summaryrefslogtreecommitdiff
path: root/Principles_Of_Heat_Transfer_by_F_Kreith
diff options
context:
space:
mode:
Diffstat (limited to 'Principles_Of_Heat_Transfer_by_F_Kreith')
-rw-r--r--Principles_Of_Heat_Transfer_by_F_Kreith/1-Basic_Modes_of_Heat_Transfer.ipynb768
-rw-r--r--Principles_Of_Heat_Transfer_by_F_Kreith/10-Heat_Transfer_with_Phase_Change.ipynb466
-rw-r--r--Principles_Of_Heat_Transfer_by_F_Kreith/2-Heat_Conduction.ipynb872
-rw-r--r--Principles_Of_Heat_Transfer_by_F_Kreith/3-Numerical_Analysis_of_Heat_Conduction.ipynb682
-rw-r--r--Principles_Of_Heat_Transfer_by_F_Kreith/4-Analysis_of_Convection_Heat_Transfer.ipynb265
-rw-r--r--Principles_Of_Heat_Transfer_by_F_Kreith/5-Natural_Convection.ipynb479
-rw-r--r--Principles_Of_Heat_Transfer_by_F_Kreith/6-Forced_Convection_Inside_Tubes_and_Ducts.ipynb586
-rw-r--r--Principles_Of_Heat_Transfer_by_F_Kreith/7-Forced_Convection_Over_Exterior_Surfaces.ipynb619
-rw-r--r--Principles_Of_Heat_Transfer_by_F_Kreith/8-Heat_Exchangers.ipynb442
-rw-r--r--Principles_Of_Heat_Transfer_by_F_Kreith/9-Heat_Transfer_by_Radiation.ipynb1102
10 files changed, 6281 insertions, 0 deletions
diff --git a/Principles_Of_Heat_Transfer_by_F_Kreith/1-Basic_Modes_of_Heat_Transfer.ipynb b/Principles_Of_Heat_Transfer_by_F_Kreith/1-Basic_Modes_of_Heat_Transfer.ipynb
new file mode 100644
index 0000000..50dd4df
--- /dev/null
+++ b/Principles_Of_Heat_Transfer_by_F_Kreith/1-Basic_Modes_of_Heat_Transfer.ipynb
@@ -0,0 +1,768 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Basic Modes of Heat Transfer"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.10: Heat_Loss_From_Pipe.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 1 Example # 1.10 ')\n",
+"\n",
+"//diameter of pipe in m\n",
+"d = 0.5;\n",
+"//Epsilon is given as\n",
+"epsilon = 0.9;\n",
+"//sigma(constant) in SI units is\n",
+"sigma = 0.0000000567;\n",
+"//Temperatures in K are given as\n",
+"T1 = 500;\n",
+"T2 = 300;\n",
+"\n",
+"//Radiation heat transfer coefficient in W/m2K\n",
+"hr = ((sigma*epsilon)*(T1*T1+T2*T2))*(T1+T2);\n",
+"\n",
+"//Convection heat transfer coefficient in W/m2K\n",
+"hc = 20;\n",
+"\n",
+"//total heat transfer coefficient in W/m2K\n",
+"h = hc+hr;\n",
+"\n",
+"disp('Rate of heat loss per meter in W/m is')\n",
+"//Rate of heat loss per meter in W/m\n",
+"q = ((%pi*d)*h)*(T1-T2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.11: Heat_Exchanger_Analysis.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 1 Example # 1.11 ')\n",
+"\n",
+"//Hot-gas temperature in K\n",
+"Tgh = 1300;\n",
+"//Heat transfer coefficient on hot side in W/m2K\n",
+"h1 = 200;\n",
+"//Heat transfer coefficient on cold side in W/m2K\n",
+"h3 = 400;\n",
+"//Coolant temperature in K\n",
+"Tgc = 300;\n",
+"//Max temp. in C\n",
+"Tsg = 800;\n",
+"//Maximum permissible unit thermal resistance per square meter of the metal wall in K/W\n",
+"R2 = (Tgh-Tgc)/((Tgh-Tsg)/(1/h1))-1/h1-1/h3;\n",
+"disp('Maximum permissible unit thermal resistance per square meter of the metal wall in m2.K/W is')\n",
+"R2"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.12: Insulation_in_Gas_Furnace.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 1 Example # 1.12 ')\n",
+"\n",
+"// total length of metal sheet in m\n",
+"L = 0.625/39.4;\n",
+"// we estimate the thermal conductivity of the metal sheets to be approximately 43 W/m K\n",
+"k = 43;\n",
+"// therefore the resistance in K/W offered by metal sheey\n",
+"R = L/k;\n",
+"\n",
+"//heat loss in W/m2 is given as\n",
+"q = 1200;\n",
+"// overall heat transfer coefficient between the gas and the door is given\n",
+"// in W/m2K\n",
+"U = 20;\n",
+"//The temperature drop between the gas and the interior surface of the door at the specified heat flux is\n",
+"deltaT1 = q/U;\n",
+"//Hence, the temperature of the Inconel will be in degree C\n",
+"T = 1200-deltaT1;\n",
+"\n",
+"//The heat transfer coefficient between the outer surface of the door and\n",
+"//the surroundings at 20°C in W/m2K\n",
+"h = 5;\n",
+"//The temperature drop at the outer surface in degree C is\n",
+"deltaT2 = q/h;\n",
+"//Selecting milled alumina-silica chips as insulator (Fig 1.31 on page 48)\n",
+"\n",
+"// Hence, temperature difference across the insulation is\n",
+"deltaT3 = T-deltaT1-deltaT2;\n",
+"\n",
+"//thermal conductivity for milled alumina-silica chips in W/mK is\n",
+"k = 0.27;\n",
+"\n",
+"disp('The insulation thickness in m is')\n",
+"//The insulation thickness in m\n",
+"L = (k*deltaT3)/q"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.13: Energy_Balance_at_Roof.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 1 Example # 1.13 ')\n",
+"\n",
+"//Temperature of air in degree K\n",
+"Tair = 300;\n",
+"//Heat transfer coefficient in W/m2K\n",
+"h = 10;\n",
+"\n",
+"disp('Part a')\n",
+"//Radiation solar flux in W/m2\n",
+"q = 500;\n",
+"//Ambient temperature in K\n",
+"Tsurr = 50;\n",
+"\n",
+"disp('Solving energy balance equaiton by trial and error for the roof temperature, we get temp. in degree K')\n",
+"//Room temperature in degree K\n",
+"Troof = 303\n",
+"\n",
+"disp('Part b')\n",
+"\n",
+"//No heat flux, energy balance equaiton is modified\n",
+"disp('Room temperature in degree K')\n",
+"//Room temperature in degree K\n",
+"Troof = 270"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14: Theoretical_example.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 1 Example # 1.14 ')\n",
+"\n",
+"disp('The given example is theoretical and does not involve any numerical computation')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: Heat_Loss_Through_a_Brick_Wall.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 1 Example # 1.1 ')\n",
+"\n",
+"//Temperature Inside in F\n",
+"Ti = 55;\n",
+"//Temperature outside in F\n",
+"To = 45;\n",
+"//Thickness of the wall in ft\n",
+"t = 1;\n",
+"//Heat loss through the wall in Btu/h-ft2\n",
+"q = 3.4;\n",
+"\n",
+"//Converting Btu/h-ft2 to W/m2\n",
+"disp('Heat loss through the wall in W/m2 is')\n",
+"//Heat loss through the wall in W/m2 \n",
+"qdash = (q*0.2931)/0.0929\n",
+"\n",
+"//Heat loss for a 100ft2 surface over a 24-h period\n",
+"disp('Heat loss for a 100ft2 surface over a 24-h period in Btu is')\n",
+"//Heat loss for a 100ft2 surface over a 24-h period in Btu \n",
+"Q = (q*100)*24\n",
+"\n",
+"//Q in SI units i.e. kWh\n",
+"Q = (Q*0.2931)/1000;\n",
+"\n",
+"//At price of 10c/kWh, the total price shall be\n",
+"disp('So, the total price in c are')\n",
+"//Total price in c\n",
+"Price = 10*Q"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: Heat_Transfer_Through_a_Window_Glass.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 1 Example # 1.2 ')\n",
+"\n",
+"//Thermal conductivity of window glass in W/m-K\n",
+"k = 0.81;\n",
+"//Height of the glass in m\n",
+"h = 1;\n",
+"//Width of the glass in m\n",
+"w = 0.5;\n",
+"//Thickness of the glass in m\n",
+"t = 0.005;\n",
+"//Outside temperature in C\n",
+"T2 = 24;\n",
+"//Inside temperature in C\n",
+"T1 = 24.5;\n",
+"\n",
+"//Assume that steady state exists and that the temperature is uniform over the inner and outer surfaces\n",
+"\n",
+"//Cross sectional area in m2\n",
+"A = h*w;\n",
+"\n",
+"disp('Thermal resistance to conduction in K/W is')\n",
+"//Thermal resistance to conduction in K/W\n",
+"R = t/(k*A)\n",
+"\n",
+"//The rate of heat loss from the interior to the exterior surface is\n",
+"//obtained by dividing temperature difference from the thermal resistence\n",
+"\n",
+"disp('Heat loss in W from the window glass is')\n",
+"//Heat loss in W\n",
+"q = (T1-T2)/R"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: Natural_Convection_Between_Air_and_Roof.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 1 Example # 1.3 ')\n",
+"\n",
+"//Area of room in m2 is given as\n",
+"A = 20*20;\n",
+"//Air temperature in C\n",
+"Tair = -3;\n",
+"//Roof temperature in C\n",
+"Troof = 27;\n",
+"//Heat transfer coefficient in W/m2-K\n",
+"h = 10;\n",
+"\n",
+"//Assume that steady state exists and the direction of heat flow is from the\n",
+"//roof to the air i.e higher to lower temperature (as it should be).\n",
+"\n",
+"disp(' The rate of heat transfer by convection from the roof to the air in W')\n",
+"//The rate of heat transfer by convection from the roof to the air in W\n",
+"q = (h*A)*(Troof-Tair)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: Analysis_of_Electrically_Heated_Rod.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 1 Example # 1.4 ')\n",
+"\n",
+"//Diameter of rod in m\n",
+"d = 0.02;\n",
+"// Emissivity and temperautre of rod in K\n",
+"epsilon = 0.9;\n",
+"T1 = 1000;\n",
+"//Temperature of walls of furnace\n",
+"T2 = 800;\n",
+"\n",
+"//Assuming steady state has been reached.\n",
+"//Since the walls of the furnace completely enclose the heating rod, all the radiant energy emitted by the surface of the rod is intercepted by the furnace walls\n",
+"\n",
+"//From eq. 1.17, net heat loss can be given\n",
+"\n",
+"disp('Net heat loss per unit length considering 1m length in W')\n",
+"//Area in m2\n",
+"A = (%pi*d)*1;\n",
+"//Constant sigma in W/m2-K4\n",
+"sigma = 0.0000000567;\n",
+"//Net heat loss per unit length considering 1m length in W\n",
+"q = ((A*sigma)*epsilon)*(T1^4-T2^4)\n",
+"\n",
+"//From eq. 1.21 radiation heat transfer coefficient in W/m2-K is\n",
+"disp('Radiation heat transfer coefficient in W/m2-K is')\n",
+"//Radiation heat transfer coefficient in W/m2-K \n",
+"hr = ((epsilon*sigma)*(T1^4-T2^4))/(T1-T2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: Heat_Loss_From_a_Composite_Wall.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 1 Example # 1.5 ')\n",
+"\n",
+"//Thickness of inside steel in m and thermal conductivity in W/m-k\n",
+"t1 = 0.005;\n",
+"k1 = 40;\n",
+"//Thickness of outside brick in m and thermal conductivity in W/m-k\n",
+"t2 = 0.1;\n",
+"k2 = 2.5;\n",
+"\n",
+"//Inside temperature in C\n",
+"T1 = 900;\n",
+"//Outside temperature in C\n",
+"To = 460;\n",
+"\n",
+"//Assuming the condition of steady state and using Eq. 1.24\n",
+"disp('The rate of heat loss per unit area in W/m2 is')\n",
+"//The rate of heat loss per unit area in W/m2 \n",
+"qk = (T1-To)/(t1/k1+t2/k2)\n",
+"\n",
+"disp('Temperature at the interface in K is given as')\n",
+"//Temperature at the interface in K\n",
+"T2 = T1-(qk*t1)/k1"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: Analysis_of_Aluminium_Plates.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 1 Example # 1.6 ')\n",
+"\n",
+"//Thermal conductivity of aluminium in W/m-K\n",
+"k = 240;\n",
+"//Thickness of each plate in m\n",
+"t = 0.01;\n",
+"//Temperature at the surfaces of plates in C is given as\n",
+"Ts1 = 395;\n",
+"Ts3 = 405;\n",
+"//From Table 1.6 the contact resistance at the interface in K/W is\n",
+"R2 = 0.000275;\n",
+"//Thermal resistance of the plates in K/W is\n",
+"R1 = t/k;\n",
+"R3 = t/k;\n",
+"\n",
+"disp('Heat flux in W/m2-K is')\n",
+"//Heat flux in W/m2-K\n",
+"q = (Ts3-Ts1)/(R1+R2+R3)\n",
+"\n",
+"//Since the temperature drop in each section of this one-dimensional system is propor-tional to the resistance.\n",
+"\n",
+"disp('Temperature drop due to contact resistance in degree C is')\n",
+"//Temperature drop due to contact resistance in degree C\n",
+"deltaT = (R2/(R1+R2+R3))*(Ts3-Ts1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: Heat_flow_in_Firebrick_Steel_System.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 1 Example # 1.7 ')\n",
+"\n",
+"//Because of symmetry, we need to calculate for only one half of the system\n",
+"\n",
+"//Thickness of firebrick in inches\n",
+"L1 = 1;\n",
+"//Thermal conductivity of firebrick in Btu/h-ft-F\n",
+"kb = 1;\n",
+"//Thickness of steel plate in inches\n",
+"L3 = 1/4;\n",
+"//Thermal conductivity of steel in Btu/h-ft-F\n",
+"ks = 30;\n",
+"//Average height of asperities in inches is given as\n",
+"L2 = 1/32;\n",
+"//Temperature difference between the steel plates in F is\n",
+"deltaT = 600;\n",
+"\n",
+"\n",
+"//The thermal resistance of the steel plate is, on the basis of a unit wall area, equal to\n",
+"R3 = L3/(12*ks);//12 is added to convert ft to in\n",
+"\n",
+"//The thermal resistance of the brick asperities is, on the basis of a unit wall area, equal to\n",
+"R4 = L2/((0.3*12)*kb);//Considering the 30 percent area\n",
+"\n",
+"//At temperature of 300F, thermal conductivity of air in Btu/h-ft-F is\n",
+"ka = 0.02;\n",
+"\n",
+"// Thermal resistance of the air trapped between the asperities, is, on the basis of a unit area, equal to\n",
+"R5 = L2/((0.7*12)*ka);//Considering the other 70 percent area\n",
+"\n",
+"//Since R4 and R5 are in parallel, so there combined resistance is\n",
+"R2 = (R4*R5)/(R4+R5);\n",
+"\n",
+"//The thermal resistance of half of the solid brick is\n",
+"R1 = L1/(12*kb);\n",
+"\n",
+"//The overall unit conductance for half the composite wall in Btu/h-ft2-F is then\n",
+"kk = 0.5/(R1+R2+R3);\n",
+"\n",
+"disp('The rate of heat flow per unit area in Btu/h-ft2 is')\n",
+"//The rate of heat flow per unit area in Btu/h-ft2\n",
+"q = kk*deltaT"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8: Heat_Dissipation_in_Instrument_Circuit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 1 Example # 1.8 ')\n",
+"\n",
+"//Length for heat transfer for stainless steel in m\n",
+"Lss = 0.1;\n",
+"\n",
+"//Area for heat transfer for stainless steel in m2\n",
+"A = 0.01;\n",
+"\n",
+"//Thermal conductivity for stainless steel in W/m-K\n",
+"kss = 144;\n",
+"\n",
+"//Length for heat transfer for Duralumin in m\n",
+"La1 = 0.02;\n",
+"\n",
+"//Area for heat transfer for Duralumin in m2\n",
+"A = 0.01;\n",
+"\n",
+"//Thermal conductivity for Duralumin in W/m-K\n",
+"ka1 = 164;\n",
+"\n",
+"//Resistance in case of steel in K/W\n",
+"Rk1 = Lss/(A*kss);\n",
+"\n",
+"//Resistance in case of Duralumin in K/W\n",
+"Rk2 = La1/(A*ka1);\n",
+"\n",
+"//From Fig. 1.20, contact resistance in K/W\n",
+"Ri = 0.05;\n",
+"\n",
+"//Total resistance to heat transfer in K/W\n",
+"Rtotal = Rk1+Rk2+Ri;\n",
+"\n",
+"//Temperature diff. is given in K\n",
+"deltaT = 40;\n",
+"\n",
+"disp('Maximum allowable rate of heat dissipation in W is')\n",
+"//Maximum allowable rate of heat dissipation in W\n",
+"q = deltaT/Rtotal"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.9: Heat_Transfer_Through_Brick_Wall.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 1 Example # 1.9 ')\n",
+"\n",
+"//Cross sectional area in m2\n",
+"A = 1;\n",
+"//Heat transfer coefficient on hot side in W/m2-K\n",
+"hchot = 10;\n",
+"//Heat transfer coefficient on cold side in W/m2-K\n",
+"hccold = 40;\n",
+"\n",
+"//Length for heat transfer in m\n",
+"L = 0.1;\n",
+"//Thermal conductivity in W/m-K\n",
+"k = 0.7;\n",
+"\n",
+"//Resistances in K/w\n",
+"R1 = 1/(hchot*A);\n",
+"R2 = L/(k*A);\n",
+"R3 = 1/(hccold*A);\n",
+"\n",
+"//Total resistance\n",
+"Rtotal = R1+R2+R3;\n",
+"\n",
+"//Temperature on hot side in K\n",
+"T1 = 330;\n",
+"//Temperature on cold side in K\n",
+"T2 = 270;\n",
+"\n",
+"disp('Rate of heat transfer per unit area in W is')\n",
+"//Rate of heat transfer per unit area in W\n",
+"q = (T1-T2)/(R1+R2+R3)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_Of_Heat_Transfer_by_F_Kreith/10-Heat_Transfer_with_Phase_Change.ipynb b/Principles_Of_Heat_Transfer_by_F_Kreith/10-Heat_Transfer_with_Phase_Change.ipynb
new file mode 100644
index 0000000..81d4e69
--- /dev/null
+++ b/Principles_Of_Heat_Transfer_by_F_Kreith/10-Heat_Transfer_with_Phase_Change.ipynb
@@ -0,0 +1,466 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: Heat Transfer with Phase Change"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1: Water_Boiling_on_Steel_Surface.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 10, Example 1')\n",
+"//Surface temperature of polished stainless steel surface in degree celcius\n",
+"T_s=106;\n",
+"//Boiling point of water under at atmospheric pressure in degree celcius\n",
+"T_b=100;\n",
+"//Value of empirical constant\n",
+"C_sf=0.0132;\n",
+"//latent heat of vaporization in J/kg\n",
+"h_fg=2.25e6;\n",
+"//gravitational acceleration in m/s^2\n",
+"g=9.81;\n",
+"//Value of proportionality factor in British Gravitational system\n",
+"g_c=1;\n",
+"//density of saturated liquid in kg/m^3\n",
+"rho_l=962;\n",
+"//density of saturated vapor in kg/m^3\n",
+"rho_v=0.60;\n",
+"//specific heat of saturated liquid in J/kg K\n",
+"c_l=4211;\n",
+"//prandtl number of saturated liquid\n",
+"Pr_l=1.75;\n",
+"//surface tension of the liquid-to-vapor interface in N/m\n",
+"sigma=58.8e-3;\n",
+"// viscosity of the liquid in kg/ms\n",
+"mu_l=2.77e-4;\n",
+"//Excess temperature in degree Celcius\n",
+"delta_Tx= T_s-T_b;\n",
+"\n",
+"disp('Heat flux from the surface to the water in W/m^2')\n",
+"//Heat flux in W./m2\n",
+"q=(c_l*delta_Tx/(C_sf*h_fg*Pr_l))^3*mu_l*h_fg*sqrt((g*(rho_l-rho_v))/(g_c*sigma))\n",
+"\n",
+"disp('Critical heat flux in W/m^2')\n",
+"//Heat flux in W./m2\n",
+"q_maxZ=(%pi/24)*sqrt(rho_v)*h_fg*(sigma*g*(rho_l-rho_v)*g_c)^0.25\n",
+"\n",
+"disp('At 6°C excess temperature the heat flux is less than the critical value; therefore nucleate pool boiling exists')\n",
+"disp('For the Teflon-coated stainless steel surface, heat flux in W/m^2')\n",
+"//Heat flux in W./m2\n",
+"q=29669*(C_sf/0.0058)^3\n",
+"disp('Thus for Teflon-coated stainless steel surface there is a remarkable increase in heat flux; however, it is still below the critical value.')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2: Water_Boiling_on_Polished_Surface.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 10, Example 2')\n",
+"//density of saturated liquid in kg/m^3\n",
+"rho_l=962;\n",
+"//gravitational acceleration in m/s^2\n",
+"g=9.8;\n",
+"//latent heat of vaporization in J/kg\n",
+"h_fg=2250000;\n",
+"//density of saturated vapor in kg/m^3\n",
+"rho_v=0.60;\n",
+"//Surface temperature of polished stainless steel surface in degree celcius\n",
+"T_s=400;\n",
+"//Value of proportionality factor in British Gravitational system\n",
+"g_c=1;\n",
+"//Boiling point of water under at atmospheric pressure in degree celcius\n",
+"T_b=100;\n",
+"//surface tension of the liquid-to-vapor interface in N/m\n",
+"sigma=58.8e-3;\n",
+"//Excess temperature in degree Celcius\n",
+"delta_Tx= T_s-T_b;\n",
+"//Wavelength in m from eq. 10.7\n",
+"lamda=2*%pi*sqrt(g_c*sigma/(g*(rho_l-rho_v)));\n",
+"//Thermal conductivity in W/mK\n",
+"k_c=0.0249;\n",
+"//Absolute viscosity in Ns/m^2\n",
+"mu_c=12.1e-6;\n",
+"//Specific heat in J/kg K\n",
+"c_pc=2034;\n",
+"//Heat transfer coefficient due to conduction alone in W/m^2 K\n",
+"h_c=(0.59)*(((g*(rho_l-rho_v)*rho_v*(k_c^3)*(h_fg+(0.68*c_pc*delta_Tx)))/(lamda*mu_c*delta_Tx))^0.25); // expression obtained assuming diameter D tending to infinity\n",
+"//Emissivity\n",
+"epsilon_s= 0.05; //since surface is polished and hence heat transfer coefficient due to radiation is negligible\n",
+"disp('Heat flux in W/m^2')\n",
+"//Heat flux in W/m^2\n",
+"q= h_c*delta_Tx"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.3: Flow_of_n_Butyl_Alcohol.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 10, Example 3')\n",
+"//Flow rate of n-butyl alcohol in kg/hr\n",
+"m=161;\n",
+"//Internal diameter of copper tube in meters\n",
+"D=0.01;\n",
+"//Tube wall temperature in degree C\n",
+"T=140;\n",
+"//surface tension in N/m\n",
+"sigma=0.0183;\n",
+"//Heat of vaporization in J/kg\n",
+"h_fg=591500;\n",
+"//atmospheric pressure boiling point in degree C\n",
+"T_sat=117.5;\n",
+"// saturation pressure corresponding to a saturation temperature of 140°C in atm\n",
+"P_sat=2;\n",
+"//Density of vapor in kg/m^3\n",
+"rho_v=2.3;\n",
+"//Viscosity of vapor in kg/m s\n",
+"mu_v=.0143e-3;\n",
+"//Property values for n-butyl alcohol are taken from Appendix 2, Table 19\n",
+"//Density in kg/m^3\n",
+"rho_l=737;\n",
+"//Absolute viscosity in Ns/m^2\n",
+"mu_l=0.39e-3;\n",
+"//Specific heat in J/kg K\n",
+"c_l=3429;\n",
+"//Prandtl number\n",
+"Pr_l=8.2;\n",
+"//Thermal conductivity in W/m K\n",
+"k_l=0.13;\n",
+"//Empirical constant\n",
+"C_sf=0.00305;// Value taken from table 10.1\n",
+"//Mass velocity in kg/m^2 s\n",
+"G=(m/3600)*(4/(%pi*0.01^2));\n",
+"//Reynolds number for liquid flow\n",
+"Re_D=(G*D)/mu_l;\n",
+"//The contribution to the heat transfer coefficient due to the two-phase annular flow is [(0.023)*(14590)^0.8*(8.2)^0.4*16.3*(1-x)^0.8*F]\n",
+"//Since the vapor pressure changes by 1 atm over the temperature range from saturation temperature to 140°C,so saturation pressure in N/m^2\n",
+"delta_p_sat=101300;\n",
+"//Therefore the contribution to the heat transfer coefficient from nucleate boiling is\n",
+"//h_b= 0.00122*[(0.163^0.79*3429^0.45*737^0.49*1^0.25)/(0.0183^0.5*0.39e-3^0.29*591300^0.24*2.3^0.24)]*(140-117.5)^0.24*(101300)^0.75*S\n",
+"//or h_b= 8393S\n",
+"//Now 1/Xtt will be calculated by\n",
+"//1/Xtt=12.86*(x/(1-x))^0.9\n",
+"//Now a table is prepared showing stepwise calculations that track the increase in quality, from x=0 to x=0.5,assuming that the steps delta x are small enough that the heat flux and other parameters are reasonably constant in that step\n",
+"disp('The tube length required to reach 50% quality is 1.35 m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4: Heat_Transfer_Coefficients_For_Tube.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 10, Example 4')\n",
+"//Outer diameter of the tube in meters\n",
+"D=0.013;\n",
+"//Acceleration due to gravity in m/s^2\n",
+"g=9.81;\n",
+"//Length of the tube in meters\n",
+"L=1.5;\n",
+"//Temperature of saturated vapour in Kelvin\n",
+"T_sv=349;\n",
+"//Average tube wall temperature in Kelvin\n",
+"T_s=325;\n",
+"//Average temperature of the condensate film in degree K\n",
+"Tf=(T_sv+T_s)/2;\n",
+"//Thermal conductivity of liquid in W/m-K\n",
+"k_l=0.661;\n",
+"//Viscosity of liquid in N s/m^2\n",
+"mu_l=4.48e-4;\n",
+"//Dendity of liquid in kg/m^3\n",
+"rho_l=980.9;\n",
+"//Specific heat of liquid in J/kg K\n",
+"c_pl=4184;\n",
+"//Latent heat of condensation in J/kg\n",
+"h_fg=2.349e6;\n",
+"//Density of vapor in kg/m^3\n",
+"rho_v=0.25;\n",
+"//Modified latent heat of condensation in J/kg\n",
+"h_fg_dash=h_fg+(3/8)*c_pl*(T_sv-T_s);\n",
+"\n",
+"disp('Heat transfer coefficient for tube in horizontal position in W/m^2 K')\n",
+"//Heat transfer coefficient in W/m2K\n",
+"h_c_bar=0.725*(((rho_l*(rho_l-rho_v)*g*h_fg_dash*k_l^3)/(D*mu_l*(T_sv-T_s)))^0.25)\n",
+"disp('Heat transfer coefficient for tube in vertical position in W/m^2 K')\n",
+"////Heat transfer coefficient in W/m2K\n",
+"h_c_bar=0.943*(((rho_l*(rho_l-rho_v)*g*h_fg_dash*k_l^3)/(mu_l*(T_sv-T_s)))^0.25)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.5: Condensate_Flow_Determination.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 10, Example 5')\n",
+"//Acceleration due to gravity in m/s^2\n",
+"g=9.81;\n",
+"//Length of the tube in meters\n",
+"L=1.5;\n",
+"//Temperature of saturated vapour in Kelvin\n",
+"T_sv=349;\n",
+"//Average tube wall temperature in Kelvin\n",
+"T_s=325;\n",
+"//Average temperature of the condensate film in Kelvin\n",
+"Tf=(T_sv+T_s)/2;\n",
+"//Thermal conductivity of liquid in W/m-K\n",
+"k_l=0.661;\n",
+"//Viscosity of liquid in N s/m^2\n",
+"mu_l=4.48e-4;\n",
+"//Dendity of liquid in kg/m^3\n",
+"rho_l=980.9;\n",
+"//Specific heat of liquid in J/kg K\n",
+"c_pl=4184;\n",
+"//Latent heat of condensation in J/kg\n",
+"h_fg=2.349e6;\n",
+"//Density of vapor in kg/m^3\n",
+"rho_v=0.25;\n",
+"//Modified latent heat of condensation in J/kg\n",
+"h_fg_dash=h_fg+(3/8)*c_pl*(T_sv-T_s);\n",
+"\n",
+"disp('Reynolds number at the lower edge')\n",
+"//Reynolds number\n",
+"Re=(4/3)*(((4*k_l*L*(T_sv-T_s)*rho_l^(2/3)*g^(1/3))/(mu_l^(5/3)*h_fg_dash))^0.75)\n",
+"disp('Since the Reynolds number at the lower edge of the tube is below 2000, the flow of the condensate is laminar')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.6: Heat_Transport_Capability_of_Water.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 10, Example 6')\n",
+"//Length of Heat pipe in meters\n",
+"L_eff=0.30;\n",
+"//Temperature of the heat pipe in degree celcius\n",
+"T=100;\n",
+"//Diameter of the heat pipe in meters\n",
+"D=1e-2;\n",
+"//Density of water at 100 degree celcius in k/m^3\n",
+"rho=958;\n",
+"//Viscosity of water in N s/m^2\n",
+"mu=279e-6;\n",
+"//surface tension of the liquid-to-vapor interface in N/m\n",
+"sigma=58.9e-3;\n",
+"//latent heat of vaporization in J/kg\n",
+"h_fg=2.26e6;\n",
+"//Inclination angle in degree\n",
+"theta=30;\n",
+"//Acceleration due to gravity in meter/sec^2\n",
+"g=9.81;\n",
+"//Wire diameter for wick in metres\n",
+"d=0.0045e-2;\n",
+"//So thickness of four layers of wire mesh\n",
+"t=4*d;\n",
+"//Area of the wick in m^2\n",
+"Aw=%pi*D*t;\n",
+"//For phosphorus-bronze,heat pipe wick pore size in meters\n",
+"r=0.002e-2;\n",
+"//For phosphorus-bronze,heat pipe wick permeability in m^2\n",
+"K=0.3e-10;\n",
+"disp('Maximum liquid flow rate in kg/sec')\n",
+"//flow rate in kg/sec\n",
+"m_max=((2*sigma/r)-rho*g*L_eff*sind(theta))*((rho*Aw*K)/(mu*L_eff))\n",
+"disp('Maximum heat transport capability in Watt')\n",
+"//heat transport capability in W\n",
+"q_max=m_max*h_fg"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.7: Forming_of_Ice_Layer.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 10, Example 7')\n",
+"//Temperature of the brine spray used for internal refrigeration in degree celcius\n",
+"T_inf=-11;\n",
+"//Required thickness of ice layer in meters\n",
+"epsilon= 0.0025;\n",
+"//Water-liquid temperature in degree celcius\n",
+"T1=4.4;\n",
+"//Liquid-surface conductance in W/m^2 K\n",
+"h_epsilon=57;\n",
+"//Conductance between brine and ice(including metal wall) in W/m^2 K\n",
+"h_not=570;\n",
+"//Latent heat of fusion for ice in J/Kg\n",
+"Lf=333700;\n",
+"//Density for ice in Kg/m^3\n",
+"rho=918;\n",
+"//Thermal conductivity for ice in W/m K\n",
+"k=2.32;\n",
+"//Freezing point temperature in degree K\n",
+"Tfr=0;\n",
+"//Dimensionless R, T, epsilon and t are as follows\n",
+"//R plus parameter \n",
+"R_plus= h_epsilon/h_not;\n",
+"//T plus parameter\n",
+"T_plus= (T1-Tfr)/(Tfr-T_inf);\n",
+"//Epsilon plus parameter\n",
+"Epsilon_plus= h_not*epsilon/k;\n",
+"//t plus parameter\n",
+"t_plus=(Epsilon_plus/(R_plus*T_plus))-((1/(R_plus*T_plus)^2)*log(1+(R_plus*T_plus*Epsilon_plus/(1+R_plus*T_plus))))\n",
+"\n",
+"disp('Time taken for 0.25cm thick ice layer deposition in sec')\n",
+"//time in seconds\n",
+"t=t_plus*rho*Lf*k/((h_not)^2*(Tfr-T_inf))"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_Of_Heat_Transfer_by_F_Kreith/2-Heat_Conduction.ipynb b/Principles_Of_Heat_Transfer_by_F_Kreith/2-Heat_Conduction.ipynb
new file mode 100644
index 0000000..a580f89
--- /dev/null
+++ b/Principles_Of_Heat_Transfer_by_F_Kreith/2-Heat_Conduction.ipynb
@@ -0,0 +1,872 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Heat Conduction"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.10: Transient_Response_of_Thermocouple.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.10 ')\n",
+"\n",
+"//Diameter of copper wire in m\n",
+"D = 0.1/100;\n",
+"//Initial temperature in degree C\n",
+"To = 150;\n",
+"//Final surrounding temperature in degree C of air and water\n",
+"Tinfinity = 40;\n",
+"\n",
+"//From table 12, appendix 2, we get the following data values for copper\n",
+"//Thermal conductivity in W/mK\n",
+"k = 391;\n",
+"//Specific heat in J/kgK\n",
+"c = 383;\n",
+"//Density in kg/m3\n",
+"rho = 8930;\n",
+"\n",
+"//Surface area of wire per unit length in m\n",
+"A = %pi*D;\n",
+"//Volume of wire per unit length in m2\n",
+"V = ((%pi*D)*D)/4;\n",
+"\n",
+"//Heat transfer coefficient in the case of water in W/m2K\n",
+"h = 80;\n",
+"//Biot number in water\n",
+"bi = (h*D)/(4*k);\n",
+"//The temperature response is given by Eq. (2.84)\n",
+"\n",
+"//For water Bi*Fo is 0.0936t\n",
+"//For air Bi*Fo is 0.0117t\n",
+"\n",
+"for i = 1:130\n",
+" //Position of grid\n",
+" x(1,i) = i;\n",
+" // Temperature of water in degree C\n",
+" Twater(1,i) = Tinfinity+(To-Tinfinity)*exp(-0.0936*i);\n",
+" // Temperature of air in degree C\n",
+" Tair(1,i) = Tinfinity+(To-Tinfinity)*exp(-0.0117*i);\n",
+"end;\n",
+"//Plotting curve\n",
+"plot(x,Twater,'--r')\n",
+"set(gca(),'auto_clear','off')\n",
+"//Plotting curve\n",
+"plot(x,Tair)\n",
+"//Labelling axis\n",
+"xlabel('time')\n",
+"ylabel('temperature')\n",
+"disp('Temperature drop in water is more than that of air')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.11: Minimum_Depth_of_Water_Mains.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.11 ')\n",
+"\n",
+"//Initial temperature of soil in degree C\n",
+"Ti = 20;\n",
+"//Surface temperature of soil\n",
+"Ts = -15;\n",
+"//Critical temperature (Freezing temperature) in degree C\n",
+"Tc = 0;\n",
+"//Time in days\n",
+"t = 60;\n",
+"//Density of soil in kg/m3\n",
+"rho = 2050;\n",
+"//Thermal conductivity of soil in W/mK\n",
+"k = 0.52;\n",
+"//Specific heat in J/kgK\n",
+"c = 1840;\n",
+"//Diffusivity in m2/sec\n",
+"alpha = k/(rho*c);\n",
+"\n",
+"//Finding the value of following to proceed further\n",
+"//Z value\n",
+"z = (Tc-Ts)/(Ti-Ts);\n",
+"\n",
+"//From table 43, it corresponds to an error function value of 0.4,\n",
+"//proceeding\n",
+"\n",
+"disp('Minimum depth at which one must place a water main below the surface to avoid freezing in m is')\n",
+"//Minimum depth at which one must place a water main below the surface to avoid freezing in m\n",
+"xm = (0.4*2)*((((alpha*t)*24)*3600)^0.5)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.12: Steel_Component_Fabrication_Process.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.12 ')\n",
+"\n",
+"//Length of steel component in m\n",
+"L = 2;\n",
+"//Radius of steel component in m\n",
+"ro = 0.1;\n",
+"//Thermal conductivity of steel in W/mK\n",
+"k = 40;\n",
+"//Thermal diffusivity in m2/s\n",
+"alpha = 0.00001;\n",
+"//Initital temperature in degree C\n",
+"Ti = 400;\n",
+"//Surrounding temperature in degree C\n",
+"Tinfinity = 50;\n",
+"//Heat transfer coefficient in W/m2K\n",
+"h = 200;\n",
+"//time of immersion in mins\n",
+"t = 20;\n",
+"\n",
+"//Since the cylinder has a length 10 times the diameter, we can neglect end\n",
+"//effects.\n",
+"\n",
+"//Calculating biot number\n",
+"bi = (h*ro)/k;\n",
+"if bi>0.1 then\n",
+" //Calculating fourier number\n",
+" fo = ((alpha*t)*60)/(ro*ro);\n",
+" //The initial amount of internal energy stored in the cylinder per unit\n",
+" //length in Ws/m\n",
+" Q = ((((k*%pi)*ro)*ro)*(Ti-Tinfinity))/alpha;\n",
+"\n",
+" //The dimensionless centerline temperature for 1/Bi= 2.0 and Fo= 1.2 from\n",
+" //Fig. 2.43(a)\n",
+" //Centreline temperature in degree C\n",
+" T = Tinfinity+0.35*(Ti-Tinfinity);\n",
+" disp('Centreline temperature in degree C is')\n",
+" T\n",
+" //The surface temperature at r/r0= 1.0 and t= 1200 s is obtained from Fig. 2.43(b) in terms of the centerline temperature\n",
+" //Surface temperature in degree C\n",
+" Tr = Tinfinity+0.8*(T-Tinfinity);\n",
+" disp('Surface temperature in degree C is')\n",
+" Tr\n",
+" //Then the amount of heat transferred from the steel rod to the water can be obtained from Fig. 2.43(c). Since Q(t)/Qi= 0.61,\n",
+" disp('The heat transferred to the water during the initial 20 min in Wh is')\n",
+" //The heat transferred to the water during the initial 20 min in Wh\n",
+" Q = ((0.61*L)*Q)/3600\n",
+"end;"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.13: Analysis_of_Concrete_Wall.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.13 ')\n",
+"\n",
+"//Thickness of wall in m\n",
+"L = 0.5;\n",
+"//Initial temperature in degree C\n",
+"Ti = 60;\n",
+"//Combustion gas (Surrounding) temperature in degree C\n",
+"Tinfinity = 900;\n",
+"//Heat transfer coefficient in W/m2K\n",
+"h = 25;\n",
+"//Thermal conductivity in W/mk\n",
+"k = 1.25;\n",
+"//Specific heat in J/KgK\n",
+"c = 837;\n",
+"//Density in kg/m3\n",
+"rho = 500;\n",
+"//Thermal diffusivity in m2/s\n",
+"alpha = 0.000003;\n",
+"//Required temperature to achieve in degree C\n",
+"Ts = 600;\n",
+"\n",
+"//Calculating temperature ratio\n",
+"z = (Ts-Tinfinity)/(Ti-Tinfinity);\n",
+"//Reciprocal biot number\n",
+"bi = k/(h*L);\n",
+"\n",
+"\n",
+"//From Fig. 2.42(a) we find that for the above conditions the Fourier number= 0.70 at the midplane.\n",
+"//Time in hours\n",
+"t = ((0.7*L)*L)/alpha;\n",
+"disp('Time in hours is')\n",
+"//Time in hours\n",
+"t = t/3600\n",
+"\n",
+"//The temperature distribution in the wall 16 h after the transient was\n",
+"//initiated can be obtained from Fig. 2.42(b) for various values of x/L\n",
+"\n",
+"disp('Temperature distribution in degree C is')\n",
+"disp(' (x/l) = 1.00 0.80 0.60 0.40 0.20')\n",
+"disp('Fraction = 0.13 0.41 0.64 0.83 0.96')\n",
+"\n",
+"//The heat transferred to the wall per square meter of surface area during\n",
+"//the transient can be obtained from Fig. 2.42(c).\n",
+"disp('Heat transfer in J/m2 is')\n",
+"//Heat transfer in J/m2\n",
+"Q = ((c*rho)*L)*(Ti-Tinfinity)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.14: Cylinder_Places_in_Hot_Oven.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.14 ')\n",
+"\n",
+"//Radius of cylinder in m\n",
+"ro = 0.05;\n",
+"//Length of cylinder in m\n",
+"L = 0.16;\n",
+"//Thermal conductivity in W/mK\n",
+"k = 0.5;\n",
+"//Thermal diffusivity in m2/s\n",
+"alpha = 0.0000005;\n",
+"//Initial temperature in degree C\n",
+"Ti = 20;\n",
+"//Surrounding temperature in degree C\n",
+"Tinfinity = 500;\n",
+"//Heat transfer coefficient in W/m2K\n",
+"h = 30;\n",
+"//Time in mins\n",
+"t = 30;\n",
+"\n",
+"//Biot number\n",
+"bi = (h*ro)/k;\n",
+"//Fourier number\n",
+"fo = ((alpha*t)*60)/((L*L)/4);\n",
+"\n",
+"//From fig. 2.42(a)\n",
+"//Po\n",
+"P0 = 0.9;\n",
+"//From fig. 2.42(a) and (b)\n",
+"//Pl\n",
+"PL = 0.243;\n",
+"//From fig. 2.43(a)\n",
+"//Co\n",
+"C0 = 0.47;\n",
+"//From fig. 2.43(a) and (b)\n",
+"//Cr\n",
+"CR = 0.155;\n",
+"disp('Minimum temperature in degree C')\n",
+"//Minimum temperature in degree C\n",
+"Tmin = Tinfinity+((Ti-Tinfinity)*P0)*C0"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: Calculation_of_Heat_Transfer_Coeffcient.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.1 ')\n",
+"\n",
+"//Heat generation rate in W/m3\n",
+"qg = 1000000;\n",
+"//Length along which heat will be dissipated in m (thickness)\n",
+"L = 0.01;\n",
+"//Thermal conductivity at the required temperature in W/mK\n",
+"k = 64;\n",
+"\n",
+"//Temperature of surrounding oil in degree C\n",
+"Tinfinity = 80;\n",
+"//Temperature of heater in degree C to be maintained\n",
+"T1 = 200;\n",
+"\n",
+"disp('heat transfer coefficient in W/m2K from a heat balance')\n",
+"//Heat transfer coefficient in W/m2K\n",
+"h = ((qg*L)/2)/(T1-Tinfinity)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: Insulated_vs_Uninsulated_Copper_Pipe.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.2 ')\n",
+"\n",
+"disp('Case of Uninsualted pipe')\n",
+"//Calculating resistance to heat flow at internal surface\n",
+"\n",
+"//Internal radius in m\n",
+"ri = 0.05;\n",
+"//Heat transfer coefficient at inner surface for steam condensing in W/m2K\n",
+"hci = 10000;\n",
+"//Resistance in mK/W\n",
+"R1 = 1/(((2*%pi)*ri)*hci);\n",
+"\n",
+"//Calculating resistance to heat flow at external surface\n",
+"\n",
+"//External radius in m\n",
+"ro = 0.06;\n",
+"//Heat transfer coefficient at outer surface in W/m2K\n",
+"hco = 15;\n",
+"//Resistance in mK/W\n",
+"R3 = 1/(((2*%pi)*ro)*hco);\n",
+"\n",
+"//Calcualting resistance to heat flow due to pipe\n",
+"\n",
+"//Thermal conductivity of pipe in W/mK\n",
+"kpipe = 400;\n",
+"//Resistance in mK/W\n",
+"R2 = log(ro/ri)/((2*%pi)*kpipe);\n",
+"\n",
+"//Temperatures of steam(pipe) and surrounding(air) in degree C\n",
+"Ts = 110;\n",
+"Tinfinity = 30;\n",
+"\n",
+"disp('Heat loss from uninsulated pipe in W/m is therefore')\n",
+"//Heat loss from uninsulated pipe in W/m \n",
+"q = (Ts-Tinfinity)/(R1+R2+R3)\n",
+"\n",
+"\n",
+"disp('Case of insulated pipe')\n",
+"//Calculating additional resistance between outer radius and new outer\n",
+"//radius\n",
+"\n",
+"//Thermal conductivity of insulation in W/mK\n",
+"k = 0.2;\n",
+"//New outer radius in m\n",
+"r3 = 0.11;\n",
+"//Resistance in mK/W\n",
+"R4 = log(r3/ro)/((2*%pi)*k);\n",
+"\n",
+"//Calculating new outer resistance\n",
+"R0 = 1/(((2*%pi)*r3)*hco);\n",
+"\n",
+"\n",
+"disp('Heat loss from insulated pipe in W/m is therefore')\n",
+"//Heat loss from insulated pipe in W/m\n",
+"q = (Ts-Tinfinity)/(R1+R2+R4+R0)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: Hot_Fluid_Flowing_Through_Pipe.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.3 ')\n",
+"\n",
+"//Outer radius in m\n",
+"ro = 0.02;\n",
+"//Inner radius in m\n",
+"ri = 0.015;\n",
+"//Thermal conductivity of plastic in W/mK\n",
+"k = 0.5;\n",
+"//Internal convection heat transfer coefficient in W/m2K\n",
+"hc1 = 300;\n",
+"//Temperature of fluid in pipe in degree C\n",
+"Thot = 200;\n",
+"//Temperature of outside in degree C\n",
+"Tcold = 30;\n",
+"//External convection heat transfer coefficient in W/m2K\n",
+"hc0 = 10;\n",
+"\n",
+"disp('Overall heat transfer coefficient in W/m2K is')\n",
+"//Overall heat transfer coefficient in W/m2K\n",
+"U0 = 1/(ro/(ri*hc1)+(ro*log(ro/ri))/k+1/hc0)\n",
+"\n",
+"disp('The heat loss per unit length in W/m is')\n",
+"//The heat loss per unit length in W/m\n",
+"q = (((U0*2)*%pi)*ro)*(Thot-Tcold)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: Boiling_Off_Of_Nitrogen.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.4 ')\n",
+"\n",
+"//Temperature of liquid nitrogen in degree K\n",
+"Tnitrogen = 77;\n",
+"//Radius of container in m\n",
+"ri = 0.25;\n",
+"//Temperature of surrounding air in degree K\n",
+"Tinfinity = 300;\n",
+"//Thermal conductivity of insulating silica powder in W/mK\n",
+"k = 0.0017;\n",
+"//Outer radius of container with insulation in m\n",
+"ro = 0.275;\n",
+"//Latent heat of vaporization of liquid nitrogen in J/kg\n",
+"hgf = 200000;\n",
+"//convection coefficient at outer surface in W/m2K\n",
+"hco = 20;\n",
+"\n",
+"//Calcaulting heat transfer to nitrogen\n",
+"q = (Tinfinity-Tnitrogen)/(1/((((4*%pi)*ro)*ro)*hco)+(ro-ri)/((((4*%pi)*k)*ro)*ri));\n",
+"\n",
+"disp(' rate of liquid boil-off of nitrogen per hour is')\n",
+"//rate of liquid boil-off of nitrogen per hour\n",
+"m = (3600*q)/hgf"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: Analysis_of_Nuclear_Reactor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.5 ')\n",
+"\n",
+"//Heat generation rate in W/m3\n",
+"qg = 75000000;\n",
+"//Outer radius of rods in m\n",
+"ro = 0.025;\n",
+"//Temperature of water in degree C\n",
+"Twater = 120;\n",
+"//Thermal cinductivity in W/mk\n",
+"k = 29.5\n",
+"//Heat transfer coefficient in W/m2K\n",
+"hco = 55000;\n",
+"\n",
+"//Since rate of flow through the surface of the rod equals the rate of internal heat generation\n",
+"//and\n",
+"//The rate of heat flow by conduction at the outer surface equals the rate\n",
+"//of heat flow by convection from the surface to the water\n",
+"\n",
+"//Surface Temperature in degree C\n",
+"T0 = (qg*ro)/(2*hco)+Twater;\n",
+"\n",
+"disp('Maximum temperature in degree C')\n",
+"//Maximum temperature in degree C\n",
+"Tmax = T0+((qg*ro)*ro)/(4*k)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: Analysis_of_Copper_Pin_Fin.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.6 ')\n",
+"\n",
+"//diameter of fin in m\n",
+"d = 0.0025;\n",
+"//Perimeter in m\n",
+"P = %pi*d;\n",
+"//Area in m2\n",
+"A = ((%pi*d)*d)/4;\n",
+"//Surface temperature in degree C\n",
+"Ts = 95;\n",
+"//Ambient temperature in degree c\n",
+"Tinfinity = 25;\n",
+"//Heat transfer coefficient in W/m2K\n",
+"hc = 10;\n",
+"//From table 12, value of thermal conductivity in W/mK\n",
+"k = 396;\n",
+"\n",
+"disp('Case of an infinitely long fin')\n",
+"disp('Heat loss for the “infintely long” fin in W is')\n",
+"//Heat loss for the “infintely long” fin in W\n",
+"qfin = ((((hc*P)*k)*A)^0.5)*(Ts-Tinfinity)\n",
+"\n",
+"disp('Case 2: Fin length of 2.5cm')\n",
+"//Length in cm\n",
+"L = 2.5/100;\n",
+"//Parameter m\n",
+"m = ((hc*P)/(k*A))^0.5;\n",
+"disp('Heat loss in this case in W is')\n",
+"//Heat loss in this case in W\n",
+"qfin = qfin*((sinh(m*L)+(hc/(m*k))*cosh(m*L))/(cosh(m*L)+(hc/(m*k))*sinh(m*L)))\n",
+"\n",
+"disp('For the two solutions to be within 5%')\n",
+"//((sinh(m*L)+(hc/(m*k))*cosh(m*L))/(cosh(m*L)+(hc/(m*k))*sinh(m*L))) must\n",
+"//be less than 0.95\n",
+"disp('L must be greater than 28.3cm')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: Heat_Loss_From_Circumferential_Fin.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.7 ')\n",
+"\n",
+"//Thermal conductivity of alumunium in W/mK\n",
+"k = 200;\n",
+"//Outer radius of system in m\n",
+"ro = 5.5/200;\n",
+"//Inner radius of system in m\n",
+"ri = 2.5/200;\n",
+"//Thickness of fin in m\n",
+"t = 0.1/100;\n",
+"\n",
+"//Temperature of pipe in degree C\n",
+"Ts = 100;\n",
+"//Temperature of surrounding in degree C\n",
+"Tinfinity = 25;\n",
+"//Heat transfer coefficient in W/m2K\n",
+"h = 65;\n",
+"\n",
+"//calculating fin efficiency\n",
+"//From Fig. 2.22 on page 103, the fin efficiency is found to be 91%.\n",
+"\n",
+"//Area of fin\n",
+"A = (2*%pi)*((ro+t/2)^2-ri*ri);\n",
+"\n",
+"disp('The rate of heat loss from a single fin in W is')\n",
+"//The rate of heat loss from a single fin in W\n",
+"q = ((0.91*h)*A)*(Ts-Tinfinity)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8: Heat_Loss_From_Buried_Pipe.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.8 ')\n",
+"\n",
+"//Diameter of pipe in m\n",
+"D = 0.1;\n",
+"//Depth under which it is sunk in m\n",
+"z = 0.6;\n",
+"//Temperature of pipe in degree C\n",
+"Tpipe = 100;\n",
+"//Temperature of soil in degree C\n",
+"Tsoil = 20;\n",
+"//Thermal conductivity in W/mK\n",
+"k = 0.4;\n",
+"\n",
+"\n",
+"//From table 2.2 on page 112, calculating shape factor\n",
+"//Shape factor\n",
+"S = (2*%pi)/acosh((2*z)/D);\n",
+"disp(' rate of heat loss per meter length in W/m is')\n",
+"//rate of heat loss per meter length in W/m\n",
+"q = (k*S)*(Tpipe-Tsoil)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9: Heat_Loss_From_Cubic_Furnace.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.9 ')\n",
+"\n",
+"//Thermal conductivity in W/mC\n",
+"k = 1.04;\n",
+"//For square length and breadth are equal and are in m\n",
+"D = 0.5;\n",
+"//Area in m2\n",
+"A = D*D;\n",
+"//Thickness in m\n",
+"L = 0.1;\n",
+"//Inside temperature in degree C\n",
+"Ti = 500;\n",
+"\n",
+"//Outside temperature in degree C\n",
+"To = 50;\n",
+"//Shape factor for walls\n",
+"Sw = A/L;\n",
+"//Shape factor for corners\n",
+"Sc = 0.15*L;\n",
+"//Shape factor for edges\n",
+"Se = 0.54*D;\n",
+"\n",
+"//There are 6 wall sections, 12 edges, and 8 corners, so that the total\n",
+"//shape factor is\n",
+"S = 6*Sw+12*Se+8*Sc;\n",
+"\n",
+"disp('Heat flow in W is')\n",
+"//Heat flow in W \n",
+"q = (k*S)*(Ti-To)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_Of_Heat_Transfer_by_F_Kreith/3-Numerical_Analysis_of_Heat_Conduction.ipynb b/Principles_Of_Heat_Transfer_by_F_Kreith/3-Numerical_Analysis_of_Heat_Conduction.ipynb
new file mode 100644
index 0000000..2a63108
--- /dev/null
+++ b/Principles_Of_Heat_Transfer_by_F_Kreith/3-Numerical_Analysis_of_Heat_Conduction.ipynb
@@ -0,0 +1,682 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Numerical Analysis of Heat Conduction"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: Temperature_Distribution_in_Heating_Element.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 3 Example # 3.1 ')\n",
+"\n",
+"//Cross section of the element in m is given as\n",
+"b = 0.1; //breadth in m\n",
+"H = 0.01; //height in m\n",
+"//Temperature of surrrounding oil in C is given as\n",
+"Tinfinity = 80;\n",
+"//Correspoding heat transfer coefficient in W/m2-K is given as:\n",
+"h = 42;\n",
+"//Heat generation rate is given in W/m3 as\n",
+"qg = 10^6;\n",
+"//Temperature below which element needed to maintain in C is\n",
+"T = 200;\n",
+"// Thermal conductivity of iron in W/m-K is taken as\n",
+"k = 64;\n",
+"\n",
+"//Because of symmetry we need to consider only half of the thickness of the heating element\n",
+"L = H/2; //Length in m\n",
+"//We are defining five nodes at a distance of (i-1)*dx, where i=1,2,3,4,5\n",
+"N = 5; //Total number of grid points\n",
+"dx = L/(N-1); //dx in m\n",
+"//Since no heat flows across the top face, it corresponds to a zero-heat\n",
+"//flux boundary condition.\n",
+"//Applying Eq. (2.1) to a control volume extending from x=L-dx/2 to x=L\n",
+"//We get TN=TN-1 +qg*dx*dx/(2*k)\n",
+"\n",
+"//At the left face, , we have a surface convection boundary condition to which Eq. (3.7) can be applied\n",
+"//Determining all the matrix coefficients in Eq. (3.11)\n",
+"a1 = 1; //Matrix coefficient a1 in SI units\n",
+"b1 = 1/(1+(h*dx)/k); //Matrix coefficient b1 in SI units\n",
+"c1 = 0; //Matrix coefficient c1 in SI units\n",
+"d1 = (dx/k)*((h*Tinfinity+(qg*dx)/2)/(1+(h*dx)/k)); //Matrix coefficient d1 in SI units\n",
+"a2 = 2;a3 = a2;a4 = a3;//Matrix coefficient a2 in SI units\n",
+"b2 = 1;b3 = b2;b4 = b3;//Matrix coefficient b2 in SI units\n",
+"c2 = 1;c3 = c2;c4 = c3;//Matrix coefficient c2 in SI units\n",
+"d2 = ((dx*dx)*qg)/k;d3 = d2;d4 = d2;//Matrix coefficient d2 in SI units\n",
+"a5 = 1;b5 = 0;c5 = 1;d5 = ((dx*dx)*qg)/(2*k);//Matrix coefficient a5 in SI units\n",
+"\n",
+"//Using the algorithm given in Appendix 3 for solving the tridiagonal system, we find the temperature distribution given as:\n",
+"disp('Final temperature distribution in C is the following')\n",
+"//From equation 3.11\n",
+"//Matrix A in the Appendix 3\n",
+"A = [a1,-b1,0,0,0;\n",
+" -c2,a2,-b2,0,0;\n",
+" 0,-c3,a3,-b3,0;\n",
+" 0,0,-c4,a4,-b4;\n",
+" 0,0,0,-c5,a5];\n",
+"//Matrix D in the Appendix 3\n",
+"D = [d1;d2;d3;d4;d5];\n",
+"//Temperature matrix where temp are in degree C as given by appnedix 3\n",
+"T = (A^(-1))*D"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: Critical_Depth_to_Avoid_Freezing.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 3 Example # 3.2 ')\n",
+"\n",
+"// we have to determine minimum depth xm at which a water main must be buried to avoid freezing\n",
+"\n",
+"//Initial temperature of soil in C is given as:\n",
+"Ts = 20;\n",
+"// Under the worst conditions anticipated it would be subjected to a surface\n",
+"// temperature of -15C for a period of 60 days\n",
+"//Max temperature in degree C\n",
+"Tmax = -15;\n",
+"//Time period in days\n",
+"dt = 60;\n",
+"//We will use the following properties for soil (at 300 K)\n",
+"rho = 2050;//density in kg/m3\n",
+"k = 0.52;//thermal conductivity in W/m-K\n",
+"c = 1840;//specific heat in J/kg-K\n",
+"alpha = 0.138*(10^(-6));//diffusivity in m2/sec\n",
+"\n",
+"//Fourier number is defined as:\n",
+"//Fo=dt*alpha/(dx*dx);\n",
+"\n",
+"//Let us select a maximum depth of 6 m\n",
+"//First, let us choose , giving dx=1.2m\n",
+"\n",
+"dx = 1.2; //dx in m\n",
+"dt = (30*24)*3600;//Days converted in seconds\n",
+"\n",
+"//Temperature array for the old temperature in degree C\n",
+"Tnew = [-15,20,20,20,20,20];\n",
+"\n",
+"//Temperature array for the new temperature in degree C\n",
+"Told = [-15,20,20,20,20,20];\n",
+"//Fourier number is defined as:\n",
+"Fo = (dt*alpha)/(dx*dx);\n",
+"\n",
+"//Using eq. 3.15\n",
+"//Initialsing timestep for looping\n",
+"timestep = 0;\n",
+"for timestep = 0:100\n",
+" for N = 2:4\n",
+" //New temp in degree C\n",
+" Tnew(N) = Told(N)+Fo*(Told(N+1)-2*Told(N)+Told(N-1));\n",
+" //Incrementing timestep\n",
+" timestep = timestep+1;\n",
+" end;\n",
+"end;\n",
+"disp('With dx=1.2m, we have the following distribution')\n",
+"//New temp in degree C\n",
+"Tnew\n",
+"\n",
+"disp('Depth in m at which temperature would be 0 degree C would be')\n",
+"//Depth in m \n",
+"xm = (0-Tnew(1)/(Tnew(2)-Tnew(1)))*dx"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: Time_Required_For_Cooling_of_Sheet.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 3 Example # 3.3 ')\n",
+"\n",
+"//initial temperature of the sheet in C is given as:\n",
+"Tinitial = 500;\n",
+"//thickness of the sheet in m is given as\n",
+"th = 0.02;\n",
+"//density in kg/m3 is given for steel as\n",
+"rho = 8500;\n",
+"//specific heat in J/kg-K is given as\n",
+"c = 460;\n",
+"//thermal conductivity in W/m-K is given as\n",
+"k = 20;\n",
+"//The heat transfer coefficient in W/m2-K to the air is given as\n",
+"h = 80;\n",
+"//the ambient air temperature in degree C is\n",
+"Tinfinity = 20;\n",
+"//Final temperature required to achieve in C is\n",
+"Tfinal = 250;\n",
+"//The transient cooling of stainless steel sheet can be modeled as a semi-infinite slab\n",
+"//because the thickness of the sheet is much smaller than its width and length.\n",
+"L = th/2; //Length in m\n",
+"//Finding chart solution\n",
+"//Biot number shall be\n",
+"Bi = (h*L)/k;\n",
+"\n",
+"//Since Bi<0.1 and hence the sheet can be treated as a lumped capacitance.\n",
+"\n",
+"//To use fig. 2.42 on page 135, we need to calculate the following value:\n",
+"value = (Tfinal-Tinfinity)/(Tinitial-Tinfinity); //value required\n",
+"\n",
+"//So, now using fig. 2.42, we have alpha*dt/(L*L)=19\n",
+"//BY the definition of thermal diffusivity,in SI units we have\n",
+"alpha = k/(rho*c);\n",
+"disp('By chart solution, time required in seconds comes out to be')\n",
+"//time required in seconds\n",
+"t = ((19*L)*L)/alpha\n",
+"\n",
+"//Proceeding to the numerical solution\n",
+"//consider half the sheet thickness,with x=0 being the exposed left face and\n",
+"//x=L being the sheet center-line\n",
+"\n",
+"//Using 20 control volumes\n",
+"N = 21; //Total number of grid points\n",
+"dx = L/20; //dx in m\n",
+"\n",
+"//Old temperature array\n",
+"for N = 1:21\n",
+" //Old temp in degree C\n",
+" Told(1,N) = Tinitial;\n",
+" //New temp in degree C\n",
+" Tnew(1,N) = Tinitial;\n",
+"end;\n",
+"//Initialisation Time in sec\n",
+"t = 0;\n",
+"//Increment of Time in sec\n",
+"dt = 0.02;\n",
+"//Condition of looping\n",
+"while Told(21)>250\n",
+" //C1 of governing equation in SI units\n",
+" C1 = (alpha*dt)/(dx*dx);\n",
+" //C2 of governing equation in SI units\n",
+" C2 = ((2*h)*dt)/((rho*c)*dx);\n",
+" //C3 of governing equation in SI units\n",
+" C3 = 2*C1;\n",
+" //New temp in C as given by the equations of finite difference method\n",
+" Tnew = mtlb_i(Tnew,1,Told(1)+C2*(Tinfinity-Told(1))+C3*(Told(2)-Told(1)));\n",
+" Tnew = mtlb_i(Tnew,21,Told(21)+C3*(Told(20)-Told(21)));\n",
+" for N = 2:20\n",
+" //New temp in C as given by the equations of finite difference method\n",
+" Tnew = mtlb_i(Tnew,N,Told(N)+C1*(Told(N+1)-2*Told(N)+Told(N-1)));\n",
+" end;\n",
+" for N = 1:21\n",
+" //Assigning old temp=new temp\n",
+" Told = mtlb_i(Told,N,Tnew(N));\n",
+" end;\n",
+" //Modified time for new loop\n",
+" t = t+dt;\n",
+"end;\n",
+"// L.67: No simple equivalent, so mtlb_fprintf() is called.\n",
+"mtlb_fprintf('As per numerical solution time comes out to be %5.2f seconds\n',t)\n",
+"\n",
+"disp('This time is about 1.5% less than the chart solution')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: Temperature_Distribution_in_Rod_Crosssection.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 3 Example # 3.4 ')\n",
+"\n",
+"//Dimensions of the cross section in inches\n",
+"l = 1;\n",
+"b = 1;\n",
+"\n",
+"//Dividing domain such that there are four nodes in x and y direction\n",
+"dx = 1/3; //dx in inches\n",
+"dy = 1/3; //dy in inches\n",
+"\n",
+"//Assigning Temperature in C for top and bottom surface\n",
+"for i = 1:4\n",
+" T(1,i) = 0;\n",
+" T(4,i) = 0;\n",
+"end;\n",
+"//Assigning Temperature in C for side surfaces\n",
+"for j = 1:4\n",
+" T(j,1) = 50;\n",
+" T(j,4) = 100;\n",
+"end;\n",
+"//Assigning Temperature in C for interior nodes\n",
+"for i = 2:3\n",
+" for j = 2:3\n",
+" T(i,j) = 0;\n",
+" end;\n",
+"end;\n",
+"//Defining looping parameter\n",
+"step = 0;\n",
+"for step = 0:50\n",
+" //Using governing equations of finite difference\n",
+" T(3,2) = 0.25*(50+0+T(2,2)+T(3,3));\n",
+" T(2,2) = 0.25*(50+0+T(3,2)+T(2,3));\n",
+" T(2,3) = 0.25*(100+0+T(3,2)+T(2,3));\n",
+" T(3,3) = 0.25*(100+0+T(2,2)+T(3,3));\n",
+"end;\n",
+"\n",
+"//disp('At steady state, Final temperature of the cross section in C would be')\n",
+"//New temp distribution in degree C\n",
+"printf('Temperature T(2,2) in degree C is %5.2f\n',T(2,2))\n",
+"printf('Temperature T(2,3) in degree C is %5.2f\n',T(3,2))\n",
+"printf('Temperature T(3,2) in degree C is %5.2f\n',T(2,3))\n",
+"printf('Temperature T(3,3) in degree C is %5.2f',T(3,3))\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: Analysis_of_Alloy_Bus_Bar.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 3 Example # 3.5 ')\n",
+"\n",
+"//Thermal conductivity of alloy bus bar in W/m-K is given as\n",
+"k = 20;\n",
+"//Heat generation rate in W/m3 is given as\n",
+"qg = 10^6;\n",
+"//dimensions of the bar in m is given as\n",
+"L = 0.1;//Length in m\n",
+"b = 0.05;//Width in m\n",
+"d = 0.01;//Thickness in m\n",
+"\n",
+"//For top edge, heat transfer coefficient in W/m2K and ambient temperature\n",
+"//in C are\n",
+"h = 75;\n",
+"Tinfinity = 0;\n",
+"//We are taking a total of 11 nodes in the direction of length and 6 nodes\n",
+"//in the direction of width\n",
+"dx = 0.01; //dx in m\n",
+"dy = 0.01; //dy in m\n",
+"//Assigning a guess temperature of 25C to all nodes\n",
+"for i = 1:6\n",
+" for j = 1:11\n",
+" //Old temp. in degree C\n",
+" Told(i,j) = 25;\n",
+" end;\n",
+"end;\n",
+"\n",
+"//Assigning temperature on the left and right hand side\n",
+"for i = 1:6\n",
+" //Old temp. in degree C\n",
+" Told(i,1) = 40;\n",
+" Told(i,11) = 10;\n",
+" //New temp. in degree C\n",
+" Tnew(i,1) = 40;\n",
+" Tnew(i,11) = 10;\n",
+"end;\n",
+"//Intitalisation of looping parameter\n",
+"p = 0;\n",
+"//Iteration to find temperature distribution\n",
+"while p<500\n",
+" //Equation for all interior nodes\n",
+" for i = 2:5\n",
+" for j = 2:10\n",
+" //New temp. in degree C\n",
+" Tnew(i,j) = 0.25*(Told(i-1,j)+Told(i+1,j)+Told(i,j-1)+Told(i,j+1)+((qg*dx)*dx)/k);\n",
+" end;\n",
+" end;\n",
+"\n",
+" //Equation for top wall\n",
+" for j = 2:10\n",
+" //New temp. in degree C\n",
+" Tnew(1,j) = (h*Tinfinity+(qg*dx)/2+(k*(0.5*(Told(1,j-1)+Told(1,j+1))+Told(2,j)))/dx)/(h+(2*k)/dx);\n",
+" end;\n",
+"\n",
+" //Equation for bottom wall\n",
+" for j = 2:10\n",
+" //New temp. in degree C\n",
+" Tnew(6,j) = 0.25*(Told(6,j-1)+Told(6,j+1))+0.5*Told(5,j)+((qg*dx)*dx)/(4*k);\n",
+" end;\n",
+" for i = 1:6\n",
+" for j = 1:11\n",
+" //Assigning Old Temp=New Temp\n",
+" Told(i,j) = Tnew(i,j);\n",
+" end;\n",
+" end;\n",
+" //New looping parameter incremented\n",
+" p = p+1;\n",
+"end;\n",
+"disp('The temperature distribution in the bar in C is the following')\n",
+"//Old temp. in degree C\n",
+"Told\n",
+"\n",
+"//Finding maximum temperature\n",
+"Tmax = Told(1,1);\n",
+"for i = 1:6\n",
+" for j = 1:11\n",
+" if Told(i,j)>Tmax then\n",
+" Tmax = Told(i,j);\n",
+" else\n",
+" Tmax = Tmax;\n",
+" end;\n",
+" end;\n",
+"end;\n",
+"disp('The maximum temperature in C in the alloy bus bar is')\n",
+"//maximum temperature in C\n",
+"Tmax\n",
+"\n",
+"//Finding heat transfer rate\n",
+"dz = 0.01; //dz in m\n",
+"//Defining areas\n",
+"for i = 2:10\n",
+" A(1,i) = dx*dz; //Area in m2\n",
+"end;\n",
+"A = mtlb_i(A,1,(dx*dz)/2);\n",
+"A = mtlb_i(A,11,A(1));\n",
+"for i = 1:11\n",
+" //heat transfer rate in W\n",
+" q(1,i) = (h*A(i))*(Tnew(1,i)-Tinfinity);\n",
+"end;\n",
+"disp('The heat transfer rate from the top edge in W is given by')\n",
+"//heat transfer rate in W\n",
+"q"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6: Transient_Behavior_of_Alloy_Bar.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 3 Example # 3.6 ')\n",
+"\n",
+"//Thermal diffusivity in m2/s\n",
+"alpha = 0.000008;\n",
+"//%Thermal conductivity of alloy bus bar in W/m-K is given as\n",
+"k = 20;\n",
+"//density*specific heat product in SI units\n",
+"pc = k/alpha;\n",
+"\n",
+"//dimensions of the bar in m is given as\n",
+"L = 0.1;//Length in m\n",
+"b = 0.05;//Width in m\n",
+"d = 0.01;//Thickness in m\n",
+"\n",
+"//Heat generation rate in W/m3 is given as\n",
+"qg = 10^6;\n",
+"\n",
+"//Assigning temperature on the left and right hand side\n",
+"for i = 1:6 //i is the looping parameter\n",
+" //Old temp. in degree C\n",
+" Told(i,1) = 40;\n",
+" Told(i,11) = 10;\n",
+" //New temp. in degree C\n",
+" Tnew(i,1) = 40;\n",
+" Tnew(i,11) = 10;\n",
+"end;\n",
+"\n",
+"//Assigning a guess temperature of 20C to all nodes\n",
+"for i = 1:6//i is the looping parameter\n",
+" for j = 1:11//j is the looping parameter\n",
+" //Guess temp. in degree C\n",
+" Told(i,j) = 20;\n",
+" Tnew(i,j) = 20;\n",
+" end;\n",
+"end;\n",
+"\n",
+"//Initialising time\n",
+"m = 0;\n",
+"\n",
+"//For top edge, heat transfer coefficient in W/m2K and ambient temperature\n",
+"//in C are\n",
+"h = 75;\n",
+"Tinfinity = 0;\n",
+"\n",
+"//We are taking a total of 11 nodes in the direction of length and 6 nodes\n",
+"//in the direction of width\n",
+"dx = 0.01; //dx in m\n",
+"dy = 0.01; //dy in m\n",
+"\n",
+"//Largest permissible time step in sec is\n",
+"tmax = 1/((2*alpha)*(1/(dx*dx)+1/(dy*dy)));\n",
+"//Rounding it off to nearest integer\n",
+"t = 3; //timestep in seconds\n",
+"\n",
+"//Condition for convergence\n",
+"while abs(Tnew(5,6)-Told(5,6))<0.0001\n",
+"\n",
+" //Equation for all interior nodes\n",
+" for i = 2:5\n",
+" for j = 2:10\n",
+" //New temp. in degree C\n",
+" Tnew(i,j) = (Told(i,j)+(alpha*t)*((Tnew(i+1,j)+Tnew(i-1,j))/(dx*dx)+(Tnew(i,j+1)+Tnew(i,j-1))/(dy*dy)+qg/k))/(1+((2*alpha)*t)*(1/(dx*dx)+1/(dy*dy)));\n",
+" end;\n",
+" end;\n",
+"\n",
+" //Equation for top wall\n",
+" for j = 2:10\n",
+" //New temp. in degree C\n",
+" Tnew(1,j) = (Told(1,j)+((2*t)/((dx*dx)*pc))*(k*((Tnew(1,j+1)+Tnew(1,j-1))/2+Tnew(2,j)))+((qg*dx)*dx)/2+(h*dx)*Tinfinity)/(1+((2*t)/((dx*dx)*pc))*(2*k+h*dx));\n",
+" end;\n",
+"\n",
+" //Equation for bottom wall\n",
+" for j = 2:10\n",
+" //New temp. in degree C\n",
+" Tnew(6,j) = (Told(6,j)+((2*t)/((dx*dx)*pc))*(k*((Tnew(6,j+1)+Tnew(6,j-1))/2+Tnew(5,j)))+((qg*dx)*dx)/2)/(1+((2*t)/((dx*dx)*pc))*(2*k));\n",
+" end;\n",
+" //New time in sec\n",
+" m = m+t;\n",
+"end;\n",
+"\n",
+"\n",
+"disp('Time required to reach steady state using deltaT=0.3sec is 1140 seconds')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.7: Cooling_of_Long_Cylinder.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 3 Example # 3.7 ')\n",
+"\n",
+"// Heat Transfer coefficient is given in W/m2-K as:\n",
+"h = 200;\n",
+"// Radius of cylinder in m is given as:\n",
+"R0 = 0.05;\n",
+"// Thermal conductivity in W/m-K is given as:\n",
+"k = 20;\n",
+"// Thermal diffusivityt in m2/sec is given as:\n",
+"alpha = 10^(-5);\n",
+"// Therefore the biot number is given as:\n",
+"Bi = (h*R0)/k;\n",
+"\n",
+"// Ambient water bath temperature in C is given as:\n",
+"Tinfinity = 0;\n",
+"// Initial temperature of centre line is given as:\n",
+"T0 = 500;\n",
+"// Final Temperature of centre line is given as:\n",
+"Tr = 100;\n",
+"\n",
+"// Therefore the value of (Tr-Tinfinity)/(T0-Tinfinity) is:\n",
+"value = (Tr-Tinfinity)/(T0-Tinfinity); //Required value\n",
+"\n",
+"// Using above value and biot number, from Figure 2.43 (a) on page 137, we have\n",
+"// alpha*t/(R0*R0)=1.8\n",
+"\n",
+"disp('Therefore from chart solution, time taken in seconds shall be')\n",
+"//Time taken in seconds\n",
+"t = ((1.8*R0)*R0)/alpha\n",
+"\n",
+"// Proceeding to the numerical solution\n",
+"//Because of symmetry we need to consider only one quarter of the circular cross section\n",
+"//The vertical and horizontal radii are then adiabatic surfaces.\n",
+"\n",
+"//We will have a total of nine types of control volume\n",
+"//Each of the control volume energy balance equations can be solved\n",
+"\n",
+"//The coefficient on Tfor control volume type 7 is:\n",
+"//(dx*dx/(alpha*dt)) -2 -2*h*dx/5\n",
+"//and for it to be positive\n",
+"\n",
+"// value of t we use in the numerical solution must be smaller than this\n",
+"// maximum value. The calculation is continued until the temperature for the control vol-ume nearest the cylinder axis is less than 100°C\n",
+"\n",
+"disp('And using numerical solution the time in seconds comes out to be')\n",
+"//Time taken in seconds\n",
+"tfinal = 431\n",
+"disp('which is about 4% less than the chart solution of 450 s.')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_Of_Heat_Transfer_by_F_Kreith/4-Analysis_of_Convection_Heat_Transfer.ipynb b/Principles_Of_Heat_Transfer_by_F_Kreith/4-Analysis_of_Convection_Heat_Transfer.ipynb
new file mode 100644
index 0000000..5087774
--- /dev/null
+++ b/Principles_Of_Heat_Transfer_by_F_Kreith/4-Analysis_of_Convection_Heat_Transfer.ipynb
@@ -0,0 +1,265 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Analysis of Convection Heat Transfer"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: Computation_of_Heat_Transfer_Coefficient.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 4 Example # 4.1 ')\n",
+"\n",
+"// Temperature of air in C is given as:\n",
+"Tinfinity = 20;\n",
+"// Temperature of surface in C is given as:\n",
+"Ts = 100;\n",
+"// Therefore avaerage temperature in degree C would be:\n",
+"Ta = (Ts+Tinfinity)/2;\n",
+"// From fig. 4.2 on page 232, it can be easily seen that (deltaT/deltaY) at\n",
+"// y=0 is -66.7 K/mm\n",
+"// From Table 28 in Appendix 2, at average temperature of air, thermal\n",
+"// conductivity in W/m-K is\n",
+"k = 0.028;\n",
+"\n",
+"//Therefore from eq. 4.1\n",
+"disp('The heat transfer coefficient is given by, as per Eq. 4.1, in W/m2K')\n",
+"// 1000 is added to convert from mm to m\n",
+"//heat transfer coefficient in W/m2K\n",
+"hc = ((-k*(-66.7))/(Ts-Tinfinity))*1000"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2: Theoretical_Problem.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 4 Example # 4.2 ')\n",
+"\n",
+"disp('The given example is theoretical and does not involve any numerical computation')\n",
+"\n",
+"// Local shear stress is given as:\n",
+"// tau=0.3*((rho*mu/x)^0.5)*(Uinfinity^1.5)\n",
+"\n",
+"// Using Local friction coefficient = local shear stress /\n",
+"// (0.5*rho*Uinfinity*Uinfinity), we get local friction coefficient as:\n",
+"\n",
+"//disp('Cfx = 0.6/((ReL*xstar))^0.5')\n",
+"\n",
+"//Integrating the local value of shear stress over length L and dividing by\n",
+"//area i.e. A=L*1, we get average friction coefficient as:\n",
+"\n",
+"//disp('Cfbar = 1.2/(ReL^0.5)')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3: Flat_Plate_Solar_Collector.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 4 Example # 4.3 ')\n",
+"\n",
+"// Width of the collector plate in ft is given:\n",
+"b = 1;\n",
+"// Surface temperature in F is given:\n",
+"Ts = 140;\n",
+"// Air temperature in F is given:\n",
+"Tinfinity = 60;\n",
+"// Air velocity in ft/sec is given as:\n",
+"Uinfinity = 10;\n",
+"// Average temperature in degree F is given as:\n",
+"T = (Ts+Tinfinity)/2;\n",
+"// Properties of air at average temperature are as follows\n",
+"\n",
+"Pr = 0.72; //Prandtl number\n",
+"k = 0.0154; // Thermal conductivity in Btu/h ft °F\n",
+"mu = 1.285*10-5; //Viscosity in lbm/ft s\n",
+"cp = 0.24; //Specific heat in Btu/lbm °F\n",
+"rho = 0.071; //Density in lbm/ft3\n",
+"\n",
+"// Reynold''s number at x=1ft is\n",
+"Re1 = ((Uinfinity*rho)*1)/mu;\n",
+"// Reynold''s number at x=9ft is\n",
+"Re9 = ((Uinfinity*rho)*1)/mu;\n",
+"// Assuming that the critical Reynolds number is 5*10^5, the critical distance is\n",
+"//Critical Reynolds number\n",
+"Rec = 5*(10^5);\n",
+"//Critical distance in ft\n",
+"xc = (Rec*mu)/(Uinfinity*rho);\n",
+"\n",
+"// From Eq. 4.28, and using the data obtained, we get for part a:\n",
+"disp('Delta at x=1ft to be 0.0213ft and at x=9ft to be 0.0638ft')\n",
+"\n",
+"// From Eq. 4.30, and using the data obtained, we get for part b:\n",
+"disp('Cfx at x=1ft to be 0.00283 and at x=9ft to be 0.000942')\n",
+"\n",
+"// From Eq. 4.31, and using the data obtained, we get for part c:\n",
+"disp('Cfbar at x=1ft to be 0.00566 and at x=9ft to be 0.00189')\n",
+"\n",
+"// From Eq. 4.29, and using the data obtained, we get for part d:\n",
+"disp('Tau at x=1ft to be 3.12*10^-4 lb/ft^2 and at x=9ft to be 1.04*10^-4 lb/ft^2')\n",
+"\n",
+"// From Eq. 4.32, and using the data obtained, we get for part e:\n",
+"disp('DeltaTH at x=1ft to be 0.0237ft and at x=9ft to be 0.0712ft')\n",
+"\n",
+"// From Eq. 4.36, and using the data obtained, we get for part f:\n",
+"disp('hcx at x=1ft to be 1.08Btu/hft^2°F and at x=9ft to be 0.359Btu/hft^2°F')\n",
+"\n",
+"// From Eq. 4.39, and using the data obtained, we get for part g:\n",
+"disp('hcbar at x=1ft to be 2.18Btu/hft^2°F and at x=9ft to be 0.718Btu/hft^2°F')\n",
+"\n",
+"// From Eq. 4.35, and using the data obtained, we get for part h:\n",
+"disp('q at x=1ft to be 172 Btu/h and at x=9ft to be 517 Btu/h')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4: Heat_Flow_From_Crankcase.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 4 Example # 4.4 ')\n",
+"\n",
+"// Length of the crankcase in m is given as\n",
+"L = 0.6;\n",
+"// Width of the crankcase in m is given as\n",
+"b = 0.2;\n",
+"// Depth of the crankcase in m is given as\n",
+"d = 0.1;\n",
+"// Surface temperature in K is given as\n",
+"Ts = 350;\n",
+"// Air temperature in K is given as\n",
+"Tinfinity = 276;\n",
+"// Air velocity in m/sec is given as\n",
+"Uinfinity = 30;\n",
+"// It is stated that boundary layer is turbulent over the entire surface\n",
+"\n",
+"//Average air temperature in degree K is\n",
+"T = (Ts+Tinfinity)/2;\n",
+"// At this average temperature, we get the following for air\n",
+"rho = 1.092;//density in kg/m^3\n",
+"mu = 0.000019123;//viscosity in SI units\n",
+"Pr = 0.71;//Prandtl number\n",
+"k = 0.0265;//Thermal conductivity in W/m-K\n",
+"\n",
+"// Reynold''s number is therefore given as\n",
+"ReL = ((rho*Uinfinity)*L)/mu;\n",
+"\n",
+"//From eq. 4.82, average nusselt number could be given as\n",
+"Nu = (0.036*(Pr^(1/3)))*(ReL^0.8);\n",
+"\n",
+"//We can write from the basic expression, Nu=hc*L/k, that\n",
+"//Heat transfer coefficient in W/m^2-K\n",
+"hc = (Nu*k)/L;\n",
+"\n",
+"// The surface area that dissipates heat is 0.28 m2\n",
+"disp('Total heat loss from the surface in W is therefore')\n",
+"//Heat loss from the surface in W\n",
+"q = (hc*0.28)*(Ts-Tinfinity)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_Of_Heat_Transfer_by_F_Kreith/5-Natural_Convection.ipynb b/Principles_Of_Heat_Transfer_by_F_Kreith/5-Natural_Convection.ipynb
new file mode 100644
index 0000000..0d55739
--- /dev/null
+++ b/Principles_Of_Heat_Transfer_by_F_Kreith/5-Natural_Convection.ipynb
@@ -0,0 +1,479 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Natural Convection"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: Convection_Heat_Loss_From_Room_Heater.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 5 Example # 5.1 ');\n",
+"\n",
+"// ''Body temp in degree C''\n",
+"Tb = 127;\n",
+"//''Body temp in degree K''\n",
+"TbK = Tb+273;\n",
+"//''Ambient temp in degree C''\n",
+"Ta = 27;\n",
+"//''Ambient temp in degree K''\n",
+"TaK = Ta+273;\n",
+"//''Film temperature = (Body Temperature + Ambient Temperature)/2''\n",
+"//''Film temp in degree K''\n",
+"TfK = (TbK+TaK)/2;\n",
+"//''Value of coefficient of expansion at this film temp in degree K inverse''\n",
+"B = 1/TfK;\n",
+"//''Value of Prandtl number at this film temp''\n",
+"Pr = 0.71;\n",
+"//''Value of kinematic viscosity at this film temp in m2/s''\n",
+"v = 0.0000212;\n",
+"//''Value of thermal conductivity at this film temp in W/m-K''\n",
+"k = 0.0291;\n",
+"//''acceleration due to gravity in m/s2''\n",
+"g = 9.81;\n",
+"//''temperature diff. between body and ambient in degree K''\n",
+"deltaT = TbK-TaK;\n",
+"//''diameter of heater wire in m''\n",
+"d = 0.001;\n",
+"//''Therefore using Rayleigh number = ((Pr*g*B*deltaT*d^3)/v^2)''\n",
+"Ra = ((((Pr*g)*B)*deltaT)*(d^3))/(v^2);\n",
+"\n",
+"//''From Fig. 5.3 on Page 303, we get''\n",
+"//''log(Nu) = 0.12, where Nu is nusselt number, therefore''\n",
+"Nu = 1.32;\n",
+"//''Using Nu = hc*d/k, we get heat transfer coefficient in W/m2-K''\n",
+"hc = (Nu*k)/d;\n",
+"disp('The rate of heat loss per meter length in air in W/m is given by hc*(A/l)*deltaT')\n",
+"//heat loss per meter length in air in W/m\n",
+"q = ((hc*deltaT)*%pi)*d\n",
+"\n",
+"//''For Co2, we evaluate the properties at film temperature''\n",
+"//''Following are the values of dimensionless numbers so obtained''\n",
+"//''Rayleigh number, Ra=16.90''\n",
+"//''Nusselt number, Nu=1.62''\n",
+"//''Using Nu = hc*d/k, we get''\n",
+"//''hc = 33.2 W/m2-K''\n",
+"disp('The rate of heat loss per meter length in CO2 is given by hc*(A/l)*deltaT')\n",
+"disp('q = 10.4 W/m')\n",
+"\n",
+"disp(' Discussion - For same area and temperature difference: ')\n",
+"disp(' Heat transfer by convection will be more, if heat transfer coeff. is high')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: Power_Requirement_of_Heater.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 5 Example # 5.2 ');\n",
+"\n",
+"//''Surface temp in degree C''\n",
+"TsC = 130;\n",
+"//''Body temp in degree K''\n",
+"Ts = TsC+273;\n",
+"//''Ambient temp in degree C''\n",
+"TinfinityC = 20;\n",
+"//''Ambient temp in degree K''\n",
+"Tinfinity = TinfinityC+273;\n",
+"//''Film temperature = (Surface Temperature + Ambient Temperature)/2''\n",
+"//''Film temp in degree K''\n",
+"Tf = (Ts+Tinfinity)/2;\n",
+"//''Height of plate in cms''\n",
+"L = 15;\n",
+"//''Width of plate in cms''\n",
+"b = 10;\n",
+"//''Value of Grashof number at this film temp is given by\n",
+"//65(L^3)(Ts-Tinfinity)''\n",
+"//Grashof number\n",
+"Gr = (65*(L^3))*(Ts-Tinfinity);\n",
+"//''Since the grashof number is less than 10^9, therefore flow is laminar''\n",
+"//''For air at film temp = 75C (348K), Prandtl number is''\n",
+"Pr = 0.71;\n",
+"//''And the product Gr*Pr is''\n",
+"//Prodect of Gr and Pr\n",
+"GrPr = Gr*Pr;\n",
+"//''From Fig 5.5 on page 305, at this value of GrPr, Nusselt number is''\n",
+"Nu = 35.7;\n",
+"//''Value of thermal conductivity at this film temp in W/m-K''\n",
+"k = 0.029;\n",
+"\n",
+"//''Using Nu = hc*L/k, we get ''\n",
+"//Heat transfer coefficient for convection in W/m2-K\n",
+"hc = (Nu*k)/(L/100);\n",
+"\n",
+"//''Heat transfer coefficient for radiation, hr in W/m2-K''\n",
+"hr = 8.5;\n",
+"\n",
+"//''Total area in m2 is given by 2*(b/100)*(L/100)''\n",
+"A = (2*(b/100))*(L/100);\n",
+"\n",
+"\n",
+"disp('Therefore total heat transfer in W is given by A*(hc+hr)*(Ts-Tinfinity)')\n",
+"//total heat transfer in W\n",
+"q = (A*(hc+hr))*(Ts-Tinfinity)\n",
+"\n",
+"//''For plate to be 450cm in height, Rayleigh number becomes 4.62*10^11''\n",
+"//''which implies that the flow is turbulent''\n",
+"//''From Fig 5.5 on page 305, at this value of GrPr, Nusselt number is 973''\n",
+"//''Using Nu = hc*d/k, we get in W/m2-K, hc_bar=6.3''\n",
+"//''New Total area in m2, A_bar=2*(0.1)*(4.5)''\n",
+"\n",
+"disp('Therefore in new case, total heat transfer in W is given by A_bar*(hc_bar+hr)*(Ts-Tinfinity)')\n",
+"disp('we get q=1465W')\n",
+"\n",
+"\n",
+"disp(' Discussion - For same temperature difference: ')\n",
+"disp(' Heat transfer will be more, if area exposed for convection and radiation is more')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: Heat_Loss_From_Grill.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 5 Example # 5.3 ')\n",
+"\n",
+"//''Surface temp in degree C''\n",
+"TsC = 227;\n",
+"//''Body temp in degree K'')\n",
+"Ts = TsC+273;\n",
+"//''Ambient temp in degree C''\n",
+"TinfinityC = 27;\n",
+"//''Ambient temp in degree K''\n",
+"Tinfinity = TinfinityC+273;\n",
+"//''Film temperature = (Surface Temperature + Ambient Temperature)/2''\n",
+"//''Film temp in degree K'')\n",
+"Tf = (Ts+Tinfinity)/2;\n",
+"//''For a square plate, Height and width of plate in m''\n",
+"L = 1;\n",
+"b = 1;\n",
+"//''For a square plate, characteristic length = surface area/parameter in m''\n",
+"L_bar = (L*L)/(4*L);\n",
+"//''Value of coefficient of expansion at this film temp in degree K inverse''\n",
+"B = 1/Tf;\n",
+"//''Value of Prandtl number at this film temp''\n",
+"Pr = 0.71;\n",
+"//''Value of thermal conductivity at this film temp in W/m-K''\n",
+"k = 0.032;\n",
+"//''Value of kinematic viscosity at this film temp in m2/s''\n",
+"v = 0.000027;\n",
+"//''acceleration due to gravity in m/s2''\n",
+"g = 9.81;\n",
+"//''temperature diff. between body and ambient in degree K''\n",
+"deltaT = Ts-Tinfinity;\n",
+"//''Therefore using Rayleigh number = ((Pr*g*B*deltaT*(L_bar)^3)/v^2)''\n",
+"//Rayleigh number\n",
+"Ra = ((((Pr*g)*B)*deltaT)*(L_bar^3))/(v^2);\n",
+"\n",
+"\n",
+"//''From eq. 5.17 on page 311, we have nusselt number for bottom plate as 0.27*Pr^0.25''\n",
+"NuBottom = 25.2;\n",
+"//''From eq. 5.16 on page 311, we have nusselt number for top plate as 0.27*Pr^0.25''\n",
+"NuTop = 63.4;\n",
+"//''And therefore corresponding heat transfer coeeficients are in W/m2-K''\n",
+"hcBottom = (NuBottom*k)/L_bar; //heat transfer coeeficients are in W/m2-K at bottom \n",
+"hcTop = (NuTop*k)/L_bar; //heat transfer coeeficients are in W/m2-K at top\n",
+"\n",
+"\n",
+"disp('Therefore total heat transfer in W is given by A*(hcTop+hcBottom)*(deltaT)')\n",
+"//heat transfer in W\n",
+"q = ((L*b)*(hcTop+hcBottom))*deltaT"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: Transition_to_Turbulent_Flow_in_Pipe.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 5 Example # 5.4 ');\n",
+"\n",
+"//''Ambient temp in degree C''\n",
+"TinfinityC = 27;\n",
+"//''Ambient temp in degree K''\n",
+"Tinfinity = TinfinityC+273;\n",
+"//''The criterion for transition is rayleigh number to be 10^9''\n",
+"\n",
+"\n",
+"//''Value of coefficient of expansion at this temp in degree K inverse''\n",
+"B = 1/Tinfinity;\n",
+"//''Value of Prandtl number at this ambient temp''\n",
+"Pr = 0.71;\n",
+"//''Diameter of pipe in m''\n",
+"D = 1;\n",
+"//''Value of kinematic viscosity at this temp in m2/s''\n",
+"v = 0.0000164;\n",
+"//''acceleration due to gravity in m/s2''\n",
+"g = 9.81;\n",
+"\n",
+"//''Therefore using Rayleigh number = ((Pr*g*B*deltaT*(D)^3)/v^2) = 10^9''\n",
+"//''we get the temperature difference in centrigrade to be''\n",
+"deltaT = 12;\n",
+"disp('therefore the temperature of pipe in C is')\n",
+"// temperature of pipe in C\n",
+"Tpipe = TinfinityC+deltaT\n",
+"\n",
+"\n",
+"//''From table 13 in Appendix 2, for the case of water and using the same procedure we get''\n",
+"// temperature difference in C\n",
+"deltaTw = 0.05;\n",
+"disp('therefore the temperature of pipe in C is')\n",
+"// temperature of pipe in C\n",
+"Tpipew = TinfinityC+deltaTw\n",
+"\n",
+"disp(' Discussion - For air and water: ')\n",
+"disp(' Temperature required to induce turbulence is higher in air')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: Rate_of_Heat_Transfer_From_Burner.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 5 Example # 5.5 ');\n",
+"\n",
+"//''Top surface temp in degree C''\n",
+"Tt = 20;\n",
+"//''Body temp in degree K''\n",
+"TtK = Tt+273;\n",
+"//''Bottom temp in degree C''\n",
+"Tb = 100;\n",
+"//''Ambient temp in degree K''\n",
+"TbK = Tb+273;\n",
+"//''Average temp = (Bottom Temperature + top Temperature)/2''\n",
+"//''average temp in degree K''\n",
+"T = (TbK+TtK)/2;\n",
+"//''Value of coefficient of expansion at this temp in degree K inverse''\n",
+"B = 0.000518;\n",
+"//''Value of Prandtl number at this temp''\n",
+"Pr = 3.02;\n",
+"//''Value of kinematic viscosity at this temp in m2/s''\n",
+"v = 0.000000478;\n",
+"//''acceleration due to gravity in m/s2''\n",
+"g = 9.8;\n",
+"//''temperature diff. between body and ambient in degree K''\n",
+"deltaT = TbK-TtK;\n",
+"//''depth of water in m''\n",
+"h = 0.08;\n",
+"//''Therefore using Rayleigh number = ((Pr*g*B*deltaT*h^3)/v^2)''\n",
+"Ra = ((((Pr*g)*B)*deltaT)*(h^3))/(v^2);\n",
+"\n",
+"//''From Eq. (5.30b) on page 318, we find''\n",
+"//Nusselt number\n",
+"Nu = 79.3;\n",
+"//''Value of thermal conductivity at this film temp in W/m-K''\n",
+"k = 0.657;\n",
+"//''Using Nu = hc*d/k, we get heat transfer coefficient in W/m2-K''\n",
+"hc = (Nu*k)/h;\n",
+"//''diameter of pan in m''\n",
+"d = 0.15;\n",
+"//''area = pi*d*d/4''\n",
+"a = ((%pi*d)*d)/4;\n",
+"disp('The rate of heat loss in W is given by hc*(A)*deltaT')\n",
+"//heat loss in W\n",
+"q = (hc*deltaT)*a"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6: Convection_Heat_Transfer_From_Shaft.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 5 Example # 5.6 ');\n",
+"\n",
+"//''RPM of shaft''\n",
+"N = 3;\n",
+"//''Angular velocity, omega=2*pi*N/60 in rad/s''\n",
+"omega = 0.31;\n",
+"//''Ambient temp in degree C''\n",
+"Ta = 20;\n",
+"//''Ambient temp in degree K''\n",
+"TaK = Ta+273;\n",
+"//''Shaft temp in degree C''\n",
+"Ts = 100;\n",
+"//''Shaft temp in degree K''\n",
+"TsK = Ts+273;\n",
+"//''Film temperature = (Shaft Temperature + Ambient Temperature)/2''\n",
+"//''Film temp in degree K''\n",
+"TfK = (TsK+TaK)/2;\n",
+"//''diameter of shaft in m''\n",
+"d = 0.2;\n",
+"//''Value of kinematic viscosity at this film temp in m2/s''\n",
+"v = 0.0000194;\n",
+"//''Value of reynolds number''\n",
+"Re = (((%pi*d)*d)*omega)/v;\n",
+"\n",
+"\n",
+"//''acceleration due to gravity in m/s2''\n",
+"g = 9.81;\n",
+"//''temperature diff. between body and ambient in degree K''\n",
+"deltaT = TsK-TaK;\n",
+"//''Value of Prandtl number at this film temp''\n",
+"Pr = 0.71;\n",
+"//''Value of coefficient of expansion at this film temp in degree K inverse''\n",
+"B = 1/TfK;\n",
+"//''Therefore using Rayleigh number = ((Pr*g*B*deltaT*d^3)/v^2)''\n",
+"//Rayleigh number\n",
+"Ra = ((((Pr*g)*B)*deltaT)*(d^3))/(v^2);\n",
+"\n",
+"//''From Eq. 5.35 on Page 322, we get''\n",
+"//Nusselt number\n",
+"Nu = 49.2;\n",
+"//''Value of thermal conductivity at this film temp in W/m-K''\n",
+"k = 0.0279;\n",
+"//''Using Nu = hc*d/k, we get in W/m2-K''\n",
+"hc = (Nu*k)/d;\n",
+"//''let the length exposed to heat transfer is l=1m''\n",
+"//''then area in m2 = pi*d*l''\n",
+"a = %pi*d;\n",
+"disp('The rate of heat loss in air in W is given by hc*(a)*deltaT')\n",
+"//heat loss in air in W\n",
+"q = (hc*deltaT)*a"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_Of_Heat_Transfer_by_F_Kreith/6-Forced_Convection_Inside_Tubes_and_Ducts.ipynb b/Principles_Of_Heat_Transfer_by_F_Kreith/6-Forced_Convection_Inside_Tubes_and_Ducts.ipynb
new file mode 100644
index 0000000..965103e
--- /dev/null
+++ b/Principles_Of_Heat_Transfer_by_F_Kreith/6-Forced_Convection_Inside_Tubes_and_Ducts.ipynb
@@ -0,0 +1,586 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Forced Convection Inside Tubes and Ducts"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: Heating_of_Water_in_Tube.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 6 Example # 6.1 ')\n",
+"\n",
+"//Inlet temperature in degree C\n",
+"Tin = 10;\n",
+"//Outlet temperature in degree C\n",
+"Tout = 40;\n",
+"//Diameter in m\n",
+"D = 0.02;\n",
+"//Massflow rate in kg/s\n",
+"m = 0.01;\n",
+"//Heat flux in W/m2\n",
+"q = 15000;\n",
+"\n",
+"//From Table 13 in Appendix 2, the appropriate properties of water at an\n",
+"//average temperature between inlet and outlet of 25°C are\n",
+"\n",
+"//Density in kg/m3\n",
+"rho = 997;\n",
+"//Specific heat in J/kgK\n",
+"c = 4180;\n",
+"//Thermal conductivity in W/mK\n",
+"k = 0.608;\n",
+"//Dynamic viscosity in Ns/m2\n",
+"mu = 0.00091;\n",
+"\n",
+"disp('Reynolds Number is')\n",
+"//Reynolds number\n",
+"Re = (4*m)/((%pi*D)*mu)\n",
+"disp('Flow is Laminar')\n",
+"\n",
+"//Since the thermal-boundary condition is one of uniform heat flux, Nu= 4.36 from Eq. (6.31)\n",
+"//Nusselt number\n",
+"Nu = 4.36;\n",
+"disp('Heat transfer coefficient in W/m2K')\n",
+"//Heat transfer coefficient in W/m2K\n",
+"hc = (Nu*k)/D\n",
+"\n",
+"//The length of pipe needed for a 30°C temperature rise is obtained from a heat balance\n",
+"disp('Length of pipe in m')\n",
+"//Length of pipe in m\n",
+"L = ((m*c)*(Tout-Tin))/((%pi*D)*q)\n",
+"\n",
+"disp('Inner surface temperature at outlet in degree C')\n",
+"//Inner surface temperature at outlet in degree C\n",
+"Ts = q/hc+Tout\n",
+"\n",
+"//The friction factor is found from Eq. (6.18)\n",
+"disp('Friction factor is')\n",
+"//Friction factor is\n",
+"f = 64/Re\n",
+"\n",
+"//Average velocity in m/s\n",
+"U = (4*m)/(((rho*%pi)*D)*D);\n",
+"disp('The pressure drop in the pipe in N/m2')\n",
+"//The pressure drop in the pipe in N/m2\n",
+"deltaP = ((((f*L)*rho)*U)*U)/(D*2)\n",
+"\n",
+"//Efficiency\n",
+"n = 0.5;\n",
+"//The pumping power P is obtained from Eq. 6.19\n",
+"disp('Pumping power in W is')\n",
+"//Pumping power in W\n",
+"P = (m*deltaP)/(rho*n)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: Recycling_of_Engine_Oil.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 6 Example # 6.2 ')\n",
+"\n",
+"//Diameter in m\n",
+"D = 0.01;\n",
+"//Wall thickness in m\n",
+"t = 0.02/100;\n",
+"//Massflow rate in kg/s\n",
+"m = 0.05;\n",
+"//Inlet temperature in degree C\n",
+"Tin = 35;\n",
+"//Outlet temperature in degree C\n",
+"Tout = 45;\n",
+"//Assuming a constant tube temp. in degree C\n",
+"T = 100;\n",
+"\n",
+"//From Table 16 in Appendix 2, we get the following properties for oil at\n",
+"//40°C\n",
+"\n",
+"//Density in kg/m3\n",
+"rho = 876;\n",
+"//Specific heat in J/kgK\n",
+"c = 1964;\n",
+"//Thermal conductivity in W/mK\n",
+"k = 0.144;\n",
+"//Dynamic viscosity in Ns/m2\n",
+"mu = 0.21;\n",
+"//Prandtl number\n",
+"Pr = 2870;\n",
+"\n",
+"//Reynolds Number is\n",
+"Re = (4*m)/((%pi*D)*mu);\n",
+"\n",
+"//For laminar flow and constant temperature assumption\n",
+"//Nusselt number\n",
+"Nu = 3.66;\n",
+"//Heat transfer coefficient in W/m2K\n",
+"hc = (Nu*k)/D;\n",
+"//Heat transfer rate in W\n",
+"q = (m*c)*(Tout-Tin);\n",
+"//LMTD in degree K\n",
+"LMTD = (T-Tout-(T-Tin))/log((T-Tout)/(T-Tin));\n",
+"\n",
+"disp('Length of pipe in m is')\n",
+"//Length of pipe in m\n",
+"L = q/(((%pi*D)*hc)*LMTD)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: Flow_of_n_Butyl_Alcohol.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 6 Example # 6.3 ')\n",
+"\n",
+"//Bulk temperature in degree K\n",
+"T = 293;\n",
+"//Side of square duct in m\n",
+"b = 0.1;\n",
+"//Length of square duct in m\n",
+"L = 5;\n",
+"//Wall temperature in degree K\n",
+"Tw = 300;\n",
+"//Velocity in m/s\n",
+"U = 0.03;\n",
+"\n",
+"//Hydraulic diameter in m\n",
+"D = 4*((b*b)/(4*b));\n",
+"\n",
+"//Physical properties at 293 K from Table 19 in Appendix 2 are\n",
+"\n",
+"//Density in kg/m3\n",
+"rho = 810;\n",
+"//Specific heat in J/kgK\n",
+"c = 2366;\n",
+"//Thermal conductivity in W/mK\n",
+"k = 0.167;\n",
+"//Dynamic viscosity in Ns/m2\n",
+"mu = 0.00295;\n",
+"//Prandtl number\n",
+"Pr = 50.8;\n",
+"\n",
+"//Reynolds Number is\n",
+"Re = ((U*D)*rho)/mu;\n",
+"\n",
+"//Hence, the flow is laminar. Assuming fully developed flow, we get the\n",
+"//Nusselt number for a uniform wall temperature from Table 6.1\n",
+"\n",
+"Nu = 2.98;\n",
+"//Heat transfer coefficient in W/m2K\n",
+"hc = (Nu*k)/D;\n",
+"\n",
+"//Similarly, from Table 6.1, the product Re*f=56.91\n",
+"\n",
+"disp('Friction factor is')\n",
+"//Friction factor\n",
+"f = 56.91/Re"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4: Cooling_of_Electronic_Device.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 6 Example # 6.4 ')\n",
+"\n",
+"//Temperature of device casing in degree K\n",
+"Ts = 353;\n",
+"//Length of holes in m\n",
+"L = 0.3;\n",
+"//Diameter of holes in m\n",
+"D = 0.00254;\n",
+"//Inlet temperature in degree K\n",
+"Tin = 333;\n",
+"//Velocity in m/s\n",
+"U = 0.2;\n",
+"\n",
+"//The properties of water at 333 K, from Table 13 in Appendix 2, are\n",
+"\n",
+"//Density in kg/m3\n",
+"rho = 983;\n",
+"//Specific heat in J/kgK\n",
+"c = 4181;\n",
+"//Thermal conductivity in W/mK\n",
+"k = 0.658;\n",
+"//Dynamic viscosity in Ns/m2\n",
+"mu = 0.000472;\n",
+"//Prandtl number\n",
+"Pr = 3;\n",
+"\n",
+"//Reynolds Number is\n",
+"Re = ((U*D)*rho)/mu;\n",
+"\n",
+"if (((Re*Pr)*D)/L)>10 then\n",
+" //Eq. (6.42) can be used to evaluate the heat transfer coefficient.\n",
+" //But since the mean bulk temperature is not known, we shall evaluate all the properties first at the inlet bulk temperature Tb1 ,\n",
+" //then determine an exit bulk temperature, and then make a second iteration to obtain a more precise value.\n",
+"\n",
+" //At the wall temperature of 353 K\n",
+" //Viscosity in SI units\n",
+" mus = 0.000352; \n",
+" //From Eq. (6.42)\n",
+" //Nusselt number\n",
+" Nu = (1.86*((((Re*Pr)*D)/L)^0.33))*((mu/mus)^0.14);\n",
+" //Heat transfer coefficient in W/m2K\n",
+" hc = (Nu*k)/D;\n",
+" //mass flow rate in kg/s\n",
+" m = ((((rho*%pi)*D)*D)*U)/4;\n",
+"\n",
+" //Inserting the calculated values for hc and m into Energy balance equation, along with Tb1 and Ts and\n",
+" //gives Tb2=345K\n",
+"\n",
+" //For the second iteration, we shall evaluate all properties at the new average bulk temperature\n",
+" //Bulk temp. in degree C\n",
+" Tb = (345+Tin)/2;\n",
+"\n",
+" //At this temperature, we get from Table 13 in Appendix 2:\n",
+" //Density in kg/m3\n",
+" rho = 980;\n",
+" //Specific heat in J/kgK\n",
+" c = 4185;\n",
+" //Thermal conductivity in W/mK\n",
+" k = 0.662;\n",
+" //Dynamic viscosity in Ns/m2\n",
+" mu = 0.000436;\n",
+" //Prandtl number\n",
+" Pr = 2.78;\n",
+"\n",
+" //New reynolds Number is\n",
+" Re = ((U*D)*rho)/mu;\n",
+"\n",
+" //With this value of Re, the heat transfer coefficient can now be calculated.\n",
+" //We obtain the following similarly\n",
+" //Nusselt number\n",
+" Nu = 5.67;\n",
+" //Heat transfer coefficient in W/m2K\n",
+" hc = (Nu*k)/D;\n",
+" //Similarly putting this value in energy balance yields\n",
+" //Bulk temperature in degree K\n",
+" Tb2 = 345; \n",
+"\n",
+" disp('Outlet temperature in degree K')\n",
+" //Outlet temperature in degree K\n",
+" Tb2\n",
+"end;"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5: Water_Flowing_in_an_Annulus.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 6 Example # 6.5 ')\n",
+"\n",
+"//Velocity in ft/s\n",
+"U = 10;\n",
+"//Outer diameter in inches\n",
+"D = 1.5;\n",
+"//Inner diameter in inches\n",
+"d = 1;\n",
+"//Temperature of water in degree F\n",
+"Tw = 180;\n",
+"//Temperature of wall in degree F\n",
+"Twall = 100;\n",
+"\n",
+"//The hydraulic diameter D for this geometry is 0.5 in.\n",
+"D = 0.5;\n",
+"\n",
+"//Using properties given in the table provided\n",
+"\n",
+"//Reynolds number\n",
+"Re = (((U*D)*3600)*60.8)/(12*0.75);\n",
+"//Prandtl number\n",
+"Pr = (1*0.75)/0.39;\n",
+"//The Nusselt number according to the Dittus-Boelter correlation [Eq. (6.60)] \n",
+"Nu = (0.023*(125000^0.8))*(Pr^0.3);\n",
+"printf('The Nusselt number according to the Dittus-Boelter correlation comes out to be %5.2f\n',Nu)\n",
+"\n",
+"//Using the Sieder-Tate correlation [Eq. (6.61)]\n",
+"//Nusselt number\n",
+"Nu = 358;\n",
+"printf('The Nusselt number according to the Sieder-Tate correlation comes out to be %5.2f\n',Nu)\n",
+"\n",
+"//The Petukhov-Popov correlation [Eq. (6.63)] gives\n",
+"//Friction factor\n",
+"f = (1.82*log10(125000)-1.64)^(-2);\n",
+"//K1 of Eq. 6.63\n",
+"K1 = 1+3.4*f;\n",
+"//K2 of Eq. 6.63\n",
+"K2 = 11.7+1.8/(Pr^0.33);\n",
+"//Nusselt number\n",
+"Nu = 370;\n",
+"\n",
+"//The Sleicher-Rouse correlation [Eq. (6.64)] yields\n",
+"//a of Eq. 6.64\n",
+"a = 0.852;\n",
+"//b of Eq. 6.64\n",
+"b = 1/3+0.5/exp(0.6*4.64);\n",
+"//Reynolds number\n",
+"Re = 82237;\n",
+"//Nusselt number\n",
+"Nu = 5+(0.015*(Re^a))*(4.64^b);\n",
+"printf('Nusselt number according to The Sleicher-Rouse correlation comes out to be %5.2f\n',Nu)\n",
+"\n",
+"disp('Assuming that the correct answer is Nu=370')\n",
+"disp('The first two correlations underpredict by about 10% and 3.5%, respectively')\n",
+"disp('while the Sleicher-Rouse method overpredicts by about 10.5%.')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.6: Tube_Length_in_Metal_Flow.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 6 Example # 6.6 ')\n",
+"\n",
+"//Mass flow rate in kg/s\n",
+"m = 3;\n",
+"//Diameter of tube in m\n",
+"D = 5/100;\n",
+"//Temperature of fluid in degree K\n",
+"Tb = 473;\n",
+"//Temperature of wall in degree K\n",
+"Ts = 503;\n",
+"\n",
+"//Density in kg/m3\n",
+"rho = 7700;\n",
+"//Specific heat in J/kgK\n",
+"c = 130;\n",
+"//Thermal conductivity in W/mK\n",
+"k = 12;\n",
+"//Kinematic viscosity in m2/s\n",
+"nu = 0.00000008;\n",
+"//Prandtl number\n",
+"Pr = 0.011;\n",
+"\n",
+"//The rate of heat transfer per unit temperature rise in W is\n",
+"q = (m*c)*1;\n",
+"\n",
+"//Reynolds Number is\n",
+"Re = (D*m)/(((((rho*%pi)*D)*D)*nu)/4);\n",
+"\n",
+"//The heat transfer coefficient in W/m2K is obtained from Eq. (6.67)\n",
+"hc = ((k*0.625)*((Re*Pr)^0.4))/D;\n",
+"\n",
+"//Surface area in m2\n",
+"A = q/(hc*(Ts-Tb));\n",
+"\n",
+"disp('Required length of tube in m is')\n",
+"//Required length of tube in m\n",
+"L = A/(%pi*D)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.7: Heat_Transfer_Coefficient_in_Circuit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 6 Example # 6.7 ')\n",
+"\n",
+"//Temperature of airstream in degree C\n",
+"Tair = 20;\n",
+"//Velocity of air in m/s\n",
+"U = 1.8;\n",
+"//Side of circuit in m\n",
+"L = 27/1000;\n",
+"//Spacing in the circuit in m\n",
+"H = 17/1000;\n",
+"\n",
+"//At 20°C, the properties of air from Table 28, Appendix 2, are \n",
+"\n",
+"//Density in kg/m3\n",
+"rho = 7700;\n",
+"//Specific heat in J/kgK\n",
+"c = 130;\n",
+"//Thermal conductivity in W/mK\n",
+"k = 0.0251;\n",
+"//Kinematic viscosity in m2/s\n",
+"nu = 0.0000157;\n",
+"//Prandtl number\n",
+"Pr = 0.011;\n",
+"\n",
+"//Reynolds number\n",
+"Re = (U*H)/nu;\n",
+"\n",
+"//From Fig. (6.27), we see that the second integrated circuit is in the inlet region and estimate Nu2 =29.\n",
+"//Nusselt number in second circuit\n",
+"Nu2 = 29;\n",
+"disp('Heat transfer coefficient along 2nd circuit in W/m2K')\n",
+"//Heat transfer coefficient in W/m2K\n",
+"hc2 = (Nu2*k)/L\n",
+"\n",
+"//The sixth integrated circuit is in the developed region and from Eq. (6.79)\n",
+"//Nusselt number in sixth circuit\n",
+"Nu6 = 21.7;\n",
+"disp('Heat transfer coefficient along 6th circuit in W/m2K')\n",
+"////Heat transfer coefficient in W/m2K\n",
+"hc6 = (Nu6*k)/L"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_Of_Heat_Transfer_by_F_Kreith/7-Forced_Convection_Over_Exterior_Surfaces.ipynb b/Principles_Of_Heat_Transfer_by_F_Kreith/7-Forced_Convection_Over_Exterior_Surfaces.ipynb
new file mode 100644
index 0000000..e77f2d8
--- /dev/null
+++ b/Principles_Of_Heat_Transfer_by_F_Kreith/7-Forced_Convection_Over_Exterior_Surfaces.ipynb
@@ -0,0 +1,619 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Forced Convection Over Exterior Surfaces"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: Heat_Transfer_Coefficient_Over_Wing.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 7 Example # 7.1 ')\n",
+"\n",
+"//Diameter in m\n",
+"D = 0.3;\n",
+"//Cruising speed in m/s\n",
+"Uinfinity = 150;\n",
+"\n",
+"//At an altitude of 7500 m the standard atmospheric air pressure is 38.9 kPa and the density of the air is 0.566 kg/m3 (From Table 38 in Appendix 2).\n",
+"rho = 0.566;\n",
+"//Dynamic viscosity in kgm/s\n",
+"mu = 0.0000174;\n",
+"//Prandtl number\n",
+"Pr = 0.72;\n",
+"//Thermal conductivity in W/mK\n",
+"k = 0.024;\n",
+"\n",
+"//The heat transfer coefficient at the stagnation point (0) is, according to Eq. (7.2)\n",
+"\n",
+"disp('Heat transfer coefficient at stagnation point in W/m2K')\n",
+"//Heat transfer coefficient at stagnation point in W/m2K\n",
+"h = (((k*1.14)*((((rho*Uinfinity)*D)/mu)^0.5))*(Pr^0.4))/D\n",
+"\n",
+"disp('Distribution of the convection heat trans-fer coefficient over the forward portion of the wing')\n",
+"for o = 0:15:75 //o is the parameter used in the loop\n",
+" //convection heat trans-fer coefficients in W/m2K\n",
+" ho = h*(1-(o/90)^3);\n",
+" // L.26: No simple equivalent, so mtlb_fprintf() is called.\n",
+" mtlb_fprintf('At an angle of %5.2f degree, heat transfer coeffcient is %5.2f\n',o,ho)\n",
+"end;"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: Current_in_Hot_Wire_Anemometer.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 7 Example # 7.2 ')\n",
+"\n",
+"//Diameter of wire in m\n",
+"D = 0.000025;\n",
+"//Length of wire in m\n",
+"L = 0.006;\n",
+"//Free stream temperature of air in degeee C\n",
+"T = 20;\n",
+"//Wire temperature to be maintain in degree C\n",
+"Tw = 230;\n",
+"//Resistivity of platinum in ohm-cm\n",
+"Re = 0.0000171;\n",
+"\n",
+"//Since the wire is very thin, conduction along it can be neglected; also, the temperature gradient in the wire at any cross section can be disregarded.\n",
+"\n",
+"//At freestream temperature, for air:\n",
+"\n",
+"//Thermal conductivity in W/mC\n",
+"k = 0.0251;\n",
+"//Kinematic viscosity in m2/s\n",
+"nu = 0.0000157;\n",
+"\n",
+"//Reynolds number at velocity = 2m/s\n",
+"Rey = (2*D)/nu;\n",
+"if Re<40 then\n",
+" //Using the correlation equa-tion from Eq. (7.3) and Table 7.1\n",
+" //Average convection heat transfer coefficient as a function of velocity\n",
+" //is\n",
+" //hc=799U^0.4 W/m2C\n",
+"\n",
+" //At this point, it is necessary to estimate the heat transfer coefficient for radiant heat flow.\n",
+" //According to Eq. (1.21), we have approximately\n",
+" //hr=sigma*epsilon*((Ts+Tinfinity)^3)/4\n",
+"\n",
+" //The emissivity of polished platinum from Appendix 2, Table 7 is about 0.05, so hr is about 0.05 W/m2C.\n",
+"\n",
+" //The rate at which heat is transferred from the wire is therefore\n",
+" //0.0790U^4 W.\n",
+"\n",
+" //The electrical resistance of the wire in ohm is\n",
+" R = ((Re*L)*4)/(((100*%pi)*D)*D);\n",
+"end;\n",
+"\n",
+"//A heat balance with the current i gives\n",
+"disp('Current in ampere as a function of velocity is')\n",
+"disp('i=0.19*U^0.2')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: Heat_Loss_From_Solar_Collector.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 7 Example # 7.3 ')\n",
+"\n",
+"//Velocity of air in m/s\n",
+"Uinfinity = 0.5;\n",
+"//Length and breadth of square shaped array in m\n",
+"L = 2.5;\n",
+"//Surface temperature in degree C\n",
+"Ts = 70;\n",
+"//Ambient temperature in degree C\n",
+"Ta = 20;\n",
+"\n",
+"//At free stream temperature of air\n",
+"//Kinematic viscosity in m2/s\n",
+"nu = 0.0000157;\n",
+"//Density in kg/m3\n",
+"rho = 1.16;\n",
+"//Specific heeat in Ws/kgC\n",
+"c = 1012;\n",
+"//Prandtl number\n",
+"Pr = 0.71;\n",
+"\n",
+"//Reynolds number\n",
+"Re = (Uinfinity*L)/nu;\n",
+"\n",
+"//From equation 7.18\n",
+"//The average heat transfer coefficient in W/m2C is\n",
+"//Heat transfer coefficient in W/m2C \n",
+"h = (((0.0033*(Pr^(-2/3)))*c)*rho)*Uinfinity;\n",
+"disp('Heat loss from array in W is')\n",
+"//Heat loss in W \n",
+"q = ((h*L)*L)*(Ts-Ta)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4: Heat_Transfer_Coefficient_in_Pipe.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 7 Example # 7.4 ')\n",
+"\n",
+"//Diameter of pipe in m\n",
+"D = 7.62/100;\n",
+"//Diameter and length of cylinder in m\n",
+"d = 0.93/100;\n",
+"l = 1.17/100;\n",
+"//Initial temperature in degree C\n",
+"Ti = 50;\n",
+"//Final temperature in degree C\n",
+"Tf = 350;\n",
+"//Temperature of pipe surface in degree C\n",
+"Tp = 400;\n",
+"//Therefore film temp. at inlet in degree C\n",
+"Tfi = (Ti+Tp)/2;\n",
+"//Therefore film temp. at outlet in degree C\n",
+"Tfo = (Tf+Tp)/2;\n",
+"//Average film temp. in degree C\n",
+"Tf = (Tfi+Tfo)/2;\n",
+"\n",
+"//At this film temperature\n",
+"//Kinematic viscosity in m2/s\n",
+"nu = 0.0000482;\n",
+"//Thermal conductivity in W/mC\n",
+"k = 0.042;\n",
+"//Density in kg/m3\n",
+"rho = 0.6;\n",
+"//Specific heat in J/kgC\n",
+"c = 1081;\n",
+"//Prandtl number\n",
+"Pr = 0.71;\n",
+"//Flow rte of gas in kg/h is\n",
+"m = 5;\n",
+"\n",
+"//Superficial velocity in m/h\n",
+"Us = m/((((rho*%pi)*D)*D)/4);\n",
+"//Cylinder packaging volume in m3\n",
+"V = (((%pi*d)*d)*l)/4;\n",
+"//Surface area in m2\n",
+"A = (((2*%pi)*d)*d)/4+(%pi*d)*l;\n",
+"//Equivalent packaging dia in meter\n",
+"Dp = (6*V)/A;\n",
+"\n",
+"//REynolds number based on this dia\n",
+"Re = ((Us*3600)*Dp)/nu;\n",
+"//From eq. 7.23\n",
+"disp('Heat transfer coefficient in W/m2C is')\n",
+"//Heat transfer coefficient in W/m2C\n",
+"h = (14.3*k)/Dp"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5: Heating_of_Atmospheric_Air.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 7 Example # 7.5 ')\n",
+"\n",
+"//Initial temperature in degree F\n",
+"Ti = 58;\n",
+"//Final temperature in degree F\n",
+"Tf = 86;\n",
+"//Film temperature of air in degree F\n",
+"Tair = (Ti+Tf)/2;\n",
+"//Temperature of condensing steam in degree F\n",
+"Tsteam = 212;\n",
+"//Heat transfer coeffcient in Btuh/ft2F\n",
+"ho = 1000;\n",
+"//Length of tube in ft\n",
+"L = 2;\n",
+"//Diameter of tube in in\n",
+"d = 0.5;\n",
+"//Wall thickness in inches\n",
+"t = 0.049;\n",
+"//Pitch in inches\n",
+"p = 3/4;\n",
+"//Width in ft and height in inches of rectangular shell\n",
+"H = 15;\n",
+"W = 2;\n",
+"//Mass flow rate of air in lb/h\n",
+"m = 32000;\n",
+"\n",
+"//Appendix 2, Table 28 then gives for the properties of air at this mean\n",
+"//bulk temperature\n",
+"\n",
+"//Density in lb/ft3\n",
+"rho = 0.072;\n",
+"//Thermal conductivity in Btu/h F ft\n",
+"k = 0.0146;\n",
+"//Dynamic viscosity in lb/fth\n",
+"mu = 0.0444;\n",
+"//Prandtl number for air and steam\n",
+"Pr = 0.71;\n",
+"\n",
+"//Calcaulating minimum free area in ft2\n",
+"A = ((H/p)*W)*((p-d)/12);\n",
+"//Maximum gas velocity in lb/h.ft2\n",
+"Gmax = m/A;\n",
+"//Hence the reynolds number is\n",
+"Re = (Gmax*d)/(12*mu);\n",
+"\n",
+"//Assuming that more than 10 rows will be required, the heat transfer coefficient is calculated from Eq. (7.29)\n",
+"\n",
+"//h value in Btu/h ft2 F\n",
+"h = ((((k*12)/d)*(Pr^0.36))*0.27)*(Re^0.63);\n",
+"\n",
+"//The resistance at the steam side per tube in h F/Btu\n",
+"R1 = 12/(((ho*%pi)*(d-2*t))*L);\n",
+"\n",
+"//The resistance of the pipe wall in h F/Btu\n",
+"R2 = 0.049/(((60*%pi)*L)*(d-t));\n",
+"\n",
+"//The resistance at the outside of the tube in h F/Btu\n",
+"R3 = 1/((((h*%pi)*d)*L)/12);\n",
+"\n",
+"//Total resistance in h F/Btu\n",
+"R = R1+R2+R3;\n",
+"\n",
+"//Mean temperature difference between air and steam in degree F is\n",
+"deltaT = Tsteam-Tair;\n",
+"\n",
+"//Specific heat of air in Btu/lb F\n",
+"c = 0.241;\n",
+"\n",
+"//Equating the rate of heat flow from the steam to the air to the rate of enthalpy rise of the air\n",
+"\n",
+"//Solving for N gives\n",
+"disp('Total number of transverse tubes needed are')\n",
+"//Total number of transverse tubes\n",
+"N = (((m*c)*(Tf-Ti))*R)/(20*deltaT)\n",
+"disp('Rounding off = 5 tubes')\n",
+"\n",
+"if N<10 then\n",
+" //Correction for h value, again in Btu/h ft2 F\n",
+" h = 0.92*h;\n",
+"end;\n",
+"\n",
+"//The pressure drop is obtained from Eq. (7.37) and Fig. 7.25.\n",
+"\n",
+"//Velocity in ft/s\n",
+"Umax = Gmax/(3600*rho);\n",
+"//Acceleration due to gravity in ft/s2\n",
+"g = 32.2;\n",
+"disp('Corresponding pressure drop in lb/ft2')\n",
+"//Corresponding pressure drop in lb/ft2\n",
+"P = ((((6*0.75)*rho)*Umax)*Umax)/(2*g)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6: Pre_Heating_of_Methane.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 7 Example # 7.6 ')\n",
+"\n",
+"//Temperature of methane in degree C\n",
+"T = 20;\n",
+"//Outer dia of tube in m\n",
+"D = 4/100;\n",
+"//Longitudinal spacing in m\n",
+"SL = 6/100;\n",
+"//Transverse spacing in m\n",
+"ST = 8/100;\n",
+"//Wall temperature in degree C\n",
+"Tw = 50;\n",
+"//Methane flow velocity in m/s\n",
+"v = 10;\n",
+"\n",
+"//For methane at 20°C, Table 36, Appendix 2 gives\n",
+"\n",
+"//Density in kg/m3\n",
+"rho = 0.668;\n",
+"//Thermal conductivity in W/mK\n",
+"k = 0.0332;\n",
+"//Kinematic viscosity in m2/s\n",
+"nu = 0.00001627;\n",
+"//Prandtl number\n",
+"Pr = 0.73;\n",
+"\n",
+"//From the geometry of the tube bundle, we see that the minimum flow\n",
+"//area is between adjacent tubes in a row and that this area is half\n",
+"//the frontal area of the tube bundle. Thus,\n",
+"//Velocity in m/s\n",
+"Umax = 2*v;\n",
+"\n",
+"//Reynolds number\n",
+"Re = (Umax*D)/nu;\n",
+"\n",
+"//Since ST/SL<2, we use Eq. (7.30)\n",
+"\n",
+"//Nusselt number\n",
+"Nu = ((0.35*((ST/SL)^0.2))*(Re^0.6))*(Pr^0.36);\n",
+"\n",
+"//Heat transfer coefficient in W/m2K\n",
+"h = (Nu*k)/D;\n",
+"\n",
+"//Since there are fewer than 10 rows, the correlation factor in Table 7.3 gives\n",
+"disp('Heat transfer coefficient in W/m2K')\n",
+"//Heat transfer coefficient in W/m2K\n",
+"h = 0.92*h\n",
+"\n",
+"//Tube-bundle pressure drop is given by Eq. (7.37). The insert in Fig. (7.26) gives the correction factor x.\n",
+"\n",
+"disp('Corresponding pressure drop in N/m2')\n",
+"//Corresponding pressure drop in N/m2\n",
+"P = ((((5*0.25)*rho)*Umax)*Umax)/2"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7: Analysis_in_Water_Jet_Problem.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 7 Example # 7.7 ')\n",
+"\n",
+"\n",
+"//Temperature of jet in degree C\n",
+"T = 20;\n",
+"//Thermal conductivity in W/mK\n",
+"k = 0.597;\n",
+"//Dynamic viscosity in Ns/m2\n",
+"mu = 0.000993;\n",
+"//Prandtl number\n",
+"Pr = 7;\n",
+"//Mass flow rate in kg/s\n",
+"m = 0.008;\n",
+"//Diameter of jet in m\n",
+"d = 6/1000;\n",
+"//Total heat flux in W/m2\n",
+"q = 70000;\n",
+"\n",
+"//Reynolds number\n",
+"Re = (4*m)/((%pi*d)*mu);\n",
+"\n",
+"disp('For r=3mm')\n",
+"//From Eq. (7.45)\n",
+"//Heat transfer coefficient in W/m2K\n",
+"h = (63*k)/d;\n",
+"disp('Surface temperature at r=3mm in degree C is')\n",
+"//Surface temperature in degree C\n",
+"Ts = T+q/h\n",
+"\n",
+"disp('For r=12mm')\n",
+"//From Eq. (7.48)\n",
+"//Heat transfer coefficient in W/m2K\n",
+"h = (35.3*k)/d;\n",
+"disp('Surface temperature at r=12mm in degree C is')\n",
+"//Surface temperature in degree C\n",
+"Ts = T+q/h"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.8: Analysis_of_Air_Jet_Problem.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 7 Example # 7.8 ')\n",
+"\n",
+"//Temperature of plate in degree C\n",
+"Tplate = 60;\n",
+"//Temperature of jet in degree C\n",
+"T = 20;\n",
+"//Thermal conductivity in W/mK\n",
+"k = 0.0265;\n",
+"//Dynamic viscosity in Ns/m2\n",
+"mu = 0.00001912;\n",
+"//Prandtl number\n",
+"Pr = 0.71;\n",
+"//Density in kg/m3\n",
+"rho = 1.092;\n",
+"//Mass flow rate in kg/s\n",
+"m = 0.008;\n",
+"//Width of jet in m\n",
+"w = 3/1000;\n",
+"//Length of jet in m\n",
+"l = 20/1000;\n",
+"//Velocity of jet in m/s\n",
+"v = 10;\n",
+"//Exit distance in m\n",
+"z = 0.01;\n",
+"//Width given for plate in m\n",
+"L = 0.04;\n",
+"//Reynolds number\n",
+"Re = ((rho*v)*w)/mu;\n",
+"\n",
+"//From Eq. (7.68) with x= 0.02 m, z =0.01 m, and w= 0.003 m\n",
+"//Nusselt number\n",
+"Nu = 11.2;\n",
+"// ! L.33: mtlb(d) can be replaced by d() or d whether d is an M-file or not.\n",
+"//Heat transfer coefficient in W/m2K\n",
+"h = (Nu*k)/mtlb(w);\n",
+"\n",
+"disp('Heat transfer rate from the plate in W is')\n",
+"//Heat transfer rate from the plate in W\n",
+"q = ((h*L)*l)*(Tplate-T)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_Of_Heat_Transfer_by_F_Kreith/8-Heat_Exchangers.ipynb b/Principles_Of_Heat_Transfer_by_F_Kreith/8-Heat_Exchangers.ipynb
new file mode 100644
index 0000000..8dc46a7
--- /dev/null
+++ b/Principles_Of_Heat_Transfer_by_F_Kreith/8-Heat_Exchangers.ipynb
@@ -0,0 +1,442 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Heat Exchangers"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: Heat_Transfer_Surface_Area_Calculations.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.1 ')\n",
+"\n",
+"//Outer dia in m\n",
+"d = 0.0254;\n",
+"//mass flow rate of hot fluid in kg/s\n",
+"mh = 6.93;\n",
+"//Specific heat of hot fluid n J/kgK\n",
+"ch = 3810;\n",
+"//Inlet temperature of hot fluid in degree C\n",
+"Thin = 65.6;\n",
+"//Outlet temperature of hot fluid in degree C\n",
+"Thout = 39.4;\n",
+"//mass flow rate of cold fluid in kg/s\n",
+"mc = 6.3;\n",
+"//Specific heat of cold fluid n J/kgK\n",
+"cc = 4187;\n",
+"//Inlet temperature of cold fluid in degree C\n",
+"Tcin = 10;\n",
+"//Overall heat transfer coefficient in W/m2K\n",
+"U = 568;\n",
+"\n",
+"//Using energy balance, outlet temp. of cold fluid in degree C\n",
+"Tcout = Tcin+((mh*ch)*(Thin-Thout))/(mc*cc);\n",
+"\n",
+"//The rate of heat flow in W\n",
+"q = (mh*ch)*(Thin-Thout);\n",
+"\n",
+"disp('Parallel-flow tube and shell')\n",
+"//From Eq. (8.18) the LMTD for parallel flow\n",
+"//Temperature difference at inlet in degree K\n",
+"deltaTa = Thin-Tcin;\n",
+"//Temperature difference at outlet in degree K\n",
+"deltaTb = Thout-Tcout;\n",
+"//LMTD in degree K\n",
+"LMTD = (deltaTa-deltaTb)/log(deltaTa/deltaTb);\n",
+"\n",
+"//From Eq. (8.16) \n",
+"disp('Heat transfer surface area in m2 is')\n",
+"//Heat transfer surface area in m2\n",
+"A = q/(U*LMTD)\n",
+"\n",
+"disp('Counterflow tube and shell')\n",
+"//LMTD in degree K\n",
+"LMTD = 29.4;\n",
+"\n",
+"disp('Heat transfer surface area in m2 is')\n",
+"//Heat transfer surface area in m2\n",
+"A = q/(U*LMTD)\n",
+"\n",
+"A1 = A;//To be used further as a copy of this area\n",
+"\n",
+"disp('Counterflow exchanger with 2 shell passes and 72 tube passes')\n",
+"\n",
+"//Correction factor found from Fig. 8.15 to the mean temperature for counterflow\n",
+"P = (Tcout-Tcin)/(Thin-Tcin);\n",
+"//Heat capacity ratio\n",
+"Z = (mh*ch)/(mc*cc);\n",
+"//From the chart of Fig. 8.15, F= 0.97\n",
+"F = 0.97; //F-Factor\n",
+"disp('Heat transfer surface area in m2 is')\n",
+"//Heat transfer surface area in m2 is\n",
+"A = A1/F\n",
+"\n",
+"disp('Cross-flow, with one tube pass and one shell pass, shell-side fluid mixed')\n",
+"//Using same procedure, we get from charts\n",
+"F = 0.88; //F-Factor\n",
+"disp('Heat transfer surface area in m2 is')\n",
+"//Heat transfer surface area in m2 is\n",
+"A = A1/F"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: Oil_Water_Heat_Exchanger_Problem.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.2 ')\n",
+"\n",
+"//mass flow rate of hot fluid in kg/s\n",
+"mh = 1;\n",
+"//Specific heat of hot fluid n J/kgK\n",
+"ch = 2100;\n",
+"//Inlet temperature of hot fluid in degree C\n",
+"Thin = 340;\n",
+"//Outlet temperature of hot fluid in degree C\n",
+"Thout = 310;\n",
+"//Specific heat of cold fluid n J/kgK\n",
+"cc = 4187;\n",
+"//Inlet temperature of cold fluid in degree C\n",
+"Tcin = 290;\n",
+"//Outlet temperature of cold fluid in degree C\n",
+"Tcout = 300;\n",
+"\n",
+"//The heat capacity rate of the water in J/kgK is, from Eq. (8.14)\n",
+"cc = ch*((Thin-Thout)/(Tcout-Tcin));\n",
+"\n",
+"//Temperature ratio P and Z is, from Eq. (8.20)\n",
+"P = (Thin-Thout)/(Thin-Tcin); // P Temperature ratio\n",
+"Z = (Tcout-Tcin)/(Thin-Thout); // Z Temperature ratio\n",
+"\n",
+"//From Fig. 8.14, F0.94 and the mean temperature difference in degree K is\n",
+"//F Value\n",
+"F = 0.94;\n",
+"//Temperature difference at inlet in degree K\n",
+"deltaTa = Thin-Tcout;\n",
+"//Temperature difference at outlet in degree K\n",
+"deltaTb = Thout-Tcin;\n",
+"//LMTD in degree K\n",
+"LMTD = (deltaTa-deltaTb)/log(deltaTa/deltaTb);\n",
+"//Mean temperature difference in degree K\n",
+"deltaTmean = F*LMTD;\n",
+"\n",
+"//From Eq. (8.17) the overall conductance in W/K is\n",
+"UA = ((mh*ch)*(Thin-Thout))/deltaTmean;\n",
+"\n",
+"//With reference to the new conditions and Eq. 6.62\n",
+"//Conductance in W/K\n",
+"UA = UA*((3/4)^0.8);\n",
+"//Number of transfer units(NTU) value\n",
+"NTU = UA/(((3/4)*mh)*ch);\n",
+"//Heat capacity ratio\n",
+"K = (((3/4)*mh)*ch)/cc;\n",
+"\n",
+"//From Fig. 8.20 the effectiveness is equal to 0.61\n",
+"//Effectiveness\n",
+"E = 0.61;\n",
+"//New inlet temperaturre of oil in degree K\n",
+"Toilin = 370;\n",
+"//From eq. 8.22a\n",
+"disp('Outlet temperature of oil in degree K')\n",
+"//Outlet temperature of oil in degree K\n",
+"Toilout = Toilin-E*(Toilin-Tcin)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: Heating_of_Air_From_Gases.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.3 ')\n",
+"\n",
+"//Airflow rate in kg/s\n",
+"mair = 0.75;\n",
+"//Inlet temperature of air in degree K\n",
+"Tairin = 290;\n",
+"//Hot gas flow rate in kg/s\n",
+"mgas = 0.6;\n",
+"//Inlet temperature of hot gases in degree K\n",
+"Tgasin = 1150;\n",
+"//wetted perimeter on air side in m\n",
+"Pa = 0.703;\n",
+"//wetted perimeter on gas side in m\n",
+"Pg = 0.416;\n",
+"//cross-sectional area of gas passage (per passage) in m2\n",
+"Ag = 0.0016;\n",
+"//cross-sectional area of air passage (per passage) in m2\n",
+"Aa = 0.002275;\n",
+"//heat transfer surface area in m2\n",
+"A = 2.52;\n",
+"\n",
+"//Given that unit is of the cross-flow type, with both fluids unmixed.\n",
+"\n",
+"//length of air duct in m\n",
+"La = 0.178;\n",
+"//hydraulic diameter of air duct in m\n",
+"Dha = (4*Aa)/Pa;\n",
+"//length of gas duct in m\n",
+"Lg = 0.343;\n",
+"//hydraulic diameter of gas duct in m\n",
+"Dhg = (4*Ag)/Pg;\n",
+"\n",
+"//The heat transfer coefficients can be evaluated from Eq. (6.63) for flow\n",
+"//in ducts.\n",
+"//Heat transfer coefficient for air in W/m2K\n",
+"ha = La/Dha;\n",
+"//Heat transfer coefficient for gas in W/m2K\n",
+"hg = Lg/Dhg;\n",
+"\n",
+"//Assuming the average air-side bulk temperature to be 573 K and the average\n",
+"//gas-side bulk temperature to be 973 K, the properties at those temperatures are, from Appendix 2, Table 28.\n",
+"\n",
+"//Specific heat of air in J/kgK\n",
+"cair = 1047;\n",
+"//Thermal conductivity of air in W/mK\n",
+"kair = 0.0429;\n",
+"//Dynamic viscosity of air in Ns/m2\n",
+"muair = 0.0000293;\n",
+"//Prandtl number of air\n",
+"Prair = 0.71;\n",
+"\n",
+"//Specific heat of hot gas in J/kgK\n",
+"cgas = 1101;\n",
+"//Thermal conductivity of hot gas in W/mK\n",
+"kgas = 0.0623;\n",
+"//Dynamic viscosity of hot gas in Ns/m2\n",
+"mugas = 0.00004085;\n",
+"//Prandtl number of hot gas\n",
+"Prgas = 0.73;\n",
+"\n",
+"//The mass flow rates per unit area in kg/m2s\n",
+"//mass flow rate of air in kg/m2s\n",
+"mdotair = mair/(19*Aa);\n",
+"//mass flow rate of gas in kg/m2s\n",
+"mdotgas = mgas/(18*Ag);\n",
+"\n",
+"//The Reynolds numbers are\n",
+"//Reynolds number for air\n",
+"Reair = (mdotair*Dha)/muair;\n",
+"//Reynolds number for gas\n",
+"Regas = (mdotgas*Dhg)/mugas;\n",
+"\n",
+"//Using Eq. (6.63), the average heat transfer coefficients in W/m2K\n",
+"hair = (((0.023*kair)*(Reair^0.8))*(Prair^0.4))/Dha;\n",
+"\n",
+"//Since La/DHa=13.8, we must correct this heat transfer coefficient for\n",
+"//entrance effects, per Eq. (6.68). The correction factor is 1.377.\n",
+"//Corrected heat transfer coefficient of air in W/m2K\n",
+"hair = 1.377*hair;\n",
+"\n",
+"//Similarly for hot gas\n",
+"//Heat transfer coefficient in W/m2K\n",
+"hgas = (((0.023*kgas)*(Regas^0.8))*(Prgas^0.4))/Dhg;\n",
+"//Correction factor=1.27;\n",
+"//Corrected heat transfer coefficient of gas in W/m2K\n",
+"hgas = 1.27*hgas;\n",
+"\n",
+"//Overall conductance in W/K\n",
+"UA = 1/(1/(hair*A)+1/(hgas*A));\n",
+"\n",
+"//The number of transfer units, based on the gas, which has the smaller heat capacity rate\n",
+"NTU = UA/(mgas*cgas);\n",
+"\n",
+"//The heat capacity-rate ratio\n",
+"Z = (mgas*cgas)/(mair*cair);\n",
+"\n",
+"//and from Fig. 8.21, the effectiveness is approximately 0.13.\n",
+"//Effectiveness\n",
+"E = 0.13;\n",
+"\n",
+"disp('Gas outlet temperature in degree K')\n",
+"//Gas outlet temperature in degree K\n",
+"Tgasout = Tgasin-E*(Tgasin-Tairin)\n",
+"\n",
+"disp('Air outlet temperature in degree K')\n",
+"//Gas outlet temperature in degree K\n",
+"Tairout = Tairin+(Z*E)*(Tgasin-Tairin)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: Heating_Seawater_From_Condenser.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.4 ')\n",
+"\n",
+"//Pressure of steam in inches of Hg\n",
+"P = 4;\n",
+"//At this pressure, temperture of condensing steam in degree F\n",
+"Thin = 125.4;\n",
+"\n",
+"//Flow rate of seawater in lb/s\n",
+"mw = 25000;\n",
+"//Specific heat of water in Btu/lb F\n",
+"c = 0.95;\n",
+"//Inlet and outlet temperature of seawater in degree F\n",
+"Tcin = 60;\n",
+"Tcout = 110;\n",
+"//Heat transfer coefficient of steam in Btu/h ft2 F\n",
+"hsteam = 600;\n",
+"//Heat transfer coefficient of water in Btu/h ft2 F\n",
+"hwater = 300;\n",
+"//Outer diameter in inches\n",
+"OD = 1.125;\n",
+"//Inner diameters in inches\n",
+"ID = 0.995;\n",
+"\n",
+"//required effectiveness of the exchanger\n",
+"E = (Tcout-Tcin)/(Thin-Tcin);\n",
+"\n",
+"//For a condenser, Cmin/Cmax=0, and from Fig. 8.20, NTU =1.4.\n",
+"NTU = 1.4;\n",
+"\n",
+"//The fouling factors from Table 8.2 are 0.0005 h ft2°F/Btu for both sides of the tubes.\n",
+"//F-Factor\n",
+"F = 0.0005;\n",
+"\n",
+"//The overall design heat-transfer coefficient in Btu/h ft2 F per unit outside area of tube is, from Eq. (8.6)\n",
+"U = 1/(1/hsteam+F+(OD/((2*12)*60))*log(OD/ID)+(F*OD)/ID+OD/(hwater*ID));\n",
+"\n",
+"//The total area A is 20*pi*D*L, and since U*A/Cmin=1.4\n",
+"\n",
+"disp('The length of the tube in ft is')\n",
+"//The length of the tube in ft\n",
+"L = (((1.4*mw)*c)*12)/(((Tcin*%pi)*OD)*U)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: Theoretical_Problem.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.5 ')\n",
+"\n",
+"disp('There is no computations in this example.')\n",
+"disp('It is theoretical')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_Of_Heat_Transfer_by_F_Kreith/9-Heat_Transfer_by_Radiation.ipynb b/Principles_Of_Heat_Transfer_by_F_Kreith/9-Heat_Transfer_by_Radiation.ipynb
new file mode 100644
index 0000000..fa32a70
--- /dev/null
+++ b/Principles_Of_Heat_Transfer_by_F_Kreith/9-Heat_Transfer_by_Radiation.ipynb
@@ -0,0 +1,1102 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: Heat Transfer by Radiation"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.10: Shape_Factor_Computatio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 9, Example 8')\n",
+"//Window area in ft^2\n",
+"A1=6*20;\n",
+"//Second area in ft^2\n",
+"A2=4*20;\n",
+"//Assuming A5=A1+A2\n",
+"//Area in ft^2\n",
+"A5=A1+A2;\n",
+"\n",
+"//From Fig. 9.27\n",
+"//Shape Factors required\n",
+"F56=0.19;\n",
+"F26=0.32;\n",
+"F53=0.08;\n",
+"F23=0.19;\n",
+"\n",
+"disp('Shape factor')\n",
+"//Shape factor\n",
+"F14=(A5*F56-A2*F26-A5*F53+A2*F23)/A1\n",
+"disp('Thus,only about 10% of the light passing through the window will impinge on the floor area A4')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.11: Liquid_Oxygen_in_Spherical_Container.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 9 Example # 9.11 ')\n",
+"\n",
+"//Absolute boiling temperature of liquid oxygen in R\n",
+"T1 = 460-297;\n",
+"//Absolute temperature of sphere in R\n",
+"T2 = 460+30;\n",
+"//Diameter of inner sphere in ft\n",
+"D1 = 1;\n",
+"//Area of inner sphere in ft2\n",
+"A1 = (%pi*D1)*D1;\n",
+"//Diameter of outer sphere in ft\n",
+"D2 = 1.5;\n",
+"//Area of outer sphere in ft2\n",
+"A2 = (%pi*D2)*D2;\n",
+"//Stefans constant\n",
+"sigma = 0.1714;\n",
+"//Emissivity of Aluminium\n",
+"epsilon1 = 0.03;//Sphere1\n",
+"epsilon2 = 0.03;//Sphere2\n",
+"\n",
+"//Using Eq. 9.74\n",
+"disp('Rate of heat flow by radiation to the oxygen in Btu/h is')\n",
+"//Rate of heat flow by radiation to the oxygen in Btu/h\n",
+"q = ((A1*sigma)*((T1/100)^4-(T2/100)^4))/(1/epsilon1+(A1/A2)*((1-epsilon2)/epsilon2))"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.12: Radiative_Exchange_Between_Cone_Surfaces.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 9 Example # 9.12 ')\n",
+"\n",
+"// Provide all given inputs and constants of the problem\n",
+"\n",
+"// Stefan–Boltzmann constant (W/m^2/K^4)\n",
+"SIGMA = 0.0000000567;\n",
+"\n",
+"//Area(1)=R1^2*pi in m2\n",
+"AR(1,1) = 9*%pi;\n",
+"\n",
+"// The physical parameters, e.g., shape factor and emissivity, are evaluated.\n",
+"\n",
+"//All F(i,j) are shape factors.\n",
+"F(1,1) = 0;\n",
+"F(1,2) = 0.853;\n",
+"F(1,3) = 0.147;\n",
+"F(2,1) = 0.372;\n",
+"F(2,2) = 0.498;\n",
+"F(2,3) = 0.13;\n",
+"F(3,1) = 0.333;\n",
+"F(3,2) = 0.667;\n",
+"F(3,3) = 0;\n",
+"\n",
+"//ESP are emissivity given in the problem\n",
+"ESP(1,1) = 0.6;\n",
+"ESP(1,3) = 0.9;\n",
+"\n",
+"//Temperature in degree K\n",
+"T(1,1) = 1200;\n",
+"//Temperature in degree K\n",
+"T(1,3) = 600;\n",
+"\n",
+"//Emissive Power of blackbody in W/m2\n",
+"EB(1,1) = SIGMA*(T(1)^4);\n",
+"//Emissive Power of blackbody in W/m2\n",
+"EB(1,3) = SIGMA*(T(3)^4);\n",
+"\n",
+"// The values of the elements of the coefficient matrix A in the equation\n",
+"//[A][X]=[B] are specified\n",
+"A(1,1) = 1-F(1,1)+ESP(1)/(1-ESP(1));\n",
+"A(1,2) = -F(1,2);\n",
+"A(1,3) = -F(1,3);\n",
+"A(2,1) = -F(2,1);\n",
+"A(2,2) = 1-F(2,2);\n",
+"A(2,3) = -F(2,3);\n",
+"A(3,1) = -F(3,1);\n",
+"A(3,2) = -F(3,2);\n",
+"A(3,3) = 1-F(3,3)+ESP(3)/(1-ESP(3));\n",
+"\n",
+"// The values of the right-hand side vector B are specified.\n",
+"B(1,1) = (EB(1)*ESP(1))/(1-ESP(1));\n",
+"B(1,2) = 0;\n",
+"B(3) = (EB(3)*ESP(3))/(1-ESP(3));\n",
+"\n",
+"// The inversion routine is used to solve for X\n",
+"disp('Net radiative exchange between the top and bottom surface in W')\n",
+"//Net radiative exchange between the top and bottom surface in W\n",
+"X = inv(A)*B'// solutions for J"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.13: Temperature_of_Surface_of_Cone.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 9 Example # 9.13 ')\n",
+"\n",
+"// Provide all given inputs and constants of the problem\n",
+"SIGMA = 0.0000000567;// Stefan-Boltzmann constant (W m^2 K^4)\n",
+"\n",
+"//all F(I,J) are shape factor\n",
+"F(1,1) = 0;\n",
+"F(1,2) = 0.853;\n",
+"F(1,3) = 0.147;\n",
+"F(2,1) = 0.372;\n",
+"F(2,2) = 0.498;\n",
+"F(2,3) = 0.13;\n",
+"F(3,1) = 0.333;\n",
+"F(3,2) = 0.667;\n",
+"F(3,3) = 0;\n",
+"\n",
+"//Area(1)=R1^2*pi in m2\n",
+"AR(1,1) = 9*%pi;\n",
+"\n",
+"//ESP are total hemispheric emissivity in W/m2\n",
+"ESP(1,1) = 0.6;\n",
+"ESP(1,3) = 0.9;\n",
+"\n",
+"//Heat exchange in W\n",
+"Q1 = 300000;\n",
+"\n",
+"//Temperature in degree K\n",
+"T(1,3) = 600;\n",
+"\n",
+"//EB blackbody emissive powers in W/m2\n",
+"EB(1,3) = SIGMA*(T(3)^4);\n",
+"\n",
+"// Evaluate elements of coefficient matrix\n",
+"A(1,1) = 1-F(1,1);\n",
+"A(1,2) = -F(1,2);\n",
+"A(1,3) = -F(1,3);\n",
+"A(2,1) = -F(2,1);\n",
+"A(2,2) = 1-F(2,2);\n",
+"A(2,3) = -F(2,3);\n",
+"A(3,1) = 0;\n",
+"A(3,2) = 0;\n",
+"A(3,3) = 1;\n",
+"\n",
+"// Evaluate elements of right hand side matrix\n",
+"B(1,1) = Q1/AR(1);\n",
+"B(1,2) = 0;\n",
+"B(3) = EB(3);\n",
+"\n",
+"// solve the system of equations for X\n",
+"X = inv(A)*B';\n",
+"\n",
+"//Required temperature in degree K\n",
+"T(1) = ((X(1)+(Q1*(1-ESP(1)))/(AR(1)*ESP(1)))/SIGMA)^0.25;\n",
+"//solution for temperatures\n",
+"disp('Temperature of surface 1 for the cone in degree K')\n",
+"T1 = T(1)//Value for the required temperature in K"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.14: Heat_Transfer_Between_Parallel_Plates.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 9 Example # 9.14 ')\n",
+"\n",
+"//Absolute temperature of first plate in degree R\n",
+"Ta = 2040+460;\n",
+"//Absolute temperature of second plate in degree R\n",
+"Tb = 540+460;\n",
+"//Stefans constant\n",
+"sigma = 0.1718;\n",
+"\n",
+"//For first radiation band, heat transfer is calculated\n",
+"//Emissivity of A\n",
+"epsilonA = 0.1;\n",
+"//Emissivity of B\n",
+"epsilonB = 0.9;\n",
+"//Shape factor\n",
+"Fab = 1/(1/epsilonA+1/epsilonB-1);\n",
+"//The percentage of the total radiation within a given band is obtained from Table 9.1.\n",
+"//Coefficients of T^4\n",
+"A = 0.375;\n",
+"//Coefficients of T^4\n",
+"B = 0.004;\n",
+"\n",
+"//Rate of heat transfer in first band in Btu/h ft2\n",
+"q1 = (Fab*sigma)*(A*((Ta/100)^4)-B*((Tb/100)^4));\n",
+"\n",
+"//Similarly for other two bands, heat transfer in Btu/h ft2\n",
+"q2 = 23000;\n",
+"//heat transfer in Btu/h ft2\n",
+"q3 = 1240;\n",
+"\n",
+"disp('Total rate of radiation heat transfer in Btu/h ft2')\n",
+"//heat transfer in Btu/h ft2\n",
+"q = q1+q2+q3"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.15: Emissivity_of_Gaseous_Mixture.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 9 Example # 9.15 ')\n",
+"\n",
+"//Temperature in degree K\n",
+"T = 800;\n",
+"//Diameter of sphere in m\n",
+"D = 0.4;\n",
+"//Partial pressure of nitrogen in atm\n",
+"PN2 = 1;\n",
+"//Partial pressure of H2O in atm\n",
+"PH2O = 0.4;\n",
+"//Partial pressure of CO2 in atm\n",
+"PCO2 = 0.6;\n",
+"\n",
+"//The mean beam length for a spherical mass of gas is obtained from Table 9.7\n",
+"//Beam length in m\n",
+"L = (2/3)*D;\n",
+"\n",
+"//The emissivities are given in Figs. 9.46 and 9.47\n",
+"//Emissivity of H2O\n",
+"epsilonH2O = 0.15;\n",
+"//Emissivity of CO2\n",
+"epsilonCO2 = 0.125;\n",
+"\n",
+"//N2 does not radiate appreciably at 800 K, but since the total gas pressure\n",
+"//is 2 atm, we must correct the 1-atm values for epsilon.\n",
+"//From Figs. 9.48 and 9.49 the pressure correction factors are\n",
+"//Pressure correction factor for H2O\n",
+"CH2O = 1.62;\n",
+"//Pressure correction factor for CO2\n",
+"CCO2 = 1.12;\n",
+"\n",
+"//From fig. 9.50\n",
+"//Chnage in emissivity\n",
+"deltaEpsilon = 0.014;\n",
+"\n",
+"//Finally, the emissivity of the mixture can be obtained from Eq. (9.114):\n",
+"disp('Emissivity of the mixture is')\n",
+"//Emissivity of the mixture\n",
+"epsilonMix = CH2O*epsilonH2O+CCO2*epsilonCO2-deltaEpsilon"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.16: Absorptivity_of_Gaseous_Mixture.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 9 Example # 9.16 ')\n",
+"\n",
+"//Total pressure in atm\n",
+"Pt = 2;\n",
+"//Temperature in degree K\n",
+"TH2O = 500;\n",
+"//Mean beam length in m\n",
+"L = 0.75;\n",
+"//Partial pressure of water vapor in atm\n",
+"PH2O = 0.4;\n",
+"//Source temperature in degree K\n",
+"Ts = 1000;\n",
+"\n",
+"//Since nitrogen is transparent, the absorption in the mixture is due to the water vapor alone.\n",
+"\n",
+"//Parameters required\n",
+"//A Parameter in atm-m\n",
+"A = PH2O*L;\n",
+"//B Parameter in atm\n",
+"B = (Pt+PH2O)/2;\n",
+"\n",
+"//From Figs. 9.46 and 9.48 we find\n",
+"//For water, C factor in SI units\n",
+"CH2O = 1.4;\n",
+"//Emissivity of water\n",
+"epsilonH2O = 0.29;\n",
+"\n",
+"\n",
+"//From Eq. (9.115) the absorptivity of H2O is\n",
+"disp('Absorptivity of H2O is')\n",
+"alphaH2O = (CH2O*epsilonH2O)*((TH2O/Ts)^0.45)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.17: Heat_Flow_From_Flue_Gas.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 9 Example # 9.17 ')\n",
+"\n",
+"//Temperature of flue gas in degree F\n",
+"Tgas = 2000;\n",
+"//Inner-wall surface temperature in degree F\n",
+"Tsurface = 1850;\n",
+"//Partial pressure of water in atm\n",
+"p = 0.05;\n",
+"//Convection heat transfer coefficient in Btu/h ft2 F\n",
+"h = 1;\n",
+"//Length of square duct in ft\n",
+"L = 2;\n",
+"//Volume in ft3\n",
+"V = L*L;\n",
+"//Surface area in ft2\n",
+"A = 4*L;\n",
+"\n",
+"//The rate of heat flow from the gas to the wall by convection per unit\n",
+"//length in Btu/h ft is\n",
+"qc = (h*A)*(Tgas-Tsurface);\n",
+"\n",
+"//Effective beam length in m\n",
+"L = ((0.3058*3.4)*V)/A;\n",
+"\n",
+"//Product of partial pressure and L\n",
+"k = p*L;\n",
+"\n",
+"//From Fig. 9.46, for pL=0.026 and T=2000F, we find\n",
+"\n",
+"//Emissivity\n",
+"epsilon = 0.035;\n",
+"//Absorptivity\n",
+"alpha = 0.039;\n",
+"//stefans constant\n",
+"sigma = 0.171;\n",
+"\n",
+"//Assuming that the brick surface is black, the net rate of heat flow from the gas to the wall by radiation is, according to Eq. (9.117)\n",
+"qr = (sigma*A)*(epsilon*(((Tgas+460)/100)^4)-alpha*(((Tsurface+460)/100)^4));//Btu/h\n",
+"\n",
+"disp('Total heat flow from the gas to the duct in Btu/h')\n",
+"//Total heat flow from the gas to the duct in Btu/h\n",
+"q = qc+qr"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.18: Estimation_of_True_Gas_Temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 9 Example # 9.18 ')\n",
+"\n",
+"//Emissivity\n",
+"epsilon = 0.8;\n",
+"//Stefan's constant\n",
+"sigma = 0.1714;\n",
+"//Temperature of walls in degree F\n",
+"Twall = 440;\n",
+"//Temperature indicated ny thermocouple in degree F\n",
+"Tt = 940;\n",
+"//Heat transfer coefficient in Btu/h ft2 F\n",
+"h = 25;\n",
+"\n",
+"//The temperature of the thermocouple is below the gas temperature because the couple loses heat by radiation to the wall.\n",
+"\n",
+"//Under steady-state conditions the rate of heat flow by radiation from the thermocouple junction to the wall equals the rate of heat flow by convection from the gas to the couple.\n",
+"\n",
+"//Using this heat balance, q/A in Btu/h ft2\n",
+"q = (epsilon*sigma)*(((Tt+460)/100)^4-((Twall+460)/100)^4);\n",
+"\n",
+"disp('True gas temperature in degree F')\n",
+"//True gas temperature in degree F\n",
+"Tg = Tt+q/h"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.19: Gas_Temperature_Measurement_With_Shielding.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 9 Example # 9.19 ')\n",
+"\n",
+"//Emissivity of thermocouple\n",
+"epsilonT = 0.8;\n",
+"//Emissivity of shield\n",
+"epsilonS = 0.3;\n",
+"//Stefan''s constant\n",
+"sigma = 0.1714;\n",
+"//Temperature of walls in degree F\n",
+"Tw = 440;\n",
+"//Temperature indicated ny thermocouple in degree F\n",
+"Tt = 940;\n",
+"//Heat transfer coefficient of thermocouple in Btu/h ft2 F\n",
+"hrt = 25;\n",
+"//Heat transfer coefficient of shield in Btu/h ft2 F\n",
+"hrs = 20;\n",
+"\n",
+"//Area for thermocouple be unity ft2\n",
+"At = 1;\n",
+"//Corresponding area of shield in ft2\n",
+"As = 4;//Inside dia=4*dia of thermocouple\n",
+"\n",
+"//From Eq. (9.76)\n",
+"//View factors Fts and Fsw\n",
+"Fts = 1/((1-epsilonT)/(At*epsilonT)+1/At+(1-epsilonS)/(As*epsilonS));\n",
+"Fsw = As*epsilonS;\n",
+"\n",
+"//Assuming a shield temperature of 900°F, we have, according to Eq. (9.118)\n",
+"//Temperature in degree F\n",
+"Ts = 923;\n",
+"\n",
+"//Coeffcients for heat balance are as following\n",
+"//A parameter Btu/h-F\n",
+"A = 9.85;//A=hrt*At\n",
+"//B parameter Btu/h-F\n",
+"B = 13.7;//B=hrs*As\n",
+"\n",
+"//Using heat balance\n",
+"disp('Correct temperature of gas in degree F')\n",
+"//Correct temperature of gas in degree F\n",
+"Tg = Ts+(B*(Ts-Tw)-A*(Tt-Ts))/((hrs*2)*As)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1: Analysis_of_Tungsten_Filament.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 9, Example 1')\n",
+"//Temperature of the tungsten filament in Kelvin\n",
+"T=1400;\n",
+"\n",
+"disp('a)Wavelength at which the monochromatic emissive power of the given tungsten filament is maximum in meters')\n",
+"//Wavelength in m\n",
+"lamda_max=2.898e-3/T\n",
+"\n",
+"disp('b)Monochromatic emissive power at calculated maximum wavelength in W/m^3')\n",
+"//Emissive power in W/m3\n",
+"Eb_max=12.87e-6*(T^5)\n",
+"\n",
+"//Given wavelength in meters\n",
+"lamda=5e-6;\n",
+"//Product of wavelength and temperature in m-K\n",
+"lamda_T=lamda*T;\n",
+"\n",
+"disp('c)Monochromatic emissive power at given wavelength in W/m^3')\n",
+"//Emissive power in W/m3\n",
+"Eb_lamda=Eb_max*(2.898e-3/(lamda_T))^5*(((%e^4.965)-1)/((%e^(0.014388/lamda_T)-1)))\n",
+"disp('Thus ,Monochromatic emissive power at 5e-6 m wavelength is 25.4% of the Monochromatic emissive power at maximum wavelength')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2: Transmission_of_Solar_Radiation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 9, Example 2')\n",
+"//Temperature at which sun is radiating as a blackbody in K\n",
+"T=5800;\n",
+"\n",
+"//Lower limit of wavelength for which glass is transparent in microns\n",
+"lamda_l=0.35;\n",
+"//lower limit of product of wavelength and temperature in micron-K\n",
+"lamda_l_T=lamda_l*T;\n",
+"//Lower limit of wavelength for which glass is transparent in microns\n",
+"lamda_u=2.7;\n",
+"//lower limit of product of wavelength and temperature in micron-K\n",
+"lamda_u_T=lamda_u*T;\n",
+"\n",
+"// For lamda_T= 2030, ratio of blackbody emission between zero and lamda_l to the total emission in terms of percentage\n",
+"r_l=6.7;\n",
+"// For lamda_T= 15660, ratio of blackbody emission between zero and lamda_u to the total emission in terms of percentage\n",
+"r_u=97;\n",
+"\n",
+"//Total radiant energy incident upon the glass from the sun in the wavelength range between lamda_l and lamda_u\n",
+"total_rad=r_u-r_l;\n",
+"disp('Percentage of solar radiation transmitted through the glass in terms of percentage')\n",
+"rad_trans=total_rad*0.92 //Since it is given that silica glass transmits 92% of the incident radiation"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.3: Solid_Angle_Calculation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 9, Example 3')\n",
+"//Area of the flat black surface in m^2\n",
+"A_1=10e-4;\n",
+"//Radiation emitted by the flat black surface in W/m^ sr\n",
+"I_1=1000;\n",
+"// Another surface having same area as A1 is placed relative to A1 such that length of radiation ray connecting dA_1 and dA_2 in meters\n",
+"r=0.5;\n",
+"//Area in m^2\n",
+"A_2=10e-4;\n",
+"// Since both areas are quite small, they can be approximated as differential surface areas and the solid angle can be calculated as\n",
+"//d_omega21=dA_n2/r^2 where dA_n2 is the projection of A2 in the direction normal to the incident radiation for dA_1,thus\n",
+"\n",
+"//Angle between the normal n_2 ant the radiation ray connecting dA_1 and dA_2\n",
+"theta_2=30;\n",
+"\n",
+"//Therefore solid angle in sr\n",
+"d_omega21=(A_2*cosd(theta_2)/(r^2));\n",
+"\n",
+"disp('Irradiation of A_2 by A_1 in watt')\n",
+"//Irradiation in W\n",
+"q_r12= I_1*A_1*cosd(90-theta_2)*d_omega21"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4: Emissivity_of_Aluminium_Surface.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 9, Example 4')\n",
+"//Hemispherical emissivity of an aluminum paint at wavelengths below 3 microns\n",
+"epsilon_lamda_1=0.4;\n",
+"//Hemispherical emissivity of an aluminum paint at longer wavelengths\n",
+"epsilon_lamda_2=0.8;\n",
+"//At room temperature 27 degree celcius, product of lamda and T in micron-K\n",
+"lamda_T_1=3*(27+273);\n",
+"//At elevated temperature 527 degree celcius, product of lamda and T in micron-K\n",
+"lamda_T_2=3*(527+273);\n",
+"//From Table 9.1\n",
+"// For lamda_T_1, ratio of blackbody emission between zero and lamda_l to the total emission\n",
+"r_1=0.00016;\n",
+"// For lamda_T_2, ratio of blackbody emission between zero and lamda_u to the total emission\n",
+"r_2=0.14;\n",
+"disp('Thus, the emissivity at 27°C')\n",
+"//Emissivity\n",
+"epsilon=0.8\n",
+"disp('emissivity at 527°C')\n",
+"//Emissivity at higher temp.\n",
+"epsilon=(r_2*epsilon_lamda_1)+(epsilon_lamda_2*0.86)\n",
+"disp('The reason for the difference in the total emissivity is that at the higher temperature,the percentage of the total emissive power in the low-emittance region of the paint is appreciable, while at the lower temperature practically all the radiation is emittedat wavelengths above 3 microns')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5: Absorptivity_of_Aluminium_Surface.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 9, Example 5')\n",
+"//Temperature of the sun in K\n",
+"T=5800;\n",
+"//For the case of Solar irradiation, value of the product of lamda and T in micron-K\n",
+"lamda_T_1=3*T;// value of lamda is taken from Example 9.4\n",
+"//From table 9.1\n",
+"// For lamda_T_1, ratio of blackbody emission between zero and lamda_l to the total emission\n",
+"r_1=0.98;\n",
+"//This means that 98% of the solar radiation falls below 3 microns\n",
+"//Hemispherical emissivity of an aluminum paint at wavelengths below 3 microns\n",
+"epsilon_lamda_1=0.4;\n",
+"//Hemispherical emissivity of an aluminum paint at longer wavelengths\n",
+"epsilon_lamda_2=0.8;\n",
+"disp('Effective absorptivity for first case')\n",
+"//Effective absorptivity\n",
+"alpha_1=(r_1*epsilon_lamda_1)+(epsilon_lamda_2*0.02)\n",
+"//For the case second with source at 800 K, value of the product of lamda and T in micron-K\n",
+"lamda_T_2=3*800;\n",
+"// For lamda_T_2, ratio of blackbody emission between zero and lamda_l to the total emission\n",
+"r_2=0.14;\n",
+"disp('Effective absorptivity for second case')\n",
+"//Effective absorptivity\n",
+"alpha_2=(r_2*epsilon_lamda_1)+(epsilon_lamda_2*0.86)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.6: Analysis_of_Painted_Surface.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 9, Example 6')\n",
+"//Stefan–Boltzmann constant in W/m^2 K^4\n",
+"sigma=5.67e-8;\n",
+"//Temperature of the painted surface in K\n",
+"T=1000;\n",
+"//Temperature of the sun in K\n",
+"T_s=5800;\n",
+"//Given, below 2 microns the emissivity of the surface is 0.3,so\n",
+"lamda_1=2; //wavelength in microns\n",
+"epsilon_1=0.3; //emissivity\n",
+"\n",
+"//Given, between 2 and 4 microns emmisivity is 0.9,so\n",
+"lamda_2=4;//wavelength in microns\n",
+"epsilon_2=0.9;//emissivity\n",
+"\n",
+"//Given, above 4 microns emmisivity is 0.5, so\n",
+"epsilon_3=0.5;//emissivity\n",
+"\n",
+"//value of the product of lamda_1 and T in micron-K\n",
+"lamda_1_T=2e-3*T;\n",
+"\n",
+"//From table 9.1\n",
+"// For lamda_1_T, ratio of blackbody emission between zero and lamda_l to the total emission\n",
+"r_1=0.0667; //1st ratio\n",
+"\n",
+"//value of the product of lamda_2 and T in micron-K\n",
+"lamda_2_T=2e-3*T;\n",
+"//From table 9.1\n",
+"// For lamda_2_T, ratio of blackbody emission between zero and lamda_l to the total emission\n",
+"r_2=0.4809; //2nd ratio\n",
+"\n",
+"disp('a)Effective emissivity over the entire spectrum')\n",
+"//Effective emissivity\n",
+"epsilon_bar=epsilon_1*r_1+epsilon_2*(r_2-r_1)+epsilon_3*(1-r_2)\n",
+"\n",
+"disp('b)Emissive power in W/m^2')\n",
+"//Emissive power in W/m^2\n",
+"E=epsilon_bar*sigma*T^4\n",
+"\n",
+"//value of the product of lamda_1 and T_s in micron-K\n",
+"lamda_1_T_s=2e-3*T_s;\n",
+"//From table 9.1\n",
+"// For lamda_1_T_s, ratio of blackbody emission between zero and lamda_l to the total emission\n",
+"r_1_s=0.941;\n",
+"//value of the product of lamda_2 and T_s in micron-K\n",
+"lamda_2_T_s=2e-3*T_s;\n",
+"//From table 9.1\n",
+"// For lamda_2_T_s, ratio of blackbody emission between zero and lamda_l to the total emission\n",
+"r_2_s=0.99;\n",
+"disp('c) Average solar absorptivity')\n",
+"//Average solar absorptivity\n",
+"alpha_s=epsilon_1*r_1_s+epsilon_2*(r_2_s-r_1_s)+epsilon_3*(1-r_2_s)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.7: Analysis_of_an_Oxidised_Surface.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 9, Example 7')\n",
+"//Temperature of the oxidised surface in Kelvin\n",
+"T=1800;\n",
+"//Area of the oxidised surface in m^2\n",
+"A=5e-3;\n",
+"//Stefan–Boltzmann constant in W/m^2 K^4\n",
+"sigma=5.67e-8;\n",
+"disp('a)Emissivity perpendicular to the surface')\n",
+"//Emissivity\n",
+"epsilon_zero=0.70*cosd(0)\n",
+"disp('b)Hemispherical emissivity')\n",
+"//Hemispherical emissivity\n",
+"epsilon_bar=((-1.4)/3)*((cosd(90))^3-(cosd(0))^3)\n",
+"disp('c)Emissive Power in Watt')\n",
+"//Emissive Power in W\n",
+"E=epsilon_bar*A*sigma*T^4"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.8: Theoretical_Problem.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 9, Example 8')\n",
+"\n",
+"// Theoretical Proof\n",
+"disp('The given example is theoretical and does not involve any numerical computation')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.9: Shape_Factor_in_Window_Arrangement.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 9, Example 9')\n",
+"//Window arrangement consists of a long opening with dimensions\n",
+"//Height in meters\n",
+"h=1;\n",
+"//Length in meters\n",
+"l=5;\n",
+"//width of table in meters\n",
+"w=2;\n",
+"//Assuming that window and table are sufficiently long and applying crossed string method, we get\n",
+"//Distance ab in m\n",
+"ab=0;\n",
+"//Distance cb in m\n",
+"cb=w;\n",
+"//Distance ad in m\n",
+"ad=h;\n",
+"//Distance cd in m\n",
+"cd=sqrt(l);\n",
+"\n",
+"disp('Shape factor between the window and the table')\n",
+"//Shape factor between the window and the table\n",
+"F_12=0.5*(ad+cb-cd)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}