summaryrefslogtreecommitdiff
path: root/help/en_US
diff options
context:
space:
mode:
authorHarpreet2015-12-31 16:03:57 +0530
committerHarpreet2015-12-31 16:03:57 +0530
commitd5356061fbd3a9b3052dee25bd9c82c375c42e22 (patch)
tree72a37d5161eb0f4b895513c46c68e031d1200520 /help/en_US
parenteb9ca1191c94059cd7adcf69805906c809fe9712 (diff)
downloadFOSSEE-Optimization-toolbox-d5356061fbd3a9b3052dee25bd9c82c375c42e22.tar.gz
FOSSEE-Optimization-toolbox-d5356061fbd3a9b3052dee25bd9c82c375c42e22.tar.bz2
FOSSEE-Optimization-toolbox-d5356061fbd3a9b3052dee25bd9c82c375c42e22.zip
Macros example updated
Diffstat (limited to 'help/en_US')
-rw-r--r--help/en_US/lsqlin.xml72
-rw-r--r--help/en_US/lsqnonneg.xml26
-rw-r--r--help/en_US/qpipopt.xml57
-rw-r--r--help/en_US/qpipoptmat.xml33
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/DOCSbin7534 -> 6899 bytes
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TABbin872 -> 761 bytes
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETSbin270 -> 264 bytes
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONSbin36377 -> 33375 bytes
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA2
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/TMAPbin16384 -> 14336 bytes
-rw-r--r--help/en_US/scilab_en_US_help/lsqlin.html72
-rw-r--r--help/en_US/scilab_en_US_help/lsqnonneg.html26
-rw-r--r--help/en_US/scilab_en_US_help/qpipopt.html51
-rw-r--r--help/en_US/scilab_en_US_help/qpipoptmat.html35
-rw-r--r--help/en_US/scilab_en_US_help/symphony.html7
-rw-r--r--help/en_US/scilab_en_US_help/symphonymat.html6
-rw-r--r--help/en_US/symphony.xml5
-rw-r--r--help/en_US/symphonymat.xml4
18 files changed, 195 insertions, 201 deletions
diff --git a/help/en_US/lsqlin.xml b/help/en_US/lsqlin.xml
index c08905e..c6ec286 100644
--- a/help/en_US/lsqlin.xml
+++ b/help/en_US/lsqlin.xml
@@ -62,13 +62,13 @@
<varlistentry><term>resnorm :</term>
<listitem><para> a double, objective value returned as the scalar value norm(C*x-d)^2.</para></listitem></varlistentry>
<varlistentry><term>residual :</term>
- <listitem><para> a vector of double, solution residuals returned as the vector C*x-d.</para></listitem></varlistentry>
+ <listitem><para> a vector of double, solution residuals returned as the vector d-C*x.</para></listitem></varlistentry>
<varlistentry><term>exitflag :</term>
- <listitem><para> Integer identifying the reason the algorithm terminated. It could be 0, 1 or 2 etc. i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded. Other flags one can see in the lsqlin macro.</para></listitem></varlistentry>
+ <listitem><para> A flag showing returned exit flag from Ipopt. It could be 0, 1 or 2 etc. i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded. Other flags one can see in the lsqlin macro.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
<listitem><para> Structure containing information about the optimization. This version only contains number of iterations.</para></listitem></varlistentry>
<varlistentry><term>lambda :</term>
- <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper bound multiplier and linear equality, inequality constraints.</para></listitem></varlistentry>
+ <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper bound multiplier and linear equality, inequality constraint multiplier.</para></listitem></varlistentry>
</variablelist>
</refsection>
@@ -99,22 +99,16 @@ The routine calls Ipopt for solving the linear least square problem, Ipopt is a
<title>Examples</title>
<programlisting role="example"><![CDATA[
//A simple linear least square example
-C = [0.9501 0.7620 0.6153 0.4057
-0.2311 0.4564 0.7919 0.9354
-0.6068 0.0185 0.9218 0.9169
-0.4859 0.8214 0.7382 0.4102
-0.8912 0.4447 0.1762 0.8936];
-d = [0.0578
-0.3528
-0.8131
-0.0098
-0.1388];
-A = [0.2027 0.2721 0.7467 0.4659
-0.1987 0.1988 0.4450 0.4186
-0.6037 0.0152 0.9318 0.8462];
-b = [0.5251
-0.2026
-0.6721];
+C = [ 2 0;
+-1 1;
+0 2]
+d = [1
+0
+-1];
+A = [10 -2;
+-2 10];
+b = [4
+-4];
[xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b)
// Press ENTER to continue
@@ -125,26 +119,26 @@ b = [0.5251
<title>Examples</title>
<programlisting role="example"><![CDATA[
//A basic example for equality, inequality constraints and variable bounds
-C = [0.9501 0.7620 0.6153 0.4057
-0.2311 0.4564 0.7919 0.9354
-0.6068 0.0185 0.9218 0.9169
-0.4859 0.8214 0.7382 0.4102
-0.8912 0.4447 0.1762 0.8936];
-d = [0.0578
-0.3528
-0.8131
-0.0098
-0.1388];
-A =[0.2027 0.2721 0.7467 0.4659
-0.1987 0.1988 0.4450 0.4186
-0.6037 0.0152 0.9318 0.8462];
-b =[0.5251
-0.2026
-0.6721];
-Aeq = [3 5 7 9];
-beq = 4;
-lb = -0.1*ones(4,1);
-ub = 2*ones(4,1);
+C = [1 1 1;
+1 1 0;
+0 1 1;
+1 0 0;
+0 0 1]
+d = [89;
+67;
+53;
+35;
+20;]
+A = [3 2 1;
+2 3 4;
+1 2 3];
+b = [191
+209
+162];
+Aeq = [1 2 1];
+beq = 10;
+lb = repmat(0.1,3,1);
+ub = repmat(4,3,1);
[xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
]]></programlisting>
</refsection>
diff --git a/help/en_US/lsqnonneg.xml b/help/en_US/lsqnonneg.xml
index 662ba2a..5d78bbd 100644
--- a/help/en_US/lsqnonneg.xml
+++ b/help/en_US/lsqnonneg.xml
@@ -43,13 +43,13 @@
<varlistentry><term>resnorm :</term>
<listitem><para> a double, objective value returned as the scalar value norm(C*x-d)^2.</para></listitem></varlistentry>
<varlistentry><term>residual :</term>
- <listitem><para> a vector of double, solution residuals returned as the vector C*x-d.</para></listitem></varlistentry>
+ <listitem><para> a vector of double, solution residuals returned as the vector d-C*x.</para></listitem></varlistentry>
<varlistentry><term>exitflag :</term>
- <listitem><para> Integer identifying the reason the algorithm terminated. It could be 0, 1 or 2 i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded.</para></listitem></varlistentry>
+ <listitem><para> A flag showing returned exit flag from Ipopt. It could be 0, 1 or 2 etc. i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded. Other flags one can see in the lsqlin macro.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
<listitem><para> Structure containing information about the optimization. This version only contains number of iterations.</para></listitem></varlistentry>
<varlistentry><term>lambda :</term>
- <listitem><para> Structure containing the Lagrange multipliers at the solution x. It contains lower and upper bound multiplier.</para></listitem></varlistentry>
+ <listitem><para> Structure containing the Lagrange multipliers at the solution xopt. It contains lower, upper bound multiplier and linear equality, inequality constraint multiplier.</para></listitem></varlistentry>
</variablelist>
</refsection>
@@ -78,16 +78,16 @@ The routine calls Ipopt for solving the nonnegative least-squares curve fitting
<title>Examples</title>
<programlisting role="example"><![CDATA[
// A basic lsqnonneg problem
-C = [
-0.0372 0.2869
-0.6861 0.7071
-0.6233 0.6245
-0.6344 0.6170];
-d = [
-0.8587
-0.1781
-0.0747
-0.8405];
+C = [1 1 1;
+1 1 0;
+0 1 1;
+1 0 0;
+0 0 1]
+d = [89;
+67;
+53;
+35;
+20;]
[xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg(C,d)
]]></programlisting>
</refsection>
diff --git a/help/en_US/qpipopt.xml b/help/en_US/qpipopt.xml
index 6dd578d..3ba2107 100644
--- a/help/en_US/qpipopt.xml
+++ b/help/en_US/qpipopt.xml
@@ -62,11 +62,11 @@
<varlistentry><term>fopt :</term>
<listitem><para> a double, the function value at x.</para></listitem></varlistentry>
<varlistentry><term>exitflag :</term>
- <listitem><para> Integer identifying the reason the algorithm terminated. It could be 0, 1 or 2 etc. i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded. Other flags one can see in the qpipopt macro.</para></listitem></varlistentry>
+ <listitem><para> A flag showing returned exit flag from Ipopt. It could be 0, 1 or 2 etc. i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded. Other flags one can see in the lsqlin macro.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
<listitem><para> Structure containing information about the optimization. This version only contains number of iterations</para></listitem></varlistentry>
<varlistentry><term>lambda :</term>
- <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.</para></listitem></varlistentry>
+ <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper bound multiplier and linear equality, inequality constraint multiplier.</para></listitem></varlistentry>
</variablelist>
</refsection>
@@ -74,7 +74,6 @@
<title>Description</title>
<para>
Search the minimum of a constrained linear quadratic optimization problem specified by :
-find the minimum of f(x) such that
</para>
<para>
<latex>
@@ -96,6 +95,33 @@ The routine calls Ipopt for solving the quadratic problem, Ipopt is a library wr
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
+//Ref : example 14 :
+//https://www.me.utexas.edu/~jensen/ORMM/supplements/methods/nlpmethod/S2_quadratic.pdf
+// min. -8*x1*x1 -16*x2*x2 + x1 + 4*x2
+// such that
+// x1 + x2 <= 5,
+// x1 <= 3,
+// x1 >= 0,
+// x2 >= 0
+H = [2 0
+0 8];
+f = [-8; -16];
+A = [1 1;1 0];
+conUB = [5;3];
+conLB = [-%inf; -%inf];
+lb = [0; 0];
+ub = [%inf; %inf];
+nbVar = 2;
+nbCon = 2;
+[xopt,fopt,exitflag,output,lambda] = qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB)
+//Press ENTER to continue
+
+ ]]></programlisting>
+</refsection>
+
+<refsection>
+ <title>Examples</title>
+ <programlisting role="example"><![CDATA[
//Find x in R^6 such that:
A= [1,-1,1,0,3,1;
-1,0,-3,-4,5,6;
@@ -113,31 +139,6 @@ nbCon = 5;
x0 = repmat(0,nbVar,1);
param = list("MaxIter", 300, "CpuTime", 100);
[xopt,fopt,exitflag,output,lambda]=qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB,x0,param)
-// Press ENTER to continue
-
- ]]></programlisting>
-</refsection>
-
-<refsection>
- <title>Examples</title>
- <programlisting role="example"><![CDATA[
-//Find the value of x that minimize following function
-// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
-// Subject to:
-// x1 + x2 ≤ 2
-// –x1 + 2x2 ≤ 2
-// 2x1 + x2 ≤ 3
-// 0 ≤ x1, 0 ≤ x2.
-H = [1 -1; -1 2];
-f = [-2; -6];
-A = [1 1; -1 2; 2 1];
-conUB = [2; 2; 3];
-conLB = [-%inf; -%inf; -%inf];
-lb = [0; 0];
-ub = [%inf; %inf];
-nbVar = 2;
-nbCon = 3;
-[xopt,fopt,exitflag,output,lambda] = qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB)
]]></programlisting>
</refsection>
diff --git a/help/en_US/qpipoptmat.xml b/help/en_US/qpipoptmat.xml
index 8d0bc0c..1334603 100644
--- a/help/en_US/qpipoptmat.xml
+++ b/help/en_US/qpipoptmat.xml
@@ -62,12 +62,14 @@
<listitem><para> a vector of double, the computed solution of the optimization problem.</para></listitem></varlistentry>
<varlistentry><term>fopt :</term>
<listitem><para> a double, the function value at x.</para></listitem></varlistentry>
+ <varlistentry><term>residual :</term>
+ <listitem><para> a vector of double, solution residuals returned as the vector d-C*x.</para></listitem></varlistentry>
<varlistentry><term>exitflag :</term>
- <listitem><para> Integer identifying the reason the algorithm terminated.It could be 0, 1 or 2 etc. i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded. Other flags one can see in the qpipoptmat macro.</para></listitem></varlistentry>
+ <listitem><para> A flag showing returned exit flag from Ipopt. It could be 0, 1 or 2 etc. i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded. Other flags one can see in the lsqlin macro.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
<listitem><para> Structure containing information about the optimization. This version only contains number of iterations.</para></listitem></varlistentry>
<varlistentry><term>lambda :</term>
- <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.</para></listitem></varlistentry>
+ <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper bound multiplier and linear equality, inequality constraint multiplier.</para></listitem></varlistentry>
</variablelist>
</refsection>
@@ -75,7 +77,6 @@
<title>Description</title>
<para>
Search the minimum of a constrained linear quadratic optimization problem specified by :
-find the minimum of f(x) such that
</para>
<para>
<latex>
@@ -98,17 +99,19 @@ The routine calls Ipopt for solving the quadratic problem, Ipopt is a library wr
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
-//Find the value of x that minimize following function
-// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
-// Subject to:
-// x1 + x2 ≤ 2
-// –x1 + 2x2 ≤ 2
-// 2x1 + x2 ≤ 3
-// 0 ≤ x1, 0 ≤ x2.
-H = [1 -1; -1 2];
-f = [-2; -6];
-A = [1 1; -1 2; 2 1];
-b = [2; 2; 3];
+//Ref : example 14 :
+//https://www.me.utexas.edu/~jensen/ORMM/supplements/methods/nlpmethod/S2_quadratic.pdf
+// min. -8*x1*x1 -16*x2*x2 + x1 + 4*x2
+// such that
+// x1 + x2 <= 5,
+// x1 <= 3,
+// x1 >= 0,
+// x2 >= 0
+H = [2 0
+0 8];
+f = [-8; -16];
+A = [1 1;1 0];
+b = [5;3];
lb = [0; 0];
ub = [%inf; %inf];
[xopt,fopt,exitflag,output,lambda] = qpipoptmat(H,f,A,b,[],[],lb,ub)
@@ -134,7 +137,7 @@ x0 = repmat(0,6,1);
param = list("MaxIter", 300, "CpuTime", 100);
//and minimize 0.5*x'*H*x + f'*x with
f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
-[xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,[],param)
+[xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0,param)
]]></programlisting>
</refsection>
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS
index 8ebf21b..d3146bf 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB
index 728f68c..f0a1fcb 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS b/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS
index 9468d7f..8a63187 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS b/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS
index d5dee46..423d132 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA b/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA
index e2b33d1..6df2edb 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA
@@ -1,2 +1,2 @@
JavaSearch 1.0
-TMAP bs=2048 rt=1 fl=-1 id1=1446 id2=1
+TMAP bs=2048 rt=1 fl=-1 id1=1249 id2=1
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP b/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP
index 35dc462..6104335 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/lsqlin.html b/help/en_US/scilab_en_US_help/lsqlin.html
index aef773d..e9253c5 100644
--- a/help/en_US/scilab_en_US_help/lsqlin.html
+++ b/help/en_US/scilab_en_US_help/lsqlin.html
@@ -70,13 +70,13 @@
<dt><span class="term">resnorm :</span>
<dd><p class="para">a double, objective value returned as the scalar value norm(C*x-d)^2.</p></dd></dt>
<dt><span class="term">residual :</span>
- <dd><p class="para">a vector of double, solution residuals returned as the vector C*x-d.</p></dd></dt>
+ <dd><p class="para">a vector of double, solution residuals returned as the vector d-C*x.</p></dd></dt>
<dt><span class="term">exitflag :</span>
- <dd><p class="para">Integer identifying the reason the algorithm terminated. It could be 0, 1 or 2 etc. i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded. Other flags one can see in the lsqlin macro.</p></dd></dt>
+ <dd><p class="para">A flag showing returned exit flag from Ipopt. It could be 0, 1 or 2 etc. i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded. Other flags one can see in the lsqlin macro.</p></dd></dt>
<dt><span class="term">output :</span>
<dd><p class="para">Structure containing information about the optimization. This version only contains number of iterations.</p></dd></dt>
<dt><span class="term">lambda :</span>
- <dd><p class="para">Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper bound multiplier and linear equality, inequality constraints.</p></dd></dt></dl></div>
+ <dd><p class="para">Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper bound multiplier and linear equality, inequality constraint multiplier.</p></dd></dt></dl></div>
<div class="refsection"><h3 class="title">Description</h3>
<p class="para">Search the minimum of a constrained linear least square problem specified by :</p>
@@ -86,47 +86,41 @@
<div class="refsection"><h3 class="title">Examples</h3>
<div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//A simple linear least square example</span>
-<span class="scilabid">C</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0.9501</span> <span class="scilabnumber">0.7620</span> <span class="scilabnumber">0.6153</span> <span class="scilabnumber">0.4057</span>
-<span class="scilabnumber">0.2311</span> <span class="scilabnumber">0.4564</span> <span class="scilabnumber">0.7919</span> <span class="scilabnumber">0.9354</span>
-<span class="scilabnumber">0.6068</span> <span class="scilabnumber">0.0185</span> <span class="scilabnumber">0.9218</span> <span class="scilabnumber">0.9169</span>
-<span class="scilabnumber">0.4859</span> <span class="scilabnumber">0.8214</span> <span class="scilabnumber">0.7382</span> <span class="scilabnumber">0.4102</span>
-<span class="scilabnumber">0.8912</span> <span class="scilabnumber">0.4447</span> <span class="scilabnumber">0.1762</span> <span class="scilabnumber">0.8936</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">d</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0.0578</span>
-<span class="scilabnumber">0.3528</span>
-<span class="scilabnumber">0.8131</span>
-<span class="scilabnumber">0.0098</span>
-<span class="scilabnumber">0.1388</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">A</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0.2027</span> <span class="scilabnumber">0.2721</span> <span class="scilabnumber">0.7467</span> <span class="scilabnumber">0.4659</span>
-<span class="scilabnumber">0.1987</span> <span class="scilabnumber">0.1988</span> <span class="scilabnumber">0.4450</span> <span class="scilabnumber">0.4186</span>
-<span class="scilabnumber">0.6037</span> <span class="scilabnumber">0.0152</span> <span class="scilabnumber">0.9318</span> <span class="scilabnumber">0.8462</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">b</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0.5251</span>
-<span class="scilabnumber">0.2026</span>
-<span class="scilabnumber">0.6721</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">C</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span> <span class="scilabnumber">2</span> <span class="scilabnumber">0</span><span class="scilabdefault">;</span>
+<span class="scilaboperator">-</span><span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
+<span class="scilabnumber">0</span> <span class="scilabnumber">2</span><span class="scilabopenclose">]</span>
+<span class="scilabid">d</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span>
+<span class="scilabnumber">0</span>
+<span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">A</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">10</span> <span class="scilaboperator">-</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span>
+<span class="scilaboperator">-</span><span class="scilabnumber">2</span> <span class="scilabnumber">10</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">b</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">4</span>
+<span class="scilaboperator">-</span><span class="scilabnumber">4</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">resnorm</span><span class="scilabdefault">,</span><span class="scilabid">residual</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">lsqlin</span><span class="scilabopenclose">(</span><span class="scilabid">C</span><span class="scilabdefault">,</span><span class="scilabid">d</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabopenclose">)</span>
<span class="scilabcomment">// Press ENTER to continue</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<div class="refsection"><h3 class="title">Examples</h3>
<div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//A basic example for equality, inequality constraints and variable bounds</span>
-<span class="scilabid">C</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0.9501</span> <span class="scilabnumber">0.7620</span> <span class="scilabnumber">0.6153</span> <span class="scilabnumber">0.4057</span>
-<span class="scilabnumber">0.2311</span> <span class="scilabnumber">0.4564</span> <span class="scilabnumber">0.7919</span> <span class="scilabnumber">0.9354</span>
-<span class="scilabnumber">0.6068</span> <span class="scilabnumber">0.0185</span> <span class="scilabnumber">0.9218</span> <span class="scilabnumber">0.9169</span>
-<span class="scilabnumber">0.4859</span> <span class="scilabnumber">0.8214</span> <span class="scilabnumber">0.7382</span> <span class="scilabnumber">0.4102</span>
-<span class="scilabnumber">0.8912</span> <span class="scilabnumber">0.4447</span> <span class="scilabnumber">0.1762</span> <span class="scilabnumber">0.8936</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">d</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0.0578</span>
-<span class="scilabnumber">0.3528</span>
-<span class="scilabnumber">0.8131</span>
-<span class="scilabnumber">0.0098</span>
-<span class="scilabnumber">0.1388</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">A</span> <span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">0.2027</span> <span class="scilabnumber">0.2721</span> <span class="scilabnumber">0.7467</span> <span class="scilabnumber">0.4659</span>
-<span class="scilabnumber">0.1987</span> <span class="scilabnumber">0.1988</span> <span class="scilabnumber">0.4450</span> <span class="scilabnumber">0.4186</span>
-<span class="scilabnumber">0.6037</span> <span class="scilabnumber">0.0152</span> <span class="scilabnumber">0.9318</span> <span class="scilabnumber">0.8462</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">b</span> <span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">0.5251</span>
-<span class="scilabnumber">0.2026</span>
-<span class="scilabnumber">0.6721</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">Aeq</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">3</span> <span class="scilabnumber">5</span> <span class="scilabnumber">7</span> <span class="scilabnumber">9</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">beq</span> <span class="scilaboperator">=</span> <span class="scilabnumber">4</span><span class="scilabdefault">;</span>
-<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <span class="scilaboperator">-</span><span class="scilabnumber">0.1</span><span class="scilaboperator">*</span><a class="scilabcommand" href="scilab://ones">ones</a><span class="scilabopenclose">(</span><span class="scilabnumber">4</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
-<span class="scilabid">ub</span> <span class="scilaboperator">=</span> <span class="scilabnumber">2</span><span class="scilaboperator">*</span><a class="scilabcommand" href="scilab://ones">ones</a><span class="scilabopenclose">(</span><span class="scilabnumber">4</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
+<span class="scilabid">C</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
+<span class="scilabnumber">1</span> <span class="scilabnumber">1</span> <span class="scilabnumber">0</span><span class="scilabdefault">;</span>
+<span class="scilabnumber">0</span> <span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
+<span class="scilabnumber">1</span> <span class="scilabnumber">0</span> <span class="scilabnumber">0</span><span class="scilabdefault">;</span>
+<span class="scilabnumber">0</span> <span class="scilabnumber">0</span> <span class="scilabnumber">1</span><span class="scilabopenclose">]</span>
+<span class="scilabid">d</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">89</span><span class="scilabdefault">;</span>
+<span class="scilabnumber">67</span><span class="scilabdefault">;</span>
+<span class="scilabnumber">53</span><span class="scilabdefault">;</span>
+<span class="scilabnumber">35</span><span class="scilabdefault">;</span>
+<span class="scilabnumber">20</span><span class="scilabdefault">;</span><span class="scilabopenclose">]</span>
+<span class="scilabid">A</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">3</span> <span class="scilabnumber">2</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
+<span class="scilabnumber">2</span> <span class="scilabnumber">3</span> <span class="scilabnumber">4</span><span class="scilabdefault">;</span>
+<span class="scilabnumber">1</span> <span class="scilabnumber">2</span> <span class="scilabnumber">3</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">b</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">191</span>
+<span class="scilabnumber">209</span>
+<span class="scilabnumber">162</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">Aeq</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">2</span> <span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">beq</span> <span class="scilaboperator">=</span> <span class="scilabnumber">10</span><span class="scilabdefault">;</span>
+<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <a class="scilabmacro" href="scilab://repmat">repmat</a><span class="scilabopenclose">(</span><span class="scilabnumber">0.1</span><span class="scilabdefault">,</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
+<span class="scilabid">ub</span> <span class="scilaboperator">=</span> <a class="scilabmacro" href="scilab://repmat">repmat</a><span class="scilabopenclose">(</span><span class="scilabnumber">4</span><span class="scilabdefault">,</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">resnorm</span><span class="scilabdefault">,</span><span class="scilabid">residual</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">lsqlin</span><span class="scilabopenclose">(</span><span class="scilabid">C</span><span class="scilabdefault">,</span><span class="scilabid">d</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabid">Aeq</span><span class="scilabdefault">,</span><span class="scilabid">beq</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<div class="refsection"><h3 class="title">Authors</h3>
diff --git a/help/en_US/scilab_en_US_help/lsqnonneg.html b/help/en_US/scilab_en_US_help/lsqnonneg.html
index e9a9110..7211c40 100644
--- a/help/en_US/scilab_en_US_help/lsqnonneg.html
+++ b/help/en_US/scilab_en_US_help/lsqnonneg.html
@@ -51,13 +51,13 @@
<dt><span class="term">resnorm :</span>
<dd><p class="para">a double, objective value returned as the scalar value norm(C*x-d)^2.</p></dd></dt>
<dt><span class="term">residual :</span>
- <dd><p class="para">a vector of double, solution residuals returned as the vector C*x-d.</p></dd></dt>
+ <dd><p class="para">a vector of double, solution residuals returned as the vector d-C*x.</p></dd></dt>
<dt><span class="term">exitflag :</span>
- <dd><p class="para">Integer identifying the reason the algorithm terminated. It could be 0, 1 or 2 i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded.</p></dd></dt>
+ <dd><p class="para">A flag showing returned exit flag from Ipopt. It could be 0, 1 or 2 etc. i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded. Other flags one can see in the lsqlin macro.</p></dd></dt>
<dt><span class="term">output :</span>
<dd><p class="para">Structure containing information about the optimization. This version only contains number of iterations.</p></dd></dt>
<dt><span class="term">lambda :</span>
- <dd><p class="para">Structure containing the Lagrange multipliers at the solution x. It contains lower and upper bound multiplier.</p></dd></dt></dl></div>
+ <dd><p class="para">Structure containing the Lagrange multipliers at the solution xopt. It contains lower, upper bound multiplier and linear equality, inequality constraint multiplier.</p></dd></dt></dl></div>
<div class="refsection"><h3 class="title">Description</h3>
<p class="para">Solves nonnegative least-squares curve fitting problems specified by :</p>
@@ -67,16 +67,16 @@
<div class="refsection"><h3 class="title">Examples</h3>
<div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">// A basic lsqnonneg problem</span>
-<span class="scilabid">C</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span>
-<span class="scilabnumber">0.0372</span> <span class="scilabnumber">0.2869</span>
-<span class="scilabnumber">0.6861</span> <span class="scilabnumber">0.7071</span>
-<span class="scilabnumber">0.6233</span> <span class="scilabnumber">0.6245</span>
-<span class="scilabnumber">0.6344</span> <span class="scilabnumber">0.6170</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">d</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span>
-<span class="scilabnumber">0.8587</span>
-<span class="scilabnumber">0.1781</span>
-<span class="scilabnumber">0.0747</span>
-<span class="scilabnumber">0.8405</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">C</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
+<span class="scilabnumber">1</span> <span class="scilabnumber">1</span> <span class="scilabnumber">0</span><span class="scilabdefault">;</span>
+<span class="scilabnumber">0</span> <span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
+<span class="scilabnumber">1</span> <span class="scilabnumber">0</span> <span class="scilabnumber">0</span><span class="scilabdefault">;</span>
+<span class="scilabnumber">0</span> <span class="scilabnumber">0</span> <span class="scilabnumber">1</span><span class="scilabopenclose">]</span>
+<span class="scilabid">d</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">89</span><span class="scilabdefault">;</span>
+<span class="scilabnumber">67</span><span class="scilabdefault">;</span>
+<span class="scilabnumber">53</span><span class="scilabdefault">;</span>
+<span class="scilabnumber">35</span><span class="scilabdefault">;</span>
+<span class="scilabnumber">20</span><span class="scilabdefault">;</span><span class="scilabopenclose">]</span>
<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">resnorm</span><span class="scilabdefault">,</span><span class="scilabid">residual</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">lsqnonneg</span><span class="scilabopenclose">(</span><span class="scilabid">C</span><span class="scilabdefault">,</span><span class="scilabid">d</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<div class="refsection"><h3 class="title">Authors</h3>
diff --git a/help/en_US/scilab_en_US_help/qpipopt.html b/help/en_US/scilab_en_US_help/qpipopt.html
index 349bbc4..31f389f 100644
--- a/help/en_US/scilab_en_US_help/qpipopt.html
+++ b/help/en_US/scilab_en_US_help/qpipopt.html
@@ -70,20 +70,41 @@
<dt><span class="term">fopt :</span>
<dd><p class="para">a double, the function value at x.</p></dd></dt>
<dt><span class="term">exitflag :</span>
- <dd><p class="para">Integer identifying the reason the algorithm terminated. It could be 0, 1 or 2 etc. i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded. Other flags one can see in the qpipopt macro.</p></dd></dt>
+ <dd><p class="para">A flag showing returned exit flag from Ipopt. It could be 0, 1 or 2 etc. i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded. Other flags one can see in the lsqlin macro.</p></dd></dt>
<dt><span class="term">output :</span>
<dd><p class="para">Structure containing information about the optimization. This version only contains number of iterations</p></dd></dt>
<dt><span class="term">lambda :</span>
- <dd><p class="para">Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.</p></dd></dt></dl></div>
+ <dd><p class="para">Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper bound multiplier and linear equality, inequality constraint multiplier.</p></dd></dt></dl></div>
<div class="refsection"><h3 class="title">Description</h3>
- <p class="para">Search the minimum of a constrained linear quadratic optimization problem specified by :
-find the minimum of f(x) such that</p>
+ <p class="para">Search the minimum of a constrained linear quadratic optimization problem specified by :</p>
<p class="para"><span><img src='./_LaTeX_qpipopt.xml_1.png' style='position:relative;top:31px;width:292px;height:70px'/></span></p>
<p class="para">The routine calls Ipopt for solving the quadratic problem, Ipopt is a library written in C++.</p>
<p class="para"></p></div>
<div class="refsection"><h3 class="title">Examples</h3>
+ <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Ref : example 14 :</span>
+<span class="scilabcomment">//https://www.me.utexas.edu/~jensen/ORMM/supplements/methods/nlpmethod/S2_quadratic.pdf</span>
+<span class="scilabcomment">// min. -8*x1*x1 -16*x2*x2 + x1 + 4*x2</span>
+<span class="scilabcomment">// such that</span>
+<span class="scilabcomment">// x1 + x2 </span><span class="scilabcomment">&#0060;</span><span class="scilabcomment">= 5,</span>
+<span class="scilabcomment">// x1 </span><span class="scilabcomment">&#0060;</span><span class="scilabcomment">= 3,</span>
+<span class="scilabcomment">// x1 </span><span class="scilabcomment">&#0062;</span><span class="scilabcomment">= 0,</span>
+<span class="scilabcomment">// x2 </span><span class="scilabcomment">&#0062;</span><span class="scilabcomment">= 0</span>
+<span class="scilabid">H</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">2</span> <span class="scilabnumber">0</span>
+<span class="scilabnumber">0</span> <span class="scilabnumber">8</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">f</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabnumber">8</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">16</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">A</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span><span class="scilabnumber">1</span> <span class="scilabnumber">0</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">conUB</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">5</span><span class="scilabdefault">;</span><span class="scilabnumber">3</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">conLB</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabconstants">%inf</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabconstants">%inf</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0</span><span class="scilabdefault">;</span> <span class="scilabnumber">0</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">ub</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabconstants">%inf</span><span class="scilabdefault">;</span> <span class="scilabconstants">%inf</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">nbVar</span> <span class="scilaboperator">=</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span>
+<span class="scilabid">nbCon</span> <span class="scilaboperator">=</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span>
+<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">fopt</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">qpipopt</span><span class="scilabopenclose">(</span><span class="scilabid">nbVar</span><span class="scilabdefault">,</span><span class="scilabid">nbCon</span><span class="scilabdefault">,</span><span class="scilabid">H</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">conLB</span><span class="scilabdefault">,</span><span class="scilabid">conUB</span><span class="scilabopenclose">)</span>
+<span class="scilabcomment">//Press ENTER to continue</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
+
+<div class="refsection"><h3 class="title">Examples</h3>
<div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Find x in R^6 such that:</span>
<span class="scilabid">A</span><span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span>
<span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">4</span><span class="scilabdefault">,</span><span class="scilabnumber">5</span><span class="scilabdefault">,</span><span class="scilabnumber">6</span><span class="scilabdefault">;</span>
@@ -100,27 +121,7 @@ find the minimum of f(x) such that</p>
<span class="scilabid">nbCon</span> <span class="scilaboperator">=</span> <span class="scilabnumber">5</span><span class="scilabdefault">;</span>
<span class="scilabid">x0</span> <span class="scilaboperator">=</span> <a class="scilabmacro" href="scilab://repmat">repmat</a><span class="scilabopenclose">(</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabid">nbVar</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
<span class="scilabid">param</span> <span class="scilaboperator">=</span> <a class="scilabcommand" href="scilab://list">list</a><span class="scilabopenclose">(</span><span class="scilabstring">&#0034;</span><span class="scilabstring">MaxIter</span><span class="scilabstring">&#0034;</span><span class="scilabdefault">,</span> <span class="scilabnumber">300</span><span class="scilabdefault">,</span> <span class="scilabstring">&#0034;</span><span class="scilabstring">CpuTime</span><span class="scilabstring">&#0034;</span><span class="scilabdefault">,</span> <span class="scilabnumber">100</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
-<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">fopt</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span><span class="scilaboperator">=</span><span class="scilabid">qpipopt</span><span class="scilabopenclose">(</span><span class="scilabid">nbVar</span><span class="scilabdefault">,</span><span class="scilabid">nbCon</span><span class="scilabdefault">,</span><span class="scilabid">H</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">conLB</span><span class="scilabdefault">,</span><span class="scilabid">conUB</span><span class="scilabdefault">,</span><span class="scilabid">x0</span><span class="scilabdefault">,</span><span class="scilabid">param</span><span class="scilabopenclose">)</span>
-<span class="scilabcomment">// Press ENTER to continue</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
-
-<div class="refsection"><h3 class="title">Examples</h3>
- <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Find the value of x that minimize following function</span>
-<span class="scilabcomment">// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2</span>
-<span class="scilabcomment">// Subject to:</span>
-<span class="scilabcomment">// x1 + x2 ≤ 2</span>
-<span class="scilabcomment">// –x1 + 2x2 ≤ 2</span>
-<span class="scilabcomment">// 2x1 + x2 ≤ 3</span>
-<span class="scilabcomment">// 0 ≤ x1, 0 ≤ x2.</span>
-<span class="scilabid">H</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span> <span class="scilabnumber">2</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">f</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">6</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">A</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">2</span> <span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">conUB</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">3</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">conLB</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabconstants">%inf</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabconstants">%inf</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabconstants">%inf</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0</span><span class="scilabdefault">;</span> <span class="scilabnumber">0</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">ub</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabconstants">%inf</span><span class="scilabdefault">;</span> <span class="scilabconstants">%inf</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">nbVar</span> <span class="scilaboperator">=</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span>
-<span class="scilabid">nbCon</span> <span class="scilaboperator">=</span> <span class="scilabnumber">3</span><span class="scilabdefault">;</span>
-<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">fopt</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">qpipopt</span><span class="scilabopenclose">(</span><span class="scilabid">nbVar</span><span class="scilabdefault">,</span><span class="scilabid">nbCon</span><span class="scilabdefault">,</span><span class="scilabid">H</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">conLB</span><span class="scilabdefault">,</span><span class="scilabid">conUB</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
+<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">fopt</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span><span class="scilaboperator">=</span><span class="scilabid">qpipopt</span><span class="scilabopenclose">(</span><span class="scilabid">nbVar</span><span class="scilabdefault">,</span><span class="scilabid">nbCon</span><span class="scilabdefault">,</span><span class="scilabid">H</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">conLB</span><span class="scilabdefault">,</span><span class="scilabid">conUB</span><span class="scilabdefault">,</span><span class="scilabid">x0</span><span class="scilabdefault">,</span><span class="scilabid">param</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<div class="refsection"><h3 class="title">Authors</h3>
<ul class="itemizedlist"><li class="member">Keyur Joshi, Saikiran, Iswarya, Harpreet Singh</li></ul></div>
diff --git a/help/en_US/scilab_en_US_help/qpipoptmat.html b/help/en_US/scilab_en_US_help/qpipoptmat.html
index 73c7298..6c195ea 100644
--- a/help/en_US/scilab_en_US_help/qpipoptmat.html
+++ b/help/en_US/scilab_en_US_help/qpipoptmat.html
@@ -70,32 +70,35 @@
<dd><p class="para">a vector of double, the computed solution of the optimization problem.</p></dd></dt>
<dt><span class="term">fopt :</span>
<dd><p class="para">a double, the function value at x.</p></dd></dt>
+ <dt><span class="term">residual :</span>
+ <dd><p class="para">a vector of double, solution residuals returned as the vector d-C*x.</p></dd></dt>
<dt><span class="term">exitflag :</span>
- <dd><p class="para">Integer identifying the reason the algorithm terminated.It could be 0, 1 or 2 etc. i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded. Other flags one can see in the qpipoptmat macro.</p></dd></dt>
+ <dd><p class="para">A flag showing returned exit flag from Ipopt. It could be 0, 1 or 2 etc. i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded. Other flags one can see in the lsqlin macro.</p></dd></dt>
<dt><span class="term">output :</span>
<dd><p class="para">Structure containing information about the optimization. This version only contains number of iterations.</p></dd></dt>
<dt><span class="term">lambda :</span>
- <dd><p class="para">Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.</p></dd></dt></dl></div>
+ <dd><p class="para">Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper bound multiplier and linear equality, inequality constraint multiplier.</p></dd></dt></dl></div>
<div class="refsection"><h3 class="title">Description</h3>
- <p class="para">Search the minimum of a constrained linear quadratic optimization problem specified by :
-find the minimum of f(x) such that</p>
+ <p class="para">Search the minimum of a constrained linear quadratic optimization problem specified by :</p>
<p class="para"><span><img src='./_LaTeX_qpipoptmat.xml_1.png' style='position:relative;top:41px;width:277px;height:90px'/></span></p>
<p class="para">The routine calls Ipopt for solving the quadratic problem, Ipopt is a library written in C++.</p>
<p class="para"></p></div>
<div class="refsection"><h3 class="title">Examples</h3>
- <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Find the value of x that minimize following function</span>
-<span class="scilabcomment">// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2</span>
-<span class="scilabcomment">// Subject to:</span>
-<span class="scilabcomment">// x1 + x2 ≤ 2</span>
-<span class="scilabcomment">// –x1 + 2x2 ≤ 2</span>
-<span class="scilabcomment">// 2x1 + x2 ≤ 3</span>
-<span class="scilabcomment">// 0 ≤ x1, 0 ≤ x2.</span>
-<span class="scilabid">H</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span> <span class="scilabnumber">2</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">f</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">6</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">A</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">2</span> <span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">b</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">3</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+ <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Ref : example 14 :</span>
+<span class="scilabcomment">//https://www.me.utexas.edu/~jensen/ORMM/supplements/methods/nlpmethod/S2_quadratic.pdf</span>
+<span class="scilabcomment">// min. -8*x1*x1 -16*x2*x2 + x1 + 4*x2</span>
+<span class="scilabcomment">// such that</span>
+<span class="scilabcomment">// x1 + x2 </span><span class="scilabcomment">&#0060;</span><span class="scilabcomment">= 5,</span>
+<span class="scilabcomment">// x1 </span><span class="scilabcomment">&#0060;</span><span class="scilabcomment">= 3,</span>
+<span class="scilabcomment">// x1 </span><span class="scilabcomment">&#0062;</span><span class="scilabcomment">= 0,</span>
+<span class="scilabcomment">// x2 </span><span class="scilabcomment">&#0062;</span><span class="scilabcomment">= 0</span>
+<span class="scilabid">H</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">2</span> <span class="scilabnumber">0</span>
+<span class="scilabnumber">0</span> <span class="scilabnumber">8</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">f</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabnumber">8</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">16</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">A</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span><span class="scilabnumber">1</span> <span class="scilabnumber">0</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">b</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">5</span><span class="scilabdefault">;</span><span class="scilabnumber">3</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0</span><span class="scilabdefault">;</span> <span class="scilabnumber">0</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">ub</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabconstants">%inf</span><span class="scilabdefault">;</span> <span class="scilabconstants">%inf</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">fopt</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">qpipoptmat</span><span class="scilabopenclose">(</span><span class="scilabid">H</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabopenclose">)</span>
@@ -116,7 +119,7 @@ find the minimum of f(x) such that</p>
<span class="scilabid">param</span> <span class="scilaboperator">=</span> <a class="scilabcommand" href="scilab://list">list</a><span class="scilabopenclose">(</span><span class="scilabstring">&#0034;</span><span class="scilabstring">MaxIter</span><span class="scilabstring">&#0034;</span><span class="scilabdefault">,</span> <span class="scilabnumber">300</span><span class="scilabdefault">,</span> <span class="scilabstring">&#0034;</span><span class="scilabstring">CpuTime</span><span class="scilabstring">&#0034;</span><span class="scilabdefault">,</span> <span class="scilabnumber">100</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//and minimize 0.5*x</span><span class="scilabcomment">&#0039;</span><span class="scilabcomment">*H*x + f</span><span class="scilabcomment">&#0039;</span><span class="scilabcomment">*x with</span>
<span class="scilabid">f</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">3</span><span class="scilabdefault">;</span> <span class="scilabnumber">4</span><span class="scilabdefault">;</span> <span class="scilabnumber">5</span><span class="scilabdefault">;</span> <span class="scilabnumber">6</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span> <span class="scilabid">H</span><span class="scilaboperator">=</span><a class="scilabcommand" href="scilab://eye">eye</a><span class="scilabopenclose">(</span><span class="scilabnumber">6</span><span class="scilabdefault">,</span><span class="scilabnumber">6</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
-<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">fopt</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span><span class="scilaboperator">=</span><span class="scilabid">qpipoptmat</span><span class="scilabopenclose">(</span><span class="scilabid">H</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabid">Aeq</span><span class="scilabdefault">,</span><span class="scilabid">beq</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span><span class="scilabid">param</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
+<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">fopt</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span><span class="scilaboperator">=</span><span class="scilabid">qpipoptmat</span><span class="scilabopenclose">(</span><span class="scilabid">H</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabid">Aeq</span><span class="scilabdefault">,</span><span class="scilabid">beq</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabid">x0</span><span class="scilabdefault">,</span><span class="scilabid">param</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<div class="refsection"><h3 class="title">Authors</h3>
<ul class="itemizedlist"><li class="member">Keyur Joshi, Saikiran, Iswarya, Harpreet Singh</li></ul></div>
diff --git a/help/en_US/scilab_en_US_help/symphony.html b/help/en_US/scilab_en_US_help/symphony.html
index b81bbb0..e374a30 100644
--- a/help/en_US/scilab_en_US_help/symphony.html
+++ b/help/en_US/scilab_en_US_help/symphony.html
@@ -70,19 +70,18 @@
<dt><span class="term">fopt :</span>
<dd><p class="para">a double, the function value at x.</p></dd></dt>
<dt><span class="term">status :</span>
- <dd><p class="para">status flag from symphony. 227 is optimal, 228 is Time limit exceeded, 230 is iteration limit exceeded.</p></dd></dt>
+ <dd><p class="para">status flag returned from symphony. 227 is optimal, 228 is Time limit exceeded, 230 is iteration limit exceeded.</p></dd></dt>
<dt><span class="term">output :</span>
<dd><p class="para">The output data structure contains detailed information about the optimization process. This version only contains number of iterations</p></dd></dt></dl></div>
<div class="refsection"><h3 class="title">Description</h3>
- <p class="para">Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by :
-find the minimum or maximum of f(x) such that</p>
+ <p class="para">Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by :</p>
<p class="para"><span><img src='./_LaTeX_symphony.xml_1.png' style='position:relative;top:41px;width:292px;height:90px'/></span></p>
<p class="para">The routine calls SYMPHONY written in C by gateway files for the actual computation.</p>
<p class="para"></p></div>
<div class="refsection"><h3 class="title">Examples</h3>
- <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//A basic case :</span>
+ <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Reference: Westerberg, Carl-Henrik, Bengt Bjorklund, and Eskil Hultman. </span><span class="scilabcomment">&#0034;</span><span class="scilabcomment">An application of mixed integer programming in a Swedish steel mill.</span><span class="scilabcomment">&#0034;</span><span class="scilabcomment"> Interfaces 7, no. 2 (1977): 39-43.</span>
<span class="scilabcomment">// Objective function</span>
<span class="scilabid">c</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">350</span><span class="scilaboperator">*</span><span class="scilabnumber">5</span><span class="scilabdefault">,</span><span class="scilabnumber">330</span><span class="scilaboperator">*</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabnumber">310</span><span class="scilaboperator">*</span><span class="scilabnumber">4</span><span class="scilabdefault">,</span><span class="scilabnumber">280</span><span class="scilaboperator">*</span><span class="scilabnumber">6</span><span class="scilabdefault">,</span><span class="scilabnumber">500</span><span class="scilabdefault">,</span><span class="scilabnumber">450</span><span class="scilabdefault">,</span><span class="scilabnumber">400</span><span class="scilabdefault">,</span><span class="scilabnumber">100</span><span class="scilabopenclose">]</span><span class="scilaboperator">&#0039;</span><span class="scilabdefault">;</span>
<span class="scilabcomment">// Lower Bound of variable</span>
diff --git a/help/en_US/scilab_en_US_help/symphonymat.html b/help/en_US/scilab_en_US_help/symphonymat.html
index fc60daf..203f2d4 100644
--- a/help/en_US/scilab_en_US_help/symphonymat.html
+++ b/help/en_US/scilab_en_US_help/symphonymat.html
@@ -67,19 +67,19 @@
<dt><span class="term">fopt :</span>
<dd><p class="para">a double, the function value at x</p></dd></dt>
<dt><span class="term">status :</span>
- <dd><p class="para">status flag from symphony. 227 is optimal, 228 is Time limit exceeded, 230 is iteration limit exceeded.</p></dd></dt>
+ <dd><p class="para">status flag returned from symphony. 227 is optimal, 228 is Time limit exceeded, 230 is iteration limit exceeded.</p></dd></dt>
<dt><span class="term">output :</span>
<dd><p class="para">The output data structure contains detailed information about the optimization process. This version only contains number of iterations.</p></dd></dt></dl></div>
<div class="refsection"><h3 class="title">Description</h3>
- <p class="para">Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by :
-find the minimum or maximum of C&#0039;⋅x such that</p>
+ <p class="para">Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by :</p>
<p class="para"><span><img src='./_LaTeX_symphonymat.xml_1.png' style='position:relative;top:51px;width:212px;height:110px'/></span></p>
<p class="para">The routine calls SYMPHONY written in C by gateway files for the actual computation.</p>
<p class="para"></p></div>
<div class="refsection"><h3 class="title">Examples</h3>
<div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">// Objective function</span>
+<span class="scilabcomment">// Reference: Westerberg, Carl-Henrik, Bengt Bjorklund, and Eskil Hultman. </span><span class="scilabcomment">&#0034;</span><span class="scilabcomment">An application of mixed integer programming in a Swedish steel mill.</span><span class="scilabcomment">&#0034;</span><span class="scilabcomment"> Interfaces 7, no. 2 (1977): 39-43.</span>
<span class="scilabid">c</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">350</span><span class="scilaboperator">*</span><span class="scilabnumber">5</span><span class="scilabdefault">,</span><span class="scilabnumber">330</span><span class="scilaboperator">*</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabnumber">310</span><span class="scilaboperator">*</span><span class="scilabnumber">4</span><span class="scilabdefault">,</span><span class="scilabnumber">280</span><span class="scilaboperator">*</span><span class="scilabnumber">6</span><span class="scilabdefault">,</span><span class="scilabnumber">500</span><span class="scilabdefault">,</span><span class="scilabnumber">450</span><span class="scilabdefault">,</span><span class="scilabnumber">400</span><span class="scilabdefault">,</span><span class="scilabnumber">100</span><span class="scilabopenclose">]</span><span class="scilaboperator">&#0039;</span><span class="scilabdefault">;</span>
<span class="scilabcomment">// Lower Bound of variable</span>
<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <a class="scilabmacro" href="scilab://repmat">repmat</a><span class="scilabopenclose">(</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">8</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
diff --git a/help/en_US/symphony.xml b/help/en_US/symphony.xml
index c0caa8e..da156ce 100644
--- a/help/en_US/symphony.xml
+++ b/help/en_US/symphony.xml
@@ -62,7 +62,7 @@
<varlistentry><term>fopt :</term>
<listitem><para> a double, the function value at x.</para></listitem></varlistentry>
<varlistentry><term>status :</term>
- <listitem><para> status flag from symphony. 227 is optimal, 228 is Time limit exceeded, 230 is iteration limit exceeded.</para></listitem></varlistentry>
+ <listitem><para> status flag returned from symphony. 227 is optimal, 228 is Time limit exceeded, 230 is iteration limit exceeded.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
<listitem><para> The output data structure contains detailed information about the optimization process. This version only contains number of iterations</para></listitem></varlistentry>
</variablelist>
@@ -72,7 +72,6 @@
<title>Description</title>
<para>
Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by :
-find the minimum or maximum of f(x) such that
</para>
<para>
<latex>
@@ -95,7 +94,7 @@ The routine calls SYMPHONY written in C by gateway files for the actual computat
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
-//A basic case :
+//Reference: Westerberg, Carl-Henrik, Bengt Bjorklund, and Eskil Hultman. "An application of mixed integer programming in a Swedish steel mill." Interfaces 7, no. 2 (1977): 39-43.
// Objective function
c = [350*5,330*3,310*4,280*6,500,450,400,100]';
// Lower Bound of variable
diff --git a/help/en_US/symphonymat.xml b/help/en_US/symphonymat.xml
index cf95807..68ec072 100644
--- a/help/en_US/symphonymat.xml
+++ b/help/en_US/symphonymat.xml
@@ -59,7 +59,7 @@
<varlistentry><term>fopt :</term>
<listitem><para> a double, the function value at x</para></listitem></varlistentry>
<varlistentry><term>status :</term>
- <listitem><para> status flag from symphony. 227 is optimal, 228 is Time limit exceeded, 230 is iteration limit exceeded.</para></listitem></varlistentry>
+ <listitem><para> status flag returned from symphony. 227 is optimal, 228 is Time limit exceeded, 230 is iteration limit exceeded.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
<listitem><para> The output data structure contains detailed information about the optimization process. This version only contains number of iterations.</para></listitem></varlistentry>
</variablelist>
@@ -69,7 +69,6 @@
<title>Description</title>
<para>
Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by :
-find the minimum or maximum of C'⋅x such that
</para>
<para>
<latex>
@@ -94,6 +93,7 @@ The routine calls SYMPHONY written in C by gateway files for the actual computat
<title>Examples</title>
<programlisting role="example"><![CDATA[
// Objective function
+// Reference: Westerberg, Carl-Henrik, Bengt Bjorklund, and Eskil Hultman. "An application of mixed integer programming in a Swedish steel mill." Interfaces 7, no. 2 (1977): 39-43.
c = [350*5,330*3,310*4,280*6,500,450,400,100]';
// Lower Bound of variable
lb = repmat(0,1,8);