summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_V_Yadav/7-Fiber_Optics.ipynb
blob: af2877e9807d7d670ff05c18e582f6dbed69b2c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 7: Fiber Optics"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 7.10: Radius_of_core_for_single_mode_operation_in_step_index_fibre.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex7.10:: Page-7.14 (2009)\n",
"clc; clear;\n",
"n1 = 1.480;     // Refractive index of core material\n",
"n2 = 1.47;     // Refractive index of cladding material\n",
"lambda = 850e-006;  // Wavelength of light used, m\n",
"NA = sqrt(n1^2-n2^2);      // Numerical aperture of the step index fibre\n",
"theta0 = asind(NA);     // Maximum acceptance angle for the fibre, degrees\n",
"M_N = 1;    // Number of modes in step index cable\n",
"// As number of modes, M_N = 1/2*V^2, solving for V\n",
"V = sqrt(2*M_N);    // V-number for the fibre\n",
"// As V = 2*%pi*a/lambda*NA, solving for a\n",
"a = V*lambda/(2*%pi*NA);    // Radius of core for single mode operation in step index fibre, m\n",
"printf('\nThe radius of core for single mode operation in step index fibre = %3.1e', a);\n",
"// Result \n",
"// The radius of core for single mode operation in step index fibre = 1.1e-03 \n",
"// The ansswer is quoted wrong in the textbook"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 7.11: Signal_attenuation_in_optical_fibre.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex7.11: : Page-7.16 (2009)\n",
"clc; clear;\n",
"Pi = 1.5;  // Input power to the optical fibre, mW\n",
"Po = 0.5;  // Output power to the optical fibre, mW\n",
"L = 0.12;   // Length of the optical fibre, km\n",
"alpha_dB = 10/L*log10(Pi/Po); // Signal attenuation in optical fibre, dB/km\n",
"\n",
"printf('\nThe signal attenuation in optical fibre = %4.1f dB/km', alpha_dB);\n",
"\n",
"// Result \n",
"// The signal attenuation in optical fibre = 39.8 dB/km "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 7.1: Critical_angle_and_acceptance_angle_in_an_optical_fibre.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex7.1:: Page-7.7 (2009)\n",
"clc; clear;\n",
"n1 = 1.6;       // Refractive index of core material of fibre\n",
"n2 = 1.3;       // Refractive index of cladding material of fibre\n",
"phi_C = asind(n2/n1);   // Critical angle of optical fibre, degrees\n",
"theta_Q = asind(sqrt(n1^2-n2^2));   // Acceptance angle of optical fibre, degrees\n",
"\n",
"printf('\nThe critical angle of optical fibre = %4.1f degrees', phi_C);\n",
"printf('\nThe angle of acceptance cone = %5.1f degrees', 2*theta_Q);\n",
"\n",
"// Result \n",
"// The critical angle of optical fibre = 54.3 degrees\n",
"// The angle of acceptance cone = 137.7 degrees "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 7.2: Critical_angle_acceptance_angle_and_numerical_aperture_in_an_optical_fibre.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex7.2:: Page-7.8 (2009)\n",
"clc; clear;\n",
"n1 = 1.50;       // Refractive index of core material of fibre\n",
"n2 = 1.47;       // Refractive index of cladding material of fibre\n",
"phi_C = asind(n2/n1);   // Critical angle of optical fibre, degrees\n",
"NA = sqrt(n1^2-n2^2);   // Numerical aperture for the fibre \n",
"theta_Q = asind(sqrt(n1^2-n2^2));   // Acceptance angle of optical fibre, degrees\n",
"\n",
"printf('\nThe critical angle of optical fibre = %4.1f degrees', phi_C);\n",
"printf('\nThe numerical aperture for the fibre  = %5.3f', NA);\n",
"printf('\nThe angle of acceptance cone  = %5.1f degrees', theta_Q);\n",
"\n",
"// Result \n",
"// The critical angle of optical fibre = 78.5 degrees\n",
"// The numerical aperture for the fibre  = 0.298\n",
"// The angle of acceptance cone  =  17.4 degrees "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 7.3: Parameters_of_an_optical_fibre_using_relative_refractive_index_difference.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex7.3:: Page-7.8 (2009)\n",
"clc; clear;\n",
"n1 = 1.46;     // Refractive index of the core material\n",
"delta = 0.01;   // Relative refractive index difference\n",
"NA = n1*sqrt(2*delta);   // Numerical aperture for the fibre \n",
"theta_Q = %pi*NA^2;   // Solid acceptance angle of optical fibre for small angles, radians\n",
"// As relative refractive index, delta = 1-n2/n1, solving for n2\n",
"n2 = n1*(1-delta);   // Refractive index of cladding\n",
"phi_C = asind(n2/n1);   // Critical angle of optical fibre, degrees\n",
"\n",
"printf('\nThe numerical aperture for the fibre  = %4.2f', NA);\n",
"printf('\nThe solid acceptance angle of the optical fibre  = %4.2f radians', theta_Q);\n",
"printf('\nThe critical angle of optical fibre = %4.1f degrees', phi_C);\n",
"\n",
"// Result \n",
"// The numerical aperture for the fibre  = 0.21\n",
"// The solid acceptance angle of the optical fibre  = 0.13 radians\n",
"// The critical angle of optical fibre = 81.9 degrees "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 7.4: Refractive_index_of_cladding.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex7.4:: Page-7.9 (2009)\n",
"clc; clear;\n",
"n1 = 1.54;     // Refractive index of the core material\n",
"NA = 0.45;   // Numerical aperture for the fibre \n",
"n2 = sqrt(n1^2-NA^2);   // Refractive index of cladding\n",
"\n",
"printf('\nThe refractive index of cladding = %4.2f', n2);\n",
"\n",
"// Result \n",
"// The refractive index of cladding = 1.47 "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 7.5: Numerical_aperture_for_an_optical_fibre.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex7.5:: Page-7.9 (2009)\n",
"clc; clear;\n",
"n1 = 1.544;     // Refractive index of the core material\n",
"n2 = 1.412;   // Refractive index of cladding\n",
"NA = sqrt(n1^2-n2^2);   // Numerical aperture for the fibre \n",
"\n",
"printf('\nThe numerical aperture for an optical fibre = %4.2f', NA);\n",
"\n",
"// Result \n",
"// The numerical aperture for an optical fibre = 0.62 "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 7.6: Refractive_index_of_the_cladding.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex7.6:: Page-7.9 (2009)\n",
"clc; clear;\n",
"n1 = 1.544;     // Refractive index of the core material\n",
"theta0 = 35;    // Acceptance angel for an optical fibre, degrees\n",
"// As theta0 = asind(sqrt(n1^2-n2^2)), solving for n2\n",
"n2 = sqrt(n1^2-sind(theta0)^2);     // Refractive index of cladding\n",
"\n",
"printf('\nThe refractive index of the cladding = %4.2f', n2);\n",
"\n",
"// Result \n",
"// The refractive index of the cladding = 1.43 "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 7.7: EX7_7.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex7.7:: Page-7.10 (2009)\n",
"clc; clear;\n",
"NA = 0.4;      // Numerical aperture of the optical fibre\n",
"n0 = 1;         // Refractive index of fibre in air\n",
"theta_a = asind(NA/n0);  // Acceptance angle for meridional rays, degrees\n",
"theta = 100;    // Direction through which the skew rays are bent at each reflection, degrees\n",
"r = theta/2;    // Angle of reflection, degrees\n",
"theta_as = asind(NA/(cosd(r)*n0));  // Acceptance angle for skew rays, degrees\n",
"\n",
"printf('\nAcceptance angle for meridional rays = %4.1f degrees', theta_a);\n",
"printf('\nAcceptance angle for skew rays = %4.1f degrees', theta_as);\n",
"\n",
"// Result \n",
"// Acceptance angle for meridional rays = 23.6 degrees\n",
"// Acceptance angle for skew rays = 38.5 degrees "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 7.8: Normalized_frequency_for_V_number_for_the_fibre.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex7.8: : Page-7.13 (2009)\n",
"clc; clear;\n",
"NA = 0.16;      // Numerical aperture of the step index fibre\n",
"n1 = 1.50;      // Refractive index of the core material\n",
"d = 65e-006;    // Diameter of the core, m\n",
"lambda = 0.9e-006;  // Wavelength of transmitted light, m\n",
"V = %pi*d/lambda*NA;  // V-number for the optical fibre\n",
"\n",
"printf('\nThe V-number for the optical fibre = %5.2f', V);\n",
"\n",
"// Result \n",
"// The V-number for the optical fibre = 36.30 "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 7.9: Number_of_modes_in_the_step_index_fibre.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex7.9:: Page-7.13 (2009)\n",
"clc; clear;\n",
"NA = 0.28;      // Numerical aperture of the step index fibre\n",
"d = 55e-006;    // Diameter of the core, m\n",
"lambda = 0.9e-006;  // Wavelength of transmitted light, m\n",
"M_N = (2.22*d*(NA)/lambda)^2;   // Number of modes in the step index fibre\n",
"\n",
"printf('\nThe number of modes in the step index fibre = %4d degrees', M_N);\n",
"\n",
"// Result \n",
"// The number of modes in the step index fibre = 1442 degrees "
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}