{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 3: Three Phase Induction Motor" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.1: Frequency_of_rotor_current.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3, Example 3.1, Page 3.6\n", "//=============================================================================\n", "clc\n", "clear\n", "\n", "//INPUT DATA\n", "N=900;//Rotor speed in rpm\n", "f=50;//Power supply frequency in Hz\n", "P=6;//No. of poles\n", "\n", "//CALCULATIONS\n", "Ns=(120*f)/P;//Synchronous speed in rpm\n", "s=((Ns-N)/Ns)*100;//%slip \n", "f1=(s*f)/100;//Frequency of rotor current in Hz\n", "\n", "//OUTPUT\n", "mprintf('Slip of a 3 phase motor is %i percent\nFrequency of rotor current is %i Hz',s,f1)\n", "\n", "//=================================END OF PROGRAM==============================" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.2: Full_load_speed_of_the_motor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3, Example 3.2, Page 3.6\n", "//=============================================================================\n", "clc\n", "clear\n", "\n", "//INPUT DATA\n", "N=600;//Speed of 12 pole 3 phase alternator in rpm\n", "P=12;//No. of poles of alternator\n", "n=6;//No. of poles in induction motor\n", "s=2.5;//slip of the motor in %\n", "\n", "//CALCULATIONS\n", "f=(N*P)/120;//Alternator supply frequency in Hz\n", "Ns=(120*f)/n;//Synchronous speed in rpm\n", "N1=(Ns-((s*Ns)/100));//Full load speed of the motor when the slip is 2.5%\n", "\n", "//OUTPUT\n", "mprintf('Full load speed of the motor when the slip is 2.5 percent = %irpm',N1)\n", "\n", "//=================================END OF PROGRAM==============================" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.3: Slip_and_speed_of_rotor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3, Example 3.3, Page 3.7\n", "//=============================================================================\n", "clc\n", "clear\n", "\n", "//INPUT DATA\n", "P=6;//Number of poles\n", "f=50;//Supply frequency in Hz\n", "f1=3;//Rotor current frequency in Hz\n", "\n", "//CALCULATIONS\n", "s=(f1/f)*100;//Slip of the motor in %\n", "Ns=(120*f)/P;//Synchronous speed in rpm\n", "N=(Ns-((s*Ns)/100));//Speed of the motor in rpm\n", "\n", "//OUTPUT\n", "mprintf('Slip of the motor is %i percent\nSpeed of the motor is %i rpm',s,N)\n", "\n", "//=================================END OF PROGRAM==============================" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.4: Shaft_output_and_torque.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3, Example 3.4, Page 3.12\n", "//=============================================================================\n", "clc\n", "clear\n", "\n", "//INPUT DATA\n", "VL=440;//Supply line voltage in V\n", "P=4;//Number of poles\n", "IL=75;//Line current in A\n", "cosx=0.8;//Power factor\n", "n=0.8;//Efficiency of the motor\n", "s=0.03;//slip of the motor\n", "f=50;//Frequency in Hz\n", "\n", "//CALCULATIONS\n", "Pm=(sqrt(3)*VL*IL*cosx*n);//Output power in W\n", "Ns=(120*f)/P;//Synchronous speed in rpm\n", "N=(1-s)*Ns;//Actual speed in rpm\n", "\n", "//OUTPUT\n", "mprintf('Shaft output power is %3.0f W\nActual speed is %i rpm',Pm,N)\n", "\n", "//=================================END OF PROGRAM==============================" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.5: Parameters_of_induction_motor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3, Example 3.5, Page 3.13\n", "//=============================================================================\n", "clc\n", "clear\n", "\n", "//INPUT DATA\n", "P=6;//Number of poles\n", "f=50;//Supply frequency in Hz\n", "Tm=120;//Shaft torque in N.m\n", "f1=2;//Rotor current frequency in Hz\n", "L=5;//Amount of constant losses in N.m\n", "C=500;//Amount of core losses in W\n", "\n", "//CALCULATIONS\n", "Ns=(120*f)/P;//Synchronous speed in rpm\n", "s=(f1/f);//Slip of the motor \n", "N=(1-s)*Ns;//Actual speed in rpm\n", "P=(2*3.14*N*Tm)/60;//Shaft power in W\n", "Pm=(2*3.14*N*(Tm+L))/60000;//Mechanical power output in kW\n", "R=(s*Pm)/(1-s);//Rotor copper losses in kW\n", "I=(Pm+R+(L/10));//Motor input in kW\n", "n=(Pm/I)*100;//Machine efficiency\n", "\n", "//OUTPUT\n", "mprintf('a)Mechanical power output is %3.3f kW\nb)Rotor copper losses is %3.2fkW\nc)Motor input is %3.3f kW\nd)Machine efficiency is %3.1f percent',Pm,R,I,n)\n", "\n", "//=================================END OF PROGRAM==============================" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.6: Slip_and_torque.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3, Example 3.6, Page 3.17\n", "//=============================================================================\n", "clc\n", "clear\n", "\n", "//INPUT DATA\n", "VL=11000;//Supply line voltage in V\n", "P=12;//Number of poles\n", "f=50;//Supply frequency in Hz\n", "R2=0.2;//Rotor resistance in ohm\n", "X2=1.2;//Rotor reactance at stand still in ohm\n", "N=480;//Full load speed in rpm\n", "\n", "//CALCULATIONS\n", "s=(R2/X2);//Slip at maximum torque\n", "Ns=(120*f)/P;//Synchronous speed in rpm\n", "s1=(Ns-N)/Ns;//Slip at full load\n", "T=((R2^2+(s1^2*X2^2))/((2*X2)*(s1*R2)));//Ratio of maximum and full load torque\n", "T1=((R2^2+X2^2)/(2*X2*R2));//Ratio of maximum and starting torque\n", "\n", "//OUTPUT\n", "mprintf('a)Slip at maximum torque is %3.2f \nb)Ratio of maximum and full load torque is %3.2f \nc)Ratio of maximum and starting torque is %3.2f',s,T,T1)\n", "\n", "//=================================END OF PROGRAM==============================" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.7: Maximum_torque_and_starting_torque.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3, Example 3.7, Page 3.18\n", "//=============================================================================\n", "clc\n", "clear\n", "\n", "//INPUT DATA\n", "P=6;//Number of poles\n", "f=50;//Supply frequency in Hz\n", "R2=0.4;//Rotor reisitance in ohm\n", "X2=4;//Rotor standstill reactance in ohm\n", "T1=2;//Ratio of maximum torque to starting torque\n", "\n", "//CALCULATIONS\n", "Ns=(120*f)/P;//Synchronous speed in rpm\n", "Sm=(R2/X2);//Slip at maximum torque\n", "NTM=(Ns*(1-Sm));//Speed of the motor at maximum torque in rpm\n", "T=((R2^2+X2^2)/(2*R2*X2));//Ratio of maximum torque to starting torque\n", "Rext=(sqrt(X2^2/((2*T1)-1))-R2);//Additional resistance required for the ratio of maximum torque to the statring torque to be 2 in ohm\n", "\n", "//OUTPUT\n", "mprintf('a)Speed of the motor at maximum torque is %i rpm \n b)Ratio of maximum torque to starting torque is %3.2f \n c)Additional resistance required for the ratio of maximum torque to the starting torque to be 2 is %3.1f ohm',NTM,T,Rext)\n", "\n", "//=================================END OF PROGRAM==============================" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }