summaryrefslogtreecommitdiff
path: root/Principles_Of_Heat_Transfer_by_F_Kreith/2-Heat_Conduction.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Principles_Of_Heat_Transfer_by_F_Kreith/2-Heat_Conduction.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.gz
all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.bz2
all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Principles_Of_Heat_Transfer_by_F_Kreith/2-Heat_Conduction.ipynb')
-rw-r--r--Principles_Of_Heat_Transfer_by_F_Kreith/2-Heat_Conduction.ipynb872
1 files changed, 872 insertions, 0 deletions
diff --git a/Principles_Of_Heat_Transfer_by_F_Kreith/2-Heat_Conduction.ipynb b/Principles_Of_Heat_Transfer_by_F_Kreith/2-Heat_Conduction.ipynb
new file mode 100644
index 0000000..a580f89
--- /dev/null
+++ b/Principles_Of_Heat_Transfer_by_F_Kreith/2-Heat_Conduction.ipynb
@@ -0,0 +1,872 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Heat Conduction"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.10: Transient_Response_of_Thermocouple.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.10 ')\n",
+"\n",
+"//Diameter of copper wire in m\n",
+"D = 0.1/100;\n",
+"//Initial temperature in degree C\n",
+"To = 150;\n",
+"//Final surrounding temperature in degree C of air and water\n",
+"Tinfinity = 40;\n",
+"\n",
+"//From table 12, appendix 2, we get the following data values for copper\n",
+"//Thermal conductivity in W/mK\n",
+"k = 391;\n",
+"//Specific heat in J/kgK\n",
+"c = 383;\n",
+"//Density in kg/m3\n",
+"rho = 8930;\n",
+"\n",
+"//Surface area of wire per unit length in m\n",
+"A = %pi*D;\n",
+"//Volume of wire per unit length in m2\n",
+"V = ((%pi*D)*D)/4;\n",
+"\n",
+"//Heat transfer coefficient in the case of water in W/m2K\n",
+"h = 80;\n",
+"//Biot number in water\n",
+"bi = (h*D)/(4*k);\n",
+"//The temperature response is given by Eq. (2.84)\n",
+"\n",
+"//For water Bi*Fo is 0.0936t\n",
+"//For air Bi*Fo is 0.0117t\n",
+"\n",
+"for i = 1:130\n",
+" //Position of grid\n",
+" x(1,i) = i;\n",
+" // Temperature of water in degree C\n",
+" Twater(1,i) = Tinfinity+(To-Tinfinity)*exp(-0.0936*i);\n",
+" // Temperature of air in degree C\n",
+" Tair(1,i) = Tinfinity+(To-Tinfinity)*exp(-0.0117*i);\n",
+"end;\n",
+"//Plotting curve\n",
+"plot(x,Twater,'--r')\n",
+"set(gca(),'auto_clear','off')\n",
+"//Plotting curve\n",
+"plot(x,Tair)\n",
+"//Labelling axis\n",
+"xlabel('time')\n",
+"ylabel('temperature')\n",
+"disp('Temperature drop in water is more than that of air')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.11: Minimum_Depth_of_Water_Mains.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.11 ')\n",
+"\n",
+"//Initial temperature of soil in degree C\n",
+"Ti = 20;\n",
+"//Surface temperature of soil\n",
+"Ts = -15;\n",
+"//Critical temperature (Freezing temperature) in degree C\n",
+"Tc = 0;\n",
+"//Time in days\n",
+"t = 60;\n",
+"//Density of soil in kg/m3\n",
+"rho = 2050;\n",
+"//Thermal conductivity of soil in W/mK\n",
+"k = 0.52;\n",
+"//Specific heat in J/kgK\n",
+"c = 1840;\n",
+"//Diffusivity in m2/sec\n",
+"alpha = k/(rho*c);\n",
+"\n",
+"//Finding the value of following to proceed further\n",
+"//Z value\n",
+"z = (Tc-Ts)/(Ti-Ts);\n",
+"\n",
+"//From table 43, it corresponds to an error function value of 0.4,\n",
+"//proceeding\n",
+"\n",
+"disp('Minimum depth at which one must place a water main below the surface to avoid freezing in m is')\n",
+"//Minimum depth at which one must place a water main below the surface to avoid freezing in m\n",
+"xm = (0.4*2)*((((alpha*t)*24)*3600)^0.5)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.12: Steel_Component_Fabrication_Process.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.12 ')\n",
+"\n",
+"//Length of steel component in m\n",
+"L = 2;\n",
+"//Radius of steel component in m\n",
+"ro = 0.1;\n",
+"//Thermal conductivity of steel in W/mK\n",
+"k = 40;\n",
+"//Thermal diffusivity in m2/s\n",
+"alpha = 0.00001;\n",
+"//Initital temperature in degree C\n",
+"Ti = 400;\n",
+"//Surrounding temperature in degree C\n",
+"Tinfinity = 50;\n",
+"//Heat transfer coefficient in W/m2K\n",
+"h = 200;\n",
+"//time of immersion in mins\n",
+"t = 20;\n",
+"\n",
+"//Since the cylinder has a length 10 times the diameter, we can neglect end\n",
+"//effects.\n",
+"\n",
+"//Calculating biot number\n",
+"bi = (h*ro)/k;\n",
+"if bi>0.1 then\n",
+" //Calculating fourier number\n",
+" fo = ((alpha*t)*60)/(ro*ro);\n",
+" //The initial amount of internal energy stored in the cylinder per unit\n",
+" //length in Ws/m\n",
+" Q = ((((k*%pi)*ro)*ro)*(Ti-Tinfinity))/alpha;\n",
+"\n",
+" //The dimensionless centerline temperature for 1/Bi= 2.0 and Fo= 1.2 from\n",
+" //Fig. 2.43(a)\n",
+" //Centreline temperature in degree C\n",
+" T = Tinfinity+0.35*(Ti-Tinfinity);\n",
+" disp('Centreline temperature in degree C is')\n",
+" T\n",
+" //The surface temperature at r/r0= 1.0 and t= 1200 s is obtained from Fig. 2.43(b) in terms of the centerline temperature\n",
+" //Surface temperature in degree C\n",
+" Tr = Tinfinity+0.8*(T-Tinfinity);\n",
+" disp('Surface temperature in degree C is')\n",
+" Tr\n",
+" //Then the amount of heat transferred from the steel rod to the water can be obtained from Fig. 2.43(c). Since Q(t)/Qi= 0.61,\n",
+" disp('The heat transferred to the water during the initial 20 min in Wh is')\n",
+" //The heat transferred to the water during the initial 20 min in Wh\n",
+" Q = ((0.61*L)*Q)/3600\n",
+"end;"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.13: Analysis_of_Concrete_Wall.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.13 ')\n",
+"\n",
+"//Thickness of wall in m\n",
+"L = 0.5;\n",
+"//Initial temperature in degree C\n",
+"Ti = 60;\n",
+"//Combustion gas (Surrounding) temperature in degree C\n",
+"Tinfinity = 900;\n",
+"//Heat transfer coefficient in W/m2K\n",
+"h = 25;\n",
+"//Thermal conductivity in W/mk\n",
+"k = 1.25;\n",
+"//Specific heat in J/KgK\n",
+"c = 837;\n",
+"//Density in kg/m3\n",
+"rho = 500;\n",
+"//Thermal diffusivity in m2/s\n",
+"alpha = 0.000003;\n",
+"//Required temperature to achieve in degree C\n",
+"Ts = 600;\n",
+"\n",
+"//Calculating temperature ratio\n",
+"z = (Ts-Tinfinity)/(Ti-Tinfinity);\n",
+"//Reciprocal biot number\n",
+"bi = k/(h*L);\n",
+"\n",
+"\n",
+"//From Fig. 2.42(a) we find that for the above conditions the Fourier number= 0.70 at the midplane.\n",
+"//Time in hours\n",
+"t = ((0.7*L)*L)/alpha;\n",
+"disp('Time in hours is')\n",
+"//Time in hours\n",
+"t = t/3600\n",
+"\n",
+"//The temperature distribution in the wall 16 h after the transient was\n",
+"//initiated can be obtained from Fig. 2.42(b) for various values of x/L\n",
+"\n",
+"disp('Temperature distribution in degree C is')\n",
+"disp(' (x/l) = 1.00 0.80 0.60 0.40 0.20')\n",
+"disp('Fraction = 0.13 0.41 0.64 0.83 0.96')\n",
+"\n",
+"//The heat transferred to the wall per square meter of surface area during\n",
+"//the transient can be obtained from Fig. 2.42(c).\n",
+"disp('Heat transfer in J/m2 is')\n",
+"//Heat transfer in J/m2\n",
+"Q = ((c*rho)*L)*(Ti-Tinfinity)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.14: Cylinder_Places_in_Hot_Oven.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.14 ')\n",
+"\n",
+"//Radius of cylinder in m\n",
+"ro = 0.05;\n",
+"//Length of cylinder in m\n",
+"L = 0.16;\n",
+"//Thermal conductivity in W/mK\n",
+"k = 0.5;\n",
+"//Thermal diffusivity in m2/s\n",
+"alpha = 0.0000005;\n",
+"//Initial temperature in degree C\n",
+"Ti = 20;\n",
+"//Surrounding temperature in degree C\n",
+"Tinfinity = 500;\n",
+"//Heat transfer coefficient in W/m2K\n",
+"h = 30;\n",
+"//Time in mins\n",
+"t = 30;\n",
+"\n",
+"//Biot number\n",
+"bi = (h*ro)/k;\n",
+"//Fourier number\n",
+"fo = ((alpha*t)*60)/((L*L)/4);\n",
+"\n",
+"//From fig. 2.42(a)\n",
+"//Po\n",
+"P0 = 0.9;\n",
+"//From fig. 2.42(a) and (b)\n",
+"//Pl\n",
+"PL = 0.243;\n",
+"//From fig. 2.43(a)\n",
+"//Co\n",
+"C0 = 0.47;\n",
+"//From fig. 2.43(a) and (b)\n",
+"//Cr\n",
+"CR = 0.155;\n",
+"disp('Minimum temperature in degree C')\n",
+"//Minimum temperature in degree C\n",
+"Tmin = Tinfinity+((Ti-Tinfinity)*P0)*C0"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: Calculation_of_Heat_Transfer_Coeffcient.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.1 ')\n",
+"\n",
+"//Heat generation rate in W/m3\n",
+"qg = 1000000;\n",
+"//Length along which heat will be dissipated in m (thickness)\n",
+"L = 0.01;\n",
+"//Thermal conductivity at the required temperature in W/mK\n",
+"k = 64;\n",
+"\n",
+"//Temperature of surrounding oil in degree C\n",
+"Tinfinity = 80;\n",
+"//Temperature of heater in degree C to be maintained\n",
+"T1 = 200;\n",
+"\n",
+"disp('heat transfer coefficient in W/m2K from a heat balance')\n",
+"//Heat transfer coefficient in W/m2K\n",
+"h = ((qg*L)/2)/(T1-Tinfinity)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: Insulated_vs_Uninsulated_Copper_Pipe.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.2 ')\n",
+"\n",
+"disp('Case of Uninsualted pipe')\n",
+"//Calculating resistance to heat flow at internal surface\n",
+"\n",
+"//Internal radius in m\n",
+"ri = 0.05;\n",
+"//Heat transfer coefficient at inner surface for steam condensing in W/m2K\n",
+"hci = 10000;\n",
+"//Resistance in mK/W\n",
+"R1 = 1/(((2*%pi)*ri)*hci);\n",
+"\n",
+"//Calculating resistance to heat flow at external surface\n",
+"\n",
+"//External radius in m\n",
+"ro = 0.06;\n",
+"//Heat transfer coefficient at outer surface in W/m2K\n",
+"hco = 15;\n",
+"//Resistance in mK/W\n",
+"R3 = 1/(((2*%pi)*ro)*hco);\n",
+"\n",
+"//Calcualting resistance to heat flow due to pipe\n",
+"\n",
+"//Thermal conductivity of pipe in W/mK\n",
+"kpipe = 400;\n",
+"//Resistance in mK/W\n",
+"R2 = log(ro/ri)/((2*%pi)*kpipe);\n",
+"\n",
+"//Temperatures of steam(pipe) and surrounding(air) in degree C\n",
+"Ts = 110;\n",
+"Tinfinity = 30;\n",
+"\n",
+"disp('Heat loss from uninsulated pipe in W/m is therefore')\n",
+"//Heat loss from uninsulated pipe in W/m \n",
+"q = (Ts-Tinfinity)/(R1+R2+R3)\n",
+"\n",
+"\n",
+"disp('Case of insulated pipe')\n",
+"//Calculating additional resistance between outer radius and new outer\n",
+"//radius\n",
+"\n",
+"//Thermal conductivity of insulation in W/mK\n",
+"k = 0.2;\n",
+"//New outer radius in m\n",
+"r3 = 0.11;\n",
+"//Resistance in mK/W\n",
+"R4 = log(r3/ro)/((2*%pi)*k);\n",
+"\n",
+"//Calculating new outer resistance\n",
+"R0 = 1/(((2*%pi)*r3)*hco);\n",
+"\n",
+"\n",
+"disp('Heat loss from insulated pipe in W/m is therefore')\n",
+"//Heat loss from insulated pipe in W/m\n",
+"q = (Ts-Tinfinity)/(R1+R2+R4+R0)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: Hot_Fluid_Flowing_Through_Pipe.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.3 ')\n",
+"\n",
+"//Outer radius in m\n",
+"ro = 0.02;\n",
+"//Inner radius in m\n",
+"ri = 0.015;\n",
+"//Thermal conductivity of plastic in W/mK\n",
+"k = 0.5;\n",
+"//Internal convection heat transfer coefficient in W/m2K\n",
+"hc1 = 300;\n",
+"//Temperature of fluid in pipe in degree C\n",
+"Thot = 200;\n",
+"//Temperature of outside in degree C\n",
+"Tcold = 30;\n",
+"//External convection heat transfer coefficient in W/m2K\n",
+"hc0 = 10;\n",
+"\n",
+"disp('Overall heat transfer coefficient in W/m2K is')\n",
+"//Overall heat transfer coefficient in W/m2K\n",
+"U0 = 1/(ro/(ri*hc1)+(ro*log(ro/ri))/k+1/hc0)\n",
+"\n",
+"disp('The heat loss per unit length in W/m is')\n",
+"//The heat loss per unit length in W/m\n",
+"q = (((U0*2)*%pi)*ro)*(Thot-Tcold)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: Boiling_Off_Of_Nitrogen.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.4 ')\n",
+"\n",
+"//Temperature of liquid nitrogen in degree K\n",
+"Tnitrogen = 77;\n",
+"//Radius of container in m\n",
+"ri = 0.25;\n",
+"//Temperature of surrounding air in degree K\n",
+"Tinfinity = 300;\n",
+"//Thermal conductivity of insulating silica powder in W/mK\n",
+"k = 0.0017;\n",
+"//Outer radius of container with insulation in m\n",
+"ro = 0.275;\n",
+"//Latent heat of vaporization of liquid nitrogen in J/kg\n",
+"hgf = 200000;\n",
+"//convection coefficient at outer surface in W/m2K\n",
+"hco = 20;\n",
+"\n",
+"//Calcaulting heat transfer to nitrogen\n",
+"q = (Tinfinity-Tnitrogen)/(1/((((4*%pi)*ro)*ro)*hco)+(ro-ri)/((((4*%pi)*k)*ro)*ri));\n",
+"\n",
+"disp(' rate of liquid boil-off of nitrogen per hour is')\n",
+"//rate of liquid boil-off of nitrogen per hour\n",
+"m = (3600*q)/hgf"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: Analysis_of_Nuclear_Reactor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.5 ')\n",
+"\n",
+"//Heat generation rate in W/m3\n",
+"qg = 75000000;\n",
+"//Outer radius of rods in m\n",
+"ro = 0.025;\n",
+"//Temperature of water in degree C\n",
+"Twater = 120;\n",
+"//Thermal cinductivity in W/mk\n",
+"k = 29.5\n",
+"//Heat transfer coefficient in W/m2K\n",
+"hco = 55000;\n",
+"\n",
+"//Since rate of flow through the surface of the rod equals the rate of internal heat generation\n",
+"//and\n",
+"//The rate of heat flow by conduction at the outer surface equals the rate\n",
+"//of heat flow by convection from the surface to the water\n",
+"\n",
+"//Surface Temperature in degree C\n",
+"T0 = (qg*ro)/(2*hco)+Twater;\n",
+"\n",
+"disp('Maximum temperature in degree C')\n",
+"//Maximum temperature in degree C\n",
+"Tmax = T0+((qg*ro)*ro)/(4*k)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: Analysis_of_Copper_Pin_Fin.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.6 ')\n",
+"\n",
+"//diameter of fin in m\n",
+"d = 0.0025;\n",
+"//Perimeter in m\n",
+"P = %pi*d;\n",
+"//Area in m2\n",
+"A = ((%pi*d)*d)/4;\n",
+"//Surface temperature in degree C\n",
+"Ts = 95;\n",
+"//Ambient temperature in degree c\n",
+"Tinfinity = 25;\n",
+"//Heat transfer coefficient in W/m2K\n",
+"hc = 10;\n",
+"//From table 12, value of thermal conductivity in W/mK\n",
+"k = 396;\n",
+"\n",
+"disp('Case of an infinitely long fin')\n",
+"disp('Heat loss for the “infintely long” fin in W is')\n",
+"//Heat loss for the “infintely long” fin in W\n",
+"qfin = ((((hc*P)*k)*A)^0.5)*(Ts-Tinfinity)\n",
+"\n",
+"disp('Case 2: Fin length of 2.5cm')\n",
+"//Length in cm\n",
+"L = 2.5/100;\n",
+"//Parameter m\n",
+"m = ((hc*P)/(k*A))^0.5;\n",
+"disp('Heat loss in this case in W is')\n",
+"//Heat loss in this case in W\n",
+"qfin = qfin*((sinh(m*L)+(hc/(m*k))*cosh(m*L))/(cosh(m*L)+(hc/(m*k))*sinh(m*L)))\n",
+"\n",
+"disp('For the two solutions to be within 5%')\n",
+"//((sinh(m*L)+(hc/(m*k))*cosh(m*L))/(cosh(m*L)+(hc/(m*k))*sinh(m*L))) must\n",
+"//be less than 0.95\n",
+"disp('L must be greater than 28.3cm')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: Heat_Loss_From_Circumferential_Fin.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.7 ')\n",
+"\n",
+"//Thermal conductivity of alumunium in W/mK\n",
+"k = 200;\n",
+"//Outer radius of system in m\n",
+"ro = 5.5/200;\n",
+"//Inner radius of system in m\n",
+"ri = 2.5/200;\n",
+"//Thickness of fin in m\n",
+"t = 0.1/100;\n",
+"\n",
+"//Temperature of pipe in degree C\n",
+"Ts = 100;\n",
+"//Temperature of surrounding in degree C\n",
+"Tinfinity = 25;\n",
+"//Heat transfer coefficient in W/m2K\n",
+"h = 65;\n",
+"\n",
+"//calculating fin efficiency\n",
+"//From Fig. 2.22 on page 103, the fin efficiency is found to be 91%.\n",
+"\n",
+"//Area of fin\n",
+"A = (2*%pi)*((ro+t/2)^2-ri*ri);\n",
+"\n",
+"disp('The rate of heat loss from a single fin in W is')\n",
+"//The rate of heat loss from a single fin in W\n",
+"q = ((0.91*h)*A)*(Ts-Tinfinity)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8: Heat_Loss_From_Buried_Pipe.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.8 ')\n",
+"\n",
+"//Diameter of pipe in m\n",
+"D = 0.1;\n",
+"//Depth under which it is sunk in m\n",
+"z = 0.6;\n",
+"//Temperature of pipe in degree C\n",
+"Tpipe = 100;\n",
+"//Temperature of soil in degree C\n",
+"Tsoil = 20;\n",
+"//Thermal conductivity in W/mK\n",
+"k = 0.4;\n",
+"\n",
+"\n",
+"//From table 2.2 on page 112, calculating shape factor\n",
+"//Shape factor\n",
+"S = (2*%pi)/acosh((2*z)/D);\n",
+"disp(' rate of heat loss per meter length in W/m is')\n",
+"//rate of heat loss per meter length in W/m\n",
+"q = (k*S)*(Tpipe-Tsoil)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9: Heat_Loss_From_Cubic_Furnace.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.9 ')\n",
+"\n",
+"//Thermal conductivity in W/mC\n",
+"k = 1.04;\n",
+"//For square length and breadth are equal and are in m\n",
+"D = 0.5;\n",
+"//Area in m2\n",
+"A = D*D;\n",
+"//Thickness in m\n",
+"L = 0.1;\n",
+"//Inside temperature in degree C\n",
+"Ti = 500;\n",
+"\n",
+"//Outside temperature in degree C\n",
+"To = 50;\n",
+"//Shape factor for walls\n",
+"Sw = A/L;\n",
+"//Shape factor for corners\n",
+"Sc = 0.15*L;\n",
+"//Shape factor for edges\n",
+"Se = 0.54*D;\n",
+"\n",
+"//There are 6 wall sections, 12 edges, and 8 corners, so that the total\n",
+"//shape factor is\n",
+"S = 6*Sw+12*Se+8*Sc;\n",
+"\n",
+"disp('Heat flow in W is')\n",
+"//Heat flow in W \n",
+"q = (k*S)*(Ti-To)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}