1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 1: Elasticity"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.10: example_1.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear all;\n",
"n = 2.8e10; // Rigidity modulus in Newton per meter suquare\n",
"theta = 90; // In degress\n",
"theta1 = theta*(%pi/180); // in radians\n",
"l = 2; //Length of wire in meter\n",
"r = 0.5e-3; // Radius of wire in meter\n",
" t = (%pi^2 * n *r^4)/(4*l);\n",
" disp('Nm',t,'Torque is');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.11: example_11.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear all;\n",
"l = 50*1e-2; // length of wire in m\n",
"a = 2e-3; // radius of wire in m\n",
"theta = 45; // In degree\n",
"theta1 = theta*(%pi/180); // In radian\n",
"n = 8*1e8 //Rigidity modulus in Newton per meter square\n",
"t = (0.5*%pi*n*a^4*theta1^2)/(2*l);\n",
"disp('J',t,'Torque is')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.12: example_12.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear all;\n",
"l = 1; // Length of wire in m\n",
"a = 2e-3; // Radius of wire in m\n",
"theta = %pi/2; // in radians\n",
"theta1=theta*(180/%pi);//in degrees\n",
"n = 5e10; // Rigidity modulus of wire in newton per square meter\n",
"t = (%pi*n*a^4*theta)/(2*l); \n",
"disp('Nm',t,'Torsional couple is ');\n",
"y=a*theta1/(2*l);//angle of shear at surface\n",
"disp('degree',y,'angle of shear at surface');\n",
"z=y/2;//angle of shear at midway\n",
"disp('degree',z,'angle of shear at midway');\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.13: example_13.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"//t=(pi*n*((2*a)^4)*theta)/(2*2*l)=(pi*n*((4*a)^4)*theta1)/(2*4*l)\n",
"//by solving this we get : theta/theta1 = 256/16\n",
"theta = 90; //theta\n",
"theta1= 256/16;//theta/theta'\n",
"theta2=theta/theta1;//theta'\n",
"disp(+'degree',theta2,'The twist on the longer cylinder =')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.14: example_14.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear all;\n",
"l = 0.5; // Length of wire in meter\n",
"a = 2e-3; // Radius pf wire in meter\n",
"theta = 30; // In degree\n",
"Ashear = (a*theta)/l;//Angle of shear\n",
"disp('degree',Ashear,'Angle of shear is');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.15: example_15.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear all;\n",
"e = 1e-2; // Restoring couple per unit twist in Newton meter\n",
"a = 6e-2; // Radius of cyinder in meter\n",
"a1 = 0.10 // Internel diameter of hollow cylinder in meters\n",
"a2 = sqrt(a^2 + a1^2); // Externel Diameter in meter\n",
"disp(a2);\n",
"c = (e * (a2^2 - a1^2))/(a^4);//Restoring couple per unit twist for hollow cylinder\n",
"disp('Nm',c,'Restoring couple per unit twist for hollow cylinder is ');\n",
"//There is slight variation in answer than book's answer..verified in calculator too"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.16: example_16.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear all;\n",
"l = 0.80; // Distance between the knife edges in meter\n",
"r = 0.75e-2; // Radius of rod in meter\n",
"m = 800e-3; // Mass of load in Kilogram\n",
"dp = 0.030e-2; // depression on meter\n",
"g = 9.8; // Gravity constant\n",
"Y = (m*g*l^3)/(12*dp*%pi*r^4);\n",
"disp('N/m^2',Y,'Youngs modulus of the material is ');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.17: example_17.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear all;\n",
"l = 1; // Length of beam in meter\n",
"dp = 10e-3; // Depression in meter\n",
"x = 0.4 // Distance at which depression is to be found in meter\n",
"dpx = (dp*3*(x-x^2+x^3))/l^3;\n",
"disp('m',dpx,'Depression at x = 0.4m is ');\n",
" "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.18: example_18.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear all;\n",
"dp = 12e-3; // Depression for a cantilever os another cantilever of some material of length, width of thickness three times the first case\n",
"//delta=4mgl^3/ybd^3 here replace l=3l b=3b and d=3d so..\n",
"dpd = dp/3;\n",
"disp('m',dpd,'The depression in second cantilever is ');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.1: example_1.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear all;\n",
"Y = 2e12 // Youngs modulus of steel in dynes per cm square \n",
"g = 981; // Gravity Constant in am per second square\n",
"l = 400; // Length of wire in cm\n",
"r = 0.1; // Radius of wire in cm\n",
"deltaL = 0.1; // Change in length of wire in cm\n",
"M = (Y * %pi * r^2 * deltaL )/(g*l*1000);\n",
"disp('kg',M,'The mass to be added is',);\n",
"//There is slight variation in answer than book's answer..verified in calculator too"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.2: example_2.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc; \n",
"clear all;\n",
"r = 0.15; // Radius of wire in cm\n",
"A = %pi* r^2; // Area of wirw in cm square\n",
"F = 200; // Force in dyne\n",
"Y = 12.5e11; // Young's modulus in dyne per cm square\n",
"t = ((F*9.8e5)/(A*Y))*100;\n",
"disp('%',t,'Percentage of increase is ');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.3: example_3.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear all;\n",
"lss = 5; // Length of steel wire in m \n",
"as = 4e-5; // Cross section area of steel wire in square meters\n",
"lc = 6; // Length of copper wire in m\n",
"ac = 5e-5; // Cross section area of copper wire in square meters\n",
"Ratio = (lss/as)*(ac/lc); // Ratio os youngs modulus of steel to copperAfter eliminating force and delta change\n",
"disp(Ratio,'The ratio of youngs modulus of steel to copper is '); "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.4: example_4.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear all;\n",
"change = 0.01/100;\n",
"h = 1e5; // Height\n",
"rho = 1 // Density of water in gm per cm square\n",
"g = 980 // Gravity constant in am per square cm\n",
"deltap = h*g*rho;\n",
"k = deltap/change;\n",
"disp('dyne cm^-2',k,'Bulk modulus of sphere is ')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.5: example_5.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear all;\n",
"deltav = 0.5; // change in volume\n",
"v = 200; // initial volume in litres\n",
"deltap = 100*1.013e5 // change in pressure in Pa\n",
"k = (deltap/(deltav/v));\n",
"disp('Pa',k,'Bulk modulus of liquid is ')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.6: example_6.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear all;\n",
"l = 0.4 // Length in meter\n",
"A = 240e-4 // Area of slab in meter square\n",
"F = 1e5 // Shaering force in newton\n",
"n = 5.6e9 // Shear modulus in pa\n",
"deltal = (F*l)/(n*A);\n",
"disp('m',deltal,'The displacement is ')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.7: example_7.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear all;\n",
"l = 7; // Length of rubber cube\n",
"n = 2e7; // Rigidity modulus in dyne per cm square\n",
"F = 200*1000*981; // Force in dyne\n",
"A = 49; // Area in cm square\n",
"theta = (F/(A*n));\n",
"disp('rad',theta,'Shearing stress is ' ) ;\n",
"deltal = l*theta;\n",
"disp('cm',deltal, 'Change is' );"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.8: example_8.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear all;\n",
"A = 2e-4; // Area of steel wire in meter square\n",
"Y = 2e11 // Young's modulus in Newton per meter square\n",
"F = A*Y //l = L in this problem hence eliminating and rearranging equation of Y\n",
"disp('N',F,'The value of force is')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.9: example_9.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear all;\n",
"sigma = 0.2; // Poisson's ratio\n",
"changel = 2e-3; // longitudinal strain\n",
"changev = (changel-(2*sigma*changel))*100;\n",
"disp('%',changev,'Percentage change in volume is')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|