{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 7: Fiber Optics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.10: Radius_of_core_for_single_mode_operation_in_step_index_fibre.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex7.10:: Page-7.14 (2009)\n", "clc; clear;\n", "n1 = 1.480; // Refractive index of core material\n", "n2 = 1.47; // Refractive index of cladding material\n", "lambda = 850e-006; // Wavelength of light used, m\n", "NA = sqrt(n1^2-n2^2); // Numerical aperture of the step index fibre\n", "theta0 = asind(NA); // Maximum acceptance angle for the fibre, degrees\n", "M_N = 1; // Number of modes in step index cable\n", "// As number of modes, M_N = 1/2*V^2, solving for V\n", "V = sqrt(2*M_N); // V-number for the fibre\n", "// As V = 2*%pi*a/lambda*NA, solving for a\n", "a = V*lambda/(2*%pi*NA); // Radius of core for single mode operation in step index fibre, m\n", "printf('\nThe radius of core for single mode operation in step index fibre = %3.1e', a);\n", "// Result \n", "// The radius of core for single mode operation in step index fibre = 1.1e-03 \n", "// The ansswer is quoted wrong in the textbook" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.11: Signal_attenuation_in_optical_fibre.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex7.11: : Page-7.16 (2009)\n", "clc; clear;\n", "Pi = 1.5; // Input power to the optical fibre, mW\n", "Po = 0.5; // Output power to the optical fibre, mW\n", "L = 0.12; // Length of the optical fibre, km\n", "alpha_dB = 10/L*log10(Pi/Po); // Signal attenuation in optical fibre, dB/km\n", "\n", "printf('\nThe signal attenuation in optical fibre = %4.1f dB/km', alpha_dB);\n", "\n", "// Result \n", "// The signal attenuation in optical fibre = 39.8 dB/km " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.1: Critical_angle_and_acceptance_angle_in_an_optical_fibre.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex7.1:: Page-7.7 (2009)\n", "clc; clear;\n", "n1 = 1.6; // Refractive index of core material of fibre\n", "n2 = 1.3; // Refractive index of cladding material of fibre\n", "phi_C = asind(n2/n1); // Critical angle of optical fibre, degrees\n", "theta_Q = asind(sqrt(n1^2-n2^2)); // Acceptance angle of optical fibre, degrees\n", "\n", "printf('\nThe critical angle of optical fibre = %4.1f degrees', phi_C);\n", "printf('\nThe angle of acceptance cone = %5.1f degrees', 2*theta_Q);\n", "\n", "// Result \n", "// The critical angle of optical fibre = 54.3 degrees\n", "// The angle of acceptance cone = 137.7 degrees " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.2: Critical_angle_acceptance_angle_and_numerical_aperture_in_an_optical_fibre.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex7.2:: Page-7.8 (2009)\n", "clc; clear;\n", "n1 = 1.50; // Refractive index of core material of fibre\n", "n2 = 1.47; // Refractive index of cladding material of fibre\n", "phi_C = asind(n2/n1); // Critical angle of optical fibre, degrees\n", "NA = sqrt(n1^2-n2^2); // Numerical aperture for the fibre \n", "theta_Q = asind(sqrt(n1^2-n2^2)); // Acceptance angle of optical fibre, degrees\n", "\n", "printf('\nThe critical angle of optical fibre = %4.1f degrees', phi_C);\n", "printf('\nThe numerical aperture for the fibre = %5.3f', NA);\n", "printf('\nThe angle of acceptance cone = %5.1f degrees', theta_Q);\n", "\n", "// Result \n", "// The critical angle of optical fibre = 78.5 degrees\n", "// The numerical aperture for the fibre = 0.298\n", "// The angle of acceptance cone = 17.4 degrees " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.3: Parameters_of_an_optical_fibre_using_relative_refractive_index_difference.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex7.3:: Page-7.8 (2009)\n", "clc; clear;\n", "n1 = 1.46; // Refractive index of the core material\n", "delta = 0.01; // Relative refractive index difference\n", "NA = n1*sqrt(2*delta); // Numerical aperture for the fibre \n", "theta_Q = %pi*NA^2; // Solid acceptance angle of optical fibre for small angles, radians\n", "// As relative refractive index, delta = 1-n2/n1, solving for n2\n", "n2 = n1*(1-delta); // Refractive index of cladding\n", "phi_C = asind(n2/n1); // Critical angle of optical fibre, degrees\n", "\n", "printf('\nThe numerical aperture for the fibre = %4.2f', NA);\n", "printf('\nThe solid acceptance angle of the optical fibre = %4.2f radians', theta_Q);\n", "printf('\nThe critical angle of optical fibre = %4.1f degrees', phi_C);\n", "\n", "// Result \n", "// The numerical aperture for the fibre = 0.21\n", "// The solid acceptance angle of the optical fibre = 0.13 radians\n", "// The critical angle of optical fibre = 81.9 degrees " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.4: Refractive_index_of_cladding.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex7.4:: Page-7.9 (2009)\n", "clc; clear;\n", "n1 = 1.54; // Refractive index of the core material\n", "NA = 0.45; // Numerical aperture for the fibre \n", "n2 = sqrt(n1^2-NA^2); // Refractive index of cladding\n", "\n", "printf('\nThe refractive index of cladding = %4.2f', n2);\n", "\n", "// Result \n", "// The refractive index of cladding = 1.47 " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.5: Numerical_aperture_for_an_optical_fibre.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex7.5:: Page-7.9 (2009)\n", "clc; clear;\n", "n1 = 1.544; // Refractive index of the core material\n", "n2 = 1.412; // Refractive index of cladding\n", "NA = sqrt(n1^2-n2^2); // Numerical aperture for the fibre \n", "\n", "printf('\nThe numerical aperture for an optical fibre = %4.2f', NA);\n", "\n", "// Result \n", "// The numerical aperture for an optical fibre = 0.62 " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.6: Refractive_index_of_the_cladding.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex7.6:: Page-7.9 (2009)\n", "clc; clear;\n", "n1 = 1.544; // Refractive index of the core material\n", "theta0 = 35; // Acceptance angel for an optical fibre, degrees\n", "// As theta0 = asind(sqrt(n1^2-n2^2)), solving for n2\n", "n2 = sqrt(n1^2-sind(theta0)^2); // Refractive index of cladding\n", "\n", "printf('\nThe refractive index of the cladding = %4.2f', n2);\n", "\n", "// Result \n", "// The refractive index of the cladding = 1.43 " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.7: EX7_7.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex7.7:: Page-7.10 (2009)\n", "clc; clear;\n", "NA = 0.4; // Numerical aperture of the optical fibre\n", "n0 = 1; // Refractive index of fibre in air\n", "theta_a = asind(NA/n0); // Acceptance angle for meridional rays, degrees\n", "theta = 100; // Direction through which the skew rays are bent at each reflection, degrees\n", "r = theta/2; // Angle of reflection, degrees\n", "theta_as = asind(NA/(cosd(r)*n0)); // Acceptance angle for skew rays, degrees\n", "\n", "printf('\nAcceptance angle for meridional rays = %4.1f degrees', theta_a);\n", "printf('\nAcceptance angle for skew rays = %4.1f degrees', theta_as);\n", "\n", "// Result \n", "// Acceptance angle for meridional rays = 23.6 degrees\n", "// Acceptance angle for skew rays = 38.5 degrees " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.8: Normalized_frequency_for_V_number_for_the_fibre.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex7.8: : Page-7.13 (2009)\n", "clc; clear;\n", "NA = 0.16; // Numerical aperture of the step index fibre\n", "n1 = 1.50; // Refractive index of the core material\n", "d = 65e-006; // Diameter of the core, m\n", "lambda = 0.9e-006; // Wavelength of transmitted light, m\n", "V = %pi*d/lambda*NA; // V-number for the optical fibre\n", "\n", "printf('\nThe V-number for the optical fibre = %5.2f', V);\n", "\n", "// Result \n", "// The V-number for the optical fibre = 36.30 " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.9: Number_of_modes_in_the_step_index_fibre.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex7.9:: Page-7.13 (2009)\n", "clc; clear;\n", "NA = 0.28; // Numerical aperture of the step index fibre\n", "d = 55e-006; // Diameter of the core, m\n", "lambda = 0.9e-006; // Wavelength of transmitted light, m\n", "M_N = (2.22*d*(NA)/lambda)^2; // Number of modes in the step index fibre\n", "\n", "printf('\nThe number of modes in the step index fibre = %4d degrees', M_N);\n", "\n", "// Result \n", "// The number of modes in the step index fibre = 1442 degrees " ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }