summaryrefslogtreecommitdiff
path: root/Electrical_Engineering_by_R_Anandanatarajan/3-Three_Phase_Induction_Motor.ipynb
blob: be4a6d2fa0650b75a6a8e95b9900bceed55a8106 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 3: Three Phase Induction Motor"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 3.1: Frequency_of_rotor_current.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"//Chapter-3, Example 3.1, Page 3.6\n",
"//=============================================================================\n",
"clc\n",
"clear\n",
"\n",
"//INPUT DATA\n",
"N=900;//Rotor speed in rpm\n",
"f=50;//Power supply frequency in Hz\n",
"P=6;//No. of poles\n",
"\n",
"//CALCULATIONS\n",
"Ns=(120*f)/P;//Synchronous speed in rpm\n",
"s=((Ns-N)/Ns)*100;//%slip \n",
"f1=(s*f)/100;//Frequency of rotor current in Hz\n",
"\n",
"//OUTPUT\n",
"mprintf('Slip of a 3 phase motor is %i percent\nFrequency of rotor current is %i Hz',s,f1)\n",
"\n",
"//=================================END OF PROGRAM=============================="
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 3.2: Full_load_speed_of_the_motor.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"//Chapter-3, Example 3.2, Page 3.6\n",
"//=============================================================================\n",
"clc\n",
"clear\n",
"\n",
"//INPUT DATA\n",
"N=600;//Speed of 12 pole 3 phase alternator in rpm\n",
"P=12;//No. of poles of alternator\n",
"n=6;//No. of poles in induction motor\n",
"s=2.5;//slip of the motor in %\n",
"\n",
"//CALCULATIONS\n",
"f=(N*P)/120;//Alternator supply frequency in Hz\n",
"Ns=(120*f)/n;//Synchronous speed in rpm\n",
"N1=(Ns-((s*Ns)/100));//Full load speed of the motor when the slip is 2.5%\n",
"\n",
"//OUTPUT\n",
"mprintf('Full load speed of the motor when the slip is 2.5 percent = %irpm',N1)\n",
"\n",
"//=================================END OF PROGRAM=============================="
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 3.3: Slip_and_speed_of_rotor.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"//Chapter-3, Example 3.3, Page 3.7\n",
"//=============================================================================\n",
"clc\n",
"clear\n",
"\n",
"//INPUT DATA\n",
"P=6;//Number of poles\n",
"f=50;//Supply frequency in Hz\n",
"f1=3;//Rotor current frequency in Hz\n",
"\n",
"//CALCULATIONS\n",
"s=(f1/f)*100;//Slip of the motor in %\n",
"Ns=(120*f)/P;//Synchronous speed in rpm\n",
"N=(Ns-((s*Ns)/100));//Speed of the motor in rpm\n",
"\n",
"//OUTPUT\n",
"mprintf('Slip of the motor is %i percent\nSpeed of the motor is %i rpm',s,N)\n",
"\n",
"//=================================END OF PROGRAM=============================="
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 3.4: Shaft_output_and_torque.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"//Chapter-3, Example 3.4, Page 3.12\n",
"//=============================================================================\n",
"clc\n",
"clear\n",
"\n",
"//INPUT DATA\n",
"VL=440;//Supply line voltage in V\n",
"P=4;//Number of poles\n",
"IL=75;//Line current in A\n",
"cosx=0.8;//Power factor\n",
"n=0.8;//Efficiency of the motor\n",
"s=0.03;//slip of the motor\n",
"f=50;//Frequency in Hz\n",
"\n",
"//CALCULATIONS\n",
"Pm=(sqrt(3)*VL*IL*cosx*n);//Output power in W\n",
"Ns=(120*f)/P;//Synchronous speed in rpm\n",
"N=(1-s)*Ns;//Actual speed in rpm\n",
"\n",
"//OUTPUT\n",
"mprintf('Shaft output power is %3.0f W\nActual speed is %i rpm',Pm,N)\n",
"\n",
"//=================================END OF PROGRAM=============================="
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 3.5: Parameters_of_induction_motor.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"//Chapter-3, Example 3.5, Page 3.13\n",
"//=============================================================================\n",
"clc\n",
"clear\n",
"\n",
"//INPUT DATA\n",
"P=6;//Number of poles\n",
"f=50;//Supply frequency in Hz\n",
"Tm=120;//Shaft torque in N.m\n",
"f1=2;//Rotor current frequency in Hz\n",
"L=5;//Amount of constant losses in N.m\n",
"C=500;//Amount of core losses in W\n",
"\n",
"//CALCULATIONS\n",
"Ns=(120*f)/P;//Synchronous speed in rpm\n",
"s=(f1/f);//Slip of the motor \n",
"N=(1-s)*Ns;//Actual speed in rpm\n",
"P=(2*3.14*N*Tm)/60;//Shaft power in W\n",
"Pm=(2*3.14*N*(Tm+L))/60000;//Mechanical power output in kW\n",
"R=(s*Pm)/(1-s);//Rotor copper losses in kW\n",
"I=(Pm+R+(L/10));//Motor input in kW\n",
"n=(Pm/I)*100;//Machine efficiency\n",
"\n",
"//OUTPUT\n",
"mprintf('a)Mechanical power output is %3.3f kW\nb)Rotor copper losses is %3.2fkW\nc)Motor input is %3.3f kW\nd)Machine efficiency is %3.1f percent',Pm,R,I,n)\n",
"\n",
"//=================================END OF PROGRAM=============================="
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 3.6: Slip_and_torque.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"//Chapter-3, Example 3.6, Page 3.17\n",
"//=============================================================================\n",
"clc\n",
"clear\n",
"\n",
"//INPUT DATA\n",
"VL=11000;//Supply line voltage in V\n",
"P=12;//Number of poles\n",
"f=50;//Supply frequency in Hz\n",
"R2=0.2;//Rotor resistance in ohm\n",
"X2=1.2;//Rotor reactance at stand still in ohm\n",
"N=480;//Full load speed in rpm\n",
"\n",
"//CALCULATIONS\n",
"s=(R2/X2);//Slip at maximum torque\n",
"Ns=(120*f)/P;//Synchronous speed in rpm\n",
"s1=(Ns-N)/Ns;//Slip at full load\n",
"T=((R2^2+(s1^2*X2^2))/((2*X2)*(s1*R2)));//Ratio of maximum and full load torque\n",
"T1=((R2^2+X2^2)/(2*X2*R2));//Ratio of maximum and starting torque\n",
"\n",
"//OUTPUT\n",
"mprintf('a)Slip at maximum torque is %3.2f \nb)Ratio of maximum and full load torque is %3.2f \nc)Ratio of maximum and starting torque is %3.2f',s,T,T1)\n",
"\n",
"//=================================END OF PROGRAM=============================="
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 3.7: Maximum_torque_and_starting_torque.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"//Chapter-3, Example 3.7, Page 3.18\n",
"//=============================================================================\n",
"clc\n",
"clear\n",
"\n",
"//INPUT DATA\n",
"P=6;//Number of poles\n",
"f=50;//Supply frequency in Hz\n",
"R2=0.4;//Rotor reisitance in ohm\n",
"X2=4;//Rotor standstill reactance in ohm\n",
"T1=2;//Ratio of maximum torque to starting torque\n",
"\n",
"//CALCULATIONS\n",
"Ns=(120*f)/P;//Synchronous speed in rpm\n",
"Sm=(R2/X2);//Slip at maximum torque\n",
"NTM=(Ns*(1-Sm));//Speed of the motor at maximum torque in rpm\n",
"T=((R2^2+X2^2)/(2*R2*X2));//Ratio of maximum torque to starting torque\n",
"Rext=(sqrt(X2^2/((2*T1)-1))-R2);//Additional resistance required for the ratio of maximum torque to the statring torque to be 2 in ohm\n",
"\n",
"//OUTPUT\n",
"mprintf('a)Speed of the motor at maximum torque is %i rpm \n b)Ratio of maximum torque to starting torque is %3.2f \n c)Additional resistance required for the ratio of maximum torque to the starting torque to be 2 is %3.1f ohm',NTM,T,Rext)\n",
"\n",
"//=================================END OF PROGRAM=============================="
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}