summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_K_Rajagopal/1-Elasticity.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Engineering_Physics_by_K_Rajagopal/1-Elasticity.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-master.tar.gz
all-scilab-tbc-books-ipynb-master.tar.bz2
all-scilab-tbc-books-ipynb-master.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Engineering_Physics_by_K_Rajagopal/1-Elasticity.ipynb')
-rw-r--r--Engineering_Physics_by_K_Rajagopal/1-Elasticity.ipynb506
1 files changed, 506 insertions, 0 deletions
diff --git a/Engineering_Physics_by_K_Rajagopal/1-Elasticity.ipynb b/Engineering_Physics_by_K_Rajagopal/1-Elasticity.ipynb
new file mode 100644
index 0000000..5404944
--- /dev/null
+++ b/Engineering_Physics_by_K_Rajagopal/1-Elasticity.ipynb
@@ -0,0 +1,506 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Elasticity"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.10: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"n = 2.8e10; // Rigidity modulus in Newton per meter suquare\n",
+"theta = 90; // In degress\n",
+"theta1 = theta*(%pi/180); // in radians\n",
+"l = 2; //Length of wire in meter\n",
+"r = 0.5e-3; // Radius of wire in meter\n",
+" t = (%pi^2 * n *r^4)/(4*l);\n",
+" disp('Nm',t,'Torque is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.11: example_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"l = 50*1e-2; // length of wire in m\n",
+"a = 2e-3; // radius of wire in m\n",
+"theta = 45; // In degree\n",
+"theta1 = theta*(%pi/180); // In radian\n",
+"n = 8*1e8 //Rigidity modulus in Newton per meter square\n",
+"t = (0.5*%pi*n*a^4*theta1^2)/(2*l);\n",
+"disp('J',t,'Torque is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.12: example_12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"l = 1; // Length of wire in m\n",
+"a = 2e-3; // Radius of wire in m\n",
+"theta = %pi/2; // in radians\n",
+"theta1=theta*(180/%pi);//in degrees\n",
+"n = 5e10; // Rigidity modulus of wire in newton per square meter\n",
+"t = (%pi*n*a^4*theta)/(2*l); \n",
+"disp('Nm',t,'Torsional couple is ');\n",
+"y=a*theta1/(2*l);//angle of shear at surface\n",
+"disp('degree',y,'angle of shear at surface');\n",
+"z=y/2;//angle of shear at midway\n",
+"disp('degree',z,'angle of shear at midway');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.13: example_13.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//t=(pi*n*((2*a)^4)*theta)/(2*2*l)=(pi*n*((4*a)^4)*theta1)/(2*4*l)\n",
+"//by solving this we get : theta/theta1 = 256/16\n",
+"theta = 90; //theta\n",
+"theta1= 256/16;//theta/theta'\n",
+"theta2=theta/theta1;//theta'\n",
+"disp(+'degree',theta2,'The twist on the longer cylinder =')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14: example_14.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"l = 0.5; // Length of wire in meter\n",
+"a = 2e-3; // Radius pf wire in meter\n",
+"theta = 30; // In degree\n",
+"Ashear = (a*theta)/l;//Angle of shear\n",
+"disp('degree',Ashear,'Angle of shear is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.15: example_15.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"e = 1e-2; // Restoring couple per unit twist in Newton meter\n",
+"a = 6e-2; // Radius of cyinder in meter\n",
+"a1 = 0.10 // Internel diameter of hollow cylinder in meters\n",
+"a2 = sqrt(a^2 + a1^2); // Externel Diameter in meter\n",
+"disp(a2);\n",
+"c = (e * (a2^2 - a1^2))/(a^4);//Restoring couple per unit twist for hollow cylinder\n",
+"disp('Nm',c,'Restoring couple per unit twist for hollow cylinder is ');\n",
+"//There is slight variation in answer than book's answer..verified in calculator too"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.16: example_16.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"l = 0.80; // Distance between the knife edges in meter\n",
+"r = 0.75e-2; // Radius of rod in meter\n",
+"m = 800e-3; // Mass of load in Kilogram\n",
+"dp = 0.030e-2; // depression on meter\n",
+"g = 9.8; // Gravity constant\n",
+"Y = (m*g*l^3)/(12*dp*%pi*r^4);\n",
+"disp('N/m^2',Y,'Youngs modulus of the material is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.17: example_17.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"l = 1; // Length of beam in meter\n",
+"dp = 10e-3; // Depression in meter\n",
+"x = 0.4 // Distance at which depression is to be found in meter\n",
+"dpx = (dp*3*(x-x^2+x^3))/l^3;\n",
+"disp('m',dpx,'Depression at x = 0.4m is ');\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.18: example_18.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"dp = 12e-3; // Depression for a cantilever os another cantilever of some material of length, width of thickness three times the first case\n",
+"//delta=4mgl^3/ybd^3 here replace l=3l b=3b and d=3d so..\n",
+"dpd = dp/3;\n",
+"disp('m',dpd,'The depression in second cantilever is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"Y = 2e12 // Youngs modulus of steel in dynes per cm square \n",
+"g = 981; // Gravity Constant in am per second square\n",
+"l = 400; // Length of wire in cm\n",
+"r = 0.1; // Radius of wire in cm\n",
+"deltaL = 0.1; // Change in length of wire in cm\n",
+"M = (Y * %pi * r^2 * deltaL )/(g*l*1000);\n",
+"disp('kg',M,'The mass to be added is',);\n",
+"//There is slight variation in answer than book's answer..verified in calculator too"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc; \n",
+"clear all;\n",
+"r = 0.15; // Radius of wire in cm\n",
+"A = %pi* r^2; // Area of wirw in cm square\n",
+"F = 200; // Force in dyne\n",
+"Y = 12.5e11; // Young's modulus in dyne per cm square\n",
+"t = ((F*9.8e5)/(A*Y))*100;\n",
+"disp('%',t,'Percentage of increase is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"lss = 5; // Length of steel wire in m \n",
+"as = 4e-5; // Cross section area of steel wire in square meters\n",
+"lc = 6; // Length of copper wire in m\n",
+"ac = 5e-5; // Cross section area of copper wire in square meters\n",
+"Ratio = (lss/as)*(ac/lc); // Ratio os youngs modulus of steel to copperAfter eliminating force and delta change\n",
+"disp(Ratio,'The ratio of youngs modulus of steel to copper is '); "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"change = 0.01/100;\n",
+"h = 1e5; // Height\n",
+"rho = 1 // Density of water in gm per cm square\n",
+"g = 980 // Gravity constant in am per square cm\n",
+"deltap = h*g*rho;\n",
+"k = deltap/change;\n",
+"disp('dyne cm^-2',k,'Bulk modulus of sphere is ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"deltav = 0.5; // change in volume\n",
+"v = 200; // initial volume in litres\n",
+"deltap = 100*1.013e5 // change in pressure in Pa\n",
+"k = (deltap/(deltav/v));\n",
+"disp('Pa',k,'Bulk modulus of liquid is ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"l = 0.4 // Length in meter\n",
+"A = 240e-4 // Area of slab in meter square\n",
+"F = 1e5 // Shaering force in newton\n",
+"n = 5.6e9 // Shear modulus in pa\n",
+"deltal = (F*l)/(n*A);\n",
+"disp('m',deltal,'The displacement is ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"l = 7; // Length of rubber cube\n",
+"n = 2e7; // Rigidity modulus in dyne per cm square\n",
+"F = 200*1000*981; // Force in dyne\n",
+"A = 49; // Area in cm square\n",
+"theta = (F/(A*n));\n",
+"disp('rad',theta,'Shearing stress is ' ) ;\n",
+"deltal = l*theta;\n",
+"disp('cm',deltal, 'Change is' );"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8: example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"A = 2e-4; // Area of steel wire in meter square\n",
+"Y = 2e11 // Young's modulus in Newton per meter square\n",
+"F = A*Y //l = L in this problem hence eliminating and rearranging equation of Y\n",
+"disp('N',F,'The value of force is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.9: example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear all;\n",
+"sigma = 0.2; // Poisson's ratio\n",
+"changel = 2e-3; // longitudinal strain\n",
+"changev = (changel-(2*sigma*changel))*100;\n",
+"disp('%',changev,'Percentage change in volume is')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}