diff options
Diffstat (limited to 'Electrical_Engineering_by_R_Anandanatarajan/3-Three_Phase_Induction_Motor.ipynb')
-rw-r--r-- | Electrical_Engineering_by_R_Anandanatarajan/3-Three_Phase_Induction_Motor.ipynb | 312 |
1 files changed, 312 insertions, 0 deletions
diff --git a/Electrical_Engineering_by_R_Anandanatarajan/3-Three_Phase_Induction_Motor.ipynb b/Electrical_Engineering_by_R_Anandanatarajan/3-Three_Phase_Induction_Motor.ipynb new file mode 100644 index 0000000..be4a6d2 --- /dev/null +++ b/Electrical_Engineering_by_R_Anandanatarajan/3-Three_Phase_Induction_Motor.ipynb @@ -0,0 +1,312 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Three Phase Induction Motor" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: Frequency_of_rotor_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3, Example 3.1, Page 3.6\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"N=900;//Rotor speed in rpm\n", +"f=50;//Power supply frequency in Hz\n", +"P=6;//No. of poles\n", +"\n", +"//CALCULATIONS\n", +"Ns=(120*f)/P;//Synchronous speed in rpm\n", +"s=((Ns-N)/Ns)*100;//%slip \n", +"f1=(s*f)/100;//Frequency of rotor current in Hz\n", +"\n", +"//OUTPUT\n", +"mprintf('Slip of a 3 phase motor is %i percent\nFrequency of rotor current is %i Hz',s,f1)\n", +"\n", +"//=================================END OF PROGRAM==============================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: Full_load_speed_of_the_motor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3, Example 3.2, Page 3.6\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"N=600;//Speed of 12 pole 3 phase alternator in rpm\n", +"P=12;//No. of poles of alternator\n", +"n=6;//No. of poles in induction motor\n", +"s=2.5;//slip of the motor in %\n", +"\n", +"//CALCULATIONS\n", +"f=(N*P)/120;//Alternator supply frequency in Hz\n", +"Ns=(120*f)/n;//Synchronous speed in rpm\n", +"N1=(Ns-((s*Ns)/100));//Full load speed of the motor when the slip is 2.5%\n", +"\n", +"//OUTPUT\n", +"mprintf('Full load speed of the motor when the slip is 2.5 percent = %irpm',N1)\n", +"\n", +"//=================================END OF PROGRAM==============================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: Slip_and_speed_of_rotor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3, Example 3.3, Page 3.7\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P=6;//Number of poles\n", +"f=50;//Supply frequency in Hz\n", +"f1=3;//Rotor current frequency in Hz\n", +"\n", +"//CALCULATIONS\n", +"s=(f1/f)*100;//Slip of the motor in %\n", +"Ns=(120*f)/P;//Synchronous speed in rpm\n", +"N=(Ns-((s*Ns)/100));//Speed of the motor in rpm\n", +"\n", +"//OUTPUT\n", +"mprintf('Slip of the motor is %i percent\nSpeed of the motor is %i rpm',s,N)\n", +"\n", +"//=================================END OF PROGRAM==============================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: Shaft_output_and_torque.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3, Example 3.4, Page 3.12\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"VL=440;//Supply line voltage in V\n", +"P=4;//Number of poles\n", +"IL=75;//Line current in A\n", +"cosx=0.8;//Power factor\n", +"n=0.8;//Efficiency of the motor\n", +"s=0.03;//slip of the motor\n", +"f=50;//Frequency in Hz\n", +"\n", +"//CALCULATIONS\n", +"Pm=(sqrt(3)*VL*IL*cosx*n);//Output power in W\n", +"Ns=(120*f)/P;//Synchronous speed in rpm\n", +"N=(1-s)*Ns;//Actual speed in rpm\n", +"\n", +"//OUTPUT\n", +"mprintf('Shaft output power is %3.0f W\nActual speed is %i rpm',Pm,N)\n", +"\n", +"//=================================END OF PROGRAM==============================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: Parameters_of_induction_motor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3, Example 3.5, Page 3.13\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P=6;//Number of poles\n", +"f=50;//Supply frequency in Hz\n", +"Tm=120;//Shaft torque in N.m\n", +"f1=2;//Rotor current frequency in Hz\n", +"L=5;//Amount of constant losses in N.m\n", +"C=500;//Amount of core losses in W\n", +"\n", +"//CALCULATIONS\n", +"Ns=(120*f)/P;//Synchronous speed in rpm\n", +"s=(f1/f);//Slip of the motor \n", +"N=(1-s)*Ns;//Actual speed in rpm\n", +"P=(2*3.14*N*Tm)/60;//Shaft power in W\n", +"Pm=(2*3.14*N*(Tm+L))/60000;//Mechanical power output in kW\n", +"R=(s*Pm)/(1-s);//Rotor copper losses in kW\n", +"I=(Pm+R+(L/10));//Motor input in kW\n", +"n=(Pm/I)*100;//Machine efficiency\n", +"\n", +"//OUTPUT\n", +"mprintf('a)Mechanical power output is %3.3f kW\nb)Rotor copper losses is %3.2fkW\nc)Motor input is %3.3f kW\nd)Machine efficiency is %3.1f percent',Pm,R,I,n)\n", +"\n", +"//=================================END OF PROGRAM==============================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6: Slip_and_torque.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3, Example 3.6, Page 3.17\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"VL=11000;//Supply line voltage in V\n", +"P=12;//Number of poles\n", +"f=50;//Supply frequency in Hz\n", +"R2=0.2;//Rotor resistance in ohm\n", +"X2=1.2;//Rotor reactance at stand still in ohm\n", +"N=480;//Full load speed in rpm\n", +"\n", +"//CALCULATIONS\n", +"s=(R2/X2);//Slip at maximum torque\n", +"Ns=(120*f)/P;//Synchronous speed in rpm\n", +"s1=(Ns-N)/Ns;//Slip at full load\n", +"T=((R2^2+(s1^2*X2^2))/((2*X2)*(s1*R2)));//Ratio of maximum and full load torque\n", +"T1=((R2^2+X2^2)/(2*X2*R2));//Ratio of maximum and starting torque\n", +"\n", +"//OUTPUT\n", +"mprintf('a)Slip at maximum torque is %3.2f \nb)Ratio of maximum and full load torque is %3.2f \nc)Ratio of maximum and starting torque is %3.2f',s,T,T1)\n", +"\n", +"//=================================END OF PROGRAM==============================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.7: Maximum_torque_and_starting_torque.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3, Example 3.7, Page 3.18\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P=6;//Number of poles\n", +"f=50;//Supply frequency in Hz\n", +"R2=0.4;//Rotor reisitance in ohm\n", +"X2=4;//Rotor standstill reactance in ohm\n", +"T1=2;//Ratio of maximum torque to starting torque\n", +"\n", +"//CALCULATIONS\n", +"Ns=(120*f)/P;//Synchronous speed in rpm\n", +"Sm=(R2/X2);//Slip at maximum torque\n", +"NTM=(Ns*(1-Sm));//Speed of the motor at maximum torque in rpm\n", +"T=((R2^2+X2^2)/(2*R2*X2));//Ratio of maximum torque to starting torque\n", +"Rext=(sqrt(X2^2/((2*T1)-1))-R2);//Additional resistance required for the ratio of maximum torque to the statring torque to be 2 in ohm\n", +"\n", +"//OUTPUT\n", +"mprintf('a)Speed of the motor at maximum torque is %i rpm \n b)Ratio of maximum torque to starting torque is %3.2f \n c)Additional resistance required for the ratio of maximum torque to the starting torque to be 2 is %3.1f ohm',NTM,T,Rext)\n", +"\n", +"//=================================END OF PROGRAM==============================" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |