1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 2: Heat Conduction"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.10: Transient_Response_of_Thermocouple.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"// Display mode\n",
"mode(0);\n",
"\n",
"// Display warning for floating point exception\n",
"ieee(1);\n",
"\n",
"clc;\n",
"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.10 ')\n",
"\n",
"//Diameter of copper wire in m\n",
"D = 0.1/100;\n",
"//Initial temperature in degree C\n",
"To = 150;\n",
"//Final surrounding temperature in degree C of air and water\n",
"Tinfinity = 40;\n",
"\n",
"//From table 12, appendix 2, we get the following data values for copper\n",
"//Thermal conductivity in W/mK\n",
"k = 391;\n",
"//Specific heat in J/kgK\n",
"c = 383;\n",
"//Density in kg/m3\n",
"rho = 8930;\n",
"\n",
"//Surface area of wire per unit length in m\n",
"A = %pi*D;\n",
"//Volume of wire per unit length in m2\n",
"V = ((%pi*D)*D)/4;\n",
"\n",
"//Heat transfer coefficient in the case of water in W/m2K\n",
"h = 80;\n",
"//Biot number in water\n",
"bi = (h*D)/(4*k);\n",
"//The temperature response is given by Eq. (2.84)\n",
"\n",
"//For water Bi*Fo is 0.0936t\n",
"//For air Bi*Fo is 0.0117t\n",
"\n",
"for i = 1:130\n",
" //Position of grid\n",
" x(1,i) = i;\n",
" // Temperature of water in degree C\n",
" Twater(1,i) = Tinfinity+(To-Tinfinity)*exp(-0.0936*i);\n",
" // Temperature of air in degree C\n",
" Tair(1,i) = Tinfinity+(To-Tinfinity)*exp(-0.0117*i);\n",
"end;\n",
"//Plotting curve\n",
"plot(x,Twater,'--r')\n",
"set(gca(),'auto_clear','off')\n",
"//Plotting curve\n",
"plot(x,Tair)\n",
"//Labelling axis\n",
"xlabel('time')\n",
"ylabel('temperature')\n",
"disp('Temperature drop in water is more than that of air')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.11: Minimum_Depth_of_Water_Mains.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"// Display mode\n",
"mode(0);\n",
"\n",
"// Display warning for floating point exception\n",
"ieee(1);\n",
"\n",
"clc;\n",
"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.11 ')\n",
"\n",
"//Initial temperature of soil in degree C\n",
"Ti = 20;\n",
"//Surface temperature of soil\n",
"Ts = -15;\n",
"//Critical temperature (Freezing temperature) in degree C\n",
"Tc = 0;\n",
"//Time in days\n",
"t = 60;\n",
"//Density of soil in kg/m3\n",
"rho = 2050;\n",
"//Thermal conductivity of soil in W/mK\n",
"k = 0.52;\n",
"//Specific heat in J/kgK\n",
"c = 1840;\n",
"//Diffusivity in m2/sec\n",
"alpha = k/(rho*c);\n",
"\n",
"//Finding the value of following to proceed further\n",
"//Z value\n",
"z = (Tc-Ts)/(Ti-Ts);\n",
"\n",
"//From table 43, it corresponds to an error function value of 0.4,\n",
"//proceeding\n",
"\n",
"disp('Minimum depth at which one must place a water main below the surface to avoid freezing in m is')\n",
"//Minimum depth at which one must place a water main below the surface to avoid freezing in m\n",
"xm = (0.4*2)*((((alpha*t)*24)*3600)^0.5)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.12: Steel_Component_Fabrication_Process.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"// Display mode\n",
"mode(0);\n",
"\n",
"// Display warning for floating point exception\n",
"ieee(1);\n",
"\n",
"clc;\n",
"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.12 ')\n",
"\n",
"//Length of steel component in m\n",
"L = 2;\n",
"//Radius of steel component in m\n",
"ro = 0.1;\n",
"//Thermal conductivity of steel in W/mK\n",
"k = 40;\n",
"//Thermal diffusivity in m2/s\n",
"alpha = 0.00001;\n",
"//Initital temperature in degree C\n",
"Ti = 400;\n",
"//Surrounding temperature in degree C\n",
"Tinfinity = 50;\n",
"//Heat transfer coefficient in W/m2K\n",
"h = 200;\n",
"//time of immersion in mins\n",
"t = 20;\n",
"\n",
"//Since the cylinder has a length 10 times the diameter, we can neglect end\n",
"//effects.\n",
"\n",
"//Calculating biot number\n",
"bi = (h*ro)/k;\n",
"if bi>0.1 then\n",
" //Calculating fourier number\n",
" fo = ((alpha*t)*60)/(ro*ro);\n",
" //The initial amount of internal energy stored in the cylinder per unit\n",
" //length in Ws/m\n",
" Q = ((((k*%pi)*ro)*ro)*(Ti-Tinfinity))/alpha;\n",
"\n",
" //The dimensionless centerline temperature for 1/Bi= 2.0 and Fo= 1.2 from\n",
" //Fig. 2.43(a)\n",
" //Centreline temperature in degree C\n",
" T = Tinfinity+0.35*(Ti-Tinfinity);\n",
" disp('Centreline temperature in degree C is')\n",
" T\n",
" //The surface temperature at r/r0= 1.0 and t= 1200 s is obtained from Fig. 2.43(b) in terms of the centerline temperature\n",
" //Surface temperature in degree C\n",
" Tr = Tinfinity+0.8*(T-Tinfinity);\n",
" disp('Surface temperature in degree C is')\n",
" Tr\n",
" //Then the amount of heat transferred from the steel rod to the water can be obtained from Fig. 2.43(c). Since Q(t)/Qi= 0.61,\n",
" disp('The heat transferred to the water during the initial 20 min in Wh is')\n",
" //The heat transferred to the water during the initial 20 min in Wh\n",
" Q = ((0.61*L)*Q)/3600\n",
"end;"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.13: Analysis_of_Concrete_Wall.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"// Display mode\n",
"mode(0);\n",
"\n",
"// Display warning for floating point exception\n",
"ieee(1);\n",
"\n",
"clc;\n",
"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.13 ')\n",
"\n",
"//Thickness of wall in m\n",
"L = 0.5;\n",
"//Initial temperature in degree C\n",
"Ti = 60;\n",
"//Combustion gas (Surrounding) temperature in degree C\n",
"Tinfinity = 900;\n",
"//Heat transfer coefficient in W/m2K\n",
"h = 25;\n",
"//Thermal conductivity in W/mk\n",
"k = 1.25;\n",
"//Specific heat in J/KgK\n",
"c = 837;\n",
"//Density in kg/m3\n",
"rho = 500;\n",
"//Thermal diffusivity in m2/s\n",
"alpha = 0.000003;\n",
"//Required temperature to achieve in degree C\n",
"Ts = 600;\n",
"\n",
"//Calculating temperature ratio\n",
"z = (Ts-Tinfinity)/(Ti-Tinfinity);\n",
"//Reciprocal biot number\n",
"bi = k/(h*L);\n",
"\n",
"\n",
"//From Fig. 2.42(a) we find that for the above conditions the Fourier number= 0.70 at the midplane.\n",
"//Time in hours\n",
"t = ((0.7*L)*L)/alpha;\n",
"disp('Time in hours is')\n",
"//Time in hours\n",
"t = t/3600\n",
"\n",
"//The temperature distribution in the wall 16 h after the transient was\n",
"//initiated can be obtained from Fig. 2.42(b) for various values of x/L\n",
"\n",
"disp('Temperature distribution in degree C is')\n",
"disp(' (x/l) = 1.00 0.80 0.60 0.40 0.20')\n",
"disp('Fraction = 0.13 0.41 0.64 0.83 0.96')\n",
"\n",
"//The heat transferred to the wall per square meter of surface area during\n",
"//the transient can be obtained from Fig. 2.42(c).\n",
"disp('Heat transfer in J/m2 is')\n",
"//Heat transfer in J/m2\n",
"Q = ((c*rho)*L)*(Ti-Tinfinity)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.14: Cylinder_Places_in_Hot_Oven.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"// Display mode\n",
"mode(0);\n",
"\n",
"// Display warning for floating point exception\n",
"ieee(1);\n",
"\n",
"clc;\n",
"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.14 ')\n",
"\n",
"//Radius of cylinder in m\n",
"ro = 0.05;\n",
"//Length of cylinder in m\n",
"L = 0.16;\n",
"//Thermal conductivity in W/mK\n",
"k = 0.5;\n",
"//Thermal diffusivity in m2/s\n",
"alpha = 0.0000005;\n",
"//Initial temperature in degree C\n",
"Ti = 20;\n",
"//Surrounding temperature in degree C\n",
"Tinfinity = 500;\n",
"//Heat transfer coefficient in W/m2K\n",
"h = 30;\n",
"//Time in mins\n",
"t = 30;\n",
"\n",
"//Biot number\n",
"bi = (h*ro)/k;\n",
"//Fourier number\n",
"fo = ((alpha*t)*60)/((L*L)/4);\n",
"\n",
"//From fig. 2.42(a)\n",
"//Po\n",
"P0 = 0.9;\n",
"//From fig. 2.42(a) and (b)\n",
"//Pl\n",
"PL = 0.243;\n",
"//From fig. 2.43(a)\n",
"//Co\n",
"C0 = 0.47;\n",
"//From fig. 2.43(a) and (b)\n",
"//Cr\n",
"CR = 0.155;\n",
"disp('Minimum temperature in degree C')\n",
"//Minimum temperature in degree C\n",
"Tmin = Tinfinity+((Ti-Tinfinity)*P0)*C0"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.1: Calculation_of_Heat_Transfer_Coeffcient.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"// Display mode\n",
"mode(0);\n",
"\n",
"// Display warning for floating point exception\n",
"ieee(1);\n",
"\n",
"clc;\n",
"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.1 ')\n",
"\n",
"//Heat generation rate in W/m3\n",
"qg = 1000000;\n",
"//Length along which heat will be dissipated in m (thickness)\n",
"L = 0.01;\n",
"//Thermal conductivity at the required temperature in W/mK\n",
"k = 64;\n",
"\n",
"//Temperature of surrounding oil in degree C\n",
"Tinfinity = 80;\n",
"//Temperature of heater in degree C to be maintained\n",
"T1 = 200;\n",
"\n",
"disp('heat transfer coefficient in W/m2K from a heat balance')\n",
"//Heat transfer coefficient in W/m2K\n",
"h = ((qg*L)/2)/(T1-Tinfinity)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.2: Insulated_vs_Uninsulated_Copper_Pipe.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"// Display mode\n",
"mode(0);\n",
"\n",
"// Display warning for floating point exception\n",
"ieee(1);\n",
"\n",
"clc;\n",
"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.2 ')\n",
"\n",
"disp('Case of Uninsualted pipe')\n",
"//Calculating resistance to heat flow at internal surface\n",
"\n",
"//Internal radius in m\n",
"ri = 0.05;\n",
"//Heat transfer coefficient at inner surface for steam condensing in W/m2K\n",
"hci = 10000;\n",
"//Resistance in mK/W\n",
"R1 = 1/(((2*%pi)*ri)*hci);\n",
"\n",
"//Calculating resistance to heat flow at external surface\n",
"\n",
"//External radius in m\n",
"ro = 0.06;\n",
"//Heat transfer coefficient at outer surface in W/m2K\n",
"hco = 15;\n",
"//Resistance in mK/W\n",
"R3 = 1/(((2*%pi)*ro)*hco);\n",
"\n",
"//Calcualting resistance to heat flow due to pipe\n",
"\n",
"//Thermal conductivity of pipe in W/mK\n",
"kpipe = 400;\n",
"//Resistance in mK/W\n",
"R2 = log(ro/ri)/((2*%pi)*kpipe);\n",
"\n",
"//Temperatures of steam(pipe) and surrounding(air) in degree C\n",
"Ts = 110;\n",
"Tinfinity = 30;\n",
"\n",
"disp('Heat loss from uninsulated pipe in W/m is therefore')\n",
"//Heat loss from uninsulated pipe in W/m \n",
"q = (Ts-Tinfinity)/(R1+R2+R3)\n",
"\n",
"\n",
"disp('Case of insulated pipe')\n",
"//Calculating additional resistance between outer radius and new outer\n",
"//radius\n",
"\n",
"//Thermal conductivity of insulation in W/mK\n",
"k = 0.2;\n",
"//New outer radius in m\n",
"r3 = 0.11;\n",
"//Resistance in mK/W\n",
"R4 = log(r3/ro)/((2*%pi)*k);\n",
"\n",
"//Calculating new outer resistance\n",
"R0 = 1/(((2*%pi)*r3)*hco);\n",
"\n",
"\n",
"disp('Heat loss from insulated pipe in W/m is therefore')\n",
"//Heat loss from insulated pipe in W/m\n",
"q = (Ts-Tinfinity)/(R1+R2+R4+R0)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.3: Hot_Fluid_Flowing_Through_Pipe.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"// Display mode\n",
"mode(0);\n",
"\n",
"// Display warning for floating point exception\n",
"ieee(1);\n",
"\n",
"clc;\n",
"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.3 ')\n",
"\n",
"//Outer radius in m\n",
"ro = 0.02;\n",
"//Inner radius in m\n",
"ri = 0.015;\n",
"//Thermal conductivity of plastic in W/mK\n",
"k = 0.5;\n",
"//Internal convection heat transfer coefficient in W/m2K\n",
"hc1 = 300;\n",
"//Temperature of fluid in pipe in degree C\n",
"Thot = 200;\n",
"//Temperature of outside in degree C\n",
"Tcold = 30;\n",
"//External convection heat transfer coefficient in W/m2K\n",
"hc0 = 10;\n",
"\n",
"disp('Overall heat transfer coefficient in W/m2K is')\n",
"//Overall heat transfer coefficient in W/m2K\n",
"U0 = 1/(ro/(ri*hc1)+(ro*log(ro/ri))/k+1/hc0)\n",
"\n",
"disp('The heat loss per unit length in W/m is')\n",
"//The heat loss per unit length in W/m\n",
"q = (((U0*2)*%pi)*ro)*(Thot-Tcold)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.4: Boiling_Off_Of_Nitrogen.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"// Display mode\n",
"mode(0);\n",
"\n",
"// Display warning for floating point exception\n",
"ieee(1);\n",
"\n",
"clc;\n",
"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.4 ')\n",
"\n",
"//Temperature of liquid nitrogen in degree K\n",
"Tnitrogen = 77;\n",
"//Radius of container in m\n",
"ri = 0.25;\n",
"//Temperature of surrounding air in degree K\n",
"Tinfinity = 300;\n",
"//Thermal conductivity of insulating silica powder in W/mK\n",
"k = 0.0017;\n",
"//Outer radius of container with insulation in m\n",
"ro = 0.275;\n",
"//Latent heat of vaporization of liquid nitrogen in J/kg\n",
"hgf = 200000;\n",
"//convection coefficient at outer surface in W/m2K\n",
"hco = 20;\n",
"\n",
"//Calcaulting heat transfer to nitrogen\n",
"q = (Tinfinity-Tnitrogen)/(1/((((4*%pi)*ro)*ro)*hco)+(ro-ri)/((((4*%pi)*k)*ro)*ri));\n",
"\n",
"disp(' rate of liquid boil-off of nitrogen per hour is')\n",
"//rate of liquid boil-off of nitrogen per hour\n",
"m = (3600*q)/hgf"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.5: Analysis_of_Nuclear_Reactor.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"// Display mode\n",
"mode(0);\n",
"\n",
"// Display warning for floating point exception\n",
"ieee(1);\n",
"\n",
"clc;\n",
"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.5 ')\n",
"\n",
"//Heat generation rate in W/m3\n",
"qg = 75000000;\n",
"//Outer radius of rods in m\n",
"ro = 0.025;\n",
"//Temperature of water in degree C\n",
"Twater = 120;\n",
"//Thermal cinductivity in W/mk\n",
"k = 29.5\n",
"//Heat transfer coefficient in W/m2K\n",
"hco = 55000;\n",
"\n",
"//Since rate of flow through the surface of the rod equals the rate of internal heat generation\n",
"//and\n",
"//The rate of heat flow by conduction at the outer surface equals the rate\n",
"//of heat flow by convection from the surface to the water\n",
"\n",
"//Surface Temperature in degree C\n",
"T0 = (qg*ro)/(2*hco)+Twater;\n",
"\n",
"disp('Maximum temperature in degree C')\n",
"//Maximum temperature in degree C\n",
"Tmax = T0+((qg*ro)*ro)/(4*k)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.6: Analysis_of_Copper_Pin_Fin.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"// Display mode\n",
"mode(0);\n",
"\n",
"// Display warning for floating point exception\n",
"ieee(1);\n",
"\n",
"clc;\n",
"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.6 ')\n",
"\n",
"//diameter of fin in m\n",
"d = 0.0025;\n",
"//Perimeter in m\n",
"P = %pi*d;\n",
"//Area in m2\n",
"A = ((%pi*d)*d)/4;\n",
"//Surface temperature in degree C\n",
"Ts = 95;\n",
"//Ambient temperature in degree c\n",
"Tinfinity = 25;\n",
"//Heat transfer coefficient in W/m2K\n",
"hc = 10;\n",
"//From table 12, value of thermal conductivity in W/mK\n",
"k = 396;\n",
"\n",
"disp('Case of an infinitely long fin')\n",
"disp('Heat loss for the “infintely long” fin in W is')\n",
"//Heat loss for the “infintely long” fin in W\n",
"qfin = ((((hc*P)*k)*A)^0.5)*(Ts-Tinfinity)\n",
"\n",
"disp('Case 2: Fin length of 2.5cm')\n",
"//Length in cm\n",
"L = 2.5/100;\n",
"//Parameter m\n",
"m = ((hc*P)/(k*A))^0.5;\n",
"disp('Heat loss in this case in W is')\n",
"//Heat loss in this case in W\n",
"qfin = qfin*((sinh(m*L)+(hc/(m*k))*cosh(m*L))/(cosh(m*L)+(hc/(m*k))*sinh(m*L)))\n",
"\n",
"disp('For the two solutions to be within 5%')\n",
"//((sinh(m*L)+(hc/(m*k))*cosh(m*L))/(cosh(m*L)+(hc/(m*k))*sinh(m*L))) must\n",
"//be less than 0.95\n",
"disp('L must be greater than 28.3cm')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.7: Heat_Loss_From_Circumferential_Fin.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"// Display mode\n",
"mode(0);\n",
"\n",
"// Display warning for floating point exception\n",
"ieee(1);\n",
"\n",
"clc;\n",
"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.7 ')\n",
"\n",
"//Thermal conductivity of alumunium in W/mK\n",
"k = 200;\n",
"//Outer radius of system in m\n",
"ro = 5.5/200;\n",
"//Inner radius of system in m\n",
"ri = 2.5/200;\n",
"//Thickness of fin in m\n",
"t = 0.1/100;\n",
"\n",
"//Temperature of pipe in degree C\n",
"Ts = 100;\n",
"//Temperature of surrounding in degree C\n",
"Tinfinity = 25;\n",
"//Heat transfer coefficient in W/m2K\n",
"h = 65;\n",
"\n",
"//calculating fin efficiency\n",
"//From Fig. 2.22 on page 103, the fin efficiency is found to be 91%.\n",
"\n",
"//Area of fin\n",
"A = (2*%pi)*((ro+t/2)^2-ri*ri);\n",
"\n",
"disp('The rate of heat loss from a single fin in W is')\n",
"//The rate of heat loss from a single fin in W\n",
"q = ((0.91*h)*A)*(Ts-Tinfinity)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.8: Heat_Loss_From_Buried_Pipe.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"// Display mode\n",
"mode(0);\n",
"\n",
"// Display warning for floating point exception\n",
"ieee(1);\n",
"\n",
"clc;\n",
"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.8 ')\n",
"\n",
"//Diameter of pipe in m\n",
"D = 0.1;\n",
"//Depth under which it is sunk in m\n",
"z = 0.6;\n",
"//Temperature of pipe in degree C\n",
"Tpipe = 100;\n",
"//Temperature of soil in degree C\n",
"Tsoil = 20;\n",
"//Thermal conductivity in W/mK\n",
"k = 0.4;\n",
"\n",
"\n",
"//From table 2.2 on page 112, calculating shape factor\n",
"//Shape factor\n",
"S = (2*%pi)/acosh((2*z)/D);\n",
"disp(' rate of heat loss per meter length in W/m is')\n",
"//rate of heat loss per meter length in W/m\n",
"q = (k*S)*(Tpipe-Tsoil)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.9: Heat_Loss_From_Cubic_Furnace.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"// Display mode\n",
"mode(0);\n",
"\n",
"// Display warning for floating point exception\n",
"ieee(1);\n",
"\n",
"clc;\n",
"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.9 ')\n",
"\n",
"//Thermal conductivity in W/mC\n",
"k = 1.04;\n",
"//For square length and breadth are equal and are in m\n",
"D = 0.5;\n",
"//Area in m2\n",
"A = D*D;\n",
"//Thickness in m\n",
"L = 0.1;\n",
"//Inside temperature in degree C\n",
"Ti = 500;\n",
"\n",
"//Outside temperature in degree C\n",
"To = 50;\n",
"//Shape factor for walls\n",
"Sw = A/L;\n",
"//Shape factor for corners\n",
"Sc = 0.15*L;\n",
"//Shape factor for edges\n",
"Se = 0.54*D;\n",
"\n",
"//There are 6 wall sections, 12 edges, and 8 corners, so that the total\n",
"//shape factor is\n",
"S = 6*Sw+12*Se+8*Sc;\n",
"\n",
"disp('Heat flow in W is')\n",
"//Heat flow in W \n",
"q = (k*S)*(Ti-To)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|