{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 1: Elasticity" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.10: example_1.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear all;\n", "n = 2.8e10; // Rigidity modulus in Newton per meter suquare\n", "theta = 90; // In degress\n", "theta1 = theta*(%pi/180); // in radians\n", "l = 2; //Length of wire in meter\n", "r = 0.5e-3; // Radius of wire in meter\n", " t = (%pi^2 * n *r^4)/(4*l);\n", " disp('Nm',t,'Torque is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.11: example_11.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear all;\n", "l = 50*1e-2; // length of wire in m\n", "a = 2e-3; // radius of wire in m\n", "theta = 45; // In degree\n", "theta1 = theta*(%pi/180); // In radian\n", "n = 8*1e8 //Rigidity modulus in Newton per meter square\n", "t = (0.5*%pi*n*a^4*theta1^2)/(2*l);\n", "disp('J',t,'Torque is')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.12: example_12.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear all;\n", "l = 1; // Length of wire in m\n", "a = 2e-3; // Radius of wire in m\n", "theta = %pi/2; // in radians\n", "theta1=theta*(180/%pi);//in degrees\n", "n = 5e10; // Rigidity modulus of wire in newton per square meter\n", "t = (%pi*n*a^4*theta)/(2*l); \n", "disp('Nm',t,'Torsional couple is ');\n", "y=a*theta1/(2*l);//angle of shear at surface\n", "disp('degree',y,'angle of shear at surface');\n", "z=y/2;//angle of shear at midway\n", "disp('degree',z,'angle of shear at midway');\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.13: example_13.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "//t=(pi*n*((2*a)^4)*theta)/(2*2*l)=(pi*n*((4*a)^4)*theta1)/(2*4*l)\n", "//by solving this we get : theta/theta1 = 256/16\n", "theta = 90; //theta\n", "theta1= 256/16;//theta/theta'\n", "theta2=theta/theta1;//theta'\n", "disp(+'degree',theta2,'The twist on the longer cylinder =')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.14: example_14.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear all;\n", "l = 0.5; // Length of wire in meter\n", "a = 2e-3; // Radius pf wire in meter\n", "theta = 30; // In degree\n", "Ashear = (a*theta)/l;//Angle of shear\n", "disp('degree',Ashear,'Angle of shear is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.15: example_15.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear all;\n", "e = 1e-2; // Restoring couple per unit twist in Newton meter\n", "a = 6e-2; // Radius of cyinder in meter\n", "a1 = 0.10 // Internel diameter of hollow cylinder in meters\n", "a2 = sqrt(a^2 + a1^2); // Externel Diameter in meter\n", "disp(a2);\n", "c = (e * (a2^2 - a1^2))/(a^4);//Restoring couple per unit twist for hollow cylinder\n", "disp('Nm',c,'Restoring couple per unit twist for hollow cylinder is ');\n", "//There is slight variation in answer than book's answer..verified in calculator too" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.16: example_16.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear all;\n", "l = 0.80; // Distance between the knife edges in meter\n", "r = 0.75e-2; // Radius of rod in meter\n", "m = 800e-3; // Mass of load in Kilogram\n", "dp = 0.030e-2; // depression on meter\n", "g = 9.8; // Gravity constant\n", "Y = (m*g*l^3)/(12*dp*%pi*r^4);\n", "disp('N/m^2',Y,'Youngs modulus of the material is ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.17: example_17.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear all;\n", "l = 1; // Length of beam in meter\n", "dp = 10e-3; // Depression in meter\n", "x = 0.4 // Distance at which depression is to be found in meter\n", "dpx = (dp*3*(x-x^2+x^3))/l^3;\n", "disp('m',dpx,'Depression at x = 0.4m is ');\n", " " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.18: example_18.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear all;\n", "dp = 12e-3; // Depression for a cantilever os another cantilever of some material of length, width of thickness three times the first case\n", "//delta=4mgl^3/ybd^3 here replace l=3l b=3b and d=3d so..\n", "dpd = dp/3;\n", "disp('m',dpd,'The depression in second cantilever is ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.1: example_1.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear all;\n", "Y = 2e12 // Youngs modulus of steel in dynes per cm square \n", "g = 981; // Gravity Constant in am per second square\n", "l = 400; // Length of wire in cm\n", "r = 0.1; // Radius of wire in cm\n", "deltaL = 0.1; // Change in length of wire in cm\n", "M = (Y * %pi * r^2 * deltaL )/(g*l*1000);\n", "disp('kg',M,'The mass to be added is',);\n", "//There is slight variation in answer than book's answer..verified in calculator too" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.2: example_2.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc; \n", "clear all;\n", "r = 0.15; // Radius of wire in cm\n", "A = %pi* r^2; // Area of wirw in cm square\n", "F = 200; // Force in dyne\n", "Y = 12.5e11; // Young's modulus in dyne per cm square\n", "t = ((F*9.8e5)/(A*Y))*100;\n", "disp('%',t,'Percentage of increase is ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.3: example_3.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear all;\n", "lss = 5; // Length of steel wire in m \n", "as = 4e-5; // Cross section area of steel wire in square meters\n", "lc = 6; // Length of copper wire in m\n", "ac = 5e-5; // Cross section area of copper wire in square meters\n", "Ratio = (lss/as)*(ac/lc); // Ratio os youngs modulus of steel to copperAfter eliminating force and delta change\n", "disp(Ratio,'The ratio of youngs modulus of steel to copper is '); " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.4: example_4.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear all;\n", "change = 0.01/100;\n", "h = 1e5; // Height\n", "rho = 1 // Density of water in gm per cm square\n", "g = 980 // Gravity constant in am per square cm\n", "deltap = h*g*rho;\n", "k = deltap/change;\n", "disp('dyne cm^-2',k,'Bulk modulus of sphere is ')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.5: example_5.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear all;\n", "deltav = 0.5; // change in volume\n", "v = 200; // initial volume in litres\n", "deltap = 100*1.013e5 // change in pressure in Pa\n", "k = (deltap/(deltav/v));\n", "disp('Pa',k,'Bulk modulus of liquid is ')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.6: example_6.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear all;\n", "l = 0.4 // Length in meter\n", "A = 240e-4 // Area of slab in meter square\n", "F = 1e5 // Shaering force in newton\n", "n = 5.6e9 // Shear modulus in pa\n", "deltal = (F*l)/(n*A);\n", "disp('m',deltal,'The displacement is ')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.7: example_7.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear all;\n", "l = 7; // Length of rubber cube\n", "n = 2e7; // Rigidity modulus in dyne per cm square\n", "F = 200*1000*981; // Force in dyne\n", "A = 49; // Area in cm square\n", "theta = (F/(A*n));\n", "disp('rad',theta,'Shearing stress is ' ) ;\n", "deltal = l*theta;\n", "disp('cm',deltal, 'Change is' );" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.8: example_8.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear all;\n", "A = 2e-4; // Area of steel wire in meter square\n", "Y = 2e11 // Young's modulus in Newton per meter square\n", "F = A*Y //l = L in this problem hence eliminating and rearranging equation of Y\n", "disp('N',F,'The value of force is')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.9: example_9.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear all;\n", "sigma = 0.2; // Poisson's ratio\n", "changel = 2e-3; // longitudinal strain\n", "changev = (changel-(2*sigma*changel))*100;\n", "disp('%',changev,'Percentage change in volume is')" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }