summaryrefslogtreecommitdiff
path: root/help/en_US/qpipoptmat.xml
diff options
context:
space:
mode:
Diffstat (limited to 'help/en_US/qpipoptmat.xml')
-rw-r--r--help/en_US/qpipoptmat.xml33
1 files changed, 18 insertions, 15 deletions
diff --git a/help/en_US/qpipoptmat.xml b/help/en_US/qpipoptmat.xml
index 8d0bc0c..1334603 100644
--- a/help/en_US/qpipoptmat.xml
+++ b/help/en_US/qpipoptmat.xml
@@ -62,12 +62,14 @@
<listitem><para> a vector of double, the computed solution of the optimization problem.</para></listitem></varlistentry>
<varlistentry><term>fopt :</term>
<listitem><para> a double, the function value at x.</para></listitem></varlistentry>
+ <varlistentry><term>residual :</term>
+ <listitem><para> a vector of double, solution residuals returned as the vector d-C*x.</para></listitem></varlistentry>
<varlistentry><term>exitflag :</term>
- <listitem><para> Integer identifying the reason the algorithm terminated.It could be 0, 1 or 2 etc. i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded. Other flags one can see in the qpipoptmat macro.</para></listitem></varlistentry>
+ <listitem><para> A flag showing returned exit flag from Ipopt. It could be 0, 1 or 2 etc. i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded. Other flags one can see in the lsqlin macro.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
<listitem><para> Structure containing information about the optimization. This version only contains number of iterations.</para></listitem></varlistentry>
<varlistentry><term>lambda :</term>
- <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.</para></listitem></varlistentry>
+ <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper bound multiplier and linear equality, inequality constraint multiplier.</para></listitem></varlistentry>
</variablelist>
</refsection>
@@ -75,7 +77,6 @@
<title>Description</title>
<para>
Search the minimum of a constrained linear quadratic optimization problem specified by :
-find the minimum of f(x) such that
</para>
<para>
<latex>
@@ -98,17 +99,19 @@ The routine calls Ipopt for solving the quadratic problem, Ipopt is a library wr
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
-//Find the value of x that minimize following function
-// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
-// Subject to:
-// x1 + x2 ≤ 2
-// –x1 + 2x2 ≤ 2
-// 2x1 + x2 ≤ 3
-// 0 ≤ x1, 0 ≤ x2.
-H = [1 -1; -1 2];
-f = [-2; -6];
-A = [1 1; -1 2; 2 1];
-b = [2; 2; 3];
+//Ref : example 14 :
+//https://www.me.utexas.edu/~jensen/ORMM/supplements/methods/nlpmethod/S2_quadratic.pdf
+// min. -8*x1*x1 -16*x2*x2 + x1 + 4*x2
+// such that
+// x1 + x2 <= 5,
+// x1 <= 3,
+// x1 >= 0,
+// x2 >= 0
+H = [2 0
+0 8];
+f = [-8; -16];
+A = [1 1;1 0];
+b = [5;3];
lb = [0; 0];
ub = [%inf; %inf];
[xopt,fopt,exitflag,output,lambda] = qpipoptmat(H,f,A,b,[],[],lb,ub)
@@ -134,7 +137,7 @@ x0 = repmat(0,6,1);
param = list("MaxIter", 300, "CpuTime", 100);
//and minimize 0.5*x'*H*x + f'*x with
f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
-[xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,[],param)
+[xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0,param)
]]></programlisting>
</refsection>