diff options
Diffstat (limited to 'thirdparty/linux/include/opencv2/flann/kmeans_index.h')
-rw-r--r-- | thirdparty/linux/include/opencv2/flann/kmeans_index.h | 1171 |
1 files changed, 1171 insertions, 0 deletions
diff --git a/thirdparty/linux/include/opencv2/flann/kmeans_index.h b/thirdparty/linux/include/opencv2/flann/kmeans_index.h new file mode 100644 index 0000000..98ad0c8 --- /dev/null +++ b/thirdparty/linux/include/opencv2/flann/kmeans_index.h @@ -0,0 +1,1171 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_KMEANS_INDEX_H_ +#define OPENCV_FLANN_KMEANS_INDEX_H_ + +#include <algorithm> +#include <map> +#include <cassert> +#include <limits> +#include <cmath> + +#include "general.h" +#include "nn_index.h" +#include "dist.h" +#include "matrix.h" +#include "result_set.h" +#include "heap.h" +#include "allocator.h" +#include "random.h" +#include "saving.h" +#include "logger.h" + + +namespace cvflann +{ + +struct KMeansIndexParams : public IndexParams +{ + KMeansIndexParams(int branching = 32, int iterations = 11, + flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 ) + { + (*this)["algorithm"] = FLANN_INDEX_KMEANS; + // branching factor + (*this)["branching"] = branching; + // max iterations to perform in one kmeans clustering (kmeans tree) + (*this)["iterations"] = iterations; + // algorithm used for picking the initial cluster centers for kmeans tree + (*this)["centers_init"] = centers_init; + // cluster boundary index. Used when searching the kmeans tree + (*this)["cb_index"] = cb_index; + } +}; + + +/** + * Hierarchical kmeans index + * + * Contains a tree constructed through a hierarchical kmeans clustering + * and other information for indexing a set of points for nearest-neighbour matching. + */ +template <typename Distance> +class KMeansIndex : public NNIndex<Distance> +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + + + typedef void (KMeansIndex::* centersAlgFunction)(int, int*, int, int*, int&); + + /** + * The function used for choosing the cluster centers. + */ + centersAlgFunction chooseCenters; + + + + /** + * Chooses the initial centers in the k-means clustering in a random manner. + * + * Params: + * k = number of centers + * vecs = the dataset of points + * indices = indices in the dataset + * indices_length = length of indices vector + * + */ + void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length) + { + UniqueRandom r(indices_length); + + int index; + for (index=0; index<k; ++index) { + bool duplicate = true; + int rnd; + while (duplicate) { + duplicate = false; + rnd = r.next(); + if (rnd<0) { + centers_length = index; + return; + } + + centers[index] = indices[rnd]; + + for (int j=0; j<index; ++j) { + DistanceType sq = distance_(dataset_[centers[index]], dataset_[centers[j]], dataset_.cols); + if (sq<1e-16) { + duplicate = true; + } + } + } + } + + centers_length = index; + } + + + /** + * Chooses the initial centers in the k-means using Gonzales' algorithm + * so that the centers are spaced apart from each other. + * + * Params: + * k = number of centers + * vecs = the dataset of points + * indices = indices in the dataset + * Returns: + */ + void chooseCentersGonzales(int k, int* indices, int indices_length, int* centers, int& centers_length) + { + int n = indices_length; + + int rnd = rand_int(n); + assert(rnd >=0 && rnd < n); + + centers[0] = indices[rnd]; + + int index; + for (index=1; index<k; ++index) { + + int best_index = -1; + DistanceType best_val = 0; + for (int j=0; j<n; ++j) { + DistanceType dist = distance_(dataset_[centers[0]],dataset_[indices[j]],dataset_.cols); + for (int i=1; i<index; ++i) { + DistanceType tmp_dist = distance_(dataset_[centers[i]],dataset_[indices[j]],dataset_.cols); + if (tmp_dist<dist) { + dist = tmp_dist; + } + } + if (dist>best_val) { + best_val = dist; + best_index = j; + } + } + if (best_index!=-1) { + centers[index] = indices[best_index]; + } + else { + break; + } + } + centers_length = index; + } + + + /** + * Chooses the initial centers in the k-means using the algorithm + * proposed in the KMeans++ paper: + * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding + * + * Implementation of this function was converted from the one provided in Arthur's code. + * + * Params: + * k = number of centers + * vecs = the dataset of points + * indices = indices in the dataset + * Returns: + */ + void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length) + { + int n = indices_length; + + double currentPot = 0; + DistanceType* closestDistSq = new DistanceType[n]; + + // Choose one random center and set the closestDistSq values + int index = rand_int(n); + assert(index >=0 && index < n); + centers[0] = indices[index]; + + for (int i = 0; i < n; i++) { + closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols); + closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] ); + currentPot += closestDistSq[i]; + } + + + const int numLocalTries = 1; + + // Choose each center + int centerCount; + for (centerCount = 1; centerCount < k; centerCount++) { + + // Repeat several trials + double bestNewPot = -1; + int bestNewIndex = -1; + for (int localTrial = 0; localTrial < numLocalTries; localTrial++) { + + // Choose our center - have to be slightly careful to return a valid answer even accounting + // for possible rounding errors + double randVal = rand_double(currentPot); + for (index = 0; index < n-1; index++) { + if (randVal <= closestDistSq[index]) break; + else randVal -= closestDistSq[index]; + } + + // Compute the new potential + double newPot = 0; + for (int i = 0; i < n; i++) { + DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols); + newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] ); + } + + // Store the best result + if ((bestNewPot < 0)||(newPot < bestNewPot)) { + bestNewPot = newPot; + bestNewIndex = index; + } + } + + // Add the appropriate center + centers[centerCount] = indices[bestNewIndex]; + currentPot = bestNewPot; + for (int i = 0; i < n; i++) { + DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols); + closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] ); + } + } + + centers_length = centerCount; + + delete[] closestDistSq; + } + + + +public: + + flann_algorithm_t getType() const + { + return FLANN_INDEX_KMEANS; + } + + class KMeansDistanceComputer : public cv::ParallelLoopBody + { + public: + KMeansDistanceComputer(Distance _distance, const Matrix<ElementType>& _dataset, + const int _branching, const int* _indices, const Matrix<double>& _dcenters, const size_t _veclen, + int* _count, int* _belongs_to, std::vector<DistanceType>& _radiuses, bool& _converged, cv::Mutex& _mtx) + : distance(_distance) + , dataset(_dataset) + , branching(_branching) + , indices(_indices) + , dcenters(_dcenters) + , veclen(_veclen) + , count(_count) + , belongs_to(_belongs_to) + , radiuses(_radiuses) + , converged(_converged) + , mtx(_mtx) + { + } + + void operator()(const cv::Range& range) const + { + const int begin = range.start; + const int end = range.end; + + for( int i = begin; i<end; ++i) + { + DistanceType sq_dist = distance(dataset[indices[i]], dcenters[0], veclen); + int new_centroid = 0; + for (int j=1; j<branching; ++j) { + DistanceType new_sq_dist = distance(dataset[indices[i]], dcenters[j], veclen); + if (sq_dist>new_sq_dist) { + new_centroid = j; + sq_dist = new_sq_dist; + } + } + if (sq_dist > radiuses[new_centroid]) { + radiuses[new_centroid] = sq_dist; + } + if (new_centroid != belongs_to[i]) { + count[belongs_to[i]]--; + count[new_centroid]++; + belongs_to[i] = new_centroid; + mtx.lock(); + converged = false; + mtx.unlock(); + } + } + } + + private: + Distance distance; + const Matrix<ElementType>& dataset; + const int branching; + const int* indices; + const Matrix<double>& dcenters; + const size_t veclen; + int* count; + int* belongs_to; + std::vector<DistanceType>& radiuses; + bool& converged; + cv::Mutex& mtx; + KMeansDistanceComputer& operator=( const KMeansDistanceComputer & ) { return *this; } + }; + + /** + * Index constructor + * + * Params: + * inputData = dataset with the input features + * params = parameters passed to the hierarchical k-means algorithm + */ + KMeansIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(), + Distance d = Distance()) + : dataset_(inputData), index_params_(params), root_(NULL), indices_(NULL), distance_(d) + { + memoryCounter_ = 0; + + size_ = dataset_.rows; + veclen_ = dataset_.cols; + + branching_ = get_param(params,"branching",32); + iterations_ = get_param(params,"iterations",11); + if (iterations_<0) { + iterations_ = (std::numeric_limits<int>::max)(); + } + centers_init_ = get_param(params,"centers_init",FLANN_CENTERS_RANDOM); + + if (centers_init_==FLANN_CENTERS_RANDOM) { + chooseCenters = &KMeansIndex::chooseCentersRandom; + } + else if (centers_init_==FLANN_CENTERS_GONZALES) { + chooseCenters = &KMeansIndex::chooseCentersGonzales; + } + else if (centers_init_==FLANN_CENTERS_KMEANSPP) { + chooseCenters = &KMeansIndex::chooseCentersKMeanspp; + } + else { + throw FLANNException("Unknown algorithm for choosing initial centers."); + } + cb_index_ = 0.4f; + + } + + + KMeansIndex(const KMeansIndex&); + KMeansIndex& operator=(const KMeansIndex&); + + + /** + * Index destructor. + * + * Release the memory used by the index. + */ + virtual ~KMeansIndex() + { + if (root_ != NULL) { + free_centers(root_); + } + if (indices_!=NULL) { + delete[] indices_; + } + } + + /** + * Returns size of index. + */ + size_t size() const + { + return size_; + } + + /** + * Returns the length of an index feature. + */ + size_t veclen() const + { + return veclen_; + } + + + void set_cb_index( float index) + { + cb_index_ = index; + } + + /** + * Computes the inde memory usage + * Returns: memory used by the index + */ + int usedMemory() const + { + return pool_.usedMemory+pool_.wastedMemory+memoryCounter_; + } + + /** + * Builds the index + */ + void buildIndex() + { + if (branching_<2) { + throw FLANNException("Branching factor must be at least 2"); + } + + indices_ = new int[size_]; + for (size_t i=0; i<size_; ++i) { + indices_[i] = int(i); + } + + root_ = pool_.allocate<KMeansNode>(); + std::memset(root_, 0, sizeof(KMeansNode)); + + computeNodeStatistics(root_, indices_, (int)size_); + computeClustering(root_, indices_, (int)size_, branching_,0); + } + + + void saveIndex(FILE* stream) + { + save_value(stream, branching_); + save_value(stream, iterations_); + save_value(stream, memoryCounter_); + save_value(stream, cb_index_); + save_value(stream, *indices_, (int)size_); + + save_tree(stream, root_); + } + + + void loadIndex(FILE* stream) + { + load_value(stream, branching_); + load_value(stream, iterations_); + load_value(stream, memoryCounter_); + load_value(stream, cb_index_); + if (indices_!=NULL) { + delete[] indices_; + } + indices_ = new int[size_]; + load_value(stream, *indices_, size_); + + if (root_!=NULL) { + free_centers(root_); + } + load_tree(stream, root_); + + index_params_["algorithm"] = getType(); + index_params_["branching"] = branching_; + index_params_["iterations"] = iterations_; + index_params_["centers_init"] = centers_init_; + index_params_["cb_index"] = cb_index_; + + } + + + /** + * Find set of nearest neighbors to vec. Their indices are stored inside + * the result object. + * + * Params: + * result = the result object in which the indices of the nearest-neighbors are stored + * vec = the vector for which to search the nearest neighbors + * searchParams = parameters that influence the search algorithm (checks, cb_index) + */ + void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) + { + + int maxChecks = get_param(searchParams,"checks",32); + + if (maxChecks==FLANN_CHECKS_UNLIMITED) { + findExactNN(root_, result, vec); + } + else { + // Priority queue storing intermediate branches in the best-bin-first search + Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_); + + int checks = 0; + findNN(root_, result, vec, checks, maxChecks, heap); + + BranchSt branch; + while (heap->popMin(branch) && (checks<maxChecks || !result.full())) { + KMeansNodePtr node = branch.node; + findNN(node, result, vec, checks, maxChecks, heap); + } + assert(result.full()); + + delete heap; + } + + } + + /** + * Clustering function that takes a cut in the hierarchical k-means + * tree and return the clusters centers of that clustering. + * Params: + * numClusters = number of clusters to have in the clustering computed + * Returns: number of cluster centers + */ + int getClusterCenters(Matrix<DistanceType>& centers) + { + int numClusters = centers.rows; + if (numClusters<1) { + throw FLANNException("Number of clusters must be at least 1"); + } + + DistanceType variance; + KMeansNodePtr* clusters = new KMeansNodePtr[numClusters]; + + int clusterCount = getMinVarianceClusters(root_, clusters, numClusters, variance); + + Logger::info("Clusters requested: %d, returning %d\n",numClusters, clusterCount); + + for (int i=0; i<clusterCount; ++i) { + DistanceType* center = clusters[i]->pivot; + for (size_t j=0; j<veclen_; ++j) { + centers[i][j] = center[j]; + } + } + delete[] clusters; + + return clusterCount; + } + + IndexParams getParameters() const + { + return index_params_; + } + + +private: + /** + * Struture representing a node in the hierarchical k-means tree. + */ + struct KMeansNode + { + /** + * The cluster center. + */ + DistanceType* pivot; + /** + * The cluster radius. + */ + DistanceType radius; + /** + * The cluster mean radius. + */ + DistanceType mean_radius; + /** + * The cluster variance. + */ + DistanceType variance; + /** + * The cluster size (number of points in the cluster) + */ + int size; + /** + * Child nodes (only for non-terminal nodes) + */ + KMeansNode** childs; + /** + * Node points (only for terminal nodes) + */ + int* indices; + /** + * Level + */ + int level; + }; + typedef KMeansNode* KMeansNodePtr; + + /** + * Alias definition for a nicer syntax. + */ + typedef BranchStruct<KMeansNodePtr, DistanceType> BranchSt; + + + + + void save_tree(FILE* stream, KMeansNodePtr node) + { + save_value(stream, *node); + save_value(stream, *(node->pivot), (int)veclen_); + if (node->childs==NULL) { + int indices_offset = (int)(node->indices - indices_); + save_value(stream, indices_offset); + } + else { + for(int i=0; i<branching_; ++i) { + save_tree(stream, node->childs[i]); + } + } + } + + + void load_tree(FILE* stream, KMeansNodePtr& node) + { + node = pool_.allocate<KMeansNode>(); + load_value(stream, *node); + node->pivot = new DistanceType[veclen_]; + load_value(stream, *(node->pivot), (int)veclen_); + if (node->childs==NULL) { + int indices_offset; + load_value(stream, indices_offset); + node->indices = indices_ + indices_offset; + } + else { + node->childs = pool_.allocate<KMeansNodePtr>(branching_); + for(int i=0; i<branching_; ++i) { + load_tree(stream, node->childs[i]); + } + } + } + + + /** + * Helper function + */ + void free_centers(KMeansNodePtr node) + { + delete[] node->pivot; + if (node->childs!=NULL) { + for (int k=0; k<branching_; ++k) { + free_centers(node->childs[k]); + } + } + } + + /** + * Computes the statistics of a node (mean, radius, variance). + * + * Params: + * node = the node to use + * indices = the indices of the points belonging to the node + */ + void computeNodeStatistics(KMeansNodePtr node, int* indices, int indices_length) + { + + DistanceType radius = 0; + DistanceType variance = 0; + DistanceType* mean = new DistanceType[veclen_]; + memoryCounter_ += int(veclen_*sizeof(DistanceType)); + + memset(mean,0,veclen_*sizeof(DistanceType)); + + for (size_t i=0; i<size_; ++i) { + ElementType* vec = dataset_[indices[i]]; + for (size_t j=0; j<veclen_; ++j) { + mean[j] += vec[j]; + } + variance += distance_(vec, ZeroIterator<ElementType>(), veclen_); + } + for (size_t j=0; j<veclen_; ++j) { + mean[j] /= size_; + } + variance /= size_; + variance -= distance_(mean, ZeroIterator<ElementType>(), veclen_); + + DistanceType tmp = 0; + for (int i=0; i<indices_length; ++i) { + tmp = distance_(mean, dataset_[indices[i]], veclen_); + if (tmp>radius) { + radius = tmp; + } + } + + node->variance = variance; + node->radius = radius; + node->pivot = mean; + } + + + /** + * The method responsible with actually doing the recursive hierarchical + * clustering + * + * Params: + * node = the node to cluster + * indices = indices of the points belonging to the current node + * branching = the branching factor to use in the clustering + * + * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point) + */ + void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level) + { + node->size = indices_length; + node->level = level; + + if (indices_length < branching) { + node->indices = indices; + std::sort(node->indices,node->indices+indices_length); + node->childs = NULL; + return; + } + + cv::AutoBuffer<int> centers_idx_buf(branching); + int* centers_idx = (int*)centers_idx_buf; + int centers_length; + (this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length); + + if (centers_length<branching) { + node->indices = indices; + std::sort(node->indices,node->indices+indices_length); + node->childs = NULL; + return; + } + + + cv::AutoBuffer<double> dcenters_buf(branching*veclen_); + Matrix<double> dcenters((double*)dcenters_buf,branching,veclen_); + for (int i=0; i<centers_length; ++i) { + ElementType* vec = dataset_[centers_idx[i]]; + for (size_t k=0; k<veclen_; ++k) { + dcenters[i][k] = double(vec[k]); + } + } + + std::vector<DistanceType> radiuses(branching); + cv::AutoBuffer<int> count_buf(branching); + int* count = (int*)count_buf; + for (int i=0; i<branching; ++i) { + radiuses[i] = 0; + count[i] = 0; + } + + // assign points to clusters + cv::AutoBuffer<int> belongs_to_buf(indices_length); + int* belongs_to = (int*)belongs_to_buf; + for (int i=0; i<indices_length; ++i) { + + DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_); + belongs_to[i] = 0; + for (int j=1; j<branching; ++j) { + DistanceType new_sq_dist = distance_(dataset_[indices[i]], dcenters[j], veclen_); + if (sq_dist>new_sq_dist) { + belongs_to[i] = j; + sq_dist = new_sq_dist; + } + } + if (sq_dist>radiuses[belongs_to[i]]) { + radiuses[belongs_to[i]] = sq_dist; + } + count[belongs_to[i]]++; + } + + bool converged = false; + int iteration = 0; + while (!converged && iteration<iterations_) { + converged = true; + iteration++; + + // compute the new cluster centers + for (int i=0; i<branching; ++i) { + memset(dcenters[i],0,sizeof(double)*veclen_); + radiuses[i] = 0; + } + for (int i=0; i<indices_length; ++i) { + ElementType* vec = dataset_[indices[i]]; + double* center = dcenters[belongs_to[i]]; + for (size_t k=0; k<veclen_; ++k) { + center[k] += vec[k]; + } + } + for (int i=0; i<branching; ++i) { + int cnt = count[i]; + for (size_t k=0; k<veclen_; ++k) { + dcenters[i][k] /= cnt; + } + } + + // reassign points to clusters + cv::Mutex mtx; + KMeansDistanceComputer invoker(distance_, dataset_, branching, indices, dcenters, veclen_, count, belongs_to, radiuses, converged, mtx); + parallel_for_(cv::Range(0, (int)indices_length), invoker); + + for (int i=0; i<branching; ++i) { + // if one cluster converges to an empty cluster, + // move an element into that cluster + if (count[i]==0) { + int j = (i+1)%branching; + while (count[j]<=1) { + j = (j+1)%branching; + } + + for (int k=0; k<indices_length; ++k) { + if (belongs_to[k]==j) { + // for cluster j, we move the furthest element from the center to the empty cluster i + if ( distance_(dataset_[indices[k]], dcenters[j], veclen_) == radiuses[j] ) { + belongs_to[k] = i; + count[j]--; + count[i]++; + break; + } + } + } + converged = false; + } + } + + } + + DistanceType** centers = new DistanceType*[branching]; + + for (int i=0; i<branching; ++i) { + centers[i] = new DistanceType[veclen_]; + memoryCounter_ += (int)(veclen_*sizeof(DistanceType)); + for (size_t k=0; k<veclen_; ++k) { + centers[i][k] = (DistanceType)dcenters[i][k]; + } + } + + + // compute kmeans clustering for each of the resulting clusters + node->childs = pool_.allocate<KMeansNodePtr>(branching); + int start = 0; + int end = start; + for (int c=0; c<branching; ++c) { + int s = count[c]; + + DistanceType variance = 0; + DistanceType mean_radius =0; + for (int i=0; i<indices_length; ++i) { + if (belongs_to[i]==c) { + DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_); + variance += d; + mean_radius += sqrt(d); + std::swap(indices[i],indices[end]); + std::swap(belongs_to[i],belongs_to[end]); + end++; + } + } + variance /= s; + mean_radius /= s; + variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_); + + node->childs[c] = pool_.allocate<KMeansNode>(); + std::memset(node->childs[c], 0, sizeof(KMeansNode)); + node->childs[c]->radius = radiuses[c]; + node->childs[c]->pivot = centers[c]; + node->childs[c]->variance = variance; + node->childs[c]->mean_radius = mean_radius; + computeClustering(node->childs[c],indices+start, end-start, branching, level+1); + start=end; + } + + delete[] centers; + } + + + + /** + * Performs one descent in the hierarchical k-means tree. The branches not + * visited are stored in a priority queue. + * + * Params: + * node = node to explore + * result = container for the k-nearest neighbors found + * vec = query points + * checks = how many points in the dataset have been checked so far + * maxChecks = maximum dataset points to checks + */ + + + void findNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks, + Heap<BranchSt>* heap) + { + // Ignore those clusters that are too far away + { + DistanceType bsq = distance_(vec, node->pivot, veclen_); + DistanceType rsq = node->radius; + DistanceType wsq = result.worstDist(); + + DistanceType val = bsq-rsq-wsq; + DistanceType val2 = val*val-4*rsq*wsq; + + //if (val>0) { + if ((val>0)&&(val2>0)) { + return; + } + } + + if (node->childs==NULL) { + if (checks>=maxChecks) { + if (result.full()) return; + } + checks += node->size; + for (int i=0; i<node->size; ++i) { + int index = node->indices[i]; + DistanceType dist = distance_(dataset_[index], vec, veclen_); + result.addPoint(dist, index); + } + } + else { + DistanceType* domain_distances = new DistanceType[branching_]; + int closest_center = exploreNodeBranches(node, vec, domain_distances, heap); + delete[] domain_distances; + findNN(node->childs[closest_center],result,vec, checks, maxChecks, heap); + } + } + + /** + * Helper function that computes the nearest childs of a node to a given query point. + * Params: + * node = the node + * q = the query point + * distances = array with the distances to each child node. + * Returns: + */ + int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, Heap<BranchSt>* heap) + { + + int best_index = 0; + domain_distances[best_index] = distance_(q, node->childs[best_index]->pivot, veclen_); + for (int i=1; i<branching_; ++i) { + domain_distances[i] = distance_(q, node->childs[i]->pivot, veclen_); + if (domain_distances[i]<domain_distances[best_index]) { + best_index = i; + } + } + + // float* best_center = node->childs[best_index]->pivot; + for (int i=0; i<branching_; ++i) { + if (i != best_index) { + domain_distances[i] -= cb_index_*node->childs[i]->variance; + + // float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q); + // if (domain_distances[i]<dist_to_border) { + // domain_distances[i] = dist_to_border; + // } + heap->insert(BranchSt(node->childs[i],domain_distances[i])); + } + } + + return best_index; + } + + + /** + * Function the performs exact nearest neighbor search by traversing the entire tree. + */ + void findExactNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec) + { + // Ignore those clusters that are too far away + { + DistanceType bsq = distance_(vec, node->pivot, veclen_); + DistanceType rsq = node->radius; + DistanceType wsq = result.worstDist(); + + DistanceType val = bsq-rsq-wsq; + DistanceType val2 = val*val-4*rsq*wsq; + + // if (val>0) { + if ((val>0)&&(val2>0)) { + return; + } + } + + + if (node->childs==NULL) { + for (int i=0; i<node->size; ++i) { + int index = node->indices[i]; + DistanceType dist = distance_(dataset_[index], vec, veclen_); + result.addPoint(dist, index); + } + } + else { + int* sort_indices = new int[branching_]; + + getCenterOrdering(node, vec, sort_indices); + + for (int i=0; i<branching_; ++i) { + findExactNN(node->childs[sort_indices[i]],result,vec); + } + + delete[] sort_indices; + } + } + + + /** + * Helper function. + * + * I computes the order in which to traverse the child nodes of a particular node. + */ + void getCenterOrdering(KMeansNodePtr node, const ElementType* q, int* sort_indices) + { + DistanceType* domain_distances = new DistanceType[branching_]; + for (int i=0; i<branching_; ++i) { + DistanceType dist = distance_(q, node->childs[i]->pivot, veclen_); + + int j=0; + while (domain_distances[j]<dist && j<i) j++; + for (int k=i; k>j; --k) { + domain_distances[k] = domain_distances[k-1]; + sort_indices[k] = sort_indices[k-1]; + } + domain_distances[j] = dist; + sort_indices[j] = i; + } + delete[] domain_distances; + } + + /** + * Method that computes the squared distance from the query point q + * from inside region with center c to the border between this + * region and the region with center p + */ + DistanceType getDistanceToBorder(DistanceType* p, DistanceType* c, DistanceType* q) + { + DistanceType sum = 0; + DistanceType sum2 = 0; + + for (int i=0; i<veclen_; ++i) { + DistanceType t = c[i]-p[i]; + sum += t*(q[i]-(c[i]+p[i])/2); + sum2 += t*t; + } + + return sum*sum/sum2; + } + + + /** + * Helper function the descends in the hierarchical k-means tree by spliting those clusters that minimize + * the overall variance of the clustering. + * Params: + * root = root node + * clusters = array with clusters centers (return value) + * varianceValue = variance of the clustering (return value) + * Returns: + */ + int getMinVarianceClusters(KMeansNodePtr root, KMeansNodePtr* clusters, int clusters_length, DistanceType& varianceValue) + { + int clusterCount = 1; + clusters[0] = root; + + DistanceType meanVariance = root->variance*root->size; + + while (clusterCount<clusters_length) { + DistanceType minVariance = (std::numeric_limits<DistanceType>::max)(); + int splitIndex = -1; + + for (int i=0; i<clusterCount; ++i) { + if (clusters[i]->childs != NULL) { + + DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size; + + for (int j=0; j<branching_; ++j) { + variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size; + } + if (variance<minVariance) { + minVariance = variance; + splitIndex = i; + } + } + } + + if (splitIndex==-1) break; + if ( (branching_+clusterCount-1) > clusters_length) break; + + meanVariance = minVariance; + + // split node + KMeansNodePtr toSplit = clusters[splitIndex]; + clusters[splitIndex] = toSplit->childs[0]; + for (int i=1; i<branching_; ++i) { + clusters[clusterCount++] = toSplit->childs[i]; + } + } + + varianceValue = meanVariance/root->size; + return clusterCount; + } + +private: + /** The branching factor used in the hierarchical k-means clustering */ + int branching_; + + /** Maximum number of iterations to use when performing k-means clustering */ + int iterations_; + + /** Algorithm for choosing the cluster centers */ + flann_centers_init_t centers_init_; + + /** + * Cluster border index. This is used in the tree search phase when determining + * the closest cluster to explore next. A zero value takes into account only + * the cluster centres, a value greater then zero also take into account the size + * of the cluster. + */ + float cb_index_; + + /** + * The dataset used by this index + */ + const Matrix<ElementType> dataset_; + + /** Index parameters */ + IndexParams index_params_; + + /** + * Number of features in the dataset. + */ + size_t size_; + + /** + * Length of each feature. + */ + size_t veclen_; + + /** + * The root node in the tree. + */ + KMeansNodePtr root_; + + /** + * Array of indices to vectors in the dataset. + */ + int* indices_; + + /** + * The distance + */ + Distance distance_; + + /** + * Pooled memory allocator. + */ + PooledAllocator pool_; + + /** + * Memory occupied by the index. + */ + int memoryCounter_; +}; + +} + +#endif //OPENCV_FLANN_KMEANS_INDEX_H_ |