1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
*
* This help file was generated from qpipopt.sci using help_from_sci().
*
-->
<refentry version="5.0-subset Scilab" xml:id="qpipopt" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns3="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:scilab="http://www.scilab.org"
xmlns:db="http://docbook.org/ns/docbook">
<refnamediv>
<refname>qpipopt</refname>
<refpurpose>Solves a linear quadratic problem.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>
xopt = qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB)
xopt = qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB,x0)
xopt = qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB,x0,param)
[xopt,fopt,exitflag,output,lamda] = qpipopt( ... )
</synopsis>
</refsynopsisdiv>
<refsection>
<title>Parameters</title>
<variablelist>
<varlistentry><term>nbVar :</term>
<listitem><para> a double, number of variables</para></listitem></varlistentry>
<varlistentry><term>nbCon :</term>
<listitem><para> a double, number of constraints</para></listitem></varlistentry>
<varlistentry><term>H :</term>
<listitem><para> a symmetric matrix of double, represents coefficients of quadratic in the quadratic problem.</para></listitem></varlistentry>
<varlistentry><term>f :</term>
<listitem><para> a vector of double, represents coefficients of linear in the quadratic problem</para></listitem></varlistentry>
<varlistentry><term>lb :</term>
<listitem><para> a vector of double, contains lower bounds of the variables.</para></listitem></varlistentry>
<varlistentry><term>ub :</term>
<listitem><para> a vector of double, contains upper bounds of the variables.</para></listitem></varlistentry>
<varlistentry><term>A :</term>
<listitem><para> a matrix of double, contains matrix representing the constraint matrix</para></listitem></varlistentry>
<varlistentry><term>conLB :</term>
<listitem><para> a vector of double, contains lower bounds of the constraints.</para></listitem></varlistentry>
<varlistentry><term>conUB :</term>
<listitem><para> a vector of double, contains upper bounds of the constraints.</para></listitem></varlistentry>
<varlistentry><term>x0 :</term>
<listitem><para> a vector of double, contains initial guess of variables.</para></listitem></varlistentry>
<varlistentry><term>param :</term>
<listitem><para> a list containing the the parameters to be set.</para></listitem></varlistentry>
<varlistentry><term>xopt :</term>
<listitem><para> a vector of double, the computed solution of the optimization problem.</para></listitem></varlistentry>
<varlistentry><term>fopt :</term>
<listitem><para> a double, the function value at x.</para></listitem></varlistentry>
<varlistentry><term>exitflag :</term>
<listitem><para> Integer identifying the reason the algorithm terminated. It could be 0, 1 or 2 etc. i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded. Other flags one can see in the qpipopt macro.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
<listitem><para> Structure containing information about the optimization. This version only contains number of iterations</para></listitem></varlistentry>
<varlistentry><term>lambda :</term>
<listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.</para></listitem></varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<para>
Search the minimum of a constrained linear quadratic optimization problem specified by :
find the minimum of f(x) such that
</para>
<para>
<latex>
\begin{eqnarray}
&\mbox{min}_{x}
& 1/2⋅x^T⋅H⋅x + f^T⋅x \\
& \text{subject to} & conLB \leq A⋅x \leq conUB \\
& & lb \leq x \leq ub \\
\end{eqnarray}
</latex>
</para>
<para>
The routine calls Ipopt for solving the quadratic problem, Ipopt is a library written in C++.
</para>
<para>
</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
//Find x in R^6 such that:
A= [1,-1,1,0,3,1;
-1,0,-3,-4,5,6;
2,5,3,0,1,0
0,1,0,1,2,-1;
-1,0,2,1,1,0];
conLB=[1;2;3;-%inf;-%inf];
conUB = [1;2;3;-1;2.5];
lb=[-1000;-10000; 0; -1000; -1000; -1000];
ub=[10000; 100; 1.5; 100; 100; 1000];
//and minimize 0.5*x'⋅H⋅x + f'⋅x with
f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
nbVar = 6;
nbCon = 5;
x0 = repmat(0,nbVar,1);
param = list("MaxIter", 300, "CpuTime", 100);
[xopt,fopt,exitflag,output,lambda]=qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB,x0,param)
// Press ENTER to continue
]]></programlisting>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
//Find the value of x that minimize following function
// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
// Subject to:
// x1 + x2 ≤ 2
// –x1 + 2x2 ≤ 2
// 2x1 + x2 ≤ 3
// 0 ≤ x1, 0 ≤ x2.
H = [1 -1; -1 2];
f = [-2; -6];
A = [1 1; -1 2; 2 1];
conUB = [2; 2; 3];
conLB = [-%inf; -%inf; -%inf];
lb = [0; 0];
ub = [%inf; %inf];
nbVar = 2;
nbCon = 3;
[xopt,fopt,exitflag,output,lambda] = qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB)
]]></programlisting>
</refsection>
<refsection>
<title>Authors</title>
<simplelist type="vert">
<member>Keyur Joshi, Saikiran, Iswarya, Harpreet Singh</member>
</simplelist>
</refsection>
</refentry>
|