summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_V_Yadav/7-Fiber_Optics.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_V_Yadav/7-Fiber_Optics.ipynb')
-rw-r--r--Engineering_Physics_by_V_Yadav/7-Fiber_Optics.ipynb372
1 files changed, 372 insertions, 0 deletions
diff --git a/Engineering_Physics_by_V_Yadav/7-Fiber_Optics.ipynb b/Engineering_Physics_by_V_Yadav/7-Fiber_Optics.ipynb
new file mode 100644
index 0000000..af2877e
--- /dev/null
+++ b/Engineering_Physics_by_V_Yadav/7-Fiber_Optics.ipynb
@@ -0,0 +1,372 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Fiber Optics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.10: Radius_of_core_for_single_mode_operation_in_step_index_fibre.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.10:: Page-7.14 (2009)\n",
+"clc; clear;\n",
+"n1 = 1.480; // Refractive index of core material\n",
+"n2 = 1.47; // Refractive index of cladding material\n",
+"lambda = 850e-006; // Wavelength of light used, m\n",
+"NA = sqrt(n1^2-n2^2); // Numerical aperture of the step index fibre\n",
+"theta0 = asind(NA); // Maximum acceptance angle for the fibre, degrees\n",
+"M_N = 1; // Number of modes in step index cable\n",
+"// As number of modes, M_N = 1/2*V^2, solving for V\n",
+"V = sqrt(2*M_N); // V-number for the fibre\n",
+"// As V = 2*%pi*a/lambda*NA, solving for a\n",
+"a = V*lambda/(2*%pi*NA); // Radius of core for single mode operation in step index fibre, m\n",
+"printf('\nThe radius of core for single mode operation in step index fibre = %3.1e', a);\n",
+"// Result \n",
+"// The radius of core for single mode operation in step index fibre = 1.1e-03 \n",
+"// The ansswer is quoted wrong in the textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.11: Signal_attenuation_in_optical_fibre.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.11: : Page-7.16 (2009)\n",
+"clc; clear;\n",
+"Pi = 1.5; // Input power to the optical fibre, mW\n",
+"Po = 0.5; // Output power to the optical fibre, mW\n",
+"L = 0.12; // Length of the optical fibre, km\n",
+"alpha_dB = 10/L*log10(Pi/Po); // Signal attenuation in optical fibre, dB/km\n",
+"\n",
+"printf('\nThe signal attenuation in optical fibre = %4.1f dB/km', alpha_dB);\n",
+"\n",
+"// Result \n",
+"// The signal attenuation in optical fibre = 39.8 dB/km "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: Critical_angle_and_acceptance_angle_in_an_optical_fibre.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.1:: Page-7.7 (2009)\n",
+"clc; clear;\n",
+"n1 = 1.6; // Refractive index of core material of fibre\n",
+"n2 = 1.3; // Refractive index of cladding material of fibre\n",
+"phi_C = asind(n2/n1); // Critical angle of optical fibre, degrees\n",
+"theta_Q = asind(sqrt(n1^2-n2^2)); // Acceptance angle of optical fibre, degrees\n",
+"\n",
+"printf('\nThe critical angle of optical fibre = %4.1f degrees', phi_C);\n",
+"printf('\nThe angle of acceptance cone = %5.1f degrees', 2*theta_Q);\n",
+"\n",
+"// Result \n",
+"// The critical angle of optical fibre = 54.3 degrees\n",
+"// The angle of acceptance cone = 137.7 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: Critical_angle_acceptance_angle_and_numerical_aperture_in_an_optical_fibre.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.2:: Page-7.8 (2009)\n",
+"clc; clear;\n",
+"n1 = 1.50; // Refractive index of core material of fibre\n",
+"n2 = 1.47; // Refractive index of cladding material of fibre\n",
+"phi_C = asind(n2/n1); // Critical angle of optical fibre, degrees\n",
+"NA = sqrt(n1^2-n2^2); // Numerical aperture for the fibre \n",
+"theta_Q = asind(sqrt(n1^2-n2^2)); // Acceptance angle of optical fibre, degrees\n",
+"\n",
+"printf('\nThe critical angle of optical fibre = %4.1f degrees', phi_C);\n",
+"printf('\nThe numerical aperture for the fibre = %5.3f', NA);\n",
+"printf('\nThe angle of acceptance cone = %5.1f degrees', theta_Q);\n",
+"\n",
+"// Result \n",
+"// The critical angle of optical fibre = 78.5 degrees\n",
+"// The numerical aperture for the fibre = 0.298\n",
+"// The angle of acceptance cone = 17.4 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: Parameters_of_an_optical_fibre_using_relative_refractive_index_difference.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.3:: Page-7.8 (2009)\n",
+"clc; clear;\n",
+"n1 = 1.46; // Refractive index of the core material\n",
+"delta = 0.01; // Relative refractive index difference\n",
+"NA = n1*sqrt(2*delta); // Numerical aperture for the fibre \n",
+"theta_Q = %pi*NA^2; // Solid acceptance angle of optical fibre for small angles, radians\n",
+"// As relative refractive index, delta = 1-n2/n1, solving for n2\n",
+"n2 = n1*(1-delta); // Refractive index of cladding\n",
+"phi_C = asind(n2/n1); // Critical angle of optical fibre, degrees\n",
+"\n",
+"printf('\nThe numerical aperture for the fibre = %4.2f', NA);\n",
+"printf('\nThe solid acceptance angle of the optical fibre = %4.2f radians', theta_Q);\n",
+"printf('\nThe critical angle of optical fibre = %4.1f degrees', phi_C);\n",
+"\n",
+"// Result \n",
+"// The numerical aperture for the fibre = 0.21\n",
+"// The solid acceptance angle of the optical fibre = 0.13 radians\n",
+"// The critical angle of optical fibre = 81.9 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4: Refractive_index_of_cladding.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.4:: Page-7.9 (2009)\n",
+"clc; clear;\n",
+"n1 = 1.54; // Refractive index of the core material\n",
+"NA = 0.45; // Numerical aperture for the fibre \n",
+"n2 = sqrt(n1^2-NA^2); // Refractive index of cladding\n",
+"\n",
+"printf('\nThe refractive index of cladding = %4.2f', n2);\n",
+"\n",
+"// Result \n",
+"// The refractive index of cladding = 1.47 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5: Numerical_aperture_for_an_optical_fibre.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.5:: Page-7.9 (2009)\n",
+"clc; clear;\n",
+"n1 = 1.544; // Refractive index of the core material\n",
+"n2 = 1.412; // Refractive index of cladding\n",
+"NA = sqrt(n1^2-n2^2); // Numerical aperture for the fibre \n",
+"\n",
+"printf('\nThe numerical aperture for an optical fibre = %4.2f', NA);\n",
+"\n",
+"// Result \n",
+"// The numerical aperture for an optical fibre = 0.62 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6: Refractive_index_of_the_cladding.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.6:: Page-7.9 (2009)\n",
+"clc; clear;\n",
+"n1 = 1.544; // Refractive index of the core material\n",
+"theta0 = 35; // Acceptance angel for an optical fibre, degrees\n",
+"// As theta0 = asind(sqrt(n1^2-n2^2)), solving for n2\n",
+"n2 = sqrt(n1^2-sind(theta0)^2); // Refractive index of cladding\n",
+"\n",
+"printf('\nThe refractive index of the cladding = %4.2f', n2);\n",
+"\n",
+"// Result \n",
+"// The refractive index of the cladding = 1.43 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7: EX7_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.7:: Page-7.10 (2009)\n",
+"clc; clear;\n",
+"NA = 0.4; // Numerical aperture of the optical fibre\n",
+"n0 = 1; // Refractive index of fibre in air\n",
+"theta_a = asind(NA/n0); // Acceptance angle for meridional rays, degrees\n",
+"theta = 100; // Direction through which the skew rays are bent at each reflection, degrees\n",
+"r = theta/2; // Angle of reflection, degrees\n",
+"theta_as = asind(NA/(cosd(r)*n0)); // Acceptance angle for skew rays, degrees\n",
+"\n",
+"printf('\nAcceptance angle for meridional rays = %4.1f degrees', theta_a);\n",
+"printf('\nAcceptance angle for skew rays = %4.1f degrees', theta_as);\n",
+"\n",
+"// Result \n",
+"// Acceptance angle for meridional rays = 23.6 degrees\n",
+"// Acceptance angle for skew rays = 38.5 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.8: Normalized_frequency_for_V_number_for_the_fibre.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.8: : Page-7.13 (2009)\n",
+"clc; clear;\n",
+"NA = 0.16; // Numerical aperture of the step index fibre\n",
+"n1 = 1.50; // Refractive index of the core material\n",
+"d = 65e-006; // Diameter of the core, m\n",
+"lambda = 0.9e-006; // Wavelength of transmitted light, m\n",
+"V = %pi*d/lambda*NA; // V-number for the optical fibre\n",
+"\n",
+"printf('\nThe V-number for the optical fibre = %5.2f', V);\n",
+"\n",
+"// Result \n",
+"// The V-number for the optical fibre = 36.30 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.9: Number_of_modes_in_the_step_index_fibre.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.9:: Page-7.13 (2009)\n",
+"clc; clear;\n",
+"NA = 0.28; // Numerical aperture of the step index fibre\n",
+"d = 55e-006; // Diameter of the core, m\n",
+"lambda = 0.9e-006; // Wavelength of transmitted light, m\n",
+"M_N = (2.22*d*(NA)/lambda)^2; // Number of modes in the step index fibre\n",
+"\n",
+"printf('\nThe number of modes in the step index fibre = %4d degrees', M_N);\n",
+"\n",
+"// Result \n",
+"// The number of modes in the step index fibre = 1442 degrees "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}