1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
*
* This help file was generated from lsqlin.sci using help_from_sci().
*
-->
<refentry version="5.0-subset Scilab" xml:id="lsqlin" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns3="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:scilab="http://www.scilab.org"
xmlns:db="http://docbook.org/ns/docbook">
<refnamediv>
<refname>lsqlin</refname>
<refpurpose>Solves a linear quadratic problem.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>
xopt = lsqlin(C,d,A,b)
xopt = lsqlin(C,d,A,b,Aeq,beq)
xopt = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
xopt = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0)
xopt = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,param)
[xopt,resnorm,residual,exitflag,output,lambda] = lsqlin( ... )
</synopsis>
</refsynopsisdiv>
<refsection>
<title>Parameters</title>
<variablelist>
<varlistentry><term>C :</term>
<listitem><para> a matrix of double, represents the multiplier of the solution x in the expression C*x - d. Number of columns in C is equal to the number of elements in x.</para></listitem></varlistentry>
<varlistentry><term>d :</term>
<listitem><para> a vector of double, represents the additive constant term in the expression C*x - d. Number of elements in d is equal to the number of rows in C matrix.</para></listitem></varlistentry>
<varlistentry><term>A :</term>
<listitem><para> a vector of double, represents the linear coefficients in the inequality constraints</para></listitem></varlistentry>
<varlistentry><term>b :</term>
<listitem><para> a vector of double, represents the linear coefficients in the inequality constraints</para></listitem></varlistentry>
<varlistentry><term>Aeq :</term>
<listitem><para> a matrix of double, represents the linear coefficients in the equality constraints</para></listitem></varlistentry>
<varlistentry><term>beq :</term>
<listitem><para> a vector of double, represents the linear coefficients in the equality constraints</para></listitem></varlistentry>
<varlistentry><term>lb :</term>
<listitem><para> a vector of double, contains lower bounds of the variables.</para></listitem></varlistentry>
<varlistentry><term>ub :</term>
<listitem><para> a vector of double, contains upper bounds of the variables.</para></listitem></varlistentry>
<varlistentry><term>x0 :</term>
<listitem><para> a vector of double, contains initial guess of variables.</para></listitem></varlistentry>
<varlistentry><term>param :</term>
<listitem><para> a list containing the the parameters to be set.</para></listitem></varlistentry>
<varlistentry><term>xopt :</term>
<listitem><para> a vector of double, the computed solution of the optimization problem.</para></listitem></varlistentry>
<varlistentry><term>resnorm :</term>
<listitem><para> a double, objective value returned as the scalar value norm(C*x-d)^2.</para></listitem></varlistentry>
<varlistentry><term>residual :</term>
<listitem><para> a vector of double, solution residuals returned as the vector d-C*x.</para></listitem></varlistentry>
<varlistentry><term>exitflag :</term>
<listitem><para> A flag showing returned exit flag from Ipopt. It could be 0, 1 or 2 etc. i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded. Other flags one can see in the lsqlin macro.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
<listitem><para> Structure containing information about the optimization. This version only contains number of iterations.</para></listitem></varlistentry>
<varlistentry><term>lambda :</term>
<listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper bound multiplier and linear equality, inequality constraint multiplier.</para></listitem></varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<para>
Search the minimum of a constrained linear least square problem specified by :
</para>
<para>
<latex>
\begin{eqnarray}
&\mbox{min}_{x}
& 1/2||C⋅x - d||_2^2 \\
& \text{subject to} & A⋅x \leq b \\
& & Aeq⋅x = beq \\
& & lb \leq x \leq ub \\
\end{eqnarray}
</latex>
</para>
<para>
The routine calls Ipopt for solving the linear least square problem, Ipopt is a library written in C++.
</para>
<para>
</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
//A simple linear least square example
C = [ 2 0;
-1 1;
0 2]
d = [1
0
-1];
A = [10 -2;
-2 10];
b = [4
-4];
[xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b)
// Press ENTER to continue
]]></programlisting>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
//A basic example for equality, inequality constraints and variable bounds
C = [1 1 1;
1 1 0;
0 1 1;
1 0 0;
0 0 1]
d = [89;
67;
53;
35;
20;]
A = [3 2 1;
2 3 4;
1 2 3];
b = [191
209
162];
Aeq = [1 2 1];
beq = 10;
lb = repmat(0.1,3,1);
ub = repmat(4,3,1);
[xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
]]></programlisting>
</refsection>
<refsection>
<title>Authors</title>
<simplelist type="vert">
<member>Harpreet Singh</member>
</simplelist>
</refsection>
</refentry>
|