>(inputData, params, d);
+ kmeans_index_ = new KMeansIndex<Distance>(inputData, params, d);
+
+ }
+
+ CompositeIndex(const CompositeIndex&);
+ CompositeIndex& operator=(const CompositeIndex&);
+
+ virtual ~CompositeIndex()
+ {
+ delete kdtree_index_;
+ delete kmeans_index_;
+ }
+
+ /**
+ * @return The index type
+ */
+ flann_algorithm_t getType() const
+ {
+ return FLANN_INDEX_COMPOSITE;
+ }
+
+ /**
+ * @return Size of the index
+ */
+ size_t size() const
+ {
+ return kdtree_index_->size();
+ }
+
+ /**
+ * \returns The dimensionality of the features in this index.
+ */
+ size_t veclen() const
+ {
+ return kdtree_index_->veclen();
+ }
+
+ /**
+ * \returns The amount of memory (in bytes) used by the index.
+ */
+ int usedMemory() const
+ {
+ return kmeans_index_->usedMemory() + kdtree_index_->usedMemory();
+ }
+
+ /**
+ * \brief Builds the index
+ */
+ void buildIndex()
+ {
+ Logger::info("Building kmeans tree...\n");
+ kmeans_index_->buildIndex();
+ Logger::info("Building kdtree tree...\n");
+ kdtree_index_->buildIndex();
+ }
+
+ /**
+ * \brief Saves the index to a stream
+ * \param stream The stream to save the index to
+ */
+ void saveIndex(FILE* stream)
+ {
+ kmeans_index_->saveIndex(stream);
+ kdtree_index_->saveIndex(stream);
+ }
+
+ /**
+ * \brief Loads the index from a stream
+ * \param stream The stream from which the index is loaded
+ */
+ void loadIndex(FILE* stream)
+ {
+ kmeans_index_->loadIndex(stream);
+ kdtree_index_->loadIndex(stream);
+ }
+
+ /**
+ * \returns The index parameters
+ */
+ IndexParams getParameters() const
+ {
+ return index_params_;
+ }
+
+ /**
+ * \brief Method that searches for nearest-neighbours
+ */
+ void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
+ {
+ kmeans_index_->findNeighbors(result, vec, searchParams);
+ kdtree_index_->findNeighbors(result, vec, searchParams);
+ }
+
+private:
+ /** The k-means index */
+ KMeansIndex<Distance>* kmeans_index_;
+
+ /** The kd-tree index */
+ KDTreeIndex<Distance>* kdtree_index_;
+
+ /** The index parameters */
+ const IndexParams index_params_;
+};
+
+}
+
+#endif //OPENCV_FLANN_COMPOSITE_INDEX_H_
diff --git a/thirdparty/linux/include/opencv2/flann/config.h b/thirdparty/linux/include/opencv2/flann/config.h
new file mode 100644
index 0000000..56832fd
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/config.h
@@ -0,0 +1,38 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+
+#ifndef OPENCV_FLANN_CONFIG_H_
+#define OPENCV_FLANN_CONFIG_H_
+
+#ifdef FLANN_VERSION_
+#undef FLANN_VERSION_
+#endif
+#define FLANN_VERSION_ "1.6.10"
+
+#endif /* OPENCV_FLANN_CONFIG_H_ */
diff --git a/thirdparty/linux/include/opencv2/flann/defines.h b/thirdparty/linux/include/opencv2/flann/defines.h
new file mode 100644
index 0000000..f0264f7
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/defines.h
@@ -0,0 +1,177 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+
+#ifndef OPENCV_FLANN_DEFINES_H_
+#define OPENCV_FLANN_DEFINES_H_
+
+#include "config.h"
+
+#ifdef FLANN_EXPORT
+#undef FLANN_EXPORT
+#endif
+#ifdef WIN32
+/* win32 dll export/import directives */
+ #ifdef FLANN_EXPORTS
+ #define FLANN_EXPORT __declspec(dllexport)
+ #elif defined(FLANN_STATIC)
+ #define FLANN_EXPORT
+ #else
+ #define FLANN_EXPORT __declspec(dllimport)
+ #endif
+#else
+/* unix needs nothing */
+ #define FLANN_EXPORT
+#endif
+
+
+#ifdef FLANN_DEPRECATED
+#undef FLANN_DEPRECATED
+#endif
+#ifdef __GNUC__
+#define FLANN_DEPRECATED __attribute__ ((deprecated))
+#elif defined(_MSC_VER)
+#define FLANN_DEPRECATED __declspec(deprecated)
+#else
+#pragma message("WARNING: You need to implement FLANN_DEPRECATED for this compiler")
+#define FLANN_DEPRECATED
+#endif
+
+
+#undef FLANN_PLATFORM_32_BIT
+#undef FLANN_PLATFORM_64_BIT
+#if defined __amd64__ || defined __x86_64__ || defined _WIN64 || defined _M_X64
+#define FLANN_PLATFORM_64_BIT
+#else
+#define FLANN_PLATFORM_32_BIT
+#endif
+
+
+#undef FLANN_ARRAY_LEN
+#define FLANN_ARRAY_LEN(a) (sizeof(a)/sizeof(a[0]))
+
+namespace cvflann {
+
+/* Nearest neighbour index algorithms */
+enum flann_algorithm_t
+{
+ FLANN_INDEX_LINEAR = 0,
+ FLANN_INDEX_KDTREE = 1,
+ FLANN_INDEX_KMEANS = 2,
+ FLANN_INDEX_COMPOSITE = 3,
+ FLANN_INDEX_KDTREE_SINGLE = 4,
+ FLANN_INDEX_HIERARCHICAL = 5,
+ FLANN_INDEX_LSH = 6,
+ FLANN_INDEX_SAVED = 254,
+ FLANN_INDEX_AUTOTUNED = 255,
+
+ // deprecated constants, should use the FLANN_INDEX_* ones instead
+ LINEAR = 0,
+ KDTREE = 1,
+ KMEANS = 2,
+ COMPOSITE = 3,
+ KDTREE_SINGLE = 4,
+ SAVED = 254,
+ AUTOTUNED = 255
+};
+
+
+
+enum flann_centers_init_t
+{
+ FLANN_CENTERS_RANDOM = 0,
+ FLANN_CENTERS_GONZALES = 1,
+ FLANN_CENTERS_KMEANSPP = 2,
+ FLANN_CENTERS_GROUPWISE = 3,
+
+ // deprecated constants, should use the FLANN_CENTERS_* ones instead
+ CENTERS_RANDOM = 0,
+ CENTERS_GONZALES = 1,
+ CENTERS_KMEANSPP = 2
+};
+
+enum flann_log_level_t
+{
+ FLANN_LOG_NONE = 0,
+ FLANN_LOG_FATAL = 1,
+ FLANN_LOG_ERROR = 2,
+ FLANN_LOG_WARN = 3,
+ FLANN_LOG_INFO = 4
+};
+
+enum flann_distance_t
+{
+ FLANN_DIST_EUCLIDEAN = 1,
+ FLANN_DIST_L2 = 1,
+ FLANN_DIST_MANHATTAN = 2,
+ FLANN_DIST_L1 = 2,
+ FLANN_DIST_MINKOWSKI = 3,
+ FLANN_DIST_MAX = 4,
+ FLANN_DIST_HIST_INTERSECT = 5,
+ FLANN_DIST_HELLINGER = 6,
+ FLANN_DIST_CHI_SQUARE = 7,
+ FLANN_DIST_CS = 7,
+ FLANN_DIST_KULLBACK_LEIBLER = 8,
+ FLANN_DIST_KL = 8,
+ FLANN_DIST_HAMMING = 9,
+
+ // deprecated constants, should use the FLANN_DIST_* ones instead
+ EUCLIDEAN = 1,
+ MANHATTAN = 2,
+ MINKOWSKI = 3,
+ MAX_DIST = 4,
+ HIST_INTERSECT = 5,
+ HELLINGER = 6,
+ CS = 7,
+ KL = 8,
+ KULLBACK_LEIBLER = 8
+};
+
+enum flann_datatype_t
+{
+ FLANN_INT8 = 0,
+ FLANN_INT16 = 1,
+ FLANN_INT32 = 2,
+ FLANN_INT64 = 3,
+ FLANN_UINT8 = 4,
+ FLANN_UINT16 = 5,
+ FLANN_UINT32 = 6,
+ FLANN_UINT64 = 7,
+ FLANN_FLOAT32 = 8,
+ FLANN_FLOAT64 = 9
+};
+
+enum
+{
+ FLANN_CHECKS_UNLIMITED = -1,
+ FLANN_CHECKS_AUTOTUNED = -2
+};
+
+}
+
+#endif /* OPENCV_FLANN_DEFINES_H_ */
diff --git a/thirdparty/linux/include/opencv2/flann/dist.h b/thirdparty/linux/include/opencv2/flann/dist.h
new file mode 100644
index 0000000..9dbe527
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/dist.h
@@ -0,0 +1,905 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_DIST_H_
+#define OPENCV_FLANN_DIST_H_
+
+#include <cmath>
+#include <cstdlib>
+#include <string.h>
+#ifdef _MSC_VER
+typedef unsigned __int32 uint32_t;
+typedef unsigned __int64 uint64_t;
+#else
+#include <stdint.h>
+#endif
+
+#include "defines.h"
+
+#if (defined WIN32 || defined _WIN32) && defined(_M_ARM)
+# include <Intrin.h>
+#endif
+
+#ifdef __ARM_NEON__
+# include "arm_neon.h"
+#endif
+
+namespace cvflann
+{
+
+template<typename T>
+inline T abs(T x) { return (x<0) ? -x : x; }
+
+template<>
+inline int abs<int>(int x) { return ::abs(x); }
+
+template<>
+inline float abs<float>(float x) { return fabsf(x); }
+
+template<>
+inline double abs<double>(double x) { return fabs(x); }
+
+template<typename T>
+struct Accumulator { typedef T Type; };
+template<>
+struct Accumulator<unsigned char> { typedef float Type; };
+template<>
+struct Accumulator<unsigned short> { typedef float Type; };
+template<>
+struct Accumulator<unsigned int> { typedef float Type; };
+template<>
+struct Accumulator<char> { typedef float Type; };
+template<>
+struct Accumulator<short> { typedef float Type; };
+template<>
+struct Accumulator<int> { typedef float Type; };
+
+#undef True
+#undef False
+
+class True
+{
+};
+
+class False
+{
+};
+
+
+/**
+ * Squared Euclidean distance functor.
+ *
+ * This is the simpler, unrolled version. This is preferable for
+ * very low dimensionality data (eg 3D points)
+ */
+template<class T>
+struct L2_Simple
+{
+ typedef True is_kdtree_distance;
+ typedef True is_vector_space_distance;
+
+ typedef T ElementType;
+ typedef typename Accumulator<T>::Type ResultType;
+
+ template <typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
+ {
+ ResultType result = ResultType();
+ ResultType diff;
+ for(size_t i = 0; i < size; ++i ) {
+ diff = *a++ - *b++;
+ result += diff*diff;
+ }
+ return result;
+ }
+
+ template <typename U, typename V>
+ inline ResultType accum_dist(const U& a, const V& b, int) const
+ {
+ return (a-b)*(a-b);
+ }
+};
+
+
+
+/**
+ * Squared Euclidean distance functor, optimized version
+ */
+template<class T>
+struct L2
+{
+ typedef True is_kdtree_distance;
+ typedef True is_vector_space_distance;
+
+ typedef T ElementType;
+ typedef typename Accumulator<T>::Type ResultType;
+
+ /**
+ * Compute the squared Euclidean distance between two vectors.
+ *
+ * This is highly optimised, with loop unrolling, as it is one
+ * of the most expensive inner loops.
+ *
+ * The computation of squared root at the end is omitted for
+ * efficiency.
+ */
+ template <typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
+ {
+ ResultType result = ResultType();
+ ResultType diff0, diff1, diff2, diff3;
+ Iterator1 last = a + size;
+ Iterator1 lastgroup = last - 3;
+
+ /* Process 4 items with each loop for efficiency. */
+ while (a < lastgroup) {
+ diff0 = (ResultType)(a[0] - b[0]);
+ diff1 = (ResultType)(a[1] - b[1]);
+ diff2 = (ResultType)(a[2] - b[2]);
+ diff3 = (ResultType)(a[3] - b[3]);
+ result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
+ a += 4;
+ b += 4;
+
+ if ((worst_dist>0)&&(result>worst_dist)) {
+ return result;
+ }
+ }
+ /* Process last 0-3 pixels. Not needed for standard vector lengths. */
+ while (a < last) {
+ diff0 = (ResultType)(*a++ - *b++);
+ result += diff0 * diff0;
+ }
+ return result;
+ }
+
+ /**
+ * Partial euclidean distance, using just one dimension. This is used by the
+ * kd-tree when computing partial distances while traversing the tree.
+ *
+ * Squared root is omitted for efficiency.
+ */
+ template <typename U, typename V>
+ inline ResultType accum_dist(const U& a, const V& b, int) const
+ {
+ return (a-b)*(a-b);
+ }
+};
+
+
+/*
+ * Manhattan distance functor, optimized version
+ */
+template<class T>
+struct L1
+{
+ typedef True is_kdtree_distance;
+ typedef True is_vector_space_distance;
+
+ typedef T ElementType;
+ typedef typename Accumulator<T>::Type ResultType;
+
+ /**
+ * Compute the Manhattan (L_1) distance between two vectors.
+ *
+ * This is highly optimised, with loop unrolling, as it is one
+ * of the most expensive inner loops.
+ */
+ template <typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
+ {
+ ResultType result = ResultType();
+ ResultType diff0, diff1, diff2, diff3;
+ Iterator1 last = a + size;
+ Iterator1 lastgroup = last - 3;
+
+ /* Process 4 items with each loop for efficiency. */
+ while (a < lastgroup) {
+ diff0 = (ResultType)abs(a[0] - b[0]);
+ diff1 = (ResultType)abs(a[1] - b[1]);
+ diff2 = (ResultType)abs(a[2] - b[2]);
+ diff3 = (ResultType)abs(a[3] - b[3]);
+ result += diff0 + diff1 + diff2 + diff3;
+ a += 4;
+ b += 4;
+
+ if ((worst_dist>0)&&(result>worst_dist)) {
+ return result;
+ }
+ }
+ /* Process last 0-3 pixels. Not needed for standard vector lengths. */
+ while (a < last) {
+ diff0 = (ResultType)abs(*a++ - *b++);
+ result += diff0;
+ }
+ return result;
+ }
+
+ /**
+ * Partial distance, used by the kd-tree.
+ */
+ template <typename U, typename V>
+ inline ResultType accum_dist(const U& a, const V& b, int) const
+ {
+ return abs(a-b);
+ }
+};
+
+
+
+template<class T>
+struct MinkowskiDistance
+{
+ typedef True is_kdtree_distance;
+ typedef True is_vector_space_distance;
+
+ typedef T ElementType;
+ typedef typename Accumulator<T>::Type ResultType;
+
+ int order;
+
+ MinkowskiDistance(int order_) : order(order_) {}
+
+ /**
+ * Compute the Minkowsky (L_p) distance between two vectors.
+ *
+ * This is highly optimised, with loop unrolling, as it is one
+ * of the most expensive inner loops.
+ *
+ * The computation of squared root at the end is omitted for
+ * efficiency.
+ */
+ template <typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
+ {
+ ResultType result = ResultType();
+ ResultType diff0, diff1, diff2, diff3;
+ Iterator1 last = a + size;
+ Iterator1 lastgroup = last - 3;
+
+ /* Process 4 items with each loop for efficiency. */
+ while (a < lastgroup) {
+ diff0 = (ResultType)abs(a[0] - b[0]);
+ diff1 = (ResultType)abs(a[1] - b[1]);
+ diff2 = (ResultType)abs(a[2] - b[2]);
+ diff3 = (ResultType)abs(a[3] - b[3]);
+ result += pow(diff0,order) + pow(diff1,order) + pow(diff2,order) + pow(diff3,order);
+ a += 4;
+ b += 4;
+
+ if ((worst_dist>0)&&(result>worst_dist)) {
+ return result;
+ }
+ }
+ /* Process last 0-3 pixels. Not needed for standard vector lengths. */
+ while (a < last) {
+ diff0 = (ResultType)abs(*a++ - *b++);
+ result += pow(diff0,order);
+ }
+ return result;
+ }
+
+ /**
+ * Partial distance, used by the kd-tree.
+ */
+ template <typename U, typename V>
+ inline ResultType accum_dist(const U& a, const V& b, int) const
+ {
+ return pow(static_cast<ResultType>(abs(a-b)),order);
+ }
+};
+
+
+
+template<class T>
+struct MaxDistance
+{
+ typedef False is_kdtree_distance;
+ typedef True is_vector_space_distance;
+
+ typedef T ElementType;
+ typedef typename Accumulator<T>::Type ResultType;
+
+ /**
+ * Compute the max distance (L_infinity) between two vectors.
+ *
+ * This distance is not a valid kdtree distance, it's not dimensionwise additive.
+ */
+ template <typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
+ {
+ ResultType result = ResultType();
+ ResultType diff0, diff1, diff2, diff3;
+ Iterator1 last = a + size;
+ Iterator1 lastgroup = last - 3;
+
+ /* Process 4 items with each loop for efficiency. */
+ while (a < lastgroup) {
+ diff0 = abs(a[0] - b[0]);
+ diff1 = abs(a[1] - b[1]);
+ diff2 = abs(a[2] - b[2]);
+ diff3 = abs(a[3] - b[3]);
+ if (diff0>result) {result = diff0; }
+ if (diff1>result) {result = diff1; }
+ if (diff2>result) {result = diff2; }
+ if (diff3>result) {result = diff3; }
+ a += 4;
+ b += 4;
+
+ if ((worst_dist>0)&&(result>worst_dist)) {
+ return result;
+ }
+ }
+ /* Process last 0-3 pixels. Not needed for standard vector lengths. */
+ while (a < last) {
+ diff0 = abs(*a++ - *b++);
+ result = (diff0>result) ? diff0 : result;
+ }
+ return result;
+ }
+
+ /* This distance functor is not dimension-wise additive, which
+ * makes it an invalid kd-tree distance, not implementing the accum_dist method */
+
+};
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+/**
+ * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
+ * bit count of A exclusive XOR'ed with B
+ */
+struct HammingLUT
+{
+ typedef False is_kdtree_distance;
+ typedef False is_vector_space_distance;
+
+ typedef unsigned char ElementType;
+ typedef int ResultType;
+
+ /** this will count the bits in a ^ b
+ */
+ ResultType operator()(const unsigned char* a, const unsigned char* b, size_t size) const
+ {
+ static const uchar popCountTable[] =
+ {
+ 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+ 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+ 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+ 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
+ };
+ ResultType result = 0;
+ for (size_t i = 0; i < size; i++) {
+ result += popCountTable[a[i] ^ b[i]];
+ }
+ return result;
+ }
+};
+
+/**
+ * Hamming distance functor (pop count between two binary vectors, i.e. xor them and count the number of bits set)
+ * That code was taken from brief.cpp in OpenCV
+ */
+template<class T>
+struct Hamming
+{
+ typedef False is_kdtree_distance;
+ typedef False is_vector_space_distance;
+
+
+ typedef T ElementType;
+ typedef int ResultType;
+
+ template<typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
+ {
+ ResultType result = 0;
+#ifdef __ARM_NEON__
+ {
+ uint32x4_t bits = vmovq_n_u32(0);
+ for (size_t i = 0; i < size; i += 16) {
+ uint8x16_t A_vec = vld1q_u8 (a + i);
+ uint8x16_t B_vec = vld1q_u8 (b + i);
+ uint8x16_t AxorB = veorq_u8 (A_vec, B_vec);
+ uint8x16_t bitsSet = vcntq_u8 (AxorB);
+ uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet);
+ uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8);
+ bits = vaddq_u32(bits, bitSet4);
+ }
+ uint64x2_t bitSet2 = vpaddlq_u32 (bits);
+ result = vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),0);
+ result += vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),2);
+ }
+#elif __GNUC__
+ {
+ //for portability just use unsigned long -- and use the __builtin_popcountll (see docs for __builtin_popcountll)
+ typedef unsigned long long pop_t;
+ const size_t modulo = size % sizeof(pop_t);
+ const pop_t* a2 = reinterpret_cast<const pop_t*> (a);
+ const pop_t* b2 = reinterpret_cast<const pop_t*> (b);
+ const pop_t* a2_end = a2 + (size / sizeof(pop_t));
+
+ for (; a2 != a2_end; ++a2, ++b2) result += __builtin_popcountll((*a2) ^ (*b2));
+
+ if (modulo) {
+ //in the case where size is not dividable by sizeof(size_t)
+ //need to mask off the bits at the end
+ pop_t a_final = 0, b_final = 0;
+ memcpy(&a_final, a2, modulo);
+ memcpy(&b_final, b2, modulo);
+ result += __builtin_popcountll(a_final ^ b_final);
+ }
+ }
+#else // NO NEON and NOT GNUC
+ typedef unsigned long long pop_t;
+ HammingLUT lut;
+ result = lut(reinterpret_cast<const unsigned char*> (a),
+ reinterpret_cast<const unsigned char*> (b), size * sizeof(pop_t));
+#endif
+ return result;
+ }
+};
+
+template<typename T>
+struct Hamming2
+{
+ typedef False is_kdtree_distance;
+ typedef False is_vector_space_distance;
+
+ typedef T ElementType;
+ typedef int ResultType;
+
+ /** This is popcount_3() from:
+ * http://en.wikipedia.org/wiki/Hamming_weight */
+ unsigned int popcnt32(uint32_t n) const
+ {
+ n -= ((n >> 1) & 0x55555555);
+ n = (n & 0x33333333) + ((n >> 2) & 0x33333333);
+ return (((n + (n >> 4))& 0xF0F0F0F)* 0x1010101) >> 24;
+ }
+
+#ifdef FLANN_PLATFORM_64_BIT
+ unsigned int popcnt64(uint64_t n) const
+ {
+ n -= ((n >> 1) & 0x5555555555555555);
+ n = (n & 0x3333333333333333) + ((n >> 2) & 0x3333333333333333);
+ return (((n + (n >> 4))& 0x0f0f0f0f0f0f0f0f)* 0x0101010101010101) >> 56;
+ }
+#endif
+
+ template <typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
+ {
+#ifdef FLANN_PLATFORM_64_BIT
+ const uint64_t* pa = reinterpret_cast<const uint64_t*>(a);
+ const uint64_t* pb = reinterpret_cast<const uint64_t*>(b);
+ ResultType result = 0;
+ size /= (sizeof(uint64_t)/sizeof(unsigned char));
+ for(size_t i = 0; i < size; ++i ) {
+ result += popcnt64(*pa ^ *pb);
+ ++pa;
+ ++pb;
+ }
+#else
+ const uint32_t* pa = reinterpret_cast<const uint32_t*>(a);
+ const uint32_t* pb = reinterpret_cast<const uint32_t*>(b);
+ ResultType result = 0;
+ size /= (sizeof(uint32_t)/sizeof(unsigned char));
+ for(size_t i = 0; i < size; ++i ) {
+ result += popcnt32(*pa ^ *pb);
+ ++pa;
+ ++pb;
+ }
+#endif
+ return result;
+ }
+};
+
+
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+template<class T>
+struct HistIntersectionDistance
+{
+ typedef True is_kdtree_distance;
+ typedef True is_vector_space_distance;
+
+ typedef T ElementType;
+ typedef typename Accumulator<T>::Type ResultType;
+
+ /**
+ * Compute the histogram intersection distance
+ */
+ template <typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
+ {
+ ResultType result = ResultType();
+ ResultType min0, min1, min2, min3;
+ Iterator1 last = a + size;
+ Iterator1 lastgroup = last - 3;
+
+ /* Process 4 items with each loop for efficiency. */
+ while (a < lastgroup) {
+ min0 = (ResultType)(a[0] < b[0] ? a[0] : b[0]);
+ min1 = (ResultType)(a[1] < b[1] ? a[1] : b[1]);
+ min2 = (ResultType)(a[2] < b[2] ? a[2] : b[2]);
+ min3 = (ResultType)(a[3] < b[3] ? a[3] : b[3]);
+ result += min0 + min1 + min2 + min3;
+ a += 4;
+ b += 4;
+ if ((worst_dist>0)&&(result>worst_dist)) {
+ return result;
+ }
+ }
+ /* Process last 0-3 pixels. Not needed for standard vector lengths. */
+ while (a < last) {
+ min0 = (ResultType)(*a < *b ? *a : *b);
+ result += min0;
+ ++a;
+ ++b;
+ }
+ return result;
+ }
+
+ /**
+ * Partial distance, used by the kd-tree.
+ */
+ template <typename U, typename V>
+ inline ResultType accum_dist(const U& a, const V& b, int) const
+ {
+ return a<b ? a : b;
+ }
+};
+
+
+
+template<class T>
+struct HellingerDistance
+{
+ typedef True is_kdtree_distance;
+ typedef True is_vector_space_distance;
+
+ typedef T ElementType;
+ typedef typename Accumulator<T>::Type ResultType;
+
+ /**
+ * Compute the Hellinger distance
+ */
+ template <typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
+ {
+ ResultType result = ResultType();
+ ResultType diff0, diff1, diff2, diff3;
+ Iterator1 last = a + size;
+ Iterator1 lastgroup = last - 3;
+
+ /* Process 4 items with each loop for efficiency. */
+ while (a < lastgroup) {
+ diff0 = sqrt(static_cast<ResultType>(a[0])) - sqrt(static_cast<ResultType>(b[0]));
+ diff1 = sqrt(static_cast<ResultType>(a[1])) - sqrt(static_cast<ResultType>(b[1]));
+ diff2 = sqrt(static_cast<ResultType>(a[2])) - sqrt(static_cast<ResultType>(b[2]));
+ diff3 = sqrt(static_cast<ResultType>(a[3])) - sqrt(static_cast<ResultType>(b[3]));
+ result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
+ a += 4;
+ b += 4;
+ }
+ while (a < last) {
+ diff0 = sqrt(static_cast<ResultType>(*a++)) - sqrt(static_cast<ResultType>(*b++));
+ result += diff0 * diff0;
+ }
+ return result;
+ }
+
+ /**
+ * Partial distance, used by the kd-tree.
+ */
+ template <typename U, typename V>
+ inline ResultType accum_dist(const U& a, const V& b, int) const
+ {
+ ResultType diff = sqrt(static_cast<ResultType>(a)) - sqrt(static_cast<ResultType>(b));
+ return diff * diff;
+ }
+};
+
+
+template<class T>
+struct ChiSquareDistance
+{
+ typedef True is_kdtree_distance;
+ typedef True is_vector_space_distance;
+
+ typedef T ElementType;
+ typedef typename Accumulator<T>::Type ResultType;
+
+ /**
+ * Compute the chi-square distance
+ */
+ template <typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
+ {
+ ResultType result = ResultType();
+ ResultType sum, diff;
+ Iterator1 last = a + size;
+
+ while (a < last) {
+ sum = (ResultType)(*a + *b);
+ if (sum>0) {
+ diff = (ResultType)(*a - *b);
+ result += diff*diff/sum;
+ }
+ ++a;
+ ++b;
+
+ if ((worst_dist>0)&&(result>worst_dist)) {
+ return result;
+ }
+ }
+ return result;
+ }
+
+ /**
+ * Partial distance, used by the kd-tree.
+ */
+ template <typename U, typename V>
+ inline ResultType accum_dist(const U& a, const V& b, int) const
+ {
+ ResultType result = ResultType();
+ ResultType sum, diff;
+
+ sum = (ResultType)(a+b);
+ if (sum>0) {
+ diff = (ResultType)(a-b);
+ result = diff*diff/sum;
+ }
+ return result;
+ }
+};
+
+
+template<class T>
+struct KL_Divergence
+{
+ typedef True is_kdtree_distance;
+ typedef True is_vector_space_distance;
+
+ typedef T ElementType;
+ typedef typename Accumulator<T>::Type ResultType;
+
+ /**
+ * Compute the Kullback–Leibler divergence
+ */
+ template <typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
+ {
+ ResultType result = ResultType();
+ Iterator1 last = a + size;
+
+ while (a < last) {
+ if (* b != 0) {
+ ResultType ratio = (ResultType)(*a / *b);
+ if (ratio>0) {
+ result += *a * log(ratio);
+ }
+ }
+ ++a;
+ ++b;
+
+ if ((worst_dist>0)&&(result>worst_dist)) {
+ return result;
+ }
+ }
+ return result;
+ }
+
+ /**
+ * Partial distance, used by the kd-tree.
+ */
+ template <typename U, typename V>
+ inline ResultType accum_dist(const U& a, const V& b, int) const
+ {
+ ResultType result = ResultType();
+ if( *b != 0 ) {
+ ResultType ratio = (ResultType)(a / b);
+ if (ratio>0) {
+ result = a * log(ratio);
+ }
+ }
+ return result;
+ }
+};
+
+
+
+/*
+ * This is a "zero iterator". It basically behaves like a zero filled
+ * array to all algorithms that use arrays as iterators (STL style).
+ * It's useful when there's a need to compute the distance between feature
+ * and origin it and allows for better compiler optimisation than using a
+ * zero-filled array.
+ */
+template <typename T>
+struct ZeroIterator
+{
+
+ T operator*()
+ {
+ return 0;
+ }
+
+ T operator[](int)
+ {
+ return 0;
+ }
+
+ const ZeroIterator<T>& operator ++()
+ {
+ return *this;
+ }
+
+ ZeroIterator<T> operator ++(int)
+ {
+ return *this;
+ }
+
+ ZeroIterator<T>& operator+=(int)
+ {
+ return *this;
+ }
+
+};
+
+
+/*
+ * Depending on processed distances, some of them are already squared (e.g. L2)
+ * and some are not (e.g.Hamming). In KMeans++ for instance we want to be sure
+ * we are working on ^2 distances, thus following templates to ensure that.
+ */
+template <typename Distance, typename ElementType>
+struct squareDistance
+{
+ typedef typename Distance::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return dist*dist; }
+};
+
+
+template <typename ElementType>
+struct squareDistance<L2_Simple<ElementType>, ElementType>
+{
+ typedef typename L2_Simple<ElementType>::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return dist; }
+};
+
+template <typename ElementType>
+struct squareDistance<L2<ElementType>, ElementType>
+{
+ typedef typename L2<ElementType>::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return dist; }
+};
+
+
+template <typename ElementType>
+struct squareDistance<MinkowskiDistance<ElementType>, ElementType>
+{
+ typedef typename MinkowskiDistance<ElementType>::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return dist; }
+};
+
+template <typename ElementType>
+struct squareDistance<HellingerDistance<ElementType>, ElementType>
+{
+ typedef typename HellingerDistance<ElementType>::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return dist; }
+};
+
+template <typename ElementType>
+struct squareDistance<ChiSquareDistance<ElementType>, ElementType>
+{
+ typedef typename ChiSquareDistance<ElementType>::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return dist; }
+};
+
+
+template <typename Distance>
+typename Distance::ResultType ensureSquareDistance( typename Distance::ResultType dist )
+{
+ typedef typename Distance::ElementType ElementType;
+
+ squareDistance<Distance, ElementType> dummy;
+ return dummy( dist );
+}
+
+
+/*
+ * ...and a template to ensure the user that he will process the normal distance,
+ * and not squared distance, without loosing processing time calling sqrt(ensureSquareDistance)
+ * that will result in doing actually sqrt(dist*dist) for L1 distance for instance.
+ */
+template <typename Distance, typename ElementType>
+struct simpleDistance
+{
+ typedef typename Distance::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return dist; }
+};
+
+
+template <typename ElementType>
+struct simpleDistance<L2_Simple<ElementType>, ElementType>
+{
+ typedef typename L2_Simple<ElementType>::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return sqrt(dist); }
+};
+
+template <typename ElementType>
+struct simpleDistance<L2<ElementType>, ElementType>
+{
+ typedef typename L2<ElementType>::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return sqrt(dist); }
+};
+
+
+template <typename ElementType>
+struct simpleDistance<MinkowskiDistance<ElementType>, ElementType>
+{
+ typedef typename MinkowskiDistance<ElementType>::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return sqrt(dist); }
+};
+
+template <typename ElementType>
+struct simpleDistance<HellingerDistance<ElementType>, ElementType>
+{
+ typedef typename HellingerDistance<ElementType>::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return sqrt(dist); }
+};
+
+template <typename ElementType>
+struct simpleDistance<ChiSquareDistance<ElementType>, ElementType>
+{
+ typedef typename ChiSquareDistance<ElementType>::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return sqrt(dist); }
+};
+
+
+template <typename Distance>
+typename Distance::ResultType ensureSimpleDistance( typename Distance::ResultType dist )
+{
+ typedef typename Distance::ElementType ElementType;
+
+ simpleDistance<Distance, ElementType> dummy;
+ return dummy( dist );
+}
+
+}
+
+#endif //OPENCV_FLANN_DIST_H_
diff --git a/thirdparty/linux/include/opencv2/flann/dummy.h b/thirdparty/linux/include/opencv2/flann/dummy.h
new file mode 100644
index 0000000..26bd3fa
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/dummy.h
@@ -0,0 +1,16 @@
+
+#ifndef OPENCV_FLANN_DUMMY_H_
+#define OPENCV_FLANN_DUMMY_H_
+
+namespace cvflann
+{
+
+#if (defined WIN32 || defined _WIN32 || defined WINCE) && defined CVAPI_EXPORTS
+__declspec(dllexport)
+#endif
+void dummyfunc();
+
+}
+
+
+#endif /* OPENCV_FLANN_DUMMY_H_ */
diff --git a/thirdparty/linux/include/opencv2/flann/dynamic_bitset.h b/thirdparty/linux/include/opencv2/flann/dynamic_bitset.h
new file mode 100644
index 0000000..d795b5d
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/dynamic_bitset.h
@@ -0,0 +1,159 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+/***********************************************************************
+ * Author: Vincent Rabaud
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_DYNAMIC_BITSET_H_
+#define OPENCV_FLANN_DYNAMIC_BITSET_H_
+
+#ifndef FLANN_USE_BOOST
+# define FLANN_USE_BOOST 0
+#endif
+//#define FLANN_USE_BOOST 1
+#if FLANN_USE_BOOST
+#include <boost/dynamic_bitset.hpp>
+typedef boost::dynamic_bitset<> DynamicBitset;
+#else
+
+#include <limits.h>
+
+#include "dist.h"
+
+namespace cvflann {
+
+/** Class re-implementing the boost version of it
+ * This helps not depending on boost, it also does not do the bound checks
+ * and has a way to reset a block for speed
+ */
+class DynamicBitset
+{
+public:
+ /** default constructor
+ */
+ DynamicBitset()
+ {
+ }
+
+ /** only constructor we use in our code
+ * @param sz the size of the bitset (in bits)
+ */
+ DynamicBitset(size_t sz)
+ {
+ resize(sz);
+ reset();
+ }
+
+ /** Sets all the bits to 0
+ */
+ void clear()
+ {
+ std::fill(bitset_.begin(), bitset_.end(), 0);
+ }
+
+ /** @brief checks if the bitset is empty
+ * @return true if the bitset is empty
+ */
+ bool empty() const
+ {
+ return bitset_.empty();
+ }
+
+ /** set all the bits to 0
+ */
+ void reset()
+ {
+ std::fill(bitset_.begin(), bitset_.end(), 0);
+ }
+
+ /** @brief set one bit to 0
+ * @param index
+ */
+ void reset(size_t index)
+ {
+ bitset_[index / cell_bit_size_] &= ~(size_t(1) << (index % cell_bit_size_));
+ }
+
+ /** @brief sets a specific bit to 0, and more bits too
+ * This function is useful when resetting a given set of bits so that the
+ * whole bitset ends up being 0: if that's the case, we don't care about setting
+ * other bits to 0
+ * @param index
+ */
+ void reset_block(size_t index)
+ {
+ bitset_[index / cell_bit_size_] = 0;
+ }
+
+ /** resize the bitset so that it contains at least sz bits
+ * @param sz
+ */
+ void resize(size_t sz)
+ {
+ size_ = sz;
+ bitset_.resize(sz / cell_bit_size_ + 1);
+ }
+
+ /** set a bit to true
+ * @param index the index of the bit to set to 1
+ */
+ void set(size_t index)
+ {
+ bitset_[index / cell_bit_size_] |= size_t(1) << (index % cell_bit_size_);
+ }
+
+ /** gives the number of contained bits
+ */
+ size_t size() const
+ {
+ return size_;
+ }
+
+ /** check if a bit is set
+ * @param index the index of the bit to check
+ * @return true if the bit is set
+ */
+ bool test(size_t index) const
+ {
+ return (bitset_[index / cell_bit_size_] & (size_t(1) << (index % cell_bit_size_))) != 0;
+ }
+
+private:
+ std::vector<size_t> bitset_;
+ size_t size_;
+ static const unsigned int cell_bit_size_ = CHAR_BIT * sizeof(size_t);
+};
+
+} // namespace cvflann
+
+#endif
+
+#endif // OPENCV_FLANN_DYNAMIC_BITSET_H_
diff --git a/thirdparty/linux/include/opencv2/flann/flann.hpp b/thirdparty/linux/include/opencv2/flann/flann.hpp
new file mode 100644
index 0000000..227683f
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/flann.hpp
@@ -0,0 +1,48 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifdef __OPENCV_BUILD
+#error this is a compatibility header which should not be used inside the OpenCV library
+#endif
+
+#include "opencv2/flann.hpp"
diff --git a/thirdparty/linux/include/opencv2/flann/flann_base.hpp b/thirdparty/linux/include/opencv2/flann/flann_base.hpp
new file mode 100644
index 0000000..98c33cf
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/flann_base.hpp
@@ -0,0 +1,290 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_BASE_HPP_
+#define OPENCV_FLANN_BASE_HPP_
+
+#include <vector>
+#include <cassert>
+#include <cstdio>
+
+#include "general.h"
+#include "matrix.h"
+#include "params.h"
+#include "saving.h"
+
+#include "all_indices.h"
+
+namespace cvflann
+{
+
+/**
+ * Sets the log level used for all flann functions
+ * @param level Verbosity level
+ */
+inline void log_verbosity(int level)
+{
+ if (level >= 0) {
+ Logger::setLevel(level);
+ }
+}
+
+/**
+ * (Deprecated) Index parameters for creating a saved index.
+ */
+struct SavedIndexParams : public IndexParams
+{
+ SavedIndexParams(cv::String filename)
+ {
+ (* this)["algorithm"] = FLANN_INDEX_SAVED;
+ (*this)["filename"] = filename;
+ }
+};
+
+
+template<typename Distance>
+NNIndex<Distance>* load_saved_index(const Matrix<typename Distance::ElementType>& dataset, const cv::String& filename, Distance distance)
+{
+ typedef typename Distance::ElementType ElementType;
+
+ FILE* fin = fopen(filename.c_str(), "rb");
+ if (fin == NULL) {
+ return NULL;
+ }
+ IndexHeader header = load_header(fin);
+ if (header.data_type != Datatype<ElementType>::type()) {
+ throw FLANNException("Datatype of saved index is different than of the one to be created.");
+ }
+ if ((size_t(header.rows) != dataset.rows)||(size_t(header.cols) != dataset.cols)) {
+ throw FLANNException("The index saved belongs to a different dataset");
+ }
+
+ IndexParams params;
+ params["algorithm"] = header.index_type;
+ NNIndex<Distance>* nnIndex = create_index_by_type<Distance>(dataset, params, distance);
+ nnIndex->loadIndex(fin);
+ fclose(fin);
+
+ return nnIndex;
+}
+
+
+template<typename Distance>
+class Index : public NNIndex<Distance>
+{
+public:
+ typedef typename Distance::ElementType ElementType;
+ typedef typename Distance::ResultType DistanceType;
+
+ Index(const Matrix<ElementType>& features, const IndexParams& params, Distance distance = Distance() )
+ : index_params_(params)
+ {
+ flann_algorithm_t index_type = get_param<flann_algorithm_t>(params,"algorithm");
+ loaded_ = false;
+
+ if (index_type == FLANN_INDEX_SAVED) {
+ nnIndex_ = load_saved_index<Distance>(features, get_param<cv::String>(params,"filename"), distance);
+ loaded_ = true;
+ }
+ else {
+ nnIndex_ = create_index_by_type<Distance>(features, params, distance);
+ }
+ }
+
+ ~Index()
+ {
+ delete nnIndex_;
+ }
+
+ /**
+ * Builds the index.
+ */
+ void buildIndex()
+ {
+ if (!loaded_) {
+ nnIndex_->buildIndex();
+ }
+ }
+
+ void save(cv::String filename)
+ {
+ FILE* fout = fopen(filename.c_str(), "wb");
+ if (fout == NULL) {
+ throw FLANNException("Cannot open file");
+ }
+ save_header(fout, *nnIndex_);
+ saveIndex(fout);
+ fclose(fout);
+ }
+
+ /**
+ * \brief Saves the index to a stream
+ * \param stream The stream to save the index to
+ */
+ virtual void saveIndex(FILE* stream)
+ {
+ nnIndex_->saveIndex(stream);
+ }
+
+ /**
+ * \brief Loads the index from a stream
+ * \param stream The stream from which the index is loaded
+ */
+ virtual void loadIndex(FILE* stream)
+ {
+ nnIndex_->loadIndex(stream);
+ }
+
+ /**
+ * \returns number of features in this index.
+ */
+ size_t veclen() const
+ {
+ return nnIndex_->veclen();
+ }
+
+ /**
+ * \returns The dimensionality of the features in this index.
+ */
+ size_t size() const
+ {
+ return nnIndex_->size();
+ }
+
+ /**
+ * \returns The index type (kdtree, kmeans,...)
+ */
+ flann_algorithm_t getType() const
+ {
+ return nnIndex_->getType();
+ }
+
+ /**
+ * \returns The amount of memory (in bytes) used by the index.
+ */
+ virtual int usedMemory() const
+ {
+ return nnIndex_->usedMemory();
+ }
+
+
+ /**
+ * \returns The index parameters
+ */
+ IndexParams getParameters() const
+ {
+ return nnIndex_->getParameters();
+ }
+
+ /**
+ * \brief Perform k-nearest neighbor search
+ * \param[in] queries The query points for which to find the nearest neighbors
+ * \param[out] indices The indices of the nearest neighbors found
+ * \param[out] dists Distances to the nearest neighbors found
+ * \param[in] knn Number of nearest neighbors to return
+ * \param[in] params Search parameters
+ */
+ void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
+ {
+ nnIndex_->knnSearch(queries, indices, dists, knn, params);
+ }
+
+ /**
+ * \brief Perform radius search
+ * \param[in] query The query point
+ * \param[out] indices The indinces of the neighbors found within the given radius
+ * \param[out] dists The distances to the nearest neighbors found
+ * \param[in] radius The radius used for search
+ * \param[in] params Search parameters
+ * \returns Number of neighbors found
+ */
+ int radiusSearch(const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params)
+ {
+ return nnIndex_->radiusSearch(query, indices, dists, radius, params);
+ }
+
+ /**
+ * \brief Method that searches for nearest-neighbours
+ */
+ void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
+ {
+ nnIndex_->findNeighbors(result, vec, searchParams);
+ }
+
+ /**
+ * \brief Returns actual index
+ */
+ FLANN_DEPRECATED NNIndex<Distance>* getIndex()
+ {
+ return nnIndex_;
+ }
+
+ /**
+ * \brief Returns index parameters.
+ * \deprecated use getParameters() instead.
+ */
+ FLANN_DEPRECATED const IndexParams* getIndexParameters()
+ {
+ return &index_params_;
+ }
+
+private:
+ /** Pointer to actual index class */
+ NNIndex<Distance>* nnIndex_;
+ /** Indices if the index was loaded from a file */
+ bool loaded_;
+ /** Parameters passed to the index */
+ IndexParams index_params_;
+};
+
+/**
+ * Performs a hierarchical clustering of the points passed as argument and then takes a cut in the
+ * the clustering tree to return a flat clustering.
+ * @param[in] points Points to be clustered
+ * @param centers The computed cluster centres. Matrix should be preallocated and centers.rows is the
+ * number of clusters requested.
+ * @param params Clustering parameters (The same as for cvflann::KMeansIndex)
+ * @param d Distance to be used for clustering (eg: cvflann::L2)
+ * @return number of clusters computed (can be different than clusters.rows and is the highest number
+ * of the form (branching-1)*K+1 smaller than clusters.rows).
+ */
+template <typename Distance>
+int hierarchicalClustering(const Matrix<typename Distance::ElementType>& points, Matrix<typename Distance::ResultType>& centers,
+ const KMeansIndexParams& params, Distance d = Distance())
+{
+ KMeansIndex<Distance> kmeans(points, params, d);
+ kmeans.buildIndex();
+
+ int clusterNum = kmeans.getClusterCenters(centers);
+ return clusterNum;
+}
+
+}
+#endif /* OPENCV_FLANN_BASE_HPP_ */
diff --git a/thirdparty/linux/include/opencv2/flann/general.h b/thirdparty/linux/include/opencv2/flann/general.h
new file mode 100644
index 0000000..9d5402a
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/general.h
@@ -0,0 +1,50 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_GENERAL_H_
+#define OPENCV_FLANN_GENERAL_H_
+
+#include "opencv2/core.hpp"
+
+namespace cvflann
+{
+
+class FLANNException : public cv::Exception
+{
+public:
+ FLANNException(const char* message) : cv::Exception(0, message, "", __FILE__, __LINE__) { }
+
+ FLANNException(const cv::String& message) : cv::Exception(0, message, "", __FILE__, __LINE__) { }
+};
+
+}
+
+
+#endif /* OPENCV_FLANN_GENERAL_H_ */
diff --git a/thirdparty/linux/include/opencv2/flann/ground_truth.h b/thirdparty/linux/include/opencv2/flann/ground_truth.h
new file mode 100644
index 0000000..fd8f3ae
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/ground_truth.h
@@ -0,0 +1,94 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_GROUND_TRUTH_H_
+#define OPENCV_FLANN_GROUND_TRUTH_H_
+
+#include "dist.h"
+#include "matrix.h"
+
+
+namespace cvflann
+{
+
+template <typename Distance>
+void find_nearest(const Matrix<typename Distance::ElementType>& dataset, typename Distance::ElementType* query, int* matches, int nn,
+ int skip = 0, Distance distance = Distance())
+{
+ typedef typename Distance::ResultType DistanceType;
+ int n = nn + skip;
+
+ std::vector<int> match(n);
+ std::vector<DistanceType> dists(n);
+
+ dists[0] = distance(dataset[0], query, dataset.cols);
+ match[0] = 0;
+ int dcnt = 1;
+
+ for (size_t i=1; i<dataset.rows; ++i) {
+ DistanceType tmp = distance(dataset[i], query, dataset.cols);
+
+ if (dcnt<n) {
+ match[dcnt] = (int)i;
+ dists[dcnt++] = tmp;
+ }
+ else if (tmp < dists[dcnt-1]) {
+ dists[dcnt-1] = tmp;
+ match[dcnt-1] = (int)i;
+ }
+
+ int j = dcnt-1;
+ // bubble up
+ while (j>=1 && dists[j]<dists[j-1]) {
+ std::swap(dists[j],dists[j-1]);
+ std::swap(match[j],match[j-1]);
+ j--;
+ }
+ }
+
+ for (int i=0; i<nn; ++i) {
+ matches[i] = match[i+skip];
+ }
+}
+
+
+template <typename Distance>
+void compute_ground_truth(const Matrix<typename Distance::ElementType>& dataset, const Matrix<typename Distance::ElementType>& testset, Matrix<int>& matches,
+ int skip=0, Distance d = Distance())
+{
+ for (size_t i=0; i<testset.rows; ++i) {
+ find_nearest<Distance>(dataset, testset[i], matches[i], (int)matches.cols, skip, d);
+ }
+}
+
+
+}
+
+#endif //OPENCV_FLANN_GROUND_TRUTH_H_
diff --git a/thirdparty/linux/include/opencv2/flann/hdf5.h b/thirdparty/linux/include/opencv2/flann/hdf5.h
new file mode 100644
index 0000000..80d23b9
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/hdf5.h
@@ -0,0 +1,231 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+
+#ifndef OPENCV_FLANN_HDF5_H_
+#define OPENCV_FLANN_HDF5_H_
+
+#include <hdf5.h>
+
+#include "matrix.h"
+
+
+namespace cvflann
+{
+
+namespace
+{
+
+template<typename T>
+hid_t get_hdf5_type()
+{
+ throw FLANNException("Unsupported type for IO operations");
+}
+
+template<>
+hid_t get_hdf5_type<char>() { return H5T_NATIVE_CHAR; }
+template<>
+hid_t get_hdf5_type<unsigned char>() { return H5T_NATIVE_UCHAR; }
+template<>
+hid_t get_hdf5_type<short int>() { return H5T_NATIVE_SHORT; }
+template<>
+hid_t get_hdf5_type<unsigned short int>() { return H5T_NATIVE_USHORT; }
+template<>
+hid_t get_hdf5_type<int>() { return H5T_NATIVE_INT; }
+template<>
+hid_t get_hdf5_type<unsigned int>() { return H5T_NATIVE_UINT; }
+template<>
+hid_t get_hdf5_type<long>() { return H5T_NATIVE_LONG; }
+template<>
+hid_t get_hdf5_type<unsigned long>() { return H5T_NATIVE_ULONG; }
+template<>
+hid_t get_hdf5_type<float>() { return H5T_NATIVE_FLOAT; }
+template<>
+hid_t get_hdf5_type<double>() { return H5T_NATIVE_DOUBLE; }
+}
+
+
+#define CHECK_ERROR(x,y) if ((x)<0) throw FLANNException((y));
+
+template<typename T>
+void save_to_file(const cvflann::Matrix<T>& dataset, const String& filename, const String& name)
+{
+
+#if H5Eset_auto_vers == 2
+ H5Eset_auto( H5E_DEFAULT, NULL, NULL );
+#else
+ H5Eset_auto( NULL, NULL );
+#endif
+
+ herr_t status;
+ hid_t file_id;
+ file_id = H5Fopen(filename.c_str(), H5F_ACC_RDWR, H5P_DEFAULT);
+ if (file_id < 0) {
+ file_id = H5Fcreate(filename.c_str(), H5F_ACC_EXCL, H5P_DEFAULT, H5P_DEFAULT);
+ }
+ CHECK_ERROR(file_id,"Error creating hdf5 file.");
+
+ hsize_t dimsf[2]; // dataset dimensions
+ dimsf[0] = dataset.rows;
+ dimsf[1] = dataset.cols;
+
+ hid_t space_id = H5Screate_simple(2, dimsf, NULL);
+ hid_t memspace_id = H5Screate_simple(2, dimsf, NULL);
+
+ hid_t dataset_id;
+#if H5Dcreate_vers == 2
+ dataset_id = H5Dcreate2(file_id, name.c_str(), get_hdf5_type<T>(), space_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+#else
+ dataset_id = H5Dcreate(file_id, name.c_str(), get_hdf5_type<T>(), space_id, H5P_DEFAULT);
+#endif
+
+ if (dataset_id<0) {
+#if H5Dopen_vers == 2
+ dataset_id = H5Dopen2(file_id, name.c_str(), H5P_DEFAULT);
+#else
+ dataset_id = H5Dopen(file_id, name.c_str());
+#endif
+ }
+ CHECK_ERROR(dataset_id,"Error creating or opening dataset in file.");
+
+ status = H5Dwrite(dataset_id, get_hdf5_type<T>(), memspace_id, space_id, H5P_DEFAULT, dataset.data );
+ CHECK_ERROR(status, "Error writing to dataset");
+
+ H5Sclose(memspace_id);
+ H5Sclose(space_id);
+ H5Dclose(dataset_id);
+ H5Fclose(file_id);
+
+}
+
+
+template<typename T>
+void load_from_file(cvflann::Matrix<T>& dataset, const String& filename, const String& name)
+{
+ herr_t status;
+ hid_t file_id = H5Fopen(filename.c_str(), H5F_ACC_RDWR, H5P_DEFAULT);
+ CHECK_ERROR(file_id,"Error opening hdf5 file.");
+
+ hid_t dataset_id;
+#if H5Dopen_vers == 2
+ dataset_id = H5Dopen2(file_id, name.c_str(), H5P_DEFAULT);
+#else
+ dataset_id = H5Dopen(file_id, name.c_str());
+#endif
+ CHECK_ERROR(dataset_id,"Error opening dataset in file.");
+
+ hid_t space_id = H5Dget_space(dataset_id);
+
+ hsize_t dims_out[2];
+ H5Sget_simple_extent_dims(space_id, dims_out, NULL);
+
+ dataset = cvflann::Matrix<T>(new T[dims_out[0]*dims_out[1]], dims_out[0], dims_out[1]);
+
+ status = H5Dread(dataset_id, get_hdf5_type<T>(), H5S_ALL, H5S_ALL, H5P_DEFAULT, dataset[0]);
+ CHECK_ERROR(status, "Error reading dataset");
+
+ H5Sclose(space_id);
+ H5Dclose(dataset_id);
+ H5Fclose(file_id);
+}
+
+
+#ifdef HAVE_MPI
+
+namespace mpi
+{
+/**
+ * Loads a the hyperslice corresponding to this processor from a hdf5 file.
+ * @param flann_dataset Dataset where the data is loaded
+ * @param filename HDF5 file name
+ * @param name Name of dataset inside file
+ */
+template<typename T>
+void load_from_file(cvflann::Matrix<T>& dataset, const String& filename, const String& name)
+{
+ MPI_Comm comm = MPI_COMM_WORLD;
+ MPI_Info info = MPI_INFO_NULL;
+
+ int mpi_size, mpi_rank;
+ MPI_Comm_size(comm, &mpi_size);
+ MPI_Comm_rank(comm, &mpi_rank);
+
+ herr_t status;
+
+ hid_t plist_id = H5Pcreate(H5P_FILE_ACCESS);
+ H5Pset_fapl_mpio(plist_id, comm, info);
+ hid_t file_id = H5Fopen(filename.c_str(), H5F_ACC_RDWR, plist_id);
+ CHECK_ERROR(file_id,"Error opening hdf5 file.");
+ H5Pclose(plist_id);
+ hid_t dataset_id;
+#if H5Dopen_vers == 2
+ dataset_id = H5Dopen2(file_id, name.c_str(), H5P_DEFAULT);
+#else
+ dataset_id = H5Dopen(file_id, name.c_str());
+#endif
+ CHECK_ERROR(dataset_id,"Error opening dataset in file.");
+
+ hid_t space_id = H5Dget_space(dataset_id);
+ hsize_t dims[2];
+ H5Sget_simple_extent_dims(space_id, dims, NULL);
+
+ hsize_t count[2];
+ hsize_t offset[2];
+
+ hsize_t item_cnt = dims[0]/mpi_size+(dims[0]%mpi_size==0 ? 0 : 1);
+ hsize_t cnt = (mpi_rank<mpi_size-1 ? item_cnt : dims[0]-item_cnt*(mpi_size-1));
+
+ count[0] = cnt;
+ count[1] = dims[1];
+ offset[0] = mpi_rank*item_cnt;
+ offset[1] = 0;
+
+ hid_t memspace_id = H5Screate_simple(2,count,NULL);
+
+ H5Sselect_hyperslab(space_id, H5S_SELECT_SET, offset, NULL, count, NULL);
+
+ dataset.rows = count[0];
+ dataset.cols = count[1];
+ dataset.data = new T[dataset.rows*dataset.cols];
+
+ plist_id = H5Pcreate(H5P_DATASET_XFER);
+ H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);
+ status = H5Dread(dataset_id, get_hdf5_type<T>(), memspace_id, space_id, plist_id, dataset.data);
+ CHECK_ERROR(status, "Error reading dataset");
+
+ H5Pclose(plist_id);
+ H5Sclose(space_id);
+ H5Sclose(memspace_id);
+ H5Dclose(dataset_id);
+ H5Fclose(file_id);
+}
+}
+#endif // HAVE_MPI
+} // namespace cvflann::mpi
+
+#endif /* OPENCV_FLANN_HDF5_H_ */
diff --git a/thirdparty/linux/include/opencv2/flann/heap.h b/thirdparty/linux/include/opencv2/flann/heap.h
new file mode 100644
index 0000000..92a6ea6
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/heap.h
@@ -0,0 +1,165 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_HEAP_H_
+#define OPENCV_FLANN_HEAP_H_
+
+#include <algorithm>
+#include <vector>
+
+namespace cvflann
+{
+
+/**
+ * Priority Queue Implementation
+ *
+ * The priority queue is implemented with a heap. A heap is a complete
+ * (full) binary tree in which each parent is less than both of its
+ * children, but the order of the children is unspecified.
+ */
+template <typename T>
+class Heap
+{
+
+ /**
+ * Storage array for the heap.
+ * Type T must be comparable.
+ */
+ std::vector<T> heap;
+ int length;
+
+ /**
+ * Number of element in the heap
+ */
+ int count;
+
+
+
+public:
+ /**
+ * Constructor.
+ *
+ * Params:
+ * sz = heap size
+ */
+
+ Heap(int sz)
+ {
+ length = sz;
+ heap.reserve(length);
+ count = 0;
+ }
+
+ /**
+ *
+ * Returns: heap size
+ */
+ int size()
+ {
+ return count;
+ }
+
+ /**
+ * Tests if the heap is empty
+ *
+ * Returns: true is heap empty, false otherwise
+ */
+ bool empty()
+ {
+ return size()==0;
+ }
+
+ /**
+ * Clears the heap.
+ */
+ void clear()
+ {
+ heap.clear();
+ count = 0;
+ }
+
+ struct CompareT
+ {
+ bool operator()(const T& t_1, const T& t_2) const
+ {
+ return t_2 < t_1;
+ }
+ };
+
+ /**
+ * Insert a new element in the heap.
+ *
+ * We select the next empty leaf node, and then keep moving any larger
+ * parents down until the right location is found to store this element.
+ *
+ * Params:
+ * value = the new element to be inserted in the heap
+ */
+ void insert(T value)
+ {
+ /* If heap is full, then return without adding this element. */
+ if (count == length) {
+ return;
+ }
+
+ heap.push_back(value);
+ static CompareT compareT;
+ std::push_heap(heap.begin(), heap.end(), compareT);
+ ++count;
+ }
+
+
+
+ /**
+ * Returns the node of minimum value from the heap (top of the heap).
+ *
+ * Params:
+ * value = out parameter used to return the min element
+ * Returns: false if heap empty
+ */
+ bool popMin(T& value)
+ {
+ if (count == 0) {
+ return false;
+ }
+
+ value = heap[0];
+ static CompareT compareT;
+ std::pop_heap(heap.begin(), heap.end(), compareT);
+ heap.pop_back();
+ --count;
+
+ return true; /* Return old last node. */
+ }
+};
+
+}
+
+#endif //OPENCV_FLANN_HEAP_H_
diff --git a/thirdparty/linux/include/opencv2/flann/hierarchical_clustering_index.h b/thirdparty/linux/include/opencv2/flann/hierarchical_clustering_index.h
new file mode 100644
index 0000000..9d890d4
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/hierarchical_clustering_index.h
@@ -0,0 +1,848 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
+#define OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
+
+#include <algorithm>
+#include <map>
+#include <cassert>
+#include <limits>
+#include <cmath>
+
+#include "general.h"
+#include "nn_index.h"
+#include "dist.h"
+#include "matrix.h"
+#include "result_set.h"
+#include "heap.h"
+#include "allocator.h"
+#include "random.h"
+#include "saving.h"
+
+
+namespace cvflann
+{
+
+struct HierarchicalClusteringIndexParams : public IndexParams
+{
+ HierarchicalClusteringIndexParams(int branching = 32,
+ flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM,
+ int trees = 4, int leaf_size = 100)
+ {
+ (*this)["algorithm"] = FLANN_INDEX_HIERARCHICAL;
+ // The branching factor used in the hierarchical clustering
+ (*this)["branching"] = branching;
+ // Algorithm used for picking the initial cluster centers
+ (*this)["centers_init"] = centers_init;
+ // number of parallel trees to build
+ (*this)["trees"] = trees;
+ // maximum leaf size
+ (*this)["leaf_size"] = leaf_size;
+ }
+};
+
+
+/**
+ * Hierarchical index
+ *
+ * Contains a tree constructed through a hierarchical clustering
+ * and other information for indexing a set of points for nearest-neighbour matching.
+ */
+template <typename Distance>
+class HierarchicalClusteringIndex : public NNIndex<Distance>
+{
+public:
+ typedef typename Distance::ElementType ElementType;
+ typedef typename Distance::ResultType DistanceType;
+
+private:
+
+
+ typedef void (HierarchicalClusteringIndex::* centersAlgFunction)(int, int*, int, int*, int&);
+
+ /**
+ * The function used for choosing the cluster centers.
+ */
+ centersAlgFunction chooseCenters;
+
+
+
+ /**
+ * Chooses the initial centers in the k-means clustering in a random manner.
+ *
+ * Params:
+ * k = number of centers
+ * vecs = the dataset of points
+ * indices = indices in the dataset
+ * indices_length = length of indices vector
+ *
+ */
+ void chooseCentersRandom(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
+ {
+ UniqueRandom r(indices_length);
+
+ int index;
+ for (index=0; index<k; ++index) {
+ bool duplicate = true;
+ int rnd;
+ while (duplicate) {
+ duplicate = false;
+ rnd = r.next();
+ if (rnd<0) {
+ centers_length = index;
+ return;
+ }
+
+ centers[index] = dsindices[rnd];
+
+ for (int j=0; j<index; ++j) {
+ DistanceType sq = distance(dataset[centers[index]], dataset[centers[j]], dataset.cols);
+ if (sq<1e-16) {
+ duplicate = true;
+ }
+ }
+ }
+ }
+
+ centers_length = index;
+ }
+
+
+ /**
+ * Chooses the initial centers in the k-means using Gonzales' algorithm
+ * so that the centers are spaced apart from each other.
+ *
+ * Params:
+ * k = number of centers
+ * vecs = the dataset of points
+ * indices = indices in the dataset
+ * Returns:
+ */
+ void chooseCentersGonzales(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
+ {
+ int n = indices_length;
+
+ int rnd = rand_int(n);
+ assert(rnd >=0 && rnd < n);
+
+ centers[0] = dsindices[rnd];
+
+ int index;
+ for (index=1; index<k; ++index) {
+
+ int best_index = -1;
+ DistanceType best_val = 0;
+ for (int j=0; j<n; ++j) {
+ DistanceType dist = distance(dataset[centers[0]],dataset[dsindices[j]],dataset.cols);
+ for (int i=1; i<index; ++i) {
+ DistanceType tmp_dist = distance(dataset[centers[i]],dataset[dsindices[j]],dataset.cols);
+ if (tmp_dist<dist) {
+ dist = tmp_dist;
+ }
+ }
+ if (dist>best_val) {
+ best_val = dist;
+ best_index = j;
+ }
+ }
+ if (best_index!=-1) {
+ centers[index] = dsindices[best_index];
+ }
+ else {
+ break;
+ }
+ }
+ centers_length = index;
+ }
+
+
+ /**
+ * Chooses the initial centers in the k-means using the algorithm
+ * proposed in the KMeans++ paper:
+ * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
+ *
+ * Implementation of this function was converted from the one provided in Arthur's code.
+ *
+ * Params:
+ * k = number of centers
+ * vecs = the dataset of points
+ * indices = indices in the dataset
+ * Returns:
+ */
+ void chooseCentersKMeanspp(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
+ {
+ int n = indices_length;
+
+ double currentPot = 0;
+ DistanceType* closestDistSq = new DistanceType[n];
+
+ // Choose one random center and set the closestDistSq values
+ int index = rand_int(n);
+ assert(index >=0 && index < n);
+ centers[0] = dsindices[index];
+
+ // Computing distance^2 will have the advantage of even higher probability further to pick new centers
+ // far from previous centers (and this complies to "k-means++: the advantages of careful seeding" article)
+ for (int i = 0; i < n; i++) {
+ closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
+ closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
+ currentPot += closestDistSq[i];
+ }
+
+
+ const int numLocalTries = 1;
+
+ // Choose each center
+ int centerCount;
+ for (centerCount = 1; centerCount < k; centerCount++) {
+
+ // Repeat several trials
+ double bestNewPot = -1;
+ int bestNewIndex = 0;
+ for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
+
+ // Choose our center - have to be slightly careful to return a valid answer even accounting
+ // for possible rounding errors
+ double randVal = rand_double(currentPot);
+ for (index = 0; index < n-1; index++) {
+ if (randVal <= closestDistSq[index]) break;
+ else randVal -= closestDistSq[index];
+ }
+
+ // Compute the new potential
+ double newPot = 0;
+ for (int i = 0; i < n; i++) {
+ DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
+ newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
+ }
+
+ // Store the best result
+ if ((bestNewPot < 0)||(newPot < bestNewPot)) {
+ bestNewPot = newPot;
+ bestNewIndex = index;
+ }
+ }
+
+ // Add the appropriate center
+ centers[centerCount] = dsindices[bestNewIndex];
+ currentPot = bestNewPot;
+ for (int i = 0; i < n; i++) {
+ DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols);
+ closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
+ }
+ }
+
+ centers_length = centerCount;
+
+ delete[] closestDistSq;
+ }
+
+
+ /**
+ * Chooses the initial centers in a way inspired by Gonzales (by Pierre-Emmanuel Viel):
+ * select the first point of the list as a candidate, then parse the points list. If another
+ * point is further than current candidate from the other centers, test if it is a good center
+ * of a local aggregation. If it is, replace current candidate by this point. And so on...
+ *
+ * Used with KMeansIndex that computes centers coordinates by averaging positions of clusters points,
+ * this doesn't make a real difference with previous methods. But used with HierarchicalClusteringIndex
+ * class that pick centers among existing points instead of computing the barycenters, there is a real
+ * improvement.
+ *
+ * Params:
+ * k = number of centers
+ * vecs = the dataset of points
+ * indices = indices in the dataset
+ * Returns:
+ */
+ void GroupWiseCenterChooser(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
+ {
+ const float kSpeedUpFactor = 1.3f;
+
+ int n = indices_length;
+
+ DistanceType* closestDistSq = new DistanceType[n];
+
+ // Choose one random center and set the closestDistSq values
+ int index = rand_int(n);
+ assert(index >=0 && index < n);
+ centers[0] = dsindices[index];
+
+ for (int i = 0; i < n; i++) {
+ closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
+ }
+
+
+ // Choose each center
+ int centerCount;
+ for (centerCount = 1; centerCount < k; centerCount++) {
+
+ // Repeat several trials
+ double bestNewPot = -1;
+ int bestNewIndex = 0;
+ DistanceType furthest = 0;
+ for (index = 0; index < n; index++) {
+
+ // We will test only the potential of the points further than current candidate
+ if( closestDistSq[index] > kSpeedUpFactor * (float)furthest ) {
+
+ // Compute the new potential
+ double newPot = 0;
+ for (int i = 0; i < n; i++) {
+ newPot += std::min( distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols)
+ , closestDistSq[i] );
+ }
+
+ // Store the best result
+ if ((bestNewPot < 0)||(newPot <= bestNewPot)) {
+ bestNewPot = newPot;
+ bestNewIndex = index;
+ furthest = closestDistSq[index];
+ }
+ }
+ }
+
+ // Add the appropriate center
+ centers[centerCount] = dsindices[bestNewIndex];
+ for (int i = 0; i < n; i++) {
+ closestDistSq[i] = std::min( distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols)
+ , closestDistSq[i] );
+ }
+ }
+
+ centers_length = centerCount;
+
+ delete[] closestDistSq;
+ }
+
+
+public:
+
+
+ /**
+ * Index constructor
+ *
+ * Params:
+ * inputData = dataset with the input features
+ * params = parameters passed to the hierarchical k-means algorithm
+ */
+ HierarchicalClusteringIndex(const Matrix<ElementType>& inputData, const IndexParams& index_params = HierarchicalClusteringIndexParams(),
+ Distance d = Distance())
+ : dataset(inputData), params(index_params), root(NULL), indices(NULL), distance(d)
+ {
+ memoryCounter = 0;
+
+ size_ = dataset.rows;
+ veclen_ = dataset.cols;
+
+ branching_ = get_param(params,"branching",32);
+ centers_init_ = get_param(params,"centers_init", FLANN_CENTERS_RANDOM);
+ trees_ = get_param(params,"trees",4);
+ leaf_size_ = get_param(params,"leaf_size",100);
+
+ if (centers_init_==FLANN_CENTERS_RANDOM) {
+ chooseCenters = &HierarchicalClusteringIndex::chooseCentersRandom;
+ }
+ else if (centers_init_==FLANN_CENTERS_GONZALES) {
+ chooseCenters = &HierarchicalClusteringIndex::chooseCentersGonzales;
+ }
+ else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
+ chooseCenters = &HierarchicalClusteringIndex::chooseCentersKMeanspp;
+ }
+ else if (centers_init_==FLANN_CENTERS_GROUPWISE) {
+ chooseCenters = &HierarchicalClusteringIndex::GroupWiseCenterChooser;
+ }
+ else {
+ throw FLANNException("Unknown algorithm for choosing initial centers.");
+ }
+
+ trees_ = get_param(params,"trees",4);
+ root = new NodePtr[trees_];
+ indices = new int*[trees_];
+
+ for (int i=0; i<trees_; ++i) {
+ root[i] = NULL;
+ indices[i] = NULL;
+ }
+ }
+
+ HierarchicalClusteringIndex(const HierarchicalClusteringIndex&);
+ HierarchicalClusteringIndex& operator=(const HierarchicalClusteringIndex&);
+
+ /**
+ * Index destructor.
+ *
+ * Release the memory used by the index.
+ */
+ virtual ~HierarchicalClusteringIndex()
+ {
+ free_elements();
+
+ if (root!=NULL) {
+ delete[] root;
+ }
+
+ if (indices!=NULL) {
+ delete[] indices;
+ }
+ }
+
+
+ /**
+ * Release the inner elements of indices[]
+ */
+ void free_elements()
+ {
+ if (indices!=NULL) {
+ for(int i=0; i<trees_; ++i) {
+ if (indices[i]!=NULL) {
+ delete[] indices[i];
+ indices[i] = NULL;
+ }
+ }
+ }
+ }
+
+
+ /**
+ * Returns size of index.
+ */
+ size_t size() const
+ {
+ return size_;
+ }
+
+ /**
+ * Returns the length of an index feature.
+ */
+ size_t veclen() const
+ {
+ return veclen_;
+ }
+
+
+ /**
+ * Computes the inde memory usage
+ * Returns: memory used by the index
+ */
+ int usedMemory() const
+ {
+ return pool.usedMemory+pool.wastedMemory+memoryCounter;
+ }
+
+ /**
+ * Builds the index
+ */
+ void buildIndex()
+ {
+ if (branching_<2) {
+ throw FLANNException("Branching factor must be at least 2");
+ }
+
+ free_elements();
+
+ for (int i=0; i<trees_; ++i) {
+ indices[i] = new int[size_];
+ for (size_t j=0; j<size_; ++j) {
+ indices[i][j] = (int)j;
+ }
+ root[i] = pool.allocate<Node>();
+ computeClustering(root[i], indices[i], (int)size_, branching_,0);
+ }
+ }
+
+
+ flann_algorithm_t getType() const
+ {
+ return FLANN_INDEX_HIERARCHICAL;
+ }
+
+
+ void saveIndex(FILE* stream)
+ {
+ save_value(stream, branching_);
+ save_value(stream, trees_);
+ save_value(stream, centers_init_);
+ save_value(stream, leaf_size_);
+ save_value(stream, memoryCounter);
+ for (int i=0; i<trees_; ++i) {
+ save_value(stream, *indices[i], size_);
+ save_tree(stream, root[i], i);
+ }
+
+ }
+
+
+ void loadIndex(FILE* stream)
+ {
+ free_elements();
+
+ if (root!=NULL) {
+ delete[] root;
+ }
+
+ if (indices!=NULL) {
+ delete[] indices;
+ }
+
+ load_value(stream, branching_);
+ load_value(stream, trees_);
+ load_value(stream, centers_init_);
+ load_value(stream, leaf_size_);
+ load_value(stream, memoryCounter);
+
+ indices = new int*[trees_];
+ root = new NodePtr[trees_];
+ for (int i=0; i<trees_; ++i) {
+ indices[i] = new int[size_];
+ load_value(stream, *indices[i], size_);
+ load_tree(stream, root[i], i);
+ }
+
+ params["algorithm"] = getType();
+ params["branching"] = branching_;
+ params["trees"] = trees_;
+ params["centers_init"] = centers_init_;
+ params["leaf_size"] = leaf_size_;
+ }
+
+
+ /**
+ * Find set of nearest neighbors to vec. Their indices are stored inside
+ * the result object.
+ *
+ * Params:
+ * result = the result object in which the indices of the nearest-neighbors are stored
+ * vec = the vector for which to search the nearest neighbors
+ * searchParams = parameters that influence the search algorithm (checks)
+ */
+ void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
+ {
+
+ int maxChecks = get_param(searchParams,"checks",32);
+
+ // Priority queue storing intermediate branches in the best-bin-first search
+ Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
+
+ std::vector<bool> checked(size_,false);
+ int checks = 0;
+ for (int i=0; i<trees_; ++i) {
+ findNN(root[i], result, vec, checks, maxChecks, heap, checked);
+ }
+
+ BranchSt branch;
+ while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
+ NodePtr node = branch.node;
+ findNN(node, result, vec, checks, maxChecks, heap, checked);
+ }
+ assert(result.full());
+
+ delete heap;
+
+ }
+
+ IndexParams getParameters() const
+ {
+ return params;
+ }
+
+
+private:
+
+ /**
+ * Struture representing a node in the hierarchical k-means tree.
+ */
+ struct Node
+ {
+ /**
+ * The cluster center index
+ */
+ int pivot;
+ /**
+ * The cluster size (number of points in the cluster)
+ */
+ int size;
+ /**
+ * Child nodes (only for non-terminal nodes)
+ */
+ Node** childs;
+ /**
+ * Node points (only for terminal nodes)
+ */
+ int* indices;
+ /**
+ * Level
+ */
+ int level;
+ };
+ typedef Node* NodePtr;
+
+
+
+ /**
+ * Alias definition for a nicer syntax.
+ */
+ typedef BranchStruct<NodePtr, DistanceType> BranchSt;
+
+
+
+ void save_tree(FILE* stream, NodePtr node, int num)
+ {
+ save_value(stream, *node);
+ if (node->childs==NULL) {
+ int indices_offset = (int)(node->indices - indices[num]);
+ save_value(stream, indices_offset);
+ }
+ else {
+ for(int i=0; i<branching_; ++i) {
+ save_tree(stream, node->childs[i], num);
+ }
+ }
+ }
+
+
+ void load_tree(FILE* stream, NodePtr& node, int num)
+ {
+ node = pool.allocate<Node>();
+ load_value(stream, *node);
+ if (node->childs==NULL) {
+ int indices_offset;
+ load_value(stream, indices_offset);
+ node->indices = indices[num] + indices_offset;
+ }
+ else {
+ node->childs = pool.allocate<NodePtr>(branching_);
+ for(int i=0; i<branching_; ++i) {
+ load_tree(stream, node->childs[i], num);
+ }
+ }
+ }
+
+
+
+
+ void computeLabels(int* dsindices, int indices_length, int* centers, int centers_length, int* labels, DistanceType& cost)
+ {
+ cost = 0;
+ for (int i=0; i<indices_length; ++i) {
+ ElementType* point = dataset[dsindices[i]];
+ DistanceType dist = distance(point, dataset[centers[0]], veclen_);
+ labels[i] = 0;
+ for (int j=1; j<centers_length; ++j) {
+ DistanceType new_dist = distance(point, dataset[centers[j]], veclen_);
+ if (dist>new_dist) {
+ labels[i] = j;
+ dist = new_dist;
+ }
+ }
+ cost += dist;
+ }
+ }
+
+ /**
+ * The method responsible with actually doing the recursive hierarchical
+ * clustering
+ *
+ * Params:
+ * node = the node to cluster
+ * indices = indices of the points belonging to the current node
+ * branching = the branching factor to use in the clustering
+ *
+ * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
+ */
+ void computeClustering(NodePtr node, int* dsindices, int indices_length, int branching, int level)
+ {
+ node->size = indices_length;
+ node->level = level;
+
+ if (indices_length < leaf_size_) { // leaf node
+ node->indices = dsindices;
+ std::sort(node->indices,node->indices+indices_length);
+ node->childs = NULL;
+ return;
+ }
+
+ std::vector<int> centers(branching);
+ std::vector<int> labels(indices_length);
+
+ int centers_length;
+ (this->*chooseCenters)(branching, dsindices, indices_length, &centers[0], centers_length);
+
+ if (centers_length<branching) {
+ node->indices = dsindices;
+ std::sort(node->indices,node->indices+indices_length);
+ node->childs = NULL;
+ return;
+ }
+
+
+ // assign points to clusters
+ DistanceType cost;
+ computeLabels(dsindices, indices_length, &centers[0], centers_length, &labels[0], cost);
+
+ node->childs = pool.allocate<NodePtr>(branching);
+ int start = 0;
+ int end = start;
+ for (int i=0; i<branching; ++i) {
+ for (int j=0; j<indices_length; ++j) {
+ if (labels[j]==i) {
+ std::swap(dsindices[j],dsindices[end]);
+ std::swap(labels[j],labels[end]);
+ end++;
+ }
+ }
+
+ node->childs[i] = pool.allocate<Node>();
+ node->childs[i]->pivot = centers[i];
+ node->childs[i]->indices = NULL;
+ computeClustering(node->childs[i],dsindices+start, end-start, branching, level+1);
+ start=end;
+ }
+ }
+
+
+
+ /**
+ * Performs one descent in the hierarchical k-means tree. The branches not
+ * visited are stored in a priority queue.
+ *
+ * Params:
+ * node = node to explore
+ * result = container for the k-nearest neighbors found
+ * vec = query points
+ * checks = how many points in the dataset have been checked so far
+ * maxChecks = maximum dataset points to checks
+ */
+
+
+ void findNN(NodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
+ Heap<BranchSt>* heap, std::vector<bool>& checked)
+ {
+ if (node->childs==NULL) {
+ if (checks>=maxChecks) {
+ if (result.full()) return;
+ }
+ for (int i=0; i<node->size; ++i) {
+ int index = node->indices[i];
+ if (!checked[index]) {
+ DistanceType dist = distance(dataset[index], vec, veclen_);
+ result.addPoint(dist, index);
+ checked[index] = true;
+ ++checks;
+ }
+ }
+ }
+ else {
+ DistanceType* domain_distances = new DistanceType[branching_];
+ int best_index = 0;
+ domain_distances[best_index] = distance(vec, dataset[node->childs[best_index]->pivot], veclen_);
+ for (int i=1; i<branching_; ++i) {
+ domain_distances[i] = distance(vec, dataset[node->childs[i]->pivot], veclen_);
+ if (domain_distances[i]<domain_distances[best_index]) {
+ best_index = i;
+ }
+ }
+ for (int i=0; i<branching_; ++i) {
+ if (i!=best_index) {
+ heap->insert(BranchSt(node->childs[i],domain_distances[i]));
+ }
+ }
+ delete[] domain_distances;
+ findNN(node->childs[best_index],result,vec, checks, maxChecks, heap, checked);
+ }
+ }
+
+private:
+
+
+ /**
+ * The dataset used by this index
+ */
+ const Matrix<ElementType> dataset;
+
+ /**
+ * Parameters used by this index
+ */
+ IndexParams params;
+
+
+ /**
+ * Number of features in the dataset.
+ */
+ size_t size_;
+
+ /**
+ * Length of each feature.
+ */
+ size_t veclen_;
+
+ /**
+ * The root node in the tree.
+ */
+ NodePtr* root;
+
+ /**
+ * Array of indices to vectors in the dataset.
+ */
+ int** indices;
+
+
+ /**
+ * The distance
+ */
+ Distance distance;
+
+ /**
+ * Pooled memory allocator.
+ *
+ * Using a pooled memory allocator is more efficient
+ * than allocating memory directly when there is a large
+ * number small of memory allocations.
+ */
+ PooledAllocator pool;
+
+ /**
+ * Memory occupied by the index.
+ */
+ int memoryCounter;
+
+ /** index parameters */
+ int branching_;
+ int trees_;
+ flann_centers_init_t centers_init_;
+ int leaf_size_;
+
+
+};
+
+}
+
+#endif /* OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ */
diff --git a/thirdparty/linux/include/opencv2/flann/index_testing.h b/thirdparty/linux/include/opencv2/flann/index_testing.h
new file mode 100644
index 0000000..d764004
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/index_testing.h
@@ -0,0 +1,318 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_INDEX_TESTING_H_
+#define OPENCV_FLANN_INDEX_TESTING_H_
+
+#include <cstring>
+#include <cassert>
+#include <cmath>
+
+#include "matrix.h"
+#include "nn_index.h"
+#include "result_set.h"
+#include "logger.h"
+#include "timer.h"
+
+
+namespace cvflann
+{
+
+inline int countCorrectMatches(int* neighbors, int* groundTruth, int n)
+{
+ int count = 0;
+ for (int i=0; i<n; ++i) {
+ for (int k=0; k<n; ++k) {
+ if (neighbors[i]==groundTruth[k]) {
+ count++;
+ break;
+ }
+ }
+ }
+ return count;
+}
+
+
+template <typename Distance>
+typename Distance::ResultType computeDistanceRaport(const Matrix<typename Distance::ElementType>& inputData, typename Distance::ElementType* target,
+ int* neighbors, int* groundTruth, int veclen, int n, const Distance& distance)
+{
+ typedef typename Distance::ResultType DistanceType;
+
+ DistanceType ret = 0;
+ for (int i=0; i<n; ++i) {
+ DistanceType den = distance(inputData[groundTruth[i]], target, veclen);
+ DistanceType num = distance(inputData[neighbors[i]], target, veclen);
+
+ if ((den==0)&&(num==0)) {
+ ret += 1;
+ }
+ else {
+ ret += num/den;
+ }
+ }
+
+ return ret;
+}
+
+template <typename Distance>
+float search_with_ground_truth(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
+ const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, int nn, int checks,
+ float& time, typename Distance::ResultType& dist, const Distance& distance, int skipMatches)
+{
+ typedef typename Distance::ResultType DistanceType;
+
+ if (matches.cols<size_t(nn)) {
+ Logger::info("matches.cols=%d, nn=%d\n",matches.cols,nn);
+
+ throw FLANNException("Ground truth is not computed for as many neighbors as requested");
+ }
+
+ KNNResultSet<DistanceType> resultSet(nn+skipMatches);
+ SearchParams searchParams(checks);
+
+ std::vector<int> indices(nn+skipMatches);
+ std::vector<DistanceType> dists(nn+skipMatches);
+ int* neighbors = &indices[skipMatches];
+
+ int correct = 0;
+ DistanceType distR = 0;
+ StartStopTimer t;
+ int repeats = 0;
+ while (t.value<0.2) {
+ repeats++;
+ t.start();
+ correct = 0;
+ distR = 0;
+ for (size_t i = 0; i < testData.rows; i++) {
+ resultSet.init(&indices[0], &dists[0]);
+ index.findNeighbors(resultSet, testData[i], searchParams);
+
+ correct += countCorrectMatches(neighbors,matches[i], nn);
+ distR += computeDistanceRaport<Distance>(inputData, testData[i], neighbors, matches[i], (int)testData.cols, nn, distance);
+ }
+ t.stop();
+ }
+ time = float(t.value/repeats);
+
+ float precicion = (float)correct/(nn*testData.rows);
+
+ dist = distR/(testData.rows*nn);
+
+ Logger::info("%8d %10.4g %10.5g %10.5g %10.5g\n",
+ checks, precicion, time, 1000.0 * time / testData.rows, dist);
+
+ return precicion;
+}
+
+
+template <typename Distance>
+float test_index_checks(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
+ const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
+ int checks, float& precision, const Distance& distance, int nn = 1, int skipMatches = 0)
+{
+ typedef typename Distance::ResultType DistanceType;
+
+ Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
+ Logger::info("---------------------------------------------------------\n");
+
+ float time = 0;
+ DistanceType dist = 0;
+ precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, distance, skipMatches);
+
+ return time;
+}
+
+template <typename Distance>
+float test_index_precision(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
+ const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
+ float precision, int& checks, const Distance& distance, int nn = 1, int skipMatches = 0)
+{
+ typedef typename Distance::ResultType DistanceType;
+ const float SEARCH_EPS = 0.001f;
+
+ Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
+ Logger::info("---------------------------------------------------------\n");
+
+ int c2 = 1;
+ float p2;
+ int c1 = 1;
+ //float p1;
+ float time;
+ DistanceType dist;
+
+ p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
+
+ if (p2>precision) {
+ Logger::info("Got as close as I can\n");
+ checks = c2;
+ return time;
+ }
+
+ while (p2<precision) {
+ c1 = c2;
+ //p1 = p2;
+ c2 *=2;
+ p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
+ }
+
+ int cx;
+ float realPrecision;
+ if (fabs(p2-precision)>SEARCH_EPS) {
+ Logger::info("Start linear estimation\n");
+ // after we got to values in the vecinity of the desired precision
+ // use linear approximation get a better estimation
+
+ cx = (c1+c2)/2;
+ realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
+ while (fabs(realPrecision-precision)>SEARCH_EPS) {
+
+ if (realPrecision<precision) {
+ c1 = cx;
+ }
+ else {
+ c2 = cx;
+ }
+ cx = (c1+c2)/2;
+ if (cx==c1) {
+ Logger::info("Got as close as I can\n");
+ break;
+ }
+ realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
+ }
+
+ c2 = cx;
+ p2 = realPrecision;
+
+ }
+ else {
+ Logger::info("No need for linear estimation\n");
+ cx = c2;
+ realPrecision = p2;
+ }
+
+ checks = cx;
+ return time;
+}
+
+
+template <typename Distance>
+void test_index_precisions(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
+ const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
+ float* precisions, int precisions_length, const Distance& distance, int nn = 1, int skipMatches = 0, float maxTime = 0)
+{
+ typedef typename Distance::ResultType DistanceType;
+
+ const float SEARCH_EPS = 0.001;
+
+ // make sure precisions array is sorted
+ std::sort(precisions, precisions+precisions_length);
+
+ int pindex = 0;
+ float precision = precisions[pindex];
+
+ Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
+ Logger::info("---------------------------------------------------------\n");
+
+ int c2 = 1;
+ float p2;
+
+ int c1 = 1;
+ float p1;
+
+ float time;
+ DistanceType dist;
+
+ p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
+
+ // if precision for 1 run down the tree is already
+ // better then some of the requested precisions, then
+ // skip those
+ while (precisions[pindex]<p2 && pindex<precisions_length) {
+ pindex++;
+ }
+
+ if (pindex==precisions_length) {
+ Logger::info("Got as close as I can\n");
+ return;
+ }
+
+ for (int i=pindex; i<precisions_length; ++i) {
+
+ precision = precisions[i];
+ while (p2<precision) {
+ c1 = c2;
+ p1 = p2;
+ c2 *=2;
+ p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
+ if ((maxTime> 0)&&(time > maxTime)&&(p2<precision)) return;
+ }
+
+ int cx;
+ float realPrecision;
+ if (fabs(p2-precision)>SEARCH_EPS) {
+ Logger::info("Start linear estimation\n");
+ // after we got to values in the vecinity of the desired precision
+ // use linear approximation get a better estimation
+
+ cx = (c1+c2)/2;
+ realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
+ while (fabs(realPrecision-precision)>SEARCH_EPS) {
+
+ if (realPrecision<precision) {
+ c1 = cx;
+ }
+ else {
+ c2 = cx;
+ }
+ cx = (c1+c2)/2;
+ if (cx==c1) {
+ Logger::info("Got as close as I can\n");
+ break;
+ }
+ realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
+ }
+
+ c2 = cx;
+ p2 = realPrecision;
+
+ }
+ else {
+ Logger::info("No need for linear estimation\n");
+ cx = c2;
+ realPrecision = p2;
+ }
+
+ }
+}
+
+}
+
+#endif //OPENCV_FLANN_INDEX_TESTING_H_
diff --git a/thirdparty/linux/include/opencv2/flann/kdtree_index.h b/thirdparty/linux/include/opencv2/flann/kdtree_index.h
new file mode 100644
index 0000000..dc0971c
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/kdtree_index.h
@@ -0,0 +1,621 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_KDTREE_INDEX_H_
+#define OPENCV_FLANN_KDTREE_INDEX_H_
+
+#include <algorithm>
+#include <map>
+#include <cassert>
+#include <cstring>
+
+#include "general.h"
+#include "nn_index.h"
+#include "dynamic_bitset.h"
+#include "matrix.h"
+#include "result_set.h"
+#include "heap.h"
+#include "allocator.h"
+#include "random.h"
+#include "saving.h"
+
+
+namespace cvflann
+{
+
+struct KDTreeIndexParams : public IndexParams
+{
+ KDTreeIndexParams(int trees = 4)
+ {
+ (*this)["algorithm"] = FLANN_INDEX_KDTREE;
+ (*this)["trees"] = trees;
+ }
+};
+
+
+/**
+ * Randomized kd-tree index
+ *
+ * Contains the k-d trees and other information for indexing a set of points
+ * for nearest-neighbor matching.
+ */
+template <typename Distance>
+class KDTreeIndex : public NNIndex<Distance>
+{
+public:
+ typedef typename Distance::ElementType ElementType;
+ typedef typename Distance::ResultType DistanceType;
+
+
+ /**
+ * KDTree constructor
+ *
+ * Params:
+ * inputData = dataset with the input features
+ * params = parameters passed to the kdtree algorithm
+ */
+ KDTreeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeIndexParams(),
+ Distance d = Distance() ) :
+ dataset_(inputData), index_params_(params), distance_(d)
+ {
+ size_ = dataset_.rows;
+ veclen_ = dataset_.cols;
+
+ trees_ = get_param(index_params_,"trees",4);
+ tree_roots_ = new NodePtr[trees_];
+
+ // Create a permutable array of indices to the input vectors.
+ vind_.resize(size_);
+ for (size_t i = 0; i < size_; ++i) {
+ vind_[i] = int(i);
+ }
+
+ mean_ = new DistanceType[veclen_];
+ var_ = new DistanceType[veclen_];
+ }
+
+
+ KDTreeIndex(const KDTreeIndex&);
+ KDTreeIndex& operator=(const KDTreeIndex&);
+
+ /**
+ * Standard destructor
+ */
+ ~KDTreeIndex()
+ {
+ if (tree_roots_!=NULL) {
+ delete[] tree_roots_;
+ }
+ delete[] mean_;
+ delete[] var_;
+ }
+
+ /**
+ * Builds the index
+ */
+ void buildIndex()
+ {
+ /* Construct the randomized trees. */
+ for (int i = 0; i < trees_; i++) {
+ /* Randomize the order of vectors to allow for unbiased sampling. */
+ std::random_shuffle(vind_.begin(), vind_.end());
+ tree_roots_[i] = divideTree(&vind_[0], int(size_) );
+ }
+ }
+
+
+ flann_algorithm_t getType() const
+ {
+ return FLANN_INDEX_KDTREE;
+ }
+
+
+ void saveIndex(FILE* stream)
+ {
+ save_value(stream, trees_);
+ for (int i=0; i<trees_; ++i) {
+ save_tree(stream, tree_roots_[i]);
+ }
+ }
+
+
+
+ void loadIndex(FILE* stream)
+ {
+ load_value(stream, trees_);
+ if (tree_roots_!=NULL) {
+ delete[] tree_roots_;
+ }
+ tree_roots_ = new NodePtr[trees_];
+ for (int i=0; i<trees_; ++i) {
+ load_tree(stream,tree_roots_[i]);
+ }
+
+ index_params_["algorithm"] = getType();
+ index_params_["trees"] = tree_roots_;
+ }
+
+ /**
+ * Returns size of index.
+ */
+ size_t size() const
+ {
+ return size_;
+ }
+
+ /**
+ * Returns the length of an index feature.
+ */
+ size_t veclen() const
+ {
+ return veclen_;
+ }
+
+ /**
+ * Computes the inde memory usage
+ * Returns: memory used by the index
+ */
+ int usedMemory() const
+ {
+ return int(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int)); // pool memory and vind array memory
+ }
+
+ /**
+ * Find set of nearest neighbors to vec. Their indices are stored inside
+ * the result object.
+ *
+ * Params:
+ * result = the result object in which the indices of the nearest-neighbors are stored
+ * vec = the vector for which to search the nearest neighbors
+ * maxCheck = the maximum number of restarts (in a best-bin-first manner)
+ */
+ void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
+ {
+ int maxChecks = get_param(searchParams,"checks", 32);
+ float epsError = 1+get_param(searchParams,"eps",0.0f);
+
+ if (maxChecks==FLANN_CHECKS_UNLIMITED) {
+ getExactNeighbors(result, vec, epsError);
+ }
+ else {
+ getNeighbors(result, vec, maxChecks, epsError);
+ }
+ }
+
+ IndexParams getParameters() const
+ {
+ return index_params_;
+ }
+
+private:
+
+
+ /*--------------------- Internal Data Structures --------------------------*/
+ struct Node
+ {
+ /**
+ * Dimension used for subdivision.
+ */
+ int divfeat;
+ /**
+ * The values used for subdivision.
+ */
+ DistanceType divval;
+ /**
+ * The child nodes.
+ */
+ Node* child1, * child2;
+ };
+ typedef Node* NodePtr;
+ typedef BranchStruct<NodePtr, DistanceType> BranchSt;
+ typedef BranchSt* Branch;
+
+
+
+ void save_tree(FILE* stream, NodePtr tree)
+ {
+ save_value(stream, *tree);
+ if (tree->child1!=NULL) {
+ save_tree(stream, tree->child1);
+ }
+ if (tree->child2!=NULL) {
+ save_tree(stream, tree->child2);
+ }
+ }
+
+
+ void load_tree(FILE* stream, NodePtr& tree)
+ {
+ tree = pool_.allocate<Node>();
+ load_value(stream, *tree);
+ if (tree->child1!=NULL) {
+ load_tree(stream, tree->child1);
+ }
+ if (tree->child2!=NULL) {
+ load_tree(stream, tree->child2);
+ }
+ }
+
+
+ /**
+ * Create a tree node that subdivides the list of vecs from vind[first]
+ * to vind[last]. The routine is called recursively on each sublist.
+ * Place a pointer to this new tree node in the location pTree.
+ *
+ * Params: pTree = the new node to create
+ * first = index of the first vector
+ * last = index of the last vector
+ */
+ NodePtr divideTree(int* ind, int count)
+ {
+ NodePtr node = pool_.allocate<Node>(); // allocate memory
+
+ /* If too few exemplars remain, then make this a leaf node. */
+ if ( count == 1) {
+ node->child1 = node->child2 = NULL; /* Mark as leaf node. */
+ node->divfeat = *ind; /* Store index of this vec. */
+ }
+ else {
+ int idx;
+ int cutfeat;
+ DistanceType cutval;
+ meanSplit(ind, count, idx, cutfeat, cutval);
+
+ node->divfeat = cutfeat;
+ node->divval = cutval;
+ node->child1 = divideTree(ind, idx);
+ node->child2 = divideTree(ind+idx, count-idx);
+ }
+
+ return node;
+ }
+
+
+ /**
+ * Choose which feature to use in order to subdivide this set of vectors.
+ * Make a random choice among those with the highest variance, and use
+ * its variance as the threshold value.
+ */
+ void meanSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval)
+ {
+ memset(mean_,0,veclen_*sizeof(DistanceType));
+ memset(var_,0,veclen_*sizeof(DistanceType));
+
+ /* Compute mean values. Only the first SAMPLE_MEAN values need to be
+ sampled to get a good estimate.
+ */
+ int cnt = std::min((int)SAMPLE_MEAN+1, count);
+ for (int j = 0; j < cnt; ++j) {
+ ElementType* v = dataset_[ind[j]];
+ for (size_t k=0; k<veclen_; ++k) {
+ mean_[k] += v[k];
+ }
+ }
+ for (size_t k=0; k<veclen_; ++k) {
+ mean_[k] /= cnt;
+ }
+
+ /* Compute variances (no need to divide by count). */
+ for (int j = 0; j < cnt; ++j) {
+ ElementType* v = dataset_[ind[j]];
+ for (size_t k=0; k<veclen_; ++k) {
+ DistanceType dist = v[k] - mean_[k];
+ var_[k] += dist * dist;
+ }
+ }
+ /* Select one of the highest variance indices at random. */
+ cutfeat = selectDivision(var_);
+ cutval = mean_[cutfeat];
+
+ int lim1, lim2;
+ planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
+
+ if (lim1>count/2) index = lim1;
+ else if (lim2<count/2) index = lim2;
+ else index = count/2;
+
+ /* If either list is empty, it means that all remaining features
+ * are identical. Split in the middle to maintain a balanced tree.
+ */
+ if ((lim1==count)||(lim2==0)) index = count/2;
+ }
+
+
+ /**
+ * Select the top RAND_DIM largest values from v and return the index of
+ * one of these selected at random.
+ */
+ int selectDivision(DistanceType* v)
+ {
+ int num = 0;
+ size_t topind[RAND_DIM];
+
+ /* Create a list of the indices of the top RAND_DIM values. */
+ for (size_t i = 0; i < veclen_; ++i) {
+ if ((num < RAND_DIM)||(v[i] > v[topind[num-1]])) {
+ /* Put this element at end of topind. */
+ if (num < RAND_DIM) {
+ topind[num++] = i; /* Add to list. */
+ }
+ else {
+ topind[num-1] = i; /* Replace last element. */
+ }
+ /* Bubble end value down to right location by repeated swapping. */
+ int j = num - 1;
+ while (j > 0 && v[topind[j]] > v[topind[j-1]]) {
+ std::swap(topind[j], topind[j-1]);
+ --j;
+ }
+ }
+ }
+ /* Select a random integer in range [0,num-1], and return that index. */
+ int rnd = rand_int(num);
+ return (int)topind[rnd];
+ }
+
+
+ /**
+ * Subdivide the list of points by a plane perpendicular on axe corresponding
+ * to the 'cutfeat' dimension at 'cutval' position.
+ *
+ * On return:
+ * dataset[ind[0..lim1-1]][cutfeat]<cutval
+ * dataset[ind[lim1..lim2-1]][cutfeat]==cutval
+ * dataset[ind[lim2..count]][cutfeat]>cutval
+ */
+ void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
+ {
+ /* Move vector indices for left subtree to front of list. */
+ int left = 0;
+ int right = count-1;
+ for (;; ) {
+ while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
+ while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
+ if (left>right) break;
+ std::swap(ind[left], ind[right]); ++left; --right;
+ }
+ lim1 = left;
+ right = count-1;
+ for (;; ) {
+ while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
+ while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
+ if (left>right) break;
+ std::swap(ind[left], ind[right]); ++left; --right;
+ }
+ lim2 = left;
+ }
+
+ /**
+ * Performs an exact nearest neighbor search. The exact search performs a full
+ * traversal of the tree.
+ */
+ void getExactNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, float epsError)
+ {
+ // checkID -= 1; /* Set a different unique ID for each search. */
+
+ if (trees_ > 1) {
+ fprintf(stderr,"It doesn't make any sense to use more than one tree for exact search");
+ }
+ if (trees_>0) {
+ searchLevelExact(result, vec, tree_roots_[0], 0.0, epsError);
+ }
+ assert(result.full());
+ }
+
+ /**
+ * Performs the approximate nearest-neighbor search. The search is approximate
+ * because the tree traversal is abandoned after a given number of descends in
+ * the tree.
+ */
+ void getNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, int maxCheck, float epsError)
+ {
+ int i;
+ BranchSt branch;
+
+ int checkCount = 0;
+ Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
+ DynamicBitset checked(size_);
+
+ /* Search once through each tree down to root. */
+ for (i = 0; i < trees_; ++i) {
+ searchLevel(result, vec, tree_roots_[i], 0, checkCount, maxCheck, epsError, heap, checked);
+ }
+
+ /* Keep searching other branches from heap until finished. */
+ while ( heap->popMin(branch) && (checkCount < maxCheck || !result.full() )) {
+ searchLevel(result, vec, branch.node, branch.mindist, checkCount, maxCheck, epsError, heap, checked);
+ }
+
+ delete heap;
+
+ assert(result.full());
+ }
+
+
+ /**
+ * Search starting from a given node of the tree. Based on any mismatches at
+ * higher levels, all exemplars below this level must have a distance of
+ * at least "mindistsq".
+ */
+ void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, NodePtr node, DistanceType mindist, int& checkCount, int maxCheck,
+ float epsError, Heap<BranchSt>* heap, DynamicBitset& checked)
+ {
+ if (result_set.worstDist()<mindist) {
+ // printf("Ignoring branch, too far\n");
+ return;
+ }
+
+ /* If this is a leaf node, then do check and return. */
+ if ((node->child1 == NULL)&&(node->child2 == NULL)) {
+ /* Do not check same node more than once when searching multiple trees.
+ Once a vector is checked, we set its location in vind to the
+ current checkID.
+ */
+ int index = node->divfeat;
+ if ( checked.test(index) || ((checkCount>=maxCheck)&& result_set.full()) ) return;
+ checked.set(index);
+ checkCount++;
+
+ DistanceType dist = distance_(dataset_[index], vec, veclen_);
+ result_set.addPoint(dist,index);
+
+ return;
+ }
+
+ /* Which child branch should be taken first? */
+ ElementType val = vec[node->divfeat];
+ DistanceType diff = val - node->divval;
+ NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
+ NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;
+
+ /* Create a branch record for the branch not taken. Add distance
+ of this feature boundary (we don't attempt to correct for any
+ use of this feature in a parent node, which is unlikely to
+ happen and would have only a small effect). Don't bother
+ adding more branches to heap after halfway point, as cost of
+ adding exceeds their value.
+ */
+
+ DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);
+ // if (2 * checkCount < maxCheck || !result.full()) {
+ if ((new_distsq*epsError < result_set.worstDist())|| !result_set.full()) {
+ heap->insert( BranchSt(otherChild, new_distsq) );
+ }
+
+ /* Call recursively to search next level down. */
+ searchLevel(result_set, vec, bestChild, mindist, checkCount, maxCheck, epsError, heap, checked);
+ }
+
+ /**
+ * Performs an exact search in the tree starting from a node.
+ */
+ void searchLevelExact(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindist, const float epsError)
+ {
+ /* If this is a leaf node, then do check and return. */
+ if ((node->child1 == NULL)&&(node->child2 == NULL)) {
+ int index = node->divfeat;
+ DistanceType dist = distance_(dataset_[index], vec, veclen_);
+ result_set.addPoint(dist,index);
+ return;
+ }
+
+ /* Which child branch should be taken first? */
+ ElementType val = vec[node->divfeat];
+ DistanceType diff = val - node->divval;
+ NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
+ NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;
+
+ /* Create a branch record for the branch not taken. Add distance
+ of this feature boundary (we don't attempt to correct for any
+ use of this feature in a parent node, which is unlikely to
+ happen and would have only a small effect). Don't bother
+ adding more branches to heap after halfway point, as cost of
+ adding exceeds their value.
+ */
+
+ DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);
+
+ /* Call recursively to search next level down. */
+ searchLevelExact(result_set, vec, bestChild, mindist, epsError);
+
+ if (new_distsq*epsError<=result_set.worstDist()) {
+ searchLevelExact(result_set, vec, otherChild, new_distsq, epsError);
+ }
+ }
+
+
+private:
+
+ enum
+ {
+ /**
+ * To improve efficiency, only SAMPLE_MEAN random values are used to
+ * compute the mean and variance at each level when building a tree.
+ * A value of 100 seems to perform as well as using all values.
+ */
+ SAMPLE_MEAN = 100,
+ /**
+ * Top random dimensions to consider
+ *
+ * When creating random trees, the dimension on which to subdivide is
+ * selected at random from among the top RAND_DIM dimensions with the
+ * highest variance. A value of 5 works well.
+ */
+ RAND_DIM=5
+ };
+
+
+ /**
+ * Number of randomized trees that are used
+ */
+ int trees_;
+
+ /**
+ * Array of indices to vectors in the dataset.
+ */
+ std::vector<int> vind_;
+
+ /**
+ * The dataset used by this index
+ */
+ const Matrix<ElementType> dataset_;
+
+ IndexParams index_params_;
+
+ size_t size_;
+ size_t veclen_;
+
+
+ DistanceType* mean_;
+ DistanceType* var_;
+
+
+ /**
+ * Array of k-d trees used to find neighbours.
+ */
+ NodePtr* tree_roots_;
+
+ /**
+ * Pooled memory allocator.
+ *
+ * Using a pooled memory allocator is more efficient
+ * than allocating memory directly when there is a large
+ * number small of memory allocations.
+ */
+ PooledAllocator pool_;
+
+ Distance distance_;
+
+
+}; // class KDTreeForest
+
+}
+
+#endif //OPENCV_FLANN_KDTREE_INDEX_H_
diff --git a/thirdparty/linux/include/opencv2/flann/kdtree_single_index.h b/thirdparty/linux/include/opencv2/flann/kdtree_single_index.h
new file mode 100644
index 0000000..30488ad
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/kdtree_single_index.h
@@ -0,0 +1,634 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
+#define OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
+
+#include <algorithm>
+#include <map>
+#include <cassert>
+#include <cstring>
+
+#include "general.h"
+#include "nn_index.h"
+#include "matrix.h"
+#include "result_set.h"
+#include "heap.h"
+#include "allocator.h"
+#include "random.h"
+#include "saving.h"
+
+namespace cvflann
+{
+
+struct KDTreeSingleIndexParams : public IndexParams
+{
+ KDTreeSingleIndexParams(int leaf_max_size = 10, bool reorder = true, int dim = -1)
+ {
+ (*this)["algorithm"] = FLANN_INDEX_KDTREE_SINGLE;
+ (*this)["leaf_max_size"] = leaf_max_size;
+ (*this)["reorder"] = reorder;
+ (*this)["dim"] = dim;
+ }
+};
+
+
+/**
+ * Randomized kd-tree index
+ *
+ * Contains the k-d trees and other information for indexing a set of points
+ * for nearest-neighbor matching.
+ */
+template <typename Distance>
+class KDTreeSingleIndex : public NNIndex<Distance>
+{
+public:
+ typedef typename Distance::ElementType ElementType;
+ typedef typename Distance::ResultType DistanceType;
+
+
+ /**
+ * KDTree constructor
+ *
+ * Params:
+ * inputData = dataset with the input features
+ * params = parameters passed to the kdtree algorithm
+ */
+ KDTreeSingleIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeSingleIndexParams(),
+ Distance d = Distance() ) :
+ dataset_(inputData), index_params_(params), distance_(d)
+ {
+ size_ = dataset_.rows;
+ dim_ = dataset_.cols;
+ int dim_param = get_param(params,"dim",-1);
+ if (dim_param>0) dim_ = dim_param;
+ leaf_max_size_ = get_param(params,"leaf_max_size",10);
+ reorder_ = get_param(params,"reorder",true);
+
+ // Create a permutable array of indices to the input vectors.
+ vind_.resize(size_);
+ for (size_t i = 0; i < size_; i++) {
+ vind_[i] = (int)i;
+ }
+ }
+
+ KDTreeSingleIndex(const KDTreeSingleIndex&);
+ KDTreeSingleIndex& operator=(const KDTreeSingleIndex&);
+
+ /**
+ * Standard destructor
+ */
+ ~KDTreeSingleIndex()
+ {
+ if (reorder_) delete[] data_.data;
+ }
+
+ /**
+ * Builds the index
+ */
+ void buildIndex()
+ {
+ computeBoundingBox(root_bbox_);
+ root_node_ = divideTree(0, (int)size_, root_bbox_ ); // construct the tree
+
+ if (reorder_) {
+ delete[] data_.data;
+ data_ = cvflann::Matrix<ElementType>(new ElementType[size_*dim_], size_, dim_);
+ for (size_t i=0; i<size_; ++i) {
+ for (size_t j=0; j<dim_; ++j) {
+ data_[i][j] = dataset_[vind_[i]][j];
+ }
+ }
+ }
+ else {
+ data_ = dataset_;
+ }
+ }
+
+ flann_algorithm_t getType() const
+ {
+ return FLANN_INDEX_KDTREE_SINGLE;
+ }
+
+
+ void saveIndex(FILE* stream)
+ {
+ save_value(stream, size_);
+ save_value(stream, dim_);
+ save_value(stream, root_bbox_);
+ save_value(stream, reorder_);
+ save_value(stream, leaf_max_size_);
+ save_value(stream, vind_);
+ if (reorder_) {
+ save_value(stream, data_);
+ }
+ save_tree(stream, root_node_);
+ }
+
+
+ void loadIndex(FILE* stream)
+ {
+ load_value(stream, size_);
+ load_value(stream, dim_);
+ load_value(stream, root_bbox_);
+ load_value(stream, reorder_);
+ load_value(stream, leaf_max_size_);
+ load_value(stream, vind_);
+ if (reorder_) {
+ load_value(stream, data_);
+ }
+ else {
+ data_ = dataset_;
+ }
+ load_tree(stream, root_node_);
+
+
+ index_params_["algorithm"] = getType();
+ index_params_["leaf_max_size"] = leaf_max_size_;
+ index_params_["reorder"] = reorder_;
+ }
+
+ /**
+ * Returns size of index.
+ */
+ size_t size() const
+ {
+ return size_;
+ }
+
+ /**
+ * Returns the length of an index feature.
+ */
+ size_t veclen() const
+ {
+ return dim_;
+ }
+
+ /**
+ * Computes the inde memory usage
+ * Returns: memory used by the index
+ */
+ int usedMemory() const
+ {
+ return (int)(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int)); // pool memory and vind array memory
+ }
+
+
+ /**
+ * \brief Perform k-nearest neighbor search
+ * \param[in] queries The query points for which to find the nearest neighbors
+ * \param[out] indices The indices of the nearest neighbors found
+ * \param[out] dists Distances to the nearest neighbors found
+ * \param[in] knn Number of nearest neighbors to return
+ * \param[in] params Search parameters
+ */
+ void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
+ {
+ assert(queries.cols == veclen());
+ assert(indices.rows >= queries.rows);
+ assert(dists.rows >= queries.rows);
+ assert(int(indices.cols) >= knn);
+ assert(int(dists.cols) >= knn);
+
+ KNNSimpleResultSet<DistanceType> resultSet(knn);
+ for (size_t i = 0; i < queries.rows; i++) {
+ resultSet.init(indices[i], dists[i]);
+ findNeighbors(resultSet, queries[i], params);
+ }
+ }
+
+ IndexParams getParameters() const
+ {
+ return index_params_;
+ }
+
+ /**
+ * Find set of nearest neighbors to vec. Their indices are stored inside
+ * the result object.
+ *
+ * Params:
+ * result = the result object in which the indices of the nearest-neighbors are stored
+ * vec = the vector for which to search the nearest neighbors
+ * maxCheck = the maximum number of restarts (in a best-bin-first manner)
+ */
+ void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
+ {
+ float epsError = 1+get_param(searchParams,"eps",0.0f);
+
+ std::vector<DistanceType> dists(dim_,0);
+ DistanceType distsq = computeInitialDistances(vec, dists);
+ searchLevel(result, vec, root_node_, distsq, dists, epsError);
+ }
+
+private:
+
+
+ /*--------------------- Internal Data Structures --------------------------*/
+ struct Node
+ {
+ /**
+ * Indices of points in leaf node
+ */
+ int left, right;
+ /**
+ * Dimension used for subdivision.
+ */
+ int divfeat;
+ /**
+ * The values used for subdivision.
+ */
+ DistanceType divlow, divhigh;
+ /**
+ * The child nodes.
+ */
+ Node* child1, * child2;
+ };
+ typedef Node* NodePtr;
+
+
+ struct Interval
+ {
+ DistanceType low, high;
+ };
+
+ typedef std::vector<Interval> BoundingBox;
+
+ typedef BranchStruct<NodePtr, DistanceType> BranchSt;
+ typedef BranchSt* Branch;
+
+
+
+
+ void save_tree(FILE* stream, NodePtr tree)
+ {
+ save_value(stream, *tree);
+ if (tree->child1!=NULL) {
+ save_tree(stream, tree->child1);
+ }
+ if (tree->child2!=NULL) {
+ save_tree(stream, tree->child2);
+ }
+ }
+
+
+ void load_tree(FILE* stream, NodePtr& tree)
+ {
+ tree = pool_.allocate<Node>();
+ load_value(stream, *tree);
+ if (tree->child1!=NULL) {
+ load_tree(stream, tree->child1);
+ }
+ if (tree->child2!=NULL) {
+ load_tree(stream, tree->child2);
+ }
+ }
+
+
+ void computeBoundingBox(BoundingBox& bbox)
+ {
+ bbox.resize(dim_);
+ for (size_t i=0; i<dim_; ++i) {
+ bbox[i].low = (DistanceType)dataset_[0][i];
+ bbox[i].high = (DistanceType)dataset_[0][i];
+ }
+ for (size_t k=1; k<dataset_.rows; ++k) {
+ for (size_t i=0; i<dim_; ++i) {
+ if (dataset_[k][i]<bbox[i].low) bbox[i].low = (DistanceType)dataset_[k][i];
+ if (dataset_[k][i]>bbox[i].high) bbox[i].high = (DistanceType)dataset_[k][i];
+ }
+ }
+ }
+
+
+ /**
+ * Create a tree node that subdivides the list of vecs from vind[first]
+ * to vind[last]. The routine is called recursively on each sublist.
+ * Place a pointer to this new tree node in the location pTree.
+ *
+ * Params: pTree = the new node to create
+ * first = index of the first vector
+ * last = index of the last vector
+ */
+ NodePtr divideTree(int left, int right, BoundingBox& bbox)
+ {
+ NodePtr node = pool_.allocate<Node>(); // allocate memory
+
+ /* If too few exemplars remain, then make this a leaf node. */
+ if ( (right-left) <= leaf_max_size_) {
+ node->child1 = node->child2 = NULL; /* Mark as leaf node. */
+ node->left = left;
+ node->right = right;
+
+ // compute bounding-box of leaf points
+ for (size_t i=0; i<dim_; ++i) {
+ bbox[i].low = (DistanceType)dataset_[vind_[left]][i];
+ bbox[i].high = (DistanceType)dataset_[vind_[left]][i];
+ }
+ for (int k=left+1; k<right; ++k) {
+ for (size_t i=0; i<dim_; ++i) {
+ if (bbox[i].low>dataset_[vind_[k]][i]) bbox[i].low=(DistanceType)dataset_[vind_[k]][i];
+ if (bbox[i].high<dataset_[vind_[k]][i]) bbox[i].high=(DistanceType)dataset_[vind_[k]][i];
+ }
+ }
+ }
+ else {
+ int idx;
+ int cutfeat;
+ DistanceType cutval;
+ middleSplit_(&vind_[0]+left, right-left, idx, cutfeat, cutval, bbox);
+
+ node->divfeat = cutfeat;
+
+ BoundingBox left_bbox(bbox);
+ left_bbox[cutfeat].high = cutval;
+ node->child1 = divideTree(left, left+idx, left_bbox);
+
+ BoundingBox right_bbox(bbox);
+ right_bbox[cutfeat].low = cutval;
+ node->child2 = divideTree(left+idx, right, right_bbox);
+
+ node->divlow = left_bbox[cutfeat].high;
+ node->divhigh = right_bbox[cutfeat].low;
+
+ for (size_t i=0; i<dim_; ++i) {
+ bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low);
+ bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high);
+ }
+ }
+
+ return node;
+ }
+
+ void computeMinMax(int* ind, int count, int dim, ElementType& min_elem, ElementType& max_elem)
+ {
+ min_elem = dataset_[ind[0]][dim];
+ max_elem = dataset_[ind[0]][dim];
+ for (int i=1; i<count; ++i) {
+ ElementType val = dataset_[ind[i]][dim];
+ if (val<min_elem) min_elem = val;
+ if (val>max_elem) max_elem = val;
+ }
+ }
+
+ void middleSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
+ {
+ // find the largest span from the approximate bounding box
+ ElementType max_span = bbox[0].high-bbox[0].low;
+ cutfeat = 0;
+ cutval = (bbox[0].high+bbox[0].low)/2;
+ for (size_t i=1; i<dim_; ++i) {
+ ElementType span = bbox[i].high-bbox[i].low;
+ if (span>max_span) {
+ max_span = span;
+ cutfeat = i;
+ cutval = (bbox[i].high+bbox[i].low)/2;
+ }
+ }
+
+ // compute exact span on the found dimension
+ ElementType min_elem, max_elem;
+ computeMinMax(ind, count, cutfeat, min_elem, max_elem);
+ cutval = (min_elem+max_elem)/2;
+ max_span = max_elem - min_elem;
+
+ // check if a dimension of a largest span exists
+ size_t k = cutfeat;
+ for (size_t i=0; i<dim_; ++i) {
+ if (i==k) continue;
+ ElementType span = bbox[i].high-bbox[i].low;
+ if (span>max_span) {
+ computeMinMax(ind, count, i, min_elem, max_elem);
+ span = max_elem - min_elem;
+ if (span>max_span) {
+ max_span = span;
+ cutfeat = i;
+ cutval = (min_elem+max_elem)/2;
+ }
+ }
+ }
+ int lim1, lim2;
+ planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
+
+ if (lim1>count/2) index = lim1;
+ else if (lim2<count/2) index = lim2;
+ else index = count/2;
+ }
+
+
+ void middleSplit_(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
+ {
+ const float EPS=0.00001f;
+ DistanceType max_span = bbox[0].high-bbox[0].low;
+ for (size_t i=1; i<dim_; ++i) {
+ DistanceType span = bbox[i].high-bbox[i].low;
+ if (span>max_span) {
+ max_span = span;
+ }
+ }
+ DistanceType max_spread = -1;
+ cutfeat = 0;
+ for (size_t i=0; i<dim_; ++i) {
+ DistanceType span = bbox[i].high-bbox[i].low;
+ if (span>(DistanceType)((1-EPS)*max_span)) {
+ ElementType min_elem, max_elem;
+ computeMinMax(ind, count, cutfeat, min_elem, max_elem);
+ DistanceType spread = (DistanceType)(max_elem-min_elem);
+ if (spread>max_spread) {
+ cutfeat = (int)i;
+ max_spread = spread;
+ }
+ }
+ }
+ // split in the middle
+ DistanceType split_val = (bbox[cutfeat].low+bbox[cutfeat].high)/2;
+ ElementType min_elem, max_elem;
+ computeMinMax(ind, count, cutfeat, min_elem, max_elem);
+
+ if (split_val<min_elem) cutval = (DistanceType)min_elem;
+ else if (split_val>max_elem) cutval = (DistanceType)max_elem;
+ else cutval = split_val;
+
+ int lim1, lim2;
+ planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
+
+ if (lim1>count/2) index = lim1;
+ else if (lim2<count/2) index = lim2;
+ else index = count/2;
+ }
+
+
+ /**
+ * Subdivide the list of points by a plane perpendicular on axe corresponding
+ * to the 'cutfeat' dimension at 'cutval' position.
+ *
+ * On return:
+ * dataset[ind[0..lim1-1]][cutfeat]<cutval
+ * dataset[ind[lim1..lim2-1]][cutfeat]==cutval
+ * dataset[ind[lim2..count]][cutfeat]>cutval
+ */
+ void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
+ {
+ /* Move vector indices for left subtree to front of list. */
+ int left = 0;
+ int right = count-1;
+ for (;; ) {
+ while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
+ while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
+ if (left>right) break;
+ std::swap(ind[left], ind[right]); ++left; --right;
+ }
+ /* If either list is empty, it means that all remaining features
+ * are identical. Split in the middle to maintain a balanced tree.
+ */
+ lim1 = left;
+ right = count-1;
+ for (;; ) {
+ while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
+ while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
+ if (left>right) break;
+ std::swap(ind[left], ind[right]); ++left; --right;
+ }
+ lim2 = left;
+ }
+
+ DistanceType computeInitialDistances(const ElementType* vec, std::vector<DistanceType>& dists)
+ {
+ DistanceType distsq = 0.0;
+
+ for (size_t i = 0; i < dim_; ++i) {
+ if (vec[i] < root_bbox_[i].low) {
+ dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].low, (int)i);
+ distsq += dists[i];
+ }
+ if (vec[i] > root_bbox_[i].high) {
+ dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].high, (int)i);
+ distsq += dists[i];
+ }
+ }
+
+ return distsq;
+ }
+
+ /**
+ * Performs an exact search in the tree starting from a node.
+ */
+ void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq,
+ std::vector<DistanceType>& dists, const float epsError)
+ {
+ /* If this is a leaf node, then do check and return. */
+ if ((node->child1 == NULL)&&(node->child2 == NULL)) {
+ DistanceType worst_dist = result_set.worstDist();
+ for (int i=node->left; i<node->right; ++i) {
+ int index = reorder_ ? i : vind_[i];
+ DistanceType dist = distance_(vec, data_[index], dim_, worst_dist);
+ if (dist<worst_dist) {
+ result_set.addPoint(dist,vind_[i]);
+ }
+ }
+ return;
+ }
+
+ /* Which child branch should be taken first? */
+ int idx = node->divfeat;
+ ElementType val = vec[idx];
+ DistanceType diff1 = val - node->divlow;
+ DistanceType diff2 = val - node->divhigh;
+
+ NodePtr bestChild;
+ NodePtr otherChild;
+ DistanceType cut_dist;
+ if ((diff1+diff2)<0) {
+ bestChild = node->child1;
+ otherChild = node->child2;
+ cut_dist = distance_.accum_dist(val, node->divhigh, idx);
+ }
+ else {
+ bestChild = node->child2;
+ otherChild = node->child1;
+ cut_dist = distance_.accum_dist( val, node->divlow, idx);
+ }
+
+ /* Call recursively to search next level down. */
+ searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError);
+
+ DistanceType dst = dists[idx];
+ mindistsq = mindistsq + cut_dist - dst;
+ dists[idx] = cut_dist;
+ if (mindistsq*epsError<=result_set.worstDist()) {
+ searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError);
+ }
+ dists[idx] = dst;
+ }
+
+private:
+
+ /**
+ * The dataset used by this index
+ */
+ const Matrix<ElementType> dataset_;
+
+ IndexParams index_params_;
+
+ int leaf_max_size_;
+ bool reorder_;
+
+
+ /**
+ * Array of indices to vectors in the dataset.
+ */
+ std::vector<int> vind_;
+
+ Matrix<ElementType> data_;
+
+ size_t size_;
+ size_t dim_;
+
+ /**
+ * Array of k-d trees used to find neighbours.
+ */
+ NodePtr root_node_;
+
+ BoundingBox root_bbox_;
+
+ /**
+ * Pooled memory allocator.
+ *
+ * Using a pooled memory allocator is more efficient
+ * than allocating memory directly when there is a large
+ * number small of memory allocations.
+ */
+ PooledAllocator pool_;
+
+ Distance distance_;
+}; // class KDTree
+
+}
+
+#endif //OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
diff --git a/thirdparty/linux/include/opencv2/flann/kmeans_index.h b/thirdparty/linux/include/opencv2/flann/kmeans_index.h
new file mode 100644
index 0000000..98ad0c8
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/kmeans_index.h
@@ -0,0 +1,1171 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_KMEANS_INDEX_H_
+#define OPENCV_FLANN_KMEANS_INDEX_H_
+
+#include <algorithm>
+#include <map>
+#include <cassert>
+#include <limits>
+#include <cmath>
+
+#include "general.h"
+#include "nn_index.h"
+#include "dist.h"
+#include "matrix.h"
+#include "result_set.h"
+#include "heap.h"
+#include "allocator.h"
+#include "random.h"
+#include "saving.h"
+#include "logger.h"
+
+
+namespace cvflann
+{
+
+struct KMeansIndexParams : public IndexParams
+{
+ KMeansIndexParams(int branching = 32, int iterations = 11,
+ flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 )
+ {
+ (*this)["algorithm"] = FLANN_INDEX_KMEANS;
+ // branching factor
+ (*this)["branching"] = branching;
+ // max iterations to perform in one kmeans clustering (kmeans tree)
+ (*this)["iterations"] = iterations;
+ // algorithm used for picking the initial cluster centers for kmeans tree
+ (*this)["centers_init"] = centers_init;
+ // cluster boundary index. Used when searching the kmeans tree
+ (*this)["cb_index"] = cb_index;
+ }
+};
+
+
+/**
+ * Hierarchical kmeans index
+ *
+ * Contains a tree constructed through a hierarchical kmeans clustering
+ * and other information for indexing a set of points for nearest-neighbour matching.
+ */
+template <typename Distance>
+class KMeansIndex : public NNIndex<Distance>
+{
+public:
+ typedef typename Distance::ElementType ElementType;
+ typedef typename Distance::ResultType DistanceType;
+
+
+
+ typedef void (KMeansIndex::* centersAlgFunction)(int, int*, int, int*, int&);
+
+ /**
+ * The function used for choosing the cluster centers.
+ */
+ centersAlgFunction chooseCenters;
+
+
+
+ /**
+ * Chooses the initial centers in the k-means clustering in a random manner.
+ *
+ * Params:
+ * k = number of centers
+ * vecs = the dataset of points
+ * indices = indices in the dataset
+ * indices_length = length of indices vector
+ *
+ */
+ void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length)
+ {
+ UniqueRandom r(indices_length);
+
+ int index;
+ for (index=0; index<k; ++index) {
+ bool duplicate = true;
+ int rnd;
+ while (duplicate) {
+ duplicate = false;
+ rnd = r.next();
+ if (rnd<0) {
+ centers_length = index;
+ return;
+ }
+
+ centers[index] = indices[rnd];
+
+ for (int j=0; j<index; ++j) {
+ DistanceType sq = distance_(dataset_[centers[index]], dataset_[centers[j]], dataset_.cols);
+ if (sq<1e-16) {
+ duplicate = true;
+ }
+ }
+ }
+ }
+
+ centers_length = index;
+ }
+
+
+ /**
+ * Chooses the initial centers in the k-means using Gonzales' algorithm
+ * so that the centers are spaced apart from each other.
+ *
+ * Params:
+ * k = number of centers
+ * vecs = the dataset of points
+ * indices = indices in the dataset
+ * Returns:
+ */
+ void chooseCentersGonzales(int k, int* indices, int indices_length, int* centers, int& centers_length)
+ {
+ int n = indices_length;
+
+ int rnd = rand_int(n);
+ assert(rnd >=0 && rnd < n);
+
+ centers[0] = indices[rnd];
+
+ int index;
+ for (index=1; index<k; ++index) {
+
+ int best_index = -1;
+ DistanceType best_val = 0;
+ for (int j=0; j<n; ++j) {
+ DistanceType dist = distance_(dataset_[centers[0]],dataset_[indices[j]],dataset_.cols);
+ for (int i=1; i<index; ++i) {
+ DistanceType tmp_dist = distance_(dataset_[centers[i]],dataset_[indices[j]],dataset_.cols);
+ if (tmp_dist<dist) {
+ dist = tmp_dist;
+ }
+ }
+ if (dist>best_val) {
+ best_val = dist;
+ best_index = j;
+ }
+ }
+ if (best_index!=-1) {
+ centers[index] = indices[best_index];
+ }
+ else {
+ break;
+ }
+ }
+ centers_length = index;
+ }
+
+
+ /**
+ * Chooses the initial centers in the k-means using the algorithm
+ * proposed in the KMeans++ paper:
+ * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
+ *
+ * Implementation of this function was converted from the one provided in Arthur's code.
+ *
+ * Params:
+ * k = number of centers
+ * vecs = the dataset of points
+ * indices = indices in the dataset
+ * Returns:
+ */
+ void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length)
+ {
+ int n = indices_length;
+
+ double currentPot = 0;
+ DistanceType* closestDistSq = new DistanceType[n];
+
+ // Choose one random center and set the closestDistSq values
+ int index = rand_int(n);
+ assert(index >=0 && index < n);
+ centers[0] = indices[index];
+
+ for (int i = 0; i < n; i++) {
+ closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
+ closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
+ currentPot += closestDistSq[i];
+ }
+
+
+ const int numLocalTries = 1;
+
+ // Choose each center
+ int centerCount;
+ for (centerCount = 1; centerCount < k; centerCount++) {
+
+ // Repeat several trials
+ double bestNewPot = -1;
+ int bestNewIndex = -1;
+ for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
+
+ // Choose our center - have to be slightly careful to return a valid answer even accounting
+ // for possible rounding errors
+ double randVal = rand_double(currentPot);
+ for (index = 0; index < n-1; index++) {
+ if (randVal <= closestDistSq[index]) break;
+ else randVal -= closestDistSq[index];
+ }
+
+ // Compute the new potential
+ double newPot = 0;
+ for (int i = 0; i < n; i++) {
+ DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
+ newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
+ }
+
+ // Store the best result
+ if ((bestNewPot < 0)||(newPot < bestNewPot)) {
+ bestNewPot = newPot;
+ bestNewIndex = index;
+ }
+ }
+
+ // Add the appropriate center
+ centers[centerCount] = indices[bestNewIndex];
+ currentPot = bestNewPot;
+ for (int i = 0; i < n; i++) {
+ DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols);
+ closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
+ }
+ }
+
+ centers_length = centerCount;
+
+ delete[] closestDistSq;
+ }
+
+
+
+public:
+
+ flann_algorithm_t getType() const
+ {
+ return FLANN_INDEX_KMEANS;
+ }
+
+ class KMeansDistanceComputer : public cv::ParallelLoopBody
+ {
+ public:
+ KMeansDistanceComputer(Distance _distance, const Matrix<ElementType>& _dataset,
+ const int _branching, const int* _indices, const Matrix<double>& _dcenters, const size_t _veclen,
+ int* _count, int* _belongs_to, std::vector<DistanceType>& _radiuses, bool& _converged, cv::Mutex& _mtx)
+ : distance(_distance)
+ , dataset(_dataset)
+ , branching(_branching)
+ , indices(_indices)
+ , dcenters(_dcenters)
+ , veclen(_veclen)
+ , count(_count)
+ , belongs_to(_belongs_to)
+ , radiuses(_radiuses)
+ , converged(_converged)
+ , mtx(_mtx)
+ {
+ }
+
+ void operator()(const cv::Range& range) const
+ {
+ const int begin = range.start;
+ const int end = range.end;
+
+ for( int i = begin; i<end; ++i)
+ {
+ DistanceType sq_dist = distance(dataset[indices[i]], dcenters[0], veclen);
+ int new_centroid = 0;
+ for (int j=1; j<branching; ++j) {
+ DistanceType new_sq_dist = distance(dataset[indices[i]], dcenters[j], veclen);
+ if (sq_dist>new_sq_dist) {
+ new_centroid = j;
+ sq_dist = new_sq_dist;
+ }
+ }
+ if (sq_dist > radiuses[new_centroid]) {
+ radiuses[new_centroid] = sq_dist;
+ }
+ if (new_centroid != belongs_to[i]) {
+ count[belongs_to[i]]--;
+ count[new_centroid]++;
+ belongs_to[i] = new_centroid;
+ mtx.lock();
+ converged = false;
+ mtx.unlock();
+ }
+ }
+ }
+
+ private:
+ Distance distance;
+ const Matrix<ElementType>& dataset;
+ const int branching;
+ const int* indices;
+ const Matrix<double>& dcenters;
+ const size_t veclen;
+ int* count;
+ int* belongs_to;
+ std::vector<DistanceType>& radiuses;
+ bool& converged;
+ cv::Mutex& mtx;
+ KMeansDistanceComputer& operator=( const KMeansDistanceComputer & ) { return *this; }
+ };
+
+ /**
+ * Index constructor
+ *
+ * Params:
+ * inputData = dataset with the input features
+ * params = parameters passed to the hierarchical k-means algorithm
+ */
+ KMeansIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(),
+ Distance d = Distance())
+ : dataset_(inputData), index_params_(params), root_(NULL), indices_(NULL), distance_(d)
+ {
+ memoryCounter_ = 0;
+
+ size_ = dataset_.rows;
+ veclen_ = dataset_.cols;
+
+ branching_ = get_param(params,"branching",32);
+ iterations_ = get_param(params,"iterations",11);
+ if (iterations_<0) {
+ iterations_ = (std::numeric_limits<int>::max)();
+ }
+ centers_init_ = get_param(params,"centers_init",FLANN_CENTERS_RANDOM);
+
+ if (centers_init_==FLANN_CENTERS_RANDOM) {
+ chooseCenters = &KMeansIndex::chooseCentersRandom;
+ }
+ else if (centers_init_==FLANN_CENTERS_GONZALES) {
+ chooseCenters = &KMeansIndex::chooseCentersGonzales;
+ }
+ else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
+ chooseCenters = &KMeansIndex::chooseCentersKMeanspp;
+ }
+ else {
+ throw FLANNException("Unknown algorithm for choosing initial centers.");
+ }
+ cb_index_ = 0.4f;
+
+ }
+
+
+ KMeansIndex(const KMeansIndex&);
+ KMeansIndex& operator=(const KMeansIndex&);
+
+
+ /**
+ * Index destructor.
+ *
+ * Release the memory used by the index.
+ */
+ virtual ~KMeansIndex()
+ {
+ if (root_ != NULL) {
+ free_centers(root_);
+ }
+ if (indices_!=NULL) {
+ delete[] indices_;
+ }
+ }
+
+ /**
+ * Returns size of index.
+ */
+ size_t size() const
+ {
+ return size_;
+ }
+
+ /**
+ * Returns the length of an index feature.
+ */
+ size_t veclen() const
+ {
+ return veclen_;
+ }
+
+
+ void set_cb_index( float index)
+ {
+ cb_index_ = index;
+ }
+
+ /**
+ * Computes the inde memory usage
+ * Returns: memory used by the index
+ */
+ int usedMemory() const
+ {
+ return pool_.usedMemory+pool_.wastedMemory+memoryCounter_;
+ }
+
+ /**
+ * Builds the index
+ */
+ void buildIndex()
+ {
+ if (branching_<2) {
+ throw FLANNException("Branching factor must be at least 2");
+ }
+
+ indices_ = new int[size_];
+ for (size_t i=0; i<size_; ++i) {
+ indices_[i] = int(i);
+ }
+
+ root_ = pool_.allocate<KMeansNode>();
+ std::memset(root_, 0, sizeof(KMeansNode));
+
+ computeNodeStatistics(root_, indices_, (int)size_);
+ computeClustering(root_, indices_, (int)size_, branching_,0);
+ }
+
+
+ void saveIndex(FILE* stream)
+ {
+ save_value(stream, branching_);
+ save_value(stream, iterations_);
+ save_value(stream, memoryCounter_);
+ save_value(stream, cb_index_);
+ save_value(stream, *indices_, (int)size_);
+
+ save_tree(stream, root_);
+ }
+
+
+ void loadIndex(FILE* stream)
+ {
+ load_value(stream, branching_);
+ load_value(stream, iterations_);
+ load_value(stream, memoryCounter_);
+ load_value(stream, cb_index_);
+ if (indices_!=NULL) {
+ delete[] indices_;
+ }
+ indices_ = new int[size_];
+ load_value(stream, *indices_, size_);
+
+ if (root_!=NULL) {
+ free_centers(root_);
+ }
+ load_tree(stream, root_);
+
+ index_params_["algorithm"] = getType();
+ index_params_["branching"] = branching_;
+ index_params_["iterations"] = iterations_;
+ index_params_["centers_init"] = centers_init_;
+ index_params_["cb_index"] = cb_index_;
+
+ }
+
+
+ /**
+ * Find set of nearest neighbors to vec. Their indices are stored inside
+ * the result object.
+ *
+ * Params:
+ * result = the result object in which the indices of the nearest-neighbors are stored
+ * vec = the vector for which to search the nearest neighbors
+ * searchParams = parameters that influence the search algorithm (checks, cb_index)
+ */
+ void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
+ {
+
+ int maxChecks = get_param(searchParams,"checks",32);
+
+ if (maxChecks==FLANN_CHECKS_UNLIMITED) {
+ findExactNN(root_, result, vec);
+ }
+ else {
+ // Priority queue storing intermediate branches in the best-bin-first search
+ Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
+
+ int checks = 0;
+ findNN(root_, result, vec, checks, maxChecks, heap);
+
+ BranchSt branch;
+ while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
+ KMeansNodePtr node = branch.node;
+ findNN(node, result, vec, checks, maxChecks, heap);
+ }
+ assert(result.full());
+
+ delete heap;
+ }
+
+ }
+
+ /**
+ * Clustering function that takes a cut in the hierarchical k-means
+ * tree and return the clusters centers of that clustering.
+ * Params:
+ * numClusters = number of clusters to have in the clustering computed
+ * Returns: number of cluster centers
+ */
+ int getClusterCenters(Matrix<DistanceType>& centers)
+ {
+ int numClusters = centers.rows;
+ if (numClusters<1) {
+ throw FLANNException("Number of clusters must be at least 1");
+ }
+
+ DistanceType variance;
+ KMeansNodePtr* clusters = new KMeansNodePtr[numClusters];
+
+ int clusterCount = getMinVarianceClusters(root_, clusters, numClusters, variance);
+
+ Logger::info("Clusters requested: %d, returning %d\n",numClusters, clusterCount);
+
+ for (int i=0; i<clusterCount; ++i) {
+ DistanceType* center = clusters[i]->pivot;
+ for (size_t j=0; j<veclen_; ++j) {
+ centers[i][j] = center[j];
+ }
+ }
+ delete[] clusters;
+
+ return clusterCount;
+ }
+
+ IndexParams getParameters() const
+ {
+ return index_params_;
+ }
+
+
+private:
+ /**
+ * Struture representing a node in the hierarchical k-means tree.
+ */
+ struct KMeansNode
+ {
+ /**
+ * The cluster center.
+ */
+ DistanceType* pivot;
+ /**
+ * The cluster radius.
+ */
+ DistanceType radius;
+ /**
+ * The cluster mean radius.
+ */
+ DistanceType mean_radius;
+ /**
+ * The cluster variance.
+ */
+ DistanceType variance;
+ /**
+ * The cluster size (number of points in the cluster)
+ */
+ int size;
+ /**
+ * Child nodes (only for non-terminal nodes)
+ */
+ KMeansNode** childs;
+ /**
+ * Node points (only for terminal nodes)
+ */
+ int* indices;
+ /**
+ * Level
+ */
+ int level;
+ };
+ typedef KMeansNode* KMeansNodePtr;
+
+ /**
+ * Alias definition for a nicer syntax.
+ */
+ typedef BranchStruct<KMeansNodePtr, DistanceType> BranchSt;
+
+
+
+
+ void save_tree(FILE* stream, KMeansNodePtr node)
+ {
+ save_value(stream, *node);
+ save_value(stream, *(node->pivot), (int)veclen_);
+ if (node->childs==NULL) {
+ int indices_offset = (int)(node->indices - indices_);
+ save_value(stream, indices_offset);
+ }
+ else {
+ for(int i=0; i<branching_; ++i) {
+ save_tree(stream, node->childs[i]);
+ }
+ }
+ }
+
+
+ void load_tree(FILE* stream, KMeansNodePtr& node)
+ {
+ node = pool_.allocate<KMeansNode>();
+ load_value(stream, *node);
+ node->pivot = new DistanceType[veclen_];
+ load_value(stream, *(node->pivot), (int)veclen_);
+ if (node->childs==NULL) {
+ int indices_offset;
+ load_value(stream, indices_offset);
+ node->indices = indices_ + indices_offset;
+ }
+ else {
+ node->childs = pool_.allocate<KMeansNodePtr>(branching_);
+ for(int i=0; i<branching_; ++i) {
+ load_tree(stream, node->childs[i]);
+ }
+ }
+ }
+
+
+ /**
+ * Helper function
+ */
+ void free_centers(KMeansNodePtr node)
+ {
+ delete[] node->pivot;
+ if (node->childs!=NULL) {
+ for (int k=0; k<branching_; ++k) {
+ free_centers(node->childs[k]);
+ }
+ }
+ }
+
+ /**
+ * Computes the statistics of a node (mean, radius, variance).
+ *
+ * Params:
+ * node = the node to use
+ * indices = the indices of the points belonging to the node
+ */
+ void computeNodeStatistics(KMeansNodePtr node, int* indices, int indices_length)
+ {
+
+ DistanceType radius = 0;
+ DistanceType variance = 0;
+ DistanceType* mean = new DistanceType[veclen_];
+ memoryCounter_ += int(veclen_*sizeof(DistanceType));
+
+ memset(mean,0,veclen_*sizeof(DistanceType));
+
+ for (size_t i=0; i<size_; ++i) {
+ ElementType* vec = dataset_[indices[i]];
+ for (size_t j=0; j<veclen_; ++j) {
+ mean[j] += vec[j];
+ }
+ variance += distance_(vec, ZeroIterator<ElementType>(), veclen_);
+ }
+ for (size_t j=0; j<veclen_; ++j) {
+ mean[j] /= size_;
+ }
+ variance /= size_;
+ variance -= distance_(mean, ZeroIterator<ElementType>(), veclen_);
+
+ DistanceType tmp = 0;
+ for (int i=0; i<indices_length; ++i) {
+ tmp = distance_(mean, dataset_[indices[i]], veclen_);
+ if (tmp>radius) {
+ radius = tmp;
+ }
+ }
+
+ node->variance = variance;
+ node->radius = radius;
+ node->pivot = mean;
+ }
+
+
+ /**
+ * The method responsible with actually doing the recursive hierarchical
+ * clustering
+ *
+ * Params:
+ * node = the node to cluster
+ * indices = indices of the points belonging to the current node
+ * branching = the branching factor to use in the clustering
+ *
+ * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
+ */
+ void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level)
+ {
+ node->size = indices_length;
+ node->level = level;
+
+ if (indices_length < branching) {
+ node->indices = indices;
+ std::sort(node->indices,node->indices+indices_length);
+ node->childs = NULL;
+ return;
+ }
+
+ cv::AutoBuffer<int> centers_idx_buf(branching);
+ int* centers_idx = (int*)centers_idx_buf;
+ int centers_length;
+ (this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length);
+
+ if (centers_length<branching) {
+ node->indices = indices;
+ std::sort(node->indices,node->indices+indices_length);
+ node->childs = NULL;
+ return;
+ }
+
+
+ cv::AutoBuffer<double> dcenters_buf(branching*veclen_);
+ Matrix<double> dcenters((double*)dcenters_buf,branching,veclen_);
+ for (int i=0; i<centers_length; ++i) {
+ ElementType* vec = dataset_[centers_idx[i]];
+ for (size_t k=0; k<veclen_; ++k) {
+ dcenters[i][k] = double(vec[k]);
+ }
+ }
+
+ std::vector<DistanceType> radiuses(branching);
+ cv::AutoBuffer<int> count_buf(branching);
+ int* count = (int*)count_buf;
+ for (int i=0; i<branching; ++i) {
+ radiuses[i] = 0;
+ count[i] = 0;
+ }
+
+ // assign points to clusters
+ cv::AutoBuffer<int> belongs_to_buf(indices_length);
+ int* belongs_to = (int*)belongs_to_buf;
+ for (int i=0; i<indices_length; ++i) {
+
+ DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_);
+ belongs_to[i] = 0;
+ for (int j=1; j<branching; ++j) {
+ DistanceType new_sq_dist = distance_(dataset_[indices[i]], dcenters[j], veclen_);
+ if (sq_dist>new_sq_dist) {
+ belongs_to[i] = j;
+ sq_dist = new_sq_dist;
+ }
+ }
+ if (sq_dist>radiuses[belongs_to[i]]) {
+ radiuses[belongs_to[i]] = sq_dist;
+ }
+ count[belongs_to[i]]++;
+ }
+
+ bool converged = false;
+ int iteration = 0;
+ while (!converged && iteration<iterations_) {
+ converged = true;
+ iteration++;
+
+ // compute the new cluster centers
+ for (int i=0; i<branching; ++i) {
+ memset(dcenters[i],0,sizeof(double)*veclen_);
+ radiuses[i] = 0;
+ }
+ for (int i=0; i<indices_length; ++i) {
+ ElementType* vec = dataset_[indices[i]];
+ double* center = dcenters[belongs_to[i]];
+ for (size_t k=0; k<veclen_; ++k) {
+ center[k] += vec[k];
+ }
+ }
+ for (int i=0; i<branching; ++i) {
+ int cnt = count[i];
+ for (size_t k=0; k<veclen_; ++k) {
+ dcenters[i][k] /= cnt;
+ }
+ }
+
+ // reassign points to clusters
+ cv::Mutex mtx;
+ KMeansDistanceComputer invoker(distance_, dataset_, branching, indices, dcenters, veclen_, count, belongs_to, radiuses, converged, mtx);
+ parallel_for_(cv::Range(0, (int)indices_length), invoker);
+
+ for (int i=0; i<branching; ++i) {
+ // if one cluster converges to an empty cluster,
+ // move an element into that cluster
+ if (count[i]==0) {
+ int j = (i+1)%branching;
+ while (count[j]<=1) {
+ j = (j+1)%branching;
+ }
+
+ for (int k=0; k<indices_length; ++k) {
+ if (belongs_to[k]==j) {
+ // for cluster j, we move the furthest element from the center to the empty cluster i
+ if ( distance_(dataset_[indices[k]], dcenters[j], veclen_) == radiuses[j] ) {
+ belongs_to[k] = i;
+ count[j]--;
+ count[i]++;
+ break;
+ }
+ }
+ }
+ converged = false;
+ }
+ }
+
+ }
+
+ DistanceType** centers = new DistanceType*[branching];
+
+ for (int i=0; i<branching; ++i) {
+ centers[i] = new DistanceType[veclen_];
+ memoryCounter_ += (int)(veclen_*sizeof(DistanceType));
+ for (size_t k=0; k<veclen_; ++k) {
+ centers[i][k] = (DistanceType)dcenters[i][k];
+ }
+ }
+
+
+ // compute kmeans clustering for each of the resulting clusters
+ node->childs = pool_.allocate<KMeansNodePtr>(branching);
+ int start = 0;
+ int end = start;
+ for (int c=0; c<branching; ++c) {
+ int s = count[c];
+
+ DistanceType variance = 0;
+ DistanceType mean_radius =0;
+ for (int i=0; i<indices_length; ++i) {
+ if (belongs_to[i]==c) {
+ DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_);
+ variance += d;
+ mean_radius += sqrt(d);
+ std::swap(indices[i],indices[end]);
+ std::swap(belongs_to[i],belongs_to[end]);
+ end++;
+ }
+ }
+ variance /= s;
+ mean_radius /= s;
+ variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_);
+
+ node->childs[c] = pool_.allocate<KMeansNode>();
+ std::memset(node->childs[c], 0, sizeof(KMeansNode));
+ node->childs[c]->radius = radiuses[c];
+ node->childs[c]->pivot = centers[c];
+ node->childs[c]->variance = variance;
+ node->childs[c]->mean_radius = mean_radius;
+ computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
+ start=end;
+ }
+
+ delete[] centers;
+ }
+
+
+
+ /**
+ * Performs one descent in the hierarchical k-means tree. The branches not
+ * visited are stored in a priority queue.
+ *
+ * Params:
+ * node = node to explore
+ * result = container for the k-nearest neighbors found
+ * vec = query points
+ * checks = how many points in the dataset have been checked so far
+ * maxChecks = maximum dataset points to checks
+ */
+
+
+ void findNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
+ Heap<BranchSt>* heap)
+ {
+ // Ignore those clusters that are too far away
+ {
+ DistanceType bsq = distance_(vec, node->pivot, veclen_);
+ DistanceType rsq = node->radius;
+ DistanceType wsq = result.worstDist();
+
+ DistanceType val = bsq-rsq-wsq;
+ DistanceType val2 = val*val-4*rsq*wsq;
+
+ //if (val>0) {
+ if ((val>0)&&(val2>0)) {
+ return;
+ }
+ }
+
+ if (node->childs==NULL) {
+ if (checks>=maxChecks) {
+ if (result.full()) return;
+ }
+ checks += node->size;
+ for (int i=0; i<node->size; ++i) {
+ int index = node->indices[i];
+ DistanceType dist = distance_(dataset_[index], vec, veclen_);
+ result.addPoint(dist, index);
+ }
+ }
+ else {
+ DistanceType* domain_distances = new DistanceType[branching_];
+ int closest_center = exploreNodeBranches(node, vec, domain_distances, heap);
+ delete[] domain_distances;
+ findNN(node->childs[closest_center],result,vec, checks, maxChecks, heap);
+ }
+ }
+
+ /**
+ * Helper function that computes the nearest childs of a node to a given query point.
+ * Params:
+ * node = the node
+ * q = the query point
+ * distances = array with the distances to each child node.
+ * Returns:
+ */
+ int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, Heap<BranchSt>* heap)
+ {
+
+ int best_index = 0;
+ domain_distances[best_index] = distance_(q, node->childs[best_index]->pivot, veclen_);
+ for (int i=1; i<branching_; ++i) {
+ domain_distances[i] = distance_(q, node->childs[i]->pivot, veclen_);
+ if (domain_distances[i]<domain_distances[best_index]) {
+ best_index = i;
+ }
+ }
+
+ // float* best_center = node->childs[best_index]->pivot;
+ for (int i=0; i<branching_; ++i) {
+ if (i != best_index) {
+ domain_distances[i] -= cb_index_*node->childs[i]->variance;
+
+ // float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q);
+ // if (domain_distances[i]<dist_to_border) {
+ // domain_distances[i] = dist_to_border;
+ // }
+ heap->insert(BranchSt(node->childs[i],domain_distances[i]));
+ }
+ }
+
+ return best_index;
+ }
+
+
+ /**
+ * Function the performs exact nearest neighbor search by traversing the entire tree.
+ */
+ void findExactNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec)
+ {
+ // Ignore those clusters that are too far away
+ {
+ DistanceType bsq = distance_(vec, node->pivot, veclen_);
+ DistanceType rsq = node->radius;
+ DistanceType wsq = result.worstDist();
+
+ DistanceType val = bsq-rsq-wsq;
+ DistanceType val2 = val*val-4*rsq*wsq;
+
+ // if (val>0) {
+ if ((val>0)&&(val2>0)) {
+ return;
+ }
+ }
+
+
+ if (node->childs==NULL) {
+ for (int i=0; i<node->size; ++i) {
+ int index = node->indices[i];
+ DistanceType dist = distance_(dataset_[index], vec, veclen_);
+ result.addPoint(dist, index);
+ }
+ }
+ else {
+ int* sort_indices = new int[branching_];
+
+ getCenterOrdering(node, vec, sort_indices);
+
+ for (int i=0; i<branching_; ++i) {
+ findExactNN(node->childs[sort_indices[i]],result,vec);
+ }
+
+ delete[] sort_indices;
+ }
+ }
+
+
+ /**
+ * Helper function.
+ *
+ * I computes the order in which to traverse the child nodes of a particular node.
+ */
+ void getCenterOrdering(KMeansNodePtr node, const ElementType* q, int* sort_indices)
+ {
+ DistanceType* domain_distances = new DistanceType[branching_];
+ for (int i=0; i<branching_; ++i) {
+ DistanceType dist = distance_(q, node->childs[i]->pivot, veclen_);
+
+ int j=0;
+ while (domain_distances[j]<dist && j<i) j++;
+ for (int k=i; k>j; --k) {
+ domain_distances[k] = domain_distances[k-1];
+ sort_indices[k] = sort_indices[k-1];
+ }
+ domain_distances[j] = dist;
+ sort_indices[j] = i;
+ }
+ delete[] domain_distances;
+ }
+
+ /**
+ * Method that computes the squared distance from the query point q
+ * from inside region with center c to the border between this
+ * region and the region with center p
+ */
+ DistanceType getDistanceToBorder(DistanceType* p, DistanceType* c, DistanceType* q)
+ {
+ DistanceType sum = 0;
+ DistanceType sum2 = 0;
+
+ for (int i=0; i<veclen_; ++i) {
+ DistanceType t = c[i]-p[i];
+ sum += t*(q[i]-(c[i]+p[i])/2);
+ sum2 += t*t;
+ }
+
+ return sum*sum/sum2;
+ }
+
+
+ /**
+ * Helper function the descends in the hierarchical k-means tree by spliting those clusters that minimize
+ * the overall variance of the clustering.
+ * Params:
+ * root = root node
+ * clusters = array with clusters centers (return value)
+ * varianceValue = variance of the clustering (return value)
+ * Returns:
+ */
+ int getMinVarianceClusters(KMeansNodePtr root, KMeansNodePtr* clusters, int clusters_length, DistanceType& varianceValue)
+ {
+ int clusterCount = 1;
+ clusters[0] = root;
+
+ DistanceType meanVariance = root->variance*root->size;
+
+ while (clusterCount<clusters_length) {
+ DistanceType minVariance = (std::numeric_limits<DistanceType>::max)();
+ int splitIndex = -1;
+
+ for (int i=0; i<clusterCount; ++i) {
+ if (clusters[i]->childs != NULL) {
+
+ DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size;
+
+ for (int j=0; j<branching_; ++j) {
+ variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size;
+ }
+ if (variance<minVariance) {
+ minVariance = variance;
+ splitIndex = i;
+ }
+ }
+ }
+
+ if (splitIndex==-1) break;
+ if ( (branching_+clusterCount-1) > clusters_length) break;
+
+ meanVariance = minVariance;
+
+ // split node
+ KMeansNodePtr toSplit = clusters[splitIndex];
+ clusters[splitIndex] = toSplit->childs[0];
+ for (int i=1; i<branching_; ++i) {
+ clusters[clusterCount++] = toSplit->childs[i];
+ }
+ }
+
+ varianceValue = meanVariance/root->size;
+ return clusterCount;
+ }
+
+private:
+ /** The branching factor used in the hierarchical k-means clustering */
+ int branching_;
+
+ /** Maximum number of iterations to use when performing k-means clustering */
+ int iterations_;
+
+ /** Algorithm for choosing the cluster centers */
+ flann_centers_init_t centers_init_;
+
+ /**
+ * Cluster border index. This is used in the tree search phase when determining
+ * the closest cluster to explore next. A zero value takes into account only
+ * the cluster centres, a value greater then zero also take into account the size
+ * of the cluster.
+ */
+ float cb_index_;
+
+ /**
+ * The dataset used by this index
+ */
+ const Matrix<ElementType> dataset_;
+
+ /** Index parameters */
+ IndexParams index_params_;
+
+ /**
+ * Number of features in the dataset.
+ */
+ size_t size_;
+
+ /**
+ * Length of each feature.
+ */
+ size_t veclen_;
+
+ /**
+ * The root node in the tree.
+ */
+ KMeansNodePtr root_;
+
+ /**
+ * Array of indices to vectors in the dataset.
+ */
+ int* indices_;
+
+ /**
+ * The distance
+ */
+ Distance distance_;
+
+ /**
+ * Pooled memory allocator.
+ */
+ PooledAllocator pool_;
+
+ /**
+ * Memory occupied by the index.
+ */
+ int memoryCounter_;
+};
+
+}
+
+#endif //OPENCV_FLANN_KMEANS_INDEX_H_
diff --git a/thirdparty/linux/include/opencv2/flann/linear_index.h b/thirdparty/linux/include/opencv2/flann/linear_index.h
new file mode 100644
index 0000000..5aa7a5c
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/linear_index.h
@@ -0,0 +1,132 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_LINEAR_INDEX_H_
+#define OPENCV_FLANN_LINEAR_INDEX_H_
+
+#include "general.h"
+#include "nn_index.h"
+
+namespace cvflann
+{
+
+struct LinearIndexParams : public IndexParams
+{
+ LinearIndexParams()
+ {
+ (* this)["algorithm"] = FLANN_INDEX_LINEAR;
+ }
+};
+
+template <typename Distance>
+class LinearIndex : public NNIndex<Distance>
+{
+public:
+
+ typedef typename Distance::ElementType ElementType;
+ typedef typename Distance::ResultType DistanceType;
+
+
+ LinearIndex(const Matrix<ElementType>& inputData, const IndexParams& params = LinearIndexParams(),
+ Distance d = Distance()) :
+ dataset_(inputData), index_params_(params), distance_(d)
+ {
+ }
+
+ LinearIndex(const LinearIndex&);
+ LinearIndex& operator=(const LinearIndex&);
+
+ flann_algorithm_t getType() const
+ {
+ return FLANN_INDEX_LINEAR;
+ }
+
+
+ size_t size() const
+ {
+ return dataset_.rows;
+ }
+
+ size_t veclen() const
+ {
+ return dataset_.cols;
+ }
+
+
+ int usedMemory() const
+ {
+ return 0;
+ }
+
+ void buildIndex()
+ {
+ /* nothing to do here for linear search */
+ }
+
+ void saveIndex(FILE*)
+ {
+ /* nothing to do here for linear search */
+ }
+
+
+ void loadIndex(FILE*)
+ {
+ /* nothing to do here for linear search */
+
+ index_params_["algorithm"] = getType();
+ }
+
+ void findNeighbors(ResultSet<DistanceType>& resultSet, const ElementType* vec, const SearchParams& /*searchParams*/)
+ {
+ ElementType* data = dataset_.data;
+ for (size_t i = 0; i < dataset_.rows; ++i, data += dataset_.cols) {
+ DistanceType dist = distance_(data, vec, dataset_.cols);
+ resultSet.addPoint(dist, (int)i);
+ }
+ }
+
+ IndexParams getParameters() const
+ {
+ return index_params_;
+ }
+
+private:
+ /** The dataset */
+ const Matrix<ElementType> dataset_;
+ /** Index parameters */
+ IndexParams index_params_;
+ /** Index distance */
+ Distance distance_;
+
+};
+
+}
+
+#endif // OPENCV_FLANN_LINEAR_INDEX_H_
diff --git a/thirdparty/linux/include/opencv2/flann/logger.h b/thirdparty/linux/include/opencv2/flann/logger.h
new file mode 100644
index 0000000..24f3fb6
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/logger.h
@@ -0,0 +1,130 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_LOGGER_H
+#define OPENCV_FLANN_LOGGER_H
+
+#include <stdio.h>
+#include <stdarg.h>
+
+#include "defines.h"
+
+
+namespace cvflann
+{
+
+class Logger
+{
+ Logger() : stream(stdout), logLevel(FLANN_LOG_WARN) {}
+
+ ~Logger()
+ {
+ if ((stream!=NULL)&&(stream!=stdout)) {
+ fclose(stream);
+ }
+ }
+
+ static Logger& instance()
+ {
+ static Logger logger;
+ return logger;
+ }
+
+ void _setDestination(const char* name)
+ {
+ if (name==NULL) {
+ stream = stdout;
+ }
+ else {
+ stream = fopen(name,"w");
+ if (stream == NULL) {
+ stream = stdout;
+ }
+ }
+ }
+
+ int _log(int level, const char* fmt, va_list arglist)
+ {
+ if (level > logLevel ) return -1;
+ int ret = vfprintf(stream, fmt, arglist);
+ return ret;
+ }
+
+public:
+ /**
+ * Sets the logging level. All messages with lower priority will be ignored.
+ * @param level Logging level
+ */
+ static void setLevel(int level) { instance().logLevel = level; }
+
+ /**
+ * Sets the logging destination
+ * @param name Filename or NULL for console
+ */
+ static void setDestination(const char* name) { instance()._setDestination(name); }
+
+ /**
+ * Print log message
+ * @param level Log level
+ * @param fmt Message format
+ * @return
+ */
+ static int log(int level, const char* fmt, ...)
+ {
+ va_list arglist;
+ va_start(arglist, fmt);
+ int ret = instance()._log(level,fmt,arglist);
+ va_end(arglist);
+ return ret;
+ }
+
+#define LOG_METHOD(NAME,LEVEL) \
+ static int NAME(const char* fmt, ...) \
+ { \
+ va_list ap; \
+ va_start(ap, fmt); \
+ int ret = instance()._log(LEVEL, fmt, ap); \
+ va_end(ap); \
+ return ret; \
+ }
+
+ LOG_METHOD(fatal, FLANN_LOG_FATAL)
+ LOG_METHOD(error, FLANN_LOG_ERROR)
+ LOG_METHOD(warn, FLANN_LOG_WARN)
+ LOG_METHOD(info, FLANN_LOG_INFO)
+
+private:
+ FILE* stream;
+ int logLevel;
+};
+
+}
+
+#endif //OPENCV_FLANN_LOGGER_H
diff --git a/thirdparty/linux/include/opencv2/flann/lsh_index.h b/thirdparty/linux/include/opencv2/flann/lsh_index.h
new file mode 100644
index 0000000..4d4670e
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/lsh_index.h
@@ -0,0 +1,392 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+/***********************************************************************
+ * Author: Vincent Rabaud
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_LSH_INDEX_H_
+#define OPENCV_FLANN_LSH_INDEX_H_
+
+#include <algorithm>
+#include <cassert>
+#include <cstring>
+#include <map>
+#include <vector>
+
+#include "general.h"
+#include "nn_index.h"
+#include "matrix.h"
+#include "result_set.h"
+#include "heap.h"
+#include "lsh_table.h"
+#include "allocator.h"
+#include "random.h"
+#include "saving.h"
+
+namespace cvflann
+{
+
+struct LshIndexParams : public IndexParams
+{
+ LshIndexParams(unsigned int table_number = 12, unsigned int key_size = 20, unsigned int multi_probe_level = 2)
+ {
+ (* this)["algorithm"] = FLANN_INDEX_LSH;
+ // The number of hash tables to use
+ (*this)["table_number"] = table_number;
+ // The length of the key in the hash tables
+ (*this)["key_size"] = key_size;
+ // Number of levels to use in multi-probe (0 for standard LSH)
+ (*this)["multi_probe_level"] = multi_probe_level;
+ }
+};
+
+/**
+ * Randomized kd-tree index
+ *
+ * Contains the k-d trees and other information for indexing a set of points
+ * for nearest-neighbor matching.
+ */
+template<typename Distance>
+class LshIndex : public NNIndex<Distance>
+{
+public:
+ typedef typename Distance::ElementType ElementType;
+ typedef typename Distance::ResultType DistanceType;
+
+ /** Constructor
+ * @param input_data dataset with the input features
+ * @param params parameters passed to the LSH algorithm
+ * @param d the distance used
+ */
+ LshIndex(const Matrix<ElementType>& input_data, const IndexParams& params = LshIndexParams(),
+ Distance d = Distance()) :
+ dataset_(input_data), index_params_(params), distance_(d)
+ {
+ // cv::flann::IndexParams sets integer params as 'int', so it is used with get_param
+ // in place of 'unsigned int'
+ table_number_ = (unsigned int)get_param<int>(index_params_,"table_number",12);
+ key_size_ = (unsigned int)get_param<int>(index_params_,"key_size",20);
+ multi_probe_level_ = (unsigned int)get_param<int>(index_params_,"multi_probe_level",2);
+
+ feature_size_ = (unsigned)dataset_.cols;
+ fill_xor_mask(0, key_size_, multi_probe_level_, xor_masks_);
+ }
+
+
+ LshIndex(const LshIndex&);
+ LshIndex& operator=(const LshIndex&);
+
+ /**
+ * Builds the index
+ */
+ void buildIndex()
+ {
+ tables_.resize(table_number_);
+ for (unsigned int i = 0; i < table_number_; ++i) {
+ lsh::LshTable<ElementType>& table = tables_[i];
+ table = lsh::LshTable<ElementType>(feature_size_, key_size_);
+
+ // Add the features to the table
+ table.add(dataset_);
+ }
+ }
+
+ flann_algorithm_t getType() const
+ {
+ return FLANN_INDEX_LSH;
+ }
+
+
+ void saveIndex(FILE* stream)
+ {
+ save_value(stream,table_number_);
+ save_value(stream,key_size_);
+ save_value(stream,multi_probe_level_);
+ save_value(stream, dataset_);
+ }
+
+ void loadIndex(FILE* stream)
+ {
+ load_value(stream, table_number_);
+ load_value(stream, key_size_);
+ load_value(stream, multi_probe_level_);
+ load_value(stream, dataset_);
+ // Building the index is so fast we can afford not storing it
+ buildIndex();
+
+ index_params_["algorithm"] = getType();
+ index_params_["table_number"] = table_number_;
+ index_params_["key_size"] = key_size_;
+ index_params_["multi_probe_level"] = multi_probe_level_;
+ }
+
+ /**
+ * Returns size of index.
+ */
+ size_t size() const
+ {
+ return dataset_.rows;
+ }
+
+ /**
+ * Returns the length of an index feature.
+ */
+ size_t veclen() const
+ {
+ return feature_size_;
+ }
+
+ /**
+ * Computes the index memory usage
+ * Returns: memory used by the index
+ */
+ int usedMemory() const
+ {
+ return (int)(dataset_.rows * sizeof(int));
+ }
+
+
+ IndexParams getParameters() const
+ {
+ return index_params_;
+ }
+
+ /**
+ * \brief Perform k-nearest neighbor search
+ * \param[in] queries The query points for which to find the nearest neighbors
+ * \param[out] indices The indices of the nearest neighbors found
+ * \param[out] dists Distances to the nearest neighbors found
+ * \param[in] knn Number of nearest neighbors to return
+ * \param[in] params Search parameters
+ */
+ virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
+ {
+ assert(queries.cols == veclen());
+ assert(indices.rows >= queries.rows);
+ assert(dists.rows >= queries.rows);
+ assert(int(indices.cols) >= knn);
+ assert(int(dists.cols) >= knn);
+
+
+ KNNUniqueResultSet<DistanceType> resultSet(knn);
+ for (size_t i = 0; i < queries.rows; i++) {
+ resultSet.clear();
+ std::fill_n(indices[i], knn, -1);
+ std::fill_n(dists[i], knn, std::numeric_limits<DistanceType>::max());
+ findNeighbors(resultSet, queries[i], params);
+ if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn);
+ else resultSet.copy(indices[i], dists[i], knn);
+ }
+ }
+
+
+ /**
+ * Find set of nearest neighbors to vec. Their indices are stored inside
+ * the result object.
+ *
+ * Params:
+ * result = the result object in which the indices of the nearest-neighbors are stored
+ * vec = the vector for which to search the nearest neighbors
+ * maxCheck = the maximum number of restarts (in a best-bin-first manner)
+ */
+ void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& /*searchParams*/)
+ {
+ getNeighbors(vec, result);
+ }
+
+private:
+ /** Defines the comparator on score and index
+ */
+ typedef std::pair<float, unsigned int> ScoreIndexPair;
+ struct SortScoreIndexPairOnSecond
+ {
+ bool operator()(const ScoreIndexPair& left, const ScoreIndexPair& right) const
+ {
+ return left.second < right.second;
+ }
+ };
+
+ /** Fills the different xor masks to use when getting the neighbors in multi-probe LSH
+ * @param key the key we build neighbors from
+ * @param lowest_index the lowest index of the bit set
+ * @param level the multi-probe level we are at
+ * @param xor_masks all the xor mask
+ */
+ void fill_xor_mask(lsh::BucketKey key, int lowest_index, unsigned int level,
+ std::vector<lsh::BucketKey>& xor_masks)
+ {
+ xor_masks.push_back(key);
+ if (level == 0) return;
+ for (int index = lowest_index - 1; index >= 0; --index) {
+ // Create a new key
+ lsh::BucketKey new_key = key | (1 << index);
+ fill_xor_mask(new_key, index, level - 1, xor_masks);
+ }
+ }
+
+ /** Performs the approximate nearest-neighbor search.
+ * @param vec the feature to analyze
+ * @param do_radius flag indicating if we check the radius too
+ * @param radius the radius if it is a radius search
+ * @param do_k flag indicating if we limit the number of nn
+ * @param k_nn the number of nearest neighbors
+ * @param checked_average used for debugging
+ */
+ void getNeighbors(const ElementType* vec, bool /*do_radius*/, float radius, bool do_k, unsigned int k_nn,
+ float& /*checked_average*/)
+ {
+ static std::vector<ScoreIndexPair> score_index_heap;
+
+ if (do_k) {
+ unsigned int worst_score = std::numeric_limits<unsigned int>::max();
+ typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
+ typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
+ for (; table != table_end; ++table) {
+ size_t key = table->getKey(vec);
+ std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
+ std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
+ for (; xor_mask != xor_mask_end; ++xor_mask) {
+ size_t sub_key = key ^ (*xor_mask);
+ const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
+ if (bucket == 0) continue;
+
+ // Go over each descriptor index
+ std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
+ std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
+ DistanceType hamming_distance;
+
+ // Process the rest of the candidates
+ for (; training_index < last_training_index; ++training_index) {
+ hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);
+
+ if (hamming_distance < worst_score) {
+ // Insert the new element
+ score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index));
+ std::push_heap(score_index_heap.begin(), score_index_heap.end());
+
+ if (score_index_heap.size() > (unsigned int)k_nn) {
+ // Remove the highest distance value as we have too many elements
+ std::pop_heap(score_index_heap.begin(), score_index_heap.end());
+ score_index_heap.pop_back();
+ // Keep track of the worst score
+ worst_score = score_index_heap.front().first;
+ }
+ }
+ }
+ }
+ }
+ }
+ else {
+ typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
+ typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
+ for (; table != table_end; ++table) {
+ size_t key = table->getKey(vec);
+ std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
+ std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
+ for (; xor_mask != xor_mask_end; ++xor_mask) {
+ size_t sub_key = key ^ (*xor_mask);
+ const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
+ if (bucket == 0) continue;
+
+ // Go over each descriptor index
+ std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
+ std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
+ DistanceType hamming_distance;
+
+ // Process the rest of the candidates
+ for (; training_index < last_training_index; ++training_index) {
+ // Compute the Hamming distance
+ hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);
+ if (hamming_distance < radius) score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index));
+ }
+ }
+ }
+ }
+ }
+
+ /** Performs the approximate nearest-neighbor search.
+ * This is a slower version than the above as it uses the ResultSet
+ * @param vec the feature to analyze
+ */
+ void getNeighbors(const ElementType* vec, ResultSet<DistanceType>& result)
+ {
+ typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
+ typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
+ for (; table != table_end; ++table) {
+ size_t key = table->getKey(vec);
+ std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
+ std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
+ for (; xor_mask != xor_mask_end; ++xor_mask) {
+ size_t sub_key = key ^ (*xor_mask);
+ const lsh::Bucket* bucket = table->getBucketFromKey((lsh::BucketKey)sub_key);
+ if (bucket == 0) continue;
+
+ // Go over each descriptor index
+ std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
+ std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
+ DistanceType hamming_distance;
+
+ // Process the rest of the candidates
+ for (; training_index < last_training_index; ++training_index) {
+ // Compute the Hamming distance
+ hamming_distance = distance_(vec, dataset_[*training_index], (int)dataset_.cols);
+ result.addPoint(hamming_distance, *training_index);
+ }
+ }
+ }
+ }
+
+ /** The different hash tables */
+ std::vector<lsh::LshTable<ElementType> > tables_;
+
+ /** The data the LSH tables where built from */
+ Matrix<ElementType> dataset_;
+
+ /** The size of the features (as ElementType[]) */
+ unsigned int feature_size_;
+
+ IndexParams index_params_;
+
+ /** table number */
+ unsigned int table_number_;
+ /** key size */
+ unsigned int key_size_;
+ /** How far should we look for neighbors in multi-probe LSH */
+ unsigned int multi_probe_level_;
+
+ /** The XOR masks to apply to a key to get the neighboring buckets */
+ std::vector<lsh::BucketKey> xor_masks_;
+
+ Distance distance_;
+};
+}
+
+#endif //OPENCV_FLANN_LSH_INDEX_H_
diff --git a/thirdparty/linux/include/opencv2/flann/lsh_table.h b/thirdparty/linux/include/opencv2/flann/lsh_table.h
new file mode 100644
index 0000000..8ef2bd3
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/lsh_table.h
@@ -0,0 +1,492 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+/***********************************************************************
+ * Author: Vincent Rabaud
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_LSH_TABLE_H_
+#define OPENCV_FLANN_LSH_TABLE_H_
+
+#include <algorithm>
+#include <iostream>
+#include <iomanip>
+#include <limits.h>
+// TODO as soon as we use C++0x, use the code in USE_UNORDERED_MAP
+#ifdef __GXX_EXPERIMENTAL_CXX0X__
+# define USE_UNORDERED_MAP 1
+#else
+# define USE_UNORDERED_MAP 0
+#endif
+#if USE_UNORDERED_MAP
+#include <unordered_map>
+#else
+#include <map>
+#endif
+#include <math.h>
+#include <stddef.h>
+
+#include "dynamic_bitset.h"
+#include "matrix.h"
+
+namespace cvflann
+{
+
+namespace lsh
+{
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+/** What is stored in an LSH bucket
+ */
+typedef uint32_t FeatureIndex;
+/** The id from which we can get a bucket back in an LSH table
+ */
+typedef unsigned int BucketKey;
+
+/** A bucket in an LSH table
+ */
+typedef std::vector<FeatureIndex> Bucket;
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+/** POD for stats about an LSH table
+ */
+struct LshStats
+{
+ std::vector<unsigned int> bucket_sizes_;
+ size_t n_buckets_;
+ size_t bucket_size_mean_;
+ size_t bucket_size_median_;
+ size_t bucket_size_min_;
+ size_t bucket_size_max_;
+ size_t bucket_size_std_dev;
+ /** Each contained vector contains three value: beginning/end for interval, number of elements in the bin
+ */
+ std::vector<std::vector<unsigned int> > size_histogram_;
+};
+
+/** Overload the << operator for LshStats
+ * @param out the streams
+ * @param stats the stats to display
+ * @return the streams
+ */
+inline std::ostream& operator <<(std::ostream& out, const LshStats& stats)
+{
+ int w = 20;
+ out << "Lsh Table Stats:\n" << std::setw(w) << std::setiosflags(std::ios::right) << "N buckets : "
+ << stats.n_buckets_ << "\n" << std::setw(w) << std::setiosflags(std::ios::right) << "mean size : "
+ << std::setiosflags(std::ios::left) << stats.bucket_size_mean_ << "\n" << std::setw(w)
+ << std::setiosflags(std::ios::right) << "median size : " << stats.bucket_size_median_ << "\n" << std::setw(w)
+ << std::setiosflags(std::ios::right) << "min size : " << std::setiosflags(std::ios::left)
+ << stats.bucket_size_min_ << "\n" << std::setw(w) << std::setiosflags(std::ios::right) << "max size : "
+ << std::setiosflags(std::ios::left) << stats.bucket_size_max_;
+
+ // Display the histogram
+ out << std::endl << std::setw(w) << std::setiosflags(std::ios::right) << "histogram : "
+ << std::setiosflags(std::ios::left);
+ for (std::vector<std::vector<unsigned int> >::const_iterator iterator = stats.size_histogram_.begin(), end =
+ stats.size_histogram_.end(); iterator != end; ++iterator) out << (*iterator)[0] << "-" << (*iterator)[1] << ": " << (*iterator)[2] << ", ";
+
+ return out;
+}
+
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+/** Lsh hash table. As its key is a sub-feature, and as usually
+ * the size of it is pretty small, we keep it as a continuous memory array.
+ * The value is an index in the corpus of features (we keep it as an unsigned
+ * int for pure memory reasons, it could be a size_t)
+ */
+template<typename ElementType>
+class LshTable
+{
+public:
+ /** A container of all the feature indices. Optimized for space
+ */
+#if USE_UNORDERED_MAP
+ typedef std::unordered_map<BucketKey, Bucket> BucketsSpace;
+#else
+ typedef std::map<BucketKey, Bucket> BucketsSpace;
+#endif
+
+ /** A container of all the feature indices. Optimized for speed
+ */
+ typedef std::vector<Bucket> BucketsSpeed;
+
+ /** Default constructor
+ */
+ LshTable()
+ {
+ }
+
+ /** Default constructor
+ * Create the mask and allocate the memory
+ * @param feature_size is the size of the feature (considered as a ElementType[])
+ * @param key_size is the number of bits that are turned on in the feature
+ */
+ LshTable(unsigned int feature_size, unsigned int key_size)
+ {
+ (void)feature_size;
+ (void)key_size;
+ std::cerr << "LSH is not implemented for that type" << std::endl;
+ assert(0);
+ }
+
+ /** Add a feature to the table
+ * @param value the value to store for that feature
+ * @param feature the feature itself
+ */
+ void add(unsigned int value, const ElementType* feature)
+ {
+ // Add the value to the corresponding bucket
+ BucketKey key = (lsh::BucketKey)getKey(feature);
+
+ switch (speed_level_) {
+ case kArray:
+ // That means we get the buckets from an array
+ buckets_speed_[key].push_back(value);
+ break;
+ case kBitsetHash:
+ // That means we can check the bitset for the presence of a key
+ key_bitset_.set(key);
+ buckets_space_[key].push_back(value);
+ break;
+ case kHash:
+ {
+ // That means we have to check for the hash table for the presence of a key
+ buckets_space_[key].push_back(value);
+ break;
+ }
+ }
+ }
+
+ /** Add a set of features to the table
+ * @param dataset the values to store
+ */
+ void add(Matrix<ElementType> dataset)
+ {
+#if USE_UNORDERED_MAP
+ buckets_space_.rehash((buckets_space_.size() + dataset.rows) * 1.2);
+#endif
+ // Add the features to the table
+ for (unsigned int i = 0; i < dataset.rows; ++i) add(i, dataset[i]);
+ // Now that the table is full, optimize it for speed/space
+ optimize();
+ }
+
+ /** Get a bucket given the key
+ * @param key
+ * @return
+ */
+ inline const Bucket* getBucketFromKey(BucketKey key) const
+ {
+ // Generate other buckets
+ switch (speed_level_) {
+ case kArray:
+ // That means we get the buckets from an array
+ return &buckets_speed_[key];
+ break;
+ case kBitsetHash:
+ // That means we can check the bitset for the presence of a key
+ if (key_bitset_.test(key)) return &buckets_space_.find(key)->second;
+ else return 0;
+ break;
+ case kHash:
+ {
+ // That means we have to check for the hash table for the presence of a key
+ BucketsSpace::const_iterator bucket_it, bucket_end = buckets_space_.end();
+ bucket_it = buckets_space_.find(key);
+ // Stop here if that bucket does not exist
+ if (bucket_it == bucket_end) return 0;
+ else return &bucket_it->second;
+ break;
+ }
+ }
+ return 0;
+ }
+
+ /** Compute the sub-signature of a feature
+ */
+ size_t getKey(const ElementType* /*feature*/) const
+ {
+ std::cerr << "LSH is not implemented for that type" << std::endl;
+ assert(0);
+ return 1;
+ }
+
+ /** Get statistics about the table
+ * @return
+ */
+ LshStats getStats() const;
+
+private:
+ /** defines the speed fo the implementation
+ * kArray uses a vector for storing data
+ * kBitsetHash uses a hash map but checks for the validity of a key with a bitset
+ * kHash uses a hash map only
+ */
+ enum SpeedLevel
+ {
+ kArray, kBitsetHash, kHash
+ };
+
+ /** Initialize some variables
+ */
+ void initialize(size_t key_size)
+ {
+ const size_t key_size_lower_bound = 1;
+ //a value (size_t(1) << key_size) must fit the size_t type so key_size has to be strictly less than size of size_t
+ const size_t key_size_upper_bound = (std::min)(sizeof(BucketKey) * CHAR_BIT + 1, sizeof(size_t) * CHAR_BIT);
+ if (key_size < key_size_lower_bound || key_size >= key_size_upper_bound)
+ {
+ CV_Error(cv::Error::StsBadArg, cv::format("Invalid key_size (=%d). Valid values for your system are %d <= key_size < %d.", (int)key_size, (int)key_size_lower_bound, (int)key_size_upper_bound));
+ }
+
+ speed_level_ = kHash;
+ key_size_ = (unsigned)key_size;
+ }
+
+ /** Optimize the table for speed/space
+ */
+ void optimize()
+ {
+ // If we are already using the fast storage, no need to do anything
+ if (speed_level_ == kArray) return;
+
+ // Use an array if it will be more than half full
+ if (buckets_space_.size() > ((size_t(1) << key_size_) / 2)) {
+ speed_level_ = kArray;
+ // Fill the array version of it
+ buckets_speed_.resize(size_t(1) << key_size_);
+ for (BucketsSpace::const_iterator key_bucket = buckets_space_.begin(); key_bucket != buckets_space_.end(); ++key_bucket) buckets_speed_[key_bucket->first] = key_bucket->second;
+
+ // Empty the hash table
+ buckets_space_.clear();
+ return;
+ }
+
+ // If the bitset is going to use less than 10% of the RAM of the hash map (at least 1 size_t for the key and two
+ // for the vector) or less than 512MB (key_size_ <= 30)
+ if (((std::max(buckets_space_.size(), buckets_speed_.size()) * CHAR_BIT * 3 * sizeof(BucketKey)) / 10
+ >= (size_t(1) << key_size_)) || (key_size_ <= 32)) {
+ speed_level_ = kBitsetHash;
+ key_bitset_.resize(size_t(1) << key_size_);
+ key_bitset_.reset();
+ // Try with the BucketsSpace
+ for (BucketsSpace::const_iterator key_bucket = buckets_space_.begin(); key_bucket != buckets_space_.end(); ++key_bucket) key_bitset_.set(key_bucket->first);
+ }
+ else {
+ speed_level_ = kHash;
+ key_bitset_.clear();
+ }
+ }
+
+ /** The vector of all the buckets if they are held for speed
+ */
+ BucketsSpeed buckets_speed_;
+
+ /** The hash table of all the buckets in case we cannot use the speed version
+ */
+ BucketsSpace buckets_space_;
+
+ /** What is used to store the data */
+ SpeedLevel speed_level_;
+
+ /** If the subkey is small enough, it will keep track of which subkeys are set through that bitset
+ * That is just a speedup so that we don't look in the hash table (which can be mush slower that checking a bitset)
+ */
+ DynamicBitset key_bitset_;
+
+ /** The size of the sub-signature in bits
+ */
+ unsigned int key_size_;
+
+ // Members only used for the unsigned char specialization
+ /** The mask to apply to a feature to get the hash key
+ * Only used in the unsigned char case
+ */
+ std::vector<size_t> mask_;
+};
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+// Specialization for unsigned char
+
+template<>
+inline LshTable<unsigned char>::LshTable(unsigned int feature_size, unsigned int subsignature_size)
+{
+ initialize(subsignature_size);
+ // Allocate the mask
+ mask_ = std::vector<size_t>((size_t)ceil((float)(feature_size * sizeof(char)) / (float)sizeof(size_t)), 0);
+
+ // A bit brutal but fast to code
+ std::vector<size_t> indices(feature_size * CHAR_BIT);
+ for (size_t i = 0; i < feature_size * CHAR_BIT; ++i) indices[i] = i;
+ std::random_shuffle(indices.begin(), indices.end());
+
+ // Generate a random set of order of subsignature_size_ bits
+ for (unsigned int i = 0; i < key_size_; ++i) {
+ size_t index = indices[i];
+
+ // Set that bit in the mask
+ size_t divisor = CHAR_BIT * sizeof(size_t);
+ size_t idx = index / divisor; //pick the right size_t index
+ mask_[idx] |= size_t(1) << (index % divisor); //use modulo to find the bit offset
+ }
+
+ // Set to 1 if you want to display the mask for debug
+#if 0
+ {
+ size_t bcount = 0;
+ BOOST_FOREACH(size_t mask_block, mask_){
+ out << std::setw(sizeof(size_t) * CHAR_BIT / 4) << std::setfill('0') << std::hex << mask_block
+ << std::endl;
+ bcount += __builtin_popcountll(mask_block);
+ }
+ out << "bit count : " << std::dec << bcount << std::endl;
+ out << "mask size : " << mask_.size() << std::endl;
+ return out;
+ }
+#endif
+}
+
+/** Return the Subsignature of a feature
+ * @param feature the feature to analyze
+ */
+template<>
+inline size_t LshTable<unsigned char>::getKey(const unsigned char* feature) const
+{
+ // no need to check if T is dividable by sizeof(size_t) like in the Hamming
+ // distance computation as we have a mask
+ const size_t* feature_block_ptr = reinterpret_cast<const size_t*> ((const void*)feature);
+
+ // Figure out the subsignature of the feature
+ // Given the feature ABCDEF, and the mask 001011, the output will be
+ // 000CEF
+ size_t subsignature = 0;
+ size_t bit_index = 1;
+
+ for (std::vector<size_t>::const_iterator pmask_block = mask_.begin(); pmask_block != mask_.end(); ++pmask_block) {
+ // get the mask and signature blocks
+ size_t feature_block = *feature_block_ptr;
+ size_t mask_block = *pmask_block;
+ while (mask_block) {
+ // Get the lowest set bit in the mask block
+ size_t lowest_bit = mask_block & (-(ptrdiff_t)mask_block);
+ // Add it to the current subsignature if necessary
+ subsignature += (feature_block & lowest_bit) ? bit_index : 0;
+ // Reset the bit in the mask block
+ mask_block ^= lowest_bit;
+ // increment the bit index for the subsignature
+ bit_index <<= 1;
+ }
+ // Check the next feature block
+ ++feature_block_ptr;
+ }
+ return subsignature;
+}
+
+template<>
+inline LshStats LshTable<unsigned char>::getStats() const
+{
+ LshStats stats;
+ stats.bucket_size_mean_ = 0;
+ if ((buckets_speed_.empty()) && (buckets_space_.empty())) {
+ stats.n_buckets_ = 0;
+ stats.bucket_size_median_ = 0;
+ stats.bucket_size_min_ = 0;
+ stats.bucket_size_max_ = 0;
+ return stats;
+ }
+
+ if (!buckets_speed_.empty()) {
+ for (BucketsSpeed::const_iterator pbucket = buckets_speed_.begin(); pbucket != buckets_speed_.end(); ++pbucket) {
+ stats.bucket_sizes_.push_back((lsh::FeatureIndex)pbucket->size());
+ stats.bucket_size_mean_ += pbucket->size();
+ }
+ stats.bucket_size_mean_ /= buckets_speed_.size();
+ stats.n_buckets_ = buckets_speed_.size();
+ }
+ else {
+ for (BucketsSpace::const_iterator x = buckets_space_.begin(); x != buckets_space_.end(); ++x) {
+ stats.bucket_sizes_.push_back((lsh::FeatureIndex)x->second.size());
+ stats.bucket_size_mean_ += x->second.size();
+ }
+ stats.bucket_size_mean_ /= buckets_space_.size();
+ stats.n_buckets_ = buckets_space_.size();
+ }
+
+ std::sort(stats.bucket_sizes_.begin(), stats.bucket_sizes_.end());
+
+ // BOOST_FOREACH(int size, stats.bucket_sizes_)
+ // std::cout << size << " ";
+ // std::cout << std::endl;
+ stats.bucket_size_median_ = stats.bucket_sizes_[stats.bucket_sizes_.size() / 2];
+ stats.bucket_size_min_ = stats.bucket_sizes_.front();
+ stats.bucket_size_max_ = stats.bucket_sizes_.back();
+
+ // TODO compute mean and std
+ /*float mean, stddev;
+ stats.bucket_size_mean_ = mean;
+ stats.bucket_size_std_dev = stddev;*/
+
+ // Include a histogram of the buckets
+ unsigned int bin_start = 0;
+ unsigned int bin_end = 20;
+ bool is_new_bin = true;
+ for (std::vector<unsigned int>::iterator iterator = stats.bucket_sizes_.begin(), end = stats.bucket_sizes_.end(); iterator
+ != end; )
+ if (*iterator < bin_end) {
+ if (is_new_bin) {
+ stats.size_histogram_.push_back(std::vector<unsigned int>(3, 0));
+ stats.size_histogram_.back()[0] = bin_start;
+ stats.size_histogram_.back()[1] = bin_end - 1;
+ is_new_bin = false;
+ }
+ ++stats.size_histogram_.back()[2];
+ ++iterator;
+ }
+ else {
+ bin_start += 20;
+ bin_end += 20;
+ is_new_bin = true;
+ }
+
+ return stats;
+}
+
+// End the two namespaces
+}
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+#endif /* OPENCV_FLANN_LSH_TABLE_H_ */
diff --git a/thirdparty/linux/include/opencv2/flann/matrix.h b/thirdparty/linux/include/opencv2/flann/matrix.h
new file mode 100644
index 0000000..51b6c63
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/matrix.h
@@ -0,0 +1,116 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_DATASET_H_
+#define OPENCV_FLANN_DATASET_H_
+
+#include <stdio.h>
+
+#include "general.h"
+
+namespace cvflann
+{
+
+/**
+ * Class that implements a simple rectangular matrix stored in a memory buffer and
+ * provides convenient matrix-like access using the [] operators.
+ */
+template <typename T>
+class Matrix
+{
+public:
+ typedef T type;
+
+ size_t rows;
+ size_t cols;
+ size_t stride;
+ T* data;
+
+ Matrix() : rows(0), cols(0), stride(0), data(NULL)
+ {
+ }
+
+ Matrix(T* data_, size_t rows_, size_t cols_, size_t stride_ = 0) :
+ rows(rows_), cols(cols_), stride(stride_), data(data_)
+ {
+ if (stride==0) stride = cols;
+ }
+
+ /**
+ * Convenience function for deallocating the storage data.
+ */
+ FLANN_DEPRECATED void free()
+ {
+ fprintf(stderr, "The cvflann::Matrix<T>::free() method is deprecated "
+ "and it does not do any memory deallocation any more. You are"
+ "responsible for deallocating the matrix memory (by doing"
+ "'delete[] matrix.data' for example)");
+ }
+
+ /**
+ * Operator that return a (pointer to a) row of the data.
+ */
+ T* operator[](size_t index) const
+ {
+ return data+index*stride;
+ }
+};
+
+
+class UntypedMatrix
+{
+public:
+ size_t rows;
+ size_t cols;
+ void* data;
+ flann_datatype_t type;
+
+ UntypedMatrix(void* data_, long rows_, long cols_) :
+ rows(rows_), cols(cols_), data(data_)
+ {
+ }
+
+ ~UntypedMatrix()
+ {
+ }
+
+
+ template<typename T>
+ Matrix<T> as()
+ {
+ return Matrix<T>((T*)data, rows, cols);
+ }
+};
+
+
+
+}
+
+#endif //OPENCV_FLANN_DATASET_H_
diff --git a/thirdparty/linux/include/opencv2/flann/miniflann.hpp b/thirdparty/linux/include/opencv2/flann/miniflann.hpp
new file mode 100644
index 0000000..5d25f5e
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/miniflann.hpp
@@ -0,0 +1,158 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_MINIFLANN_HPP
+#define OPENCV_MINIFLANN_HPP
+
+#include "opencv2/core.hpp"
+#include "opencv2/flann/defines.h"
+
+namespace cv
+{
+
+namespace flann
+{
+
+struct CV_EXPORTS IndexParams
+{
+ IndexParams();
+ ~IndexParams();
+
+ String getString(const String& key, const String& defaultVal=String()) const;
+ int getInt(const String& key, int defaultVal=-1) const;
+ double getDouble(const String& key, double defaultVal=-1) const;
+
+ void setString(const String& key, const String& value);
+ void setInt(const String& key, int value);
+ void setDouble(const String& key, double value);
+ void setFloat(const String& key, float value);
+ void setBool(const String& key, bool value);
+ void setAlgorithm(int value);
+
+ void getAll(std::vector<String>& names,
+ std::vector<int>& types,
+ std::vector<String>& strValues,
+ std::vector<double>& numValues) const;
+
+ void* params;
+};
+
+struct CV_EXPORTS KDTreeIndexParams : public IndexParams
+{
+ KDTreeIndexParams(int trees=4);
+};
+
+struct CV_EXPORTS LinearIndexParams : public IndexParams
+{
+ LinearIndexParams();
+};
+
+struct CV_EXPORTS CompositeIndexParams : public IndexParams
+{
+ CompositeIndexParams(int trees = 4, int branching = 32, int iterations = 11,
+ cvflann::flann_centers_init_t centers_init = cvflann::FLANN_CENTERS_RANDOM, float cb_index = 0.2f );
+};
+
+struct CV_EXPORTS AutotunedIndexParams : public IndexParams
+{
+ AutotunedIndexParams(float target_precision = 0.8f, float build_weight = 0.01f,
+ float memory_weight = 0, float sample_fraction = 0.1f);
+};
+
+struct CV_EXPORTS HierarchicalClusteringIndexParams : public IndexParams
+{
+ HierarchicalClusteringIndexParams(int branching = 32,
+ cvflann::flann_centers_init_t centers_init = cvflann::FLANN_CENTERS_RANDOM, int trees = 4, int leaf_size = 100 );
+};
+
+struct CV_EXPORTS KMeansIndexParams : public IndexParams
+{
+ KMeansIndexParams(int branching = 32, int iterations = 11,
+ cvflann::flann_centers_init_t centers_init = cvflann::FLANN_CENTERS_RANDOM, float cb_index = 0.2f );
+};
+
+struct CV_EXPORTS LshIndexParams : public IndexParams
+{
+ LshIndexParams(int table_number, int key_size, int multi_probe_level);
+};
+
+struct CV_EXPORTS SavedIndexParams : public IndexParams
+{
+ SavedIndexParams(const String& filename);
+};
+
+struct CV_EXPORTS SearchParams : public IndexParams
+{
+ SearchParams( int checks = 32, float eps = 0, bool sorted = true );
+};
+
+class CV_EXPORTS_W Index
+{
+public:
+ CV_WRAP Index();
+ CV_WRAP Index(InputArray features, const IndexParams& params, cvflann::flann_distance_t distType=cvflann::FLANN_DIST_L2);
+ virtual ~Index();
+
+ CV_WRAP virtual void build(InputArray features, const IndexParams& params, cvflann::flann_distance_t distType=cvflann::FLANN_DIST_L2);
+ CV_WRAP virtual void knnSearch(InputArray query, OutputArray indices,
+ OutputArray dists, int knn, const SearchParams& params=SearchParams());
+
+ CV_WRAP virtual int radiusSearch(InputArray query, OutputArray indices,
+ OutputArray dists, double radius, int maxResults,
+ const SearchParams& params=SearchParams());
+
+ CV_WRAP virtual void save(const String& filename) const;
+ CV_WRAP virtual bool load(InputArray features, const String& filename);
+ CV_WRAP virtual void release();
+ CV_WRAP cvflann::flann_distance_t getDistance() const;
+ CV_WRAP cvflann::flann_algorithm_t getAlgorithm() const;
+
+protected:
+ cvflann::flann_distance_t distType;
+ cvflann::flann_algorithm_t algo;
+ int featureType;
+ void* index;
+};
+
+} } // namespace cv::flann
+
+#endif
diff --git a/thirdparty/linux/include/opencv2/flann/nn_index.h b/thirdparty/linux/include/opencv2/flann/nn_index.h
new file mode 100644
index 0000000..381d4bc
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/nn_index.h
@@ -0,0 +1,177 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_NNINDEX_H
+#define OPENCV_FLANN_NNINDEX_H
+
+#include "general.h"
+#include "matrix.h"
+#include "result_set.h"
+#include "params.h"
+
+namespace cvflann
+{
+
+/**
+ * Nearest-neighbour index base class
+ */
+template <typename Distance>
+class NNIndex
+{
+ typedef typename Distance::ElementType ElementType;
+ typedef typename Distance::ResultType DistanceType;
+
+public:
+
+ virtual ~NNIndex() {}
+
+ /**
+ * \brief Builds the index
+ */
+ virtual void buildIndex() = 0;
+
+ /**
+ * \brief Perform k-nearest neighbor search
+ * \param[in] queries The query points for which to find the nearest neighbors
+ * \param[out] indices The indices of the nearest neighbors found
+ * \param[out] dists Distances to the nearest neighbors found
+ * \param[in] knn Number of nearest neighbors to return
+ * \param[in] params Search parameters
+ */
+ virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
+ {
+ assert(queries.cols == veclen());
+ assert(indices.rows >= queries.rows);
+ assert(dists.rows >= queries.rows);
+ assert(int(indices.cols) >= knn);
+ assert(int(dists.cols) >= knn);
+
+#if 0
+ KNNResultSet<DistanceType> resultSet(knn);
+ for (size_t i = 0; i < queries.rows; i++) {
+ resultSet.init(indices[i], dists[i]);
+ findNeighbors(resultSet, queries[i], params);
+ }
+#else
+ KNNUniqueResultSet<DistanceType> resultSet(knn);
+ for (size_t i = 0; i < queries.rows; i++) {
+ resultSet.clear();
+ findNeighbors(resultSet, queries[i], params);
+ if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn);
+ else resultSet.copy(indices[i], dists[i], knn);
+ }
+#endif
+ }
+
+ /**
+ * \brief Perform radius search
+ * \param[in] query The query point
+ * \param[out] indices The indinces of the neighbors found within the given radius
+ * \param[out] dists The distances to the nearest neighbors found
+ * \param[in] radius The radius used for search
+ * \param[in] params Search parameters
+ * \returns Number of neighbors found
+ */
+ virtual int radiusSearch(const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params)
+ {
+ if (query.rows != 1) {
+ fprintf(stderr, "I can only search one feature at a time for range search\n");
+ return -1;
+ }
+ assert(query.cols == veclen());
+ assert(indices.cols == dists.cols);
+
+ int n = 0;
+ int* indices_ptr = NULL;
+ DistanceType* dists_ptr = NULL;
+ if (indices.cols > 0) {
+ n = (int)indices.cols;
+ indices_ptr = indices[0];
+ dists_ptr = dists[0];
+ }
+
+ RadiusUniqueResultSet<DistanceType> resultSet((DistanceType)radius);
+ resultSet.clear();
+ findNeighbors(resultSet, query[0], params);
+ if (n>0) {
+ if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices_ptr, dists_ptr, n);
+ else resultSet.copy(indices_ptr, dists_ptr, n);
+ }
+
+ return (int)resultSet.size();
+ }
+
+ /**
+ * \brief Saves the index to a stream
+ * \param stream The stream to save the index to
+ */
+ virtual void saveIndex(FILE* stream) = 0;
+
+ /**
+ * \brief Loads the index from a stream
+ * \param stream The stream from which the index is loaded
+ */
+ virtual void loadIndex(FILE* stream) = 0;
+
+ /**
+ * \returns number of features in this index.
+ */
+ virtual size_t size() const = 0;
+
+ /**
+ * \returns The dimensionality of the features in this index.
+ */
+ virtual size_t veclen() const = 0;
+
+ /**
+ * \returns The amount of memory (in bytes) used by the index.
+ */
+ virtual int usedMemory() const = 0;
+
+ /**
+ * \returns The index type (kdtree, kmeans,...)
+ */
+ virtual flann_algorithm_t getType() const = 0;
+
+ /**
+ * \returns The index parameters
+ */
+ virtual IndexParams getParameters() const = 0;
+
+
+ /**
+ * \brief Method that searches for nearest-neighbours
+ */
+ virtual void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) = 0;
+};
+
+}
+
+#endif //OPENCV_FLANN_NNINDEX_H
diff --git a/thirdparty/linux/include/opencv2/flann/object_factory.h b/thirdparty/linux/include/opencv2/flann/object_factory.h
new file mode 100644
index 0000000..7f971c5
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/object_factory.h
@@ -0,0 +1,91 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_OBJECT_FACTORY_H_
+#define OPENCV_FLANN_OBJECT_FACTORY_H_
+
+#include <map>
+
+namespace cvflann
+{
+
+class CreatorNotFound
+{
+};
+
+template<typename BaseClass,
+ typename UniqueIdType,
+ typename ObjectCreator = BaseClass* (*)()>
+class ObjectFactory
+{
+ typedef ObjectFactory<BaseClass,UniqueIdType,ObjectCreator> ThisClass;
+ typedef std::map<UniqueIdType, ObjectCreator> ObjectRegistry;
+
+ // singleton class, private constructor
+ ObjectFactory() {}
+
+public:
+
+ bool subscribe(UniqueIdType id, ObjectCreator creator)
+ {
+ if (object_registry.find(id) != object_registry.end()) return false;
+
+ object_registry[id] = creator;
+ return true;
+ }
+
+ bool unregister(UniqueIdType id)
+ {
+ return object_registry.erase(id) == 1;
+ }
+
+ ObjectCreator create(UniqueIdType id)
+ {
+ typename ObjectRegistry::const_iterator iter = object_registry.find(id);
+
+ if (iter == object_registry.end()) {
+ throw CreatorNotFound();
+ }
+
+ return iter->second;
+ }
+
+ static ThisClass& instance()
+ {
+ static ThisClass the_factory;
+ return the_factory;
+ }
+private:
+ ObjectRegistry object_registry;
+};
+
+}
+
+#endif /* OPENCV_FLANN_OBJECT_FACTORY_H_ */
diff --git a/thirdparty/linux/include/opencv2/flann/params.h b/thirdparty/linux/include/opencv2/flann/params.h
new file mode 100644
index 0000000..95ef4cd
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/params.h
@@ -0,0 +1,99 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+
+#ifndef OPENCV_FLANN_PARAMS_H_
+#define OPENCV_FLANN_PARAMS_H_
+
+#include "any.h"
+#include "general.h"
+#include <iostream>
+#include <map>
+
+
+namespace cvflann
+{
+
+typedef std::map<cv::String, any> IndexParams;
+
+struct SearchParams : public IndexParams
+{
+ SearchParams(int checks = 32, float eps = 0, bool sorted = true )
+ {
+ // how many leafs to visit when searching for neighbours (-1 for unlimited)
+ (*this)["checks"] = checks;
+ // search for eps-approximate neighbours (default: 0)
+ (*this)["eps"] = eps;
+ // only for radius search, require neighbours sorted by distance (default: true)
+ (*this)["sorted"] = sorted;
+ }
+};
+
+
+template<typename T>
+T get_param(const IndexParams& params, cv::String name, const T& default_value)
+{
+ IndexParams::const_iterator it = params.find(name);
+ if (it != params.end()) {
+ return it->second.cast<T>();
+ }
+ else {
+ return default_value;
+ }
+}
+
+template<typename T>
+T get_param(const IndexParams& params, cv::String name)
+{
+ IndexParams::const_iterator it = params.find(name);
+ if (it != params.end()) {
+ return it->second.cast<T>();
+ }
+ else {
+ throw FLANNException(cv::String("Missing parameter '")+name+cv::String("' in the parameters given"));
+ }
+}
+
+inline void print_params(const IndexParams& params, std::ostream& stream)
+{
+ IndexParams::const_iterator it;
+
+ for(it=params.begin(); it!=params.end(); ++it) {
+ stream << it->first << " : " << it->second << std::endl;
+ }
+}
+
+inline void print_params(const IndexParams& params)
+{
+ print_params(params, std::cout);
+}
+
+}
+
+
+#endif /* OPENCV_FLANN_PARAMS_H_ */
diff --git a/thirdparty/linux/include/opencv2/flann/random.h b/thirdparty/linux/include/opencv2/flann/random.h
new file mode 100644
index 0000000..a3cf5ec
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/random.h
@@ -0,0 +1,133 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_RANDOM_H
+#define OPENCV_FLANN_RANDOM_H
+
+#include <algorithm>
+#include <cstdlib>
+#include <vector>
+
+#include "general.h"
+
+namespace cvflann
+{
+
+/**
+ * Seeds the random number generator
+ * @param seed Random seed
+ */
+inline void seed_random(unsigned int seed)
+{
+ srand(seed);
+}
+
+/*
+ * Generates a random double value.
+ */
+/**
+ * Generates a random double value.
+ * @param high Upper limit
+ * @param low Lower limit
+ * @return Random double value
+ */
+inline double rand_double(double high = 1.0, double low = 0)
+{
+ return low + ((high-low) * (std::rand() / (RAND_MAX + 1.0)));
+}
+
+/**
+ * Generates a random integer value.
+ * @param high Upper limit
+ * @param low Lower limit
+ * @return Random integer value
+ */
+inline int rand_int(int high = RAND_MAX, int low = 0)
+{
+ return low + (int) ( double(high-low) * (std::rand() / (RAND_MAX + 1.0)));
+}
+
+/**
+ * Random number generator that returns a distinct number from
+ * the [0,n) interval each time.
+ */
+class UniqueRandom
+{
+ std::vector<int> vals_;
+ int size_;
+ int counter_;
+
+public:
+ /**
+ * Constructor.
+ * @param n Size of the interval from which to generate
+ * @return
+ */
+ UniqueRandom(int n)
+ {
+ init(n);
+ }
+
+ /**
+ * Initializes the number generator.
+ * @param n the size of the interval from which to generate random numbers.
+ */
+ void init(int n)
+ {
+ // create and initialize an array of size n
+ vals_.resize(n);
+ size_ = n;
+ for (int i = 0; i < size_; ++i) vals_[i] = i;
+
+ // shuffle the elements in the array
+ std::random_shuffle(vals_.begin(), vals_.end());
+
+ counter_ = 0;
+ }
+
+ /**
+ * Return a distinct random integer in greater or equal to 0 and less
+ * than 'n' on each call. It should be called maximum 'n' times.
+ * Returns: a random integer
+ */
+ int next()
+ {
+ if (counter_ == size_) {
+ return -1;
+ }
+ else {
+ return vals_[counter_++];
+ }
+ }
+};
+
+}
+
+#endif //OPENCV_FLANN_RANDOM_H
diff --git a/thirdparty/linux/include/opencv2/flann/result_set.h b/thirdparty/linux/include/opencv2/flann/result_set.h
new file mode 100644
index 0000000..9750019
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/result_set.h
@@ -0,0 +1,543 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_RESULTSET_H
+#define OPENCV_FLANN_RESULTSET_H
+
+#include <algorithm>
+#include <cstring>
+#include <iostream>
+#include <limits>
+#include <set>
+#include <vector>
+
+namespace cvflann
+{
+
+/* This record represents a branch point when finding neighbors in
+ the tree. It contains a record of the minimum distance to the query
+ point, as well as the node at which the search resumes.
+ */
+
+template <typename T, typename DistanceType>
+struct BranchStruct
+{
+ T node; /* Tree node at which search resumes */
+ DistanceType mindist; /* Minimum distance to query for all nodes below. */
+
+ BranchStruct() {}
+ BranchStruct(const T& aNode, DistanceType dist) : node(aNode), mindist(dist) {}
+
+ bool operator<(const BranchStruct<T, DistanceType>& rhs) const
+ {
+ return mindist<rhs.mindist;
+ }
+};
+
+
+template <typename DistanceType>
+class ResultSet
+{
+public:
+ virtual ~ResultSet() {}
+
+ virtual bool full() const = 0;
+
+ virtual void addPoint(DistanceType dist, int index) = 0;
+
+ virtual DistanceType worstDist() const = 0;
+
+};
+
+/**
+ * KNNSimpleResultSet does not ensure that the element it holds are unique.
+ * Is used in those cases where the nearest neighbour algorithm used does not
+ * attempt to insert the same element multiple times.
+ */
+template <typename DistanceType>
+class KNNSimpleResultSet : public ResultSet<DistanceType>
+{
+ int* indices;
+ DistanceType* dists;
+ int capacity;
+ int count;
+ DistanceType worst_distance_;
+
+public:
+ KNNSimpleResultSet(int capacity_) : capacity(capacity_), count(0)
+ {
+ }
+
+ void init(int* indices_, DistanceType* dists_)
+ {
+ indices = indices_;
+ dists = dists_;
+ count = 0;
+ worst_distance_ = (std::numeric_limits<DistanceType>::max)();
+ dists[capacity-1] = worst_distance_;
+ }
+
+ size_t size() const
+ {
+ return count;
+ }
+
+ bool full() const
+ {
+ return count == capacity;
+ }
+
+
+ void addPoint(DistanceType dist, int index)
+ {
+ if (dist >= worst_distance_) return;
+ int i;
+ for (i=count; i>0; --i) {
+#ifdef FLANN_FIRST_MATCH
+ if ( (dists[i-1]>dist) || ((dist==dists[i-1])&&(indices[i-1]>index)) )
+#else
+ if (dists[i-1]>dist)
+#endif
+ {
+ if (i<capacity) {
+ dists[i] = dists[i-1];
+ indices[i] = indices[i-1];
+ }
+ }
+ else break;
+ }
+ if (count < capacity) ++count;
+ dists[i] = dist;
+ indices[i] = index;
+ worst_distance_ = dists[capacity-1];
+ }
+
+ DistanceType worstDist() const
+ {
+ return worst_distance_;
+ }
+};
+
+/**
+ * K-Nearest neighbour result set. Ensures that the elements inserted are unique
+ */
+template <typename DistanceType>
+class KNNResultSet : public ResultSet<DistanceType>
+{
+ int* indices;
+ DistanceType* dists;
+ int capacity;
+ int count;
+ DistanceType worst_distance_;
+
+public:
+ KNNResultSet(int capacity_) : capacity(capacity_), count(0)
+ {
+ }
+
+ void init(int* indices_, DistanceType* dists_)
+ {
+ indices = indices_;
+ dists = dists_;
+ count = 0;
+ worst_distance_ = (std::numeric_limits<DistanceType>::max)();
+ dists[capacity-1] = worst_distance_;
+ }
+
+ size_t size() const
+ {
+ return count;
+ }
+
+ bool full() const
+ {
+ return count == capacity;
+ }
+
+
+ void addPoint(DistanceType dist, int index)
+ {
+ if (dist >= worst_distance_) return;
+ int i;
+ for (i = count; i > 0; --i) {
+#ifdef FLANN_FIRST_MATCH
+ if ( (dists[i-1]<=dist) && ((dist!=dists[i-1])||(indices[i-1]<=index)) )
+#else
+ if (dists[i-1]<=dist)
+#endif
+ {
+ // Check for duplicate indices
+ int j = i - 1;
+ while ((j >= 0) && (dists[j] == dist)) {
+ if (indices[j] == index) {
+ return;
+ }
+ --j;
+ }
+ break;
+ }
+ }
+
+ if (count < capacity) ++count;
+ for (int j = count-1; j > i; --j) {
+ dists[j] = dists[j-1];
+ indices[j] = indices[j-1];
+ }
+ dists[i] = dist;
+ indices[i] = index;
+ worst_distance_ = dists[capacity-1];
+ }
+
+ DistanceType worstDist() const
+ {
+ return worst_distance_;
+ }
+};
+
+
+/**
+ * A result-set class used when performing a radius based search.
+ */
+template <typename DistanceType>
+class RadiusResultSet : public ResultSet<DistanceType>
+{
+ DistanceType radius;
+ int* indices;
+ DistanceType* dists;
+ size_t capacity;
+ size_t count;
+
+public:
+ RadiusResultSet(DistanceType radius_, int* indices_, DistanceType* dists_, int capacity_) :
+ radius(radius_), indices(indices_), dists(dists_), capacity(capacity_)
+ {
+ init();
+ }
+
+ ~RadiusResultSet()
+ {
+ }
+
+ void init()
+ {
+ count = 0;
+ }
+
+ size_t size() const
+ {
+ return count;
+ }
+
+ bool full() const
+ {
+ return true;
+ }
+
+ void addPoint(DistanceType dist, int index)
+ {
+ if (dist<radius) {
+ if ((capacity>0)&&(count < capacity)) {
+ dists[count] = dist;
+ indices[count] = index;
+ }
+ count++;
+ }
+ }
+
+ DistanceType worstDist() const
+ {
+ return radius;
+ }
+
+};
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+/** Class that holds the k NN neighbors
+ * Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays
+ */
+template<typename DistanceType>
+class UniqueResultSet : public ResultSet<DistanceType>
+{
+public:
+ struct DistIndex
+ {
+ DistIndex(DistanceType dist, unsigned int index) :
+ dist_(dist), index_(index)
+ {
+ }
+ bool operator<(const DistIndex dist_index) const
+ {
+ return (dist_ < dist_index.dist_) || ((dist_ == dist_index.dist_) && index_ < dist_index.index_);
+ }
+ DistanceType dist_;
+ unsigned int index_;
+ };
+
+ /** Default cosntructor */
+ UniqueResultSet() :
+ worst_distance_(std::numeric_limits<DistanceType>::max())
+ {
+ }
+
+ /** Check the status of the set
+ * @return true if we have k NN
+ */
+ inline bool full() const
+ {
+ return is_full_;
+ }
+
+ /** Remove all elements in the set
+ */
+ virtual void clear() = 0;
+
+ /** Copy the set to two C arrays
+ * @param indices pointer to a C array of indices
+ * @param dist pointer to a C array of distances
+ * @param n_neighbors the number of neighbors to copy
+ */
+ virtual void copy(int* indices, DistanceType* dist, int n_neighbors = -1) const
+ {
+ if (n_neighbors < 0) {
+ for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end =
+ dist_indices_.end(); dist_index != dist_index_end; ++dist_index, ++indices, ++dist) {
+ *indices = dist_index->index_;
+ *dist = dist_index->dist_;
+ }
+ }
+ else {
+ int i = 0;
+ for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end =
+ dist_indices_.end(); (dist_index != dist_index_end) && (i < n_neighbors); ++dist_index, ++indices, ++dist, ++i) {
+ *indices = dist_index->index_;
+ *dist = dist_index->dist_;
+ }
+ }
+ }
+
+ /** Copy the set to two C arrays but sort it according to the distance first
+ * @param indices pointer to a C array of indices
+ * @param dist pointer to a C array of distances
+ * @param n_neighbors the number of neighbors to copy
+ */
+ virtual void sortAndCopy(int* indices, DistanceType* dist, int n_neighbors = -1) const
+ {
+ copy(indices, dist, n_neighbors);
+ }
+
+ /** The number of neighbors in the set
+ * @return
+ */
+ size_t size() const
+ {
+ return dist_indices_.size();
+ }
+
+ /** The distance of the furthest neighbor
+ * If we don't have enough neighbors, it returns the max possible value
+ * @return
+ */
+ inline DistanceType worstDist() const
+ {
+ return worst_distance_;
+ }
+protected:
+ /** Flag to say if the set is full */
+ bool is_full_;
+
+ /** The worst distance found so far */
+ DistanceType worst_distance_;
+
+ /** The best candidates so far */
+ std::set<DistIndex> dist_indices_;
+};
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+/** Class that holds the k NN neighbors
+ * Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays
+ */
+template<typename DistanceType>
+class KNNUniqueResultSet : public UniqueResultSet<DistanceType>
+{
+public:
+ /** Constructor
+ * @param capacity the number of neighbors to store at max
+ */
+ KNNUniqueResultSet(unsigned int capacity) : capacity_(capacity)
+ {
+ this->is_full_ = false;
+ this->clear();
+ }
+
+ /** Add a possible candidate to the best neighbors
+ * @param dist distance for that neighbor
+ * @param index index of that neighbor
+ */
+ inline void addPoint(DistanceType dist, int index)
+ {
+ // Don't do anything if we are worse than the worst
+ if (dist >= worst_distance_) return;
+ dist_indices_.insert(DistIndex(dist, index));
+
+ if (is_full_) {
+ if (dist_indices_.size() > capacity_) {
+ dist_indices_.erase(*dist_indices_.rbegin());
+ worst_distance_ = dist_indices_.rbegin()->dist_;
+ }
+ }
+ else if (dist_indices_.size() == capacity_) {
+ is_full_ = true;
+ worst_distance_ = dist_indices_.rbegin()->dist_;
+ }
+ }
+
+ /** Remove all elements in the set
+ */
+ void clear()
+ {
+ dist_indices_.clear();
+ worst_distance_ = std::numeric_limits<DistanceType>::max();
+ is_full_ = false;
+ }
+
+protected:
+ typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex;
+ using UniqueResultSet<DistanceType>::is_full_;
+ using UniqueResultSet<DistanceType>::worst_distance_;
+ using UniqueResultSet<DistanceType>::dist_indices_;
+
+ /** The number of neighbors to keep */
+ unsigned int capacity_;
+};
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+/** Class that holds the radius nearest neighbors
+ * It is more accurate than RadiusResult as it is not limited in the number of neighbors
+ */
+template<typename DistanceType>
+class RadiusUniqueResultSet : public UniqueResultSet<DistanceType>
+{
+public:
+ /** Constructor
+ * @param radius the maximum distance of a neighbor
+ */
+ RadiusUniqueResultSet(DistanceType radius) :
+ radius_(radius)
+ {
+ is_full_ = true;
+ }
+
+ /** Add a possible candidate to the best neighbors
+ * @param dist distance for that neighbor
+ * @param index index of that neighbor
+ */
+ void addPoint(DistanceType dist, int index)
+ {
+ if (dist <= radius_) dist_indices_.insert(DistIndex(dist, index));
+ }
+
+ /** Remove all elements in the set
+ */
+ inline void clear()
+ {
+ dist_indices_.clear();
+ }
+
+
+ /** Check the status of the set
+ * @return alwys false
+ */
+ inline bool full() const
+ {
+ return true;
+ }
+
+ /** The distance of the furthest neighbor
+ * If we don't have enough neighbors, it returns the max possible value
+ * @return
+ */
+ inline DistanceType worstDist() const
+ {
+ return radius_;
+ }
+private:
+ typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex;
+ using UniqueResultSet<DistanceType>::dist_indices_;
+ using UniqueResultSet<DistanceType>::is_full_;
+
+ /** The furthest distance a neighbor can be */
+ DistanceType radius_;
+};
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+/** Class that holds the k NN neighbors within a radius distance
+ */
+template<typename DistanceType>
+class KNNRadiusUniqueResultSet : public KNNUniqueResultSet<DistanceType>
+{
+public:
+ /** Constructor
+ * @param capacity the number of neighbors to store at max
+ * @param radius the maximum distance of a neighbor
+ */
+ KNNRadiusUniqueResultSet(unsigned int capacity, DistanceType radius)
+ {
+ this->capacity_ = capacity;
+ this->radius_ = radius;
+ this->dist_indices_.reserve(capacity_);
+ this->clear();
+ }
+
+ /** Remove all elements in the set
+ */
+ void clear()
+ {
+ dist_indices_.clear();
+ worst_distance_ = radius_;
+ is_full_ = false;
+ }
+private:
+ using KNNUniqueResultSet<DistanceType>::dist_indices_;
+ using KNNUniqueResultSet<DistanceType>::is_full_;
+ using KNNUniqueResultSet<DistanceType>::worst_distance_;
+
+ /** The maximum number of neighbors to consider */
+ unsigned int capacity_;
+
+ /** The maximum distance of a neighbor */
+ DistanceType radius_;
+};
+}
+
+#endif //OPENCV_FLANN_RESULTSET_H
diff --git a/thirdparty/linux/include/opencv2/flann/sampling.h b/thirdparty/linux/include/opencv2/flann/sampling.h
new file mode 100644
index 0000000..396f177
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/sampling.h
@@ -0,0 +1,81 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+
+#ifndef OPENCV_FLANN_SAMPLING_H_
+#define OPENCV_FLANN_SAMPLING_H_
+
+#include "matrix.h"
+#include "random.h"
+
+namespace cvflann
+{
+
+template<typename T>
+Matrix<T> random_sample(Matrix<T>& srcMatrix, long size, bool remove = false)
+{
+ Matrix<T> newSet(new T[size * srcMatrix.cols], size,srcMatrix.cols);
+
+ T* src,* dest;
+ for (long i=0; i<size; ++i) {
+ long r = rand_int((int)(srcMatrix.rows-i));
+ dest = newSet[i];
+ src = srcMatrix[r];
+ std::copy(src, src+srcMatrix.cols, dest);
+ if (remove) {
+ src = srcMatrix[srcMatrix.rows-i-1];
+ dest = srcMatrix[r];
+ std::copy(src, src+srcMatrix.cols, dest);
+ }
+ }
+ if (remove) {
+ srcMatrix.rows -= size;
+ }
+ return newSet;
+}
+
+template<typename T>
+Matrix<T> random_sample(const Matrix<T>& srcMatrix, size_t size)
+{
+ UniqueRandom rand((int)srcMatrix.rows);
+ Matrix<T> newSet(new T[size * srcMatrix.cols], size,srcMatrix.cols);
+
+ T* src,* dest;
+ for (size_t i=0; i<size; ++i) {
+ long r = rand.next();
+ dest = newSet[i];
+ src = srcMatrix[r];
+ std::copy(src, src+srcMatrix.cols, dest);
+ }
+ return newSet;
+}
+
+} // namespace
+
+
+#endif /* OPENCV_FLANN_SAMPLING_H_ */
diff --git a/thirdparty/linux/include/opencv2/flann/saving.h b/thirdparty/linux/include/opencv2/flann/saving.h
new file mode 100644
index 0000000..7e3bea5
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/saving.h
@@ -0,0 +1,187 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE NNIndexGOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_SAVING_H_
+#define OPENCV_FLANN_SAVING_H_
+
+#include <cstring>
+#include <vector>
+
+#include "general.h"
+#include "nn_index.h"
+
+#ifdef FLANN_SIGNATURE_
+#undef FLANN_SIGNATURE_
+#endif
+#define FLANN_SIGNATURE_ "FLANN_INDEX"
+
+namespace cvflann
+{
+
+template <typename T>
+struct Datatype {};
+template<>
+struct Datatype<char> { static flann_datatype_t type() { return FLANN_INT8; } };
+template<>
+struct Datatype<short> { static flann_datatype_t type() { return FLANN_INT16; } };
+template<>
+struct Datatype<int> { static flann_datatype_t type() { return FLANN_INT32; } };
+template<>
+struct Datatype<unsigned char> { static flann_datatype_t type() { return FLANN_UINT8; } };
+template<>
+struct Datatype<unsigned short> { static flann_datatype_t type() { return FLANN_UINT16; } };
+template<>
+struct Datatype<unsigned int> { static flann_datatype_t type() { return FLANN_UINT32; } };
+template<>
+struct Datatype<float> { static flann_datatype_t type() { return FLANN_FLOAT32; } };
+template<>
+struct Datatype<double> { static flann_datatype_t type() { return FLANN_FLOAT64; } };
+
+
+/**
+ * Structure representing the index header.
+ */
+struct IndexHeader
+{
+ char signature[16];
+ char version[16];
+ flann_datatype_t data_type;
+ flann_algorithm_t index_type;
+ size_t rows;
+ size_t cols;
+};
+
+/**
+ * Saves index header to stream
+ *
+ * @param stream - Stream to save to
+ * @param index - The index to save
+ */
+template<typename Distance>
+void save_header(FILE* stream, const NNIndex<Distance>& index)
+{
+ IndexHeader header;
+ memset(header.signature, 0, sizeof(header.signature));
+ strcpy(header.signature, FLANN_SIGNATURE_);
+ memset(header.version, 0, sizeof(header.version));
+ strcpy(header.version, FLANN_VERSION_);
+ header.data_type = Datatype<typename Distance::ElementType>::type();
+ header.index_type = index.getType();
+ header.rows = index.size();
+ header.cols = index.veclen();
+
+ std::fwrite(&header, sizeof(header),1,stream);
+}
+
+
+/**
+ *
+ * @param stream - Stream to load from
+ * @return Index header
+ */
+inline IndexHeader load_header(FILE* stream)
+{
+ IndexHeader header;
+ size_t read_size = fread(&header,sizeof(header),1,stream);
+
+ if (read_size!=(size_t)1) {
+ throw FLANNException("Invalid index file, cannot read");
+ }
+
+ if (strcmp(header.signature,FLANN_SIGNATURE_)!=0) {
+ throw FLANNException("Invalid index file, wrong signature");
+ }
+
+ return header;
+
+}
+
+
+template<typename T>
+void save_value(FILE* stream, const T& value, size_t count = 1)
+{
+ fwrite(&value, sizeof(value),count, stream);
+}
+
+template<typename T>
+void save_value(FILE* stream, const cvflann::Matrix<T>& value)
+{
+ fwrite(&value, sizeof(value),1, stream);
+ fwrite(value.data, sizeof(T),value.rows*value.cols, stream);
+}
+
+template<typename T>
+void save_value(FILE* stream, const std::vector<T>& value)
+{
+ size_t size = value.size();
+ fwrite(&size, sizeof(size_t), 1, stream);
+ fwrite(&value[0], sizeof(T), size, stream);
+}
+
+template<typename T>
+void load_value(FILE* stream, T& value, size_t count = 1)
+{
+ size_t read_cnt = fread(&value, sizeof(value), count, stream);
+ if (read_cnt != count) {
+ throw FLANNException("Cannot read from file");
+ }
+}
+
+template<typename T>
+void load_value(FILE* stream, cvflann::Matrix<T>& value)
+{
+ size_t read_cnt = fread(&value, sizeof(value), 1, stream);
+ if (read_cnt != 1) {
+ throw FLANNException("Cannot read from file");
+ }
+ value.data = new T[value.rows*value.cols];
+ read_cnt = fread(value.data, sizeof(T), value.rows*value.cols, stream);
+ if (read_cnt != (size_t)(value.rows*value.cols)) {
+ throw FLANNException("Cannot read from file");
+ }
+}
+
+
+template<typename T>
+void load_value(FILE* stream, std::vector<T>& value)
+{
+ size_t size;
+ size_t read_cnt = fread(&size, sizeof(size_t), 1, stream);
+ if (read_cnt!=1) {
+ throw FLANNException("Cannot read from file");
+ }
+ value.resize(size);
+ read_cnt = fread(&value[0], sizeof(T), size, stream);
+ if (read_cnt != size) {
+ throw FLANNException("Cannot read from file");
+ }
+}
+
+}
+
+#endif /* OPENCV_FLANN_SAVING_H_ */
diff --git a/thirdparty/linux/include/opencv2/flann/simplex_downhill.h b/thirdparty/linux/include/opencv2/flann/simplex_downhill.h
new file mode 100644
index 0000000..145901a
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/simplex_downhill.h
@@ -0,0 +1,186 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
+#define OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
+
+namespace cvflann
+{
+
+/**
+ Adds val to array vals (and point to array points) and keeping the arrays sorted by vals.
+ */
+template <typename T>
+void addValue(int pos, float val, float* vals, T* point, T* points, int n)
+{
+ vals[pos] = val;
+ for (int i=0; i<n; ++i) {
+ points[pos*n+i] = point[i];
+ }
+
+ // bubble down
+ int j=pos;
+ while (j>0 && vals[j]<vals[j-1]) {
+ swap(vals[j],vals[j-1]);
+ for (int i=0; i<n; ++i) {
+ swap(points[j*n+i],points[(j-1)*n+i]);
+ }
+ --j;
+ }
+}
+
+
+/**
+ Simplex downhill optimization function.
+ Preconditions: points is a 2D mattrix of size (n+1) x n
+ func is the cost function taking n an array of n params and returning float
+ vals is the cost function in the n+1 simplex points, if NULL it will be computed
+
+ Postcondition: returns optimum value and points[0..n] are the optimum parameters
+ */
+template <typename T, typename F>
+float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL )
+{
+ const int MAX_ITERATIONS = 10;
+
+ assert(n>0);
+
+ T* p_o = new T[n];
+ T* p_r = new T[n];
+ T* p_e = new T[n];
+
+ int alpha = 1;
+
+ int iterations = 0;
+
+ bool ownVals = false;
+ if (vals == NULL) {
+ ownVals = true;
+ vals = new float[n+1];
+ for (int i=0; i<n+1; ++i) {
+ float val = func(points+i*n);
+ addValue(i, val, vals, points+i*n, points, n);
+ }
+ }
+ int nn = n*n;
+
+ while (true) {
+
+ if (iterations++ > MAX_ITERATIONS) break;
+
+ // compute average of simplex points (except the highest point)
+ for (int j=0; j<n; ++j) {
+ p_o[j] = 0;
+ for (int i=0; i<n; ++i) {
+ p_o[i] += points[j*n+i];
+ }
+ }
+ for (int i=0; i<n; ++i) {
+ p_o[i] /= n;
+ }
+
+ bool converged = true;
+ for (int i=0; i<n; ++i) {
+ if (p_o[i] != points[nn+i]) {
+ converged = false;
+ }
+ }
+ if (converged) break;
+
+ // trying a reflection
+ for (int i=0; i<n; ++i) {
+ p_r[i] = p_o[i] + alpha*(p_o[i]-points[nn+i]);
+ }
+ float val_r = func(p_r);
+
+ if ((val_r>=vals[0])&&(val_r<vals[n])) {
+ // reflection between second highest and lowest
+ // add it to the simplex
+ Logger::info("Choosing reflection\n");
+ addValue(n, val_r,vals, p_r, points, n);
+ continue;
+ }
+
+ if (val_r<vals[0]) {
+ // value is smaller than smalest in simplex
+
+ // expand some more to see if it drops further
+ for (int i=0; i<n; ++i) {
+ p_e[i] = 2*p_r[i]-p_o[i];
+ }
+ float val_e = func(p_e);
+
+ if (val_e<val_r) {
+ Logger::info("Choosing reflection and expansion\n");
+ addValue(n, val_e,vals,p_e,points,n);
+ }
+ else {
+ Logger::info("Choosing reflection\n");
+ addValue(n, val_r,vals,p_r,points,n);
+ }
+ continue;
+ }
+ if (val_r>=vals[n]) {
+ for (int i=0; i<n; ++i) {
+ p_e[i] = (p_o[i]+points[nn+i])/2;
+ }
+ float val_e = func(p_e);
+
+ if (val_e<vals[n]) {
+ Logger::info("Choosing contraction\n");
+ addValue(n,val_e,vals,p_e,points,n);
+ continue;
+ }
+ }
+ {
+ Logger::info("Full contraction\n");
+ for (int j=1; j<=n; ++j) {
+ for (int i=0; i<n; ++i) {
+ points[j*n+i] = (points[j*n+i]+points[i])/2;
+ }
+ float val = func(points+j*n);
+ addValue(j,val,vals,points+j*n,points,n);
+ }
+ }
+ }
+
+ float bestVal = vals[0];
+
+ delete[] p_r;
+ delete[] p_o;
+ delete[] p_e;
+ if (ownVals) delete[] vals;
+
+ return bestVal;
+}
+
+}
+
+#endif //OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
diff --git a/thirdparty/linux/include/opencv2/flann/timer.h b/thirdparty/linux/include/opencv2/flann/timer.h
new file mode 100644
index 0000000..f771a34
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/timer.h
@@ -0,0 +1,94 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_TIMER_H
+#define OPENCV_FLANN_TIMER_H
+
+#include <time.h>
+#include "opencv2/core.hpp"
+#include "opencv2/core/utility.hpp"
+
+namespace cvflann
+{
+
+/**
+ * A start-stop timer class.
+ *
+ * Can be used to time portions of code.
+ */
+class StartStopTimer
+{
+ int64 startTime;
+
+public:
+ /**
+ * Value of the timer.
+ */
+ double value;
+
+
+ /**
+ * Constructor.
+ */
+ StartStopTimer()
+ {
+ reset();
+ }
+
+ /**
+ * Starts the timer.
+ */
+ void start()
+ {
+ startTime = cv::getTickCount();
+ }
+
+ /**
+ * Stops the timer and updates timer value.
+ */
+ void stop()
+ {
+ int64 stopTime = cv::getTickCount();
+ value += ( (double)stopTime - startTime) / cv::getTickFrequency();
+ }
+
+ /**
+ * Resets the timer value to 0.
+ */
+ void reset()
+ {
+ value = 0;
+ }
+
+};
+
+}
+
+#endif // FLANN_TIMER_H