summaryrefslogtreecommitdiff
path: root/thirdparty/linux/include/opencv2/flann/flann_base.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/linux/include/opencv2/flann/flann_base.hpp')
-rw-r--r--thirdparty/linux/include/opencv2/flann/flann_base.hpp290
1 files changed, 290 insertions, 0 deletions
diff --git a/thirdparty/linux/include/opencv2/flann/flann_base.hpp b/thirdparty/linux/include/opencv2/flann/flann_base.hpp
new file mode 100644
index 0000000..98c33cf
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/flann_base.hpp
@@ -0,0 +1,290 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_BASE_HPP_
+#define OPENCV_FLANN_BASE_HPP_
+
+#include <vector>
+#include <cassert>
+#include <cstdio>
+
+#include "general.h"
+#include "matrix.h"
+#include "params.h"
+#include "saving.h"
+
+#include "all_indices.h"
+
+namespace cvflann
+{
+
+/**
+ * Sets the log level used for all flann functions
+ * @param level Verbosity level
+ */
+inline void log_verbosity(int level)
+{
+ if (level >= 0) {
+ Logger::setLevel(level);
+ }
+}
+
+/**
+ * (Deprecated) Index parameters for creating a saved index.
+ */
+struct SavedIndexParams : public IndexParams
+{
+ SavedIndexParams(cv::String filename)
+ {
+ (* this)["algorithm"] = FLANN_INDEX_SAVED;
+ (*this)["filename"] = filename;
+ }
+};
+
+
+template<typename Distance>
+NNIndex<Distance>* load_saved_index(const Matrix<typename Distance::ElementType>& dataset, const cv::String& filename, Distance distance)
+{
+ typedef typename Distance::ElementType ElementType;
+
+ FILE* fin = fopen(filename.c_str(), "rb");
+ if (fin == NULL) {
+ return NULL;
+ }
+ IndexHeader header = load_header(fin);
+ if (header.data_type != Datatype<ElementType>::type()) {
+ throw FLANNException("Datatype of saved index is different than of the one to be created.");
+ }
+ if ((size_t(header.rows) != dataset.rows)||(size_t(header.cols) != dataset.cols)) {
+ throw FLANNException("The index saved belongs to a different dataset");
+ }
+
+ IndexParams params;
+ params["algorithm"] = header.index_type;
+ NNIndex<Distance>* nnIndex = create_index_by_type<Distance>(dataset, params, distance);
+ nnIndex->loadIndex(fin);
+ fclose(fin);
+
+ return nnIndex;
+}
+
+
+template<typename Distance>
+class Index : public NNIndex<Distance>
+{
+public:
+ typedef typename Distance::ElementType ElementType;
+ typedef typename Distance::ResultType DistanceType;
+
+ Index(const Matrix<ElementType>& features, const IndexParams& params, Distance distance = Distance() )
+ : index_params_(params)
+ {
+ flann_algorithm_t index_type = get_param<flann_algorithm_t>(params,"algorithm");
+ loaded_ = false;
+
+ if (index_type == FLANN_INDEX_SAVED) {
+ nnIndex_ = load_saved_index<Distance>(features, get_param<cv::String>(params,"filename"), distance);
+ loaded_ = true;
+ }
+ else {
+ nnIndex_ = create_index_by_type<Distance>(features, params, distance);
+ }
+ }
+
+ ~Index()
+ {
+ delete nnIndex_;
+ }
+
+ /**
+ * Builds the index.
+ */
+ void buildIndex()
+ {
+ if (!loaded_) {
+ nnIndex_->buildIndex();
+ }
+ }
+
+ void save(cv::String filename)
+ {
+ FILE* fout = fopen(filename.c_str(), "wb");
+ if (fout == NULL) {
+ throw FLANNException("Cannot open file");
+ }
+ save_header(fout, *nnIndex_);
+ saveIndex(fout);
+ fclose(fout);
+ }
+
+ /**
+ * \brief Saves the index to a stream
+ * \param stream The stream to save the index to
+ */
+ virtual void saveIndex(FILE* stream)
+ {
+ nnIndex_->saveIndex(stream);
+ }
+
+ /**
+ * \brief Loads the index from a stream
+ * \param stream The stream from which the index is loaded
+ */
+ virtual void loadIndex(FILE* stream)
+ {
+ nnIndex_->loadIndex(stream);
+ }
+
+ /**
+ * \returns number of features in this index.
+ */
+ size_t veclen() const
+ {
+ return nnIndex_->veclen();
+ }
+
+ /**
+ * \returns The dimensionality of the features in this index.
+ */
+ size_t size() const
+ {
+ return nnIndex_->size();
+ }
+
+ /**
+ * \returns The index type (kdtree, kmeans,...)
+ */
+ flann_algorithm_t getType() const
+ {
+ return nnIndex_->getType();
+ }
+
+ /**
+ * \returns The amount of memory (in bytes) used by the index.
+ */
+ virtual int usedMemory() const
+ {
+ return nnIndex_->usedMemory();
+ }
+
+
+ /**
+ * \returns The index parameters
+ */
+ IndexParams getParameters() const
+ {
+ return nnIndex_->getParameters();
+ }
+
+ /**
+ * \brief Perform k-nearest neighbor search
+ * \param[in] queries The query points for which to find the nearest neighbors
+ * \param[out] indices The indices of the nearest neighbors found
+ * \param[out] dists Distances to the nearest neighbors found
+ * \param[in] knn Number of nearest neighbors to return
+ * \param[in] params Search parameters
+ */
+ void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
+ {
+ nnIndex_->knnSearch(queries, indices, dists, knn, params);
+ }
+
+ /**
+ * \brief Perform radius search
+ * \param[in] query The query point
+ * \param[out] indices The indinces of the neighbors found within the given radius
+ * \param[out] dists The distances to the nearest neighbors found
+ * \param[in] radius The radius used for search
+ * \param[in] params Search parameters
+ * \returns Number of neighbors found
+ */
+ int radiusSearch(const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params)
+ {
+ return nnIndex_->radiusSearch(query, indices, dists, radius, params);
+ }
+
+ /**
+ * \brief Method that searches for nearest-neighbours
+ */
+ void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
+ {
+ nnIndex_->findNeighbors(result, vec, searchParams);
+ }
+
+ /**
+ * \brief Returns actual index
+ */
+ FLANN_DEPRECATED NNIndex<Distance>* getIndex()
+ {
+ return nnIndex_;
+ }
+
+ /**
+ * \brief Returns index parameters.
+ * \deprecated use getParameters() instead.
+ */
+ FLANN_DEPRECATED const IndexParams* getIndexParameters()
+ {
+ return &index_params_;
+ }
+
+private:
+ /** Pointer to actual index class */
+ NNIndex<Distance>* nnIndex_;
+ /** Indices if the index was loaded from a file */
+ bool loaded_;
+ /** Parameters passed to the index */
+ IndexParams index_params_;
+};
+
+/**
+ * Performs a hierarchical clustering of the points passed as argument and then takes a cut in the
+ * the clustering tree to return a flat clustering.
+ * @param[in] points Points to be clustered
+ * @param centers The computed cluster centres. Matrix should be preallocated and centers.rows is the
+ * number of clusters requested.
+ * @param params Clustering parameters (The same as for cvflann::KMeansIndex)
+ * @param d Distance to be used for clustering (eg: cvflann::L2)
+ * @return number of clusters computed (can be different than clusters.rows and is the highest number
+ * of the form (branching-1)*K+1 smaller than clusters.rows).
+ */
+template <typename Distance>
+int hierarchicalClustering(const Matrix<typename Distance::ElementType>& points, Matrix<typename Distance::ResultType>& centers,
+ const KMeansIndexParams& params, Distance d = Distance())
+{
+ KMeansIndex<Distance> kmeans(points, params, d);
+ kmeans.buildIndex();
+
+ int clusterNum = kmeans.getClusterCenters(centers);
+ return clusterNum;
+}
+
+}
+#endif /* OPENCV_FLANN_BASE_HPP_ */