diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Principles_Of_Heat_Transfer_by_F_Kreith/2-Heat_Conduction.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.gz all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.bz2 all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.zip |
Initial commit
Diffstat (limited to 'Principles_Of_Heat_Transfer_by_F_Kreith/2-Heat_Conduction.ipynb')
-rw-r--r-- | Principles_Of_Heat_Transfer_by_F_Kreith/2-Heat_Conduction.ipynb | 872 |
1 files changed, 872 insertions, 0 deletions
diff --git a/Principles_Of_Heat_Transfer_by_F_Kreith/2-Heat_Conduction.ipynb b/Principles_Of_Heat_Transfer_by_F_Kreith/2-Heat_Conduction.ipynb new file mode 100644 index 0000000..a580f89 --- /dev/null +++ b/Principles_Of_Heat_Transfer_by_F_Kreith/2-Heat_Conduction.ipynb @@ -0,0 +1,872 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Heat Conduction" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.10: Transient_Response_of_Thermocouple.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Display mode\n", +"mode(0);\n", +"\n", +"// Display warning for floating point exception\n", +"ieee(1);\n", +"\n", +"clc;\n", +"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.10 ')\n", +"\n", +"//Diameter of copper wire in m\n", +"D = 0.1/100;\n", +"//Initial temperature in degree C\n", +"To = 150;\n", +"//Final surrounding temperature in degree C of air and water\n", +"Tinfinity = 40;\n", +"\n", +"//From table 12, appendix 2, we get the following data values for copper\n", +"//Thermal conductivity in W/mK\n", +"k = 391;\n", +"//Specific heat in J/kgK\n", +"c = 383;\n", +"//Density in kg/m3\n", +"rho = 8930;\n", +"\n", +"//Surface area of wire per unit length in m\n", +"A = %pi*D;\n", +"//Volume of wire per unit length in m2\n", +"V = ((%pi*D)*D)/4;\n", +"\n", +"//Heat transfer coefficient in the case of water in W/m2K\n", +"h = 80;\n", +"//Biot number in water\n", +"bi = (h*D)/(4*k);\n", +"//The temperature response is given by Eq. (2.84)\n", +"\n", +"//For water Bi*Fo is 0.0936t\n", +"//For air Bi*Fo is 0.0117t\n", +"\n", +"for i = 1:130\n", +" //Position of grid\n", +" x(1,i) = i;\n", +" // Temperature of water in degree C\n", +" Twater(1,i) = Tinfinity+(To-Tinfinity)*exp(-0.0936*i);\n", +" // Temperature of air in degree C\n", +" Tair(1,i) = Tinfinity+(To-Tinfinity)*exp(-0.0117*i);\n", +"end;\n", +"//Plotting curve\n", +"plot(x,Twater,'--r')\n", +"set(gca(),'auto_clear','off')\n", +"//Plotting curve\n", +"plot(x,Tair)\n", +"//Labelling axis\n", +"xlabel('time')\n", +"ylabel('temperature')\n", +"disp('Temperature drop in water is more than that of air')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.11: Minimum_Depth_of_Water_Mains.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Display mode\n", +"mode(0);\n", +"\n", +"// Display warning for floating point exception\n", +"ieee(1);\n", +"\n", +"clc;\n", +"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.11 ')\n", +"\n", +"//Initial temperature of soil in degree C\n", +"Ti = 20;\n", +"//Surface temperature of soil\n", +"Ts = -15;\n", +"//Critical temperature (Freezing temperature) in degree C\n", +"Tc = 0;\n", +"//Time in days\n", +"t = 60;\n", +"//Density of soil in kg/m3\n", +"rho = 2050;\n", +"//Thermal conductivity of soil in W/mK\n", +"k = 0.52;\n", +"//Specific heat in J/kgK\n", +"c = 1840;\n", +"//Diffusivity in m2/sec\n", +"alpha = k/(rho*c);\n", +"\n", +"//Finding the value of following to proceed further\n", +"//Z value\n", +"z = (Tc-Ts)/(Ti-Ts);\n", +"\n", +"//From table 43, it corresponds to an error function value of 0.4,\n", +"//proceeding\n", +"\n", +"disp('Minimum depth at which one must place a water main below the surface to avoid freezing in m is')\n", +"//Minimum depth at which one must place a water main below the surface to avoid freezing in m\n", +"xm = (0.4*2)*((((alpha*t)*24)*3600)^0.5)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.12: Steel_Component_Fabrication_Process.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Display mode\n", +"mode(0);\n", +"\n", +"// Display warning for floating point exception\n", +"ieee(1);\n", +"\n", +"clc;\n", +"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.12 ')\n", +"\n", +"//Length of steel component in m\n", +"L = 2;\n", +"//Radius of steel component in m\n", +"ro = 0.1;\n", +"//Thermal conductivity of steel in W/mK\n", +"k = 40;\n", +"//Thermal diffusivity in m2/s\n", +"alpha = 0.00001;\n", +"//Initital temperature in degree C\n", +"Ti = 400;\n", +"//Surrounding temperature in degree C\n", +"Tinfinity = 50;\n", +"//Heat transfer coefficient in W/m2K\n", +"h = 200;\n", +"//time of immersion in mins\n", +"t = 20;\n", +"\n", +"//Since the cylinder has a length 10 times the diameter, we can neglect end\n", +"//effects.\n", +"\n", +"//Calculating biot number\n", +"bi = (h*ro)/k;\n", +"if bi>0.1 then\n", +" //Calculating fourier number\n", +" fo = ((alpha*t)*60)/(ro*ro);\n", +" //The initial amount of internal energy stored in the cylinder per unit\n", +" //length in Ws/m\n", +" Q = ((((k*%pi)*ro)*ro)*(Ti-Tinfinity))/alpha;\n", +"\n", +" //The dimensionless centerline temperature for 1/Bi= 2.0 and Fo= 1.2 from\n", +" //Fig. 2.43(a)\n", +" //Centreline temperature in degree C\n", +" T = Tinfinity+0.35*(Ti-Tinfinity);\n", +" disp('Centreline temperature in degree C is')\n", +" T\n", +" //The surface temperature at r/r0= 1.0 and t= 1200 s is obtained from Fig. 2.43(b) in terms of the centerline temperature\n", +" //Surface temperature in degree C\n", +" Tr = Tinfinity+0.8*(T-Tinfinity);\n", +" disp('Surface temperature in degree C is')\n", +" Tr\n", +" //Then the amount of heat transferred from the steel rod to the water can be obtained from Fig. 2.43(c). Since Q(t)/Qi= 0.61,\n", +" disp('The heat transferred to the water during the initial 20 min in Wh is')\n", +" //The heat transferred to the water during the initial 20 min in Wh\n", +" Q = ((0.61*L)*Q)/3600\n", +"end;" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.13: Analysis_of_Concrete_Wall.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Display mode\n", +"mode(0);\n", +"\n", +"// Display warning for floating point exception\n", +"ieee(1);\n", +"\n", +"clc;\n", +"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.13 ')\n", +"\n", +"//Thickness of wall in m\n", +"L = 0.5;\n", +"//Initial temperature in degree C\n", +"Ti = 60;\n", +"//Combustion gas (Surrounding) temperature in degree C\n", +"Tinfinity = 900;\n", +"//Heat transfer coefficient in W/m2K\n", +"h = 25;\n", +"//Thermal conductivity in W/mk\n", +"k = 1.25;\n", +"//Specific heat in J/KgK\n", +"c = 837;\n", +"//Density in kg/m3\n", +"rho = 500;\n", +"//Thermal diffusivity in m2/s\n", +"alpha = 0.000003;\n", +"//Required temperature to achieve in degree C\n", +"Ts = 600;\n", +"\n", +"//Calculating temperature ratio\n", +"z = (Ts-Tinfinity)/(Ti-Tinfinity);\n", +"//Reciprocal biot number\n", +"bi = k/(h*L);\n", +"\n", +"\n", +"//From Fig. 2.42(a) we find that for the above conditions the Fourier number= 0.70 at the midplane.\n", +"//Time in hours\n", +"t = ((0.7*L)*L)/alpha;\n", +"disp('Time in hours is')\n", +"//Time in hours\n", +"t = t/3600\n", +"\n", +"//The temperature distribution in the wall 16 h after the transient was\n", +"//initiated can be obtained from Fig. 2.42(b) for various values of x/L\n", +"\n", +"disp('Temperature distribution in degree C is')\n", +"disp(' (x/l) = 1.00 0.80 0.60 0.40 0.20')\n", +"disp('Fraction = 0.13 0.41 0.64 0.83 0.96')\n", +"\n", +"//The heat transferred to the wall per square meter of surface area during\n", +"//the transient can be obtained from Fig. 2.42(c).\n", +"disp('Heat transfer in J/m2 is')\n", +"//Heat transfer in J/m2\n", +"Q = ((c*rho)*L)*(Ti-Tinfinity)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.14: Cylinder_Places_in_Hot_Oven.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Display mode\n", +"mode(0);\n", +"\n", +"// Display warning for floating point exception\n", +"ieee(1);\n", +"\n", +"clc;\n", +"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.14 ')\n", +"\n", +"//Radius of cylinder in m\n", +"ro = 0.05;\n", +"//Length of cylinder in m\n", +"L = 0.16;\n", +"//Thermal conductivity in W/mK\n", +"k = 0.5;\n", +"//Thermal diffusivity in m2/s\n", +"alpha = 0.0000005;\n", +"//Initial temperature in degree C\n", +"Ti = 20;\n", +"//Surrounding temperature in degree C\n", +"Tinfinity = 500;\n", +"//Heat transfer coefficient in W/m2K\n", +"h = 30;\n", +"//Time in mins\n", +"t = 30;\n", +"\n", +"//Biot number\n", +"bi = (h*ro)/k;\n", +"//Fourier number\n", +"fo = ((alpha*t)*60)/((L*L)/4);\n", +"\n", +"//From fig. 2.42(a)\n", +"//Po\n", +"P0 = 0.9;\n", +"//From fig. 2.42(a) and (b)\n", +"//Pl\n", +"PL = 0.243;\n", +"//From fig. 2.43(a)\n", +"//Co\n", +"C0 = 0.47;\n", +"//From fig. 2.43(a) and (b)\n", +"//Cr\n", +"CR = 0.155;\n", +"disp('Minimum temperature in degree C')\n", +"//Minimum temperature in degree C\n", +"Tmin = Tinfinity+((Ti-Tinfinity)*P0)*C0" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: Calculation_of_Heat_Transfer_Coeffcient.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Display mode\n", +"mode(0);\n", +"\n", +"// Display warning for floating point exception\n", +"ieee(1);\n", +"\n", +"clc;\n", +"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.1 ')\n", +"\n", +"//Heat generation rate in W/m3\n", +"qg = 1000000;\n", +"//Length along which heat will be dissipated in m (thickness)\n", +"L = 0.01;\n", +"//Thermal conductivity at the required temperature in W/mK\n", +"k = 64;\n", +"\n", +"//Temperature of surrounding oil in degree C\n", +"Tinfinity = 80;\n", +"//Temperature of heater in degree C to be maintained\n", +"T1 = 200;\n", +"\n", +"disp('heat transfer coefficient in W/m2K from a heat balance')\n", +"//Heat transfer coefficient in W/m2K\n", +"h = ((qg*L)/2)/(T1-Tinfinity)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: Insulated_vs_Uninsulated_Copper_Pipe.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Display mode\n", +"mode(0);\n", +"\n", +"// Display warning for floating point exception\n", +"ieee(1);\n", +"\n", +"clc;\n", +"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.2 ')\n", +"\n", +"disp('Case of Uninsualted pipe')\n", +"//Calculating resistance to heat flow at internal surface\n", +"\n", +"//Internal radius in m\n", +"ri = 0.05;\n", +"//Heat transfer coefficient at inner surface for steam condensing in W/m2K\n", +"hci = 10000;\n", +"//Resistance in mK/W\n", +"R1 = 1/(((2*%pi)*ri)*hci);\n", +"\n", +"//Calculating resistance to heat flow at external surface\n", +"\n", +"//External radius in m\n", +"ro = 0.06;\n", +"//Heat transfer coefficient at outer surface in W/m2K\n", +"hco = 15;\n", +"//Resistance in mK/W\n", +"R3 = 1/(((2*%pi)*ro)*hco);\n", +"\n", +"//Calcualting resistance to heat flow due to pipe\n", +"\n", +"//Thermal conductivity of pipe in W/mK\n", +"kpipe = 400;\n", +"//Resistance in mK/W\n", +"R2 = log(ro/ri)/((2*%pi)*kpipe);\n", +"\n", +"//Temperatures of steam(pipe) and surrounding(air) in degree C\n", +"Ts = 110;\n", +"Tinfinity = 30;\n", +"\n", +"disp('Heat loss from uninsulated pipe in W/m is therefore')\n", +"//Heat loss from uninsulated pipe in W/m \n", +"q = (Ts-Tinfinity)/(R1+R2+R3)\n", +"\n", +"\n", +"disp('Case of insulated pipe')\n", +"//Calculating additional resistance between outer radius and new outer\n", +"//radius\n", +"\n", +"//Thermal conductivity of insulation in W/mK\n", +"k = 0.2;\n", +"//New outer radius in m\n", +"r3 = 0.11;\n", +"//Resistance in mK/W\n", +"R4 = log(r3/ro)/((2*%pi)*k);\n", +"\n", +"//Calculating new outer resistance\n", +"R0 = 1/(((2*%pi)*r3)*hco);\n", +"\n", +"\n", +"disp('Heat loss from insulated pipe in W/m is therefore')\n", +"//Heat loss from insulated pipe in W/m\n", +"q = (Ts-Tinfinity)/(R1+R2+R4+R0)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: Hot_Fluid_Flowing_Through_Pipe.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Display mode\n", +"mode(0);\n", +"\n", +"// Display warning for floating point exception\n", +"ieee(1);\n", +"\n", +"clc;\n", +"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.3 ')\n", +"\n", +"//Outer radius in m\n", +"ro = 0.02;\n", +"//Inner radius in m\n", +"ri = 0.015;\n", +"//Thermal conductivity of plastic in W/mK\n", +"k = 0.5;\n", +"//Internal convection heat transfer coefficient in W/m2K\n", +"hc1 = 300;\n", +"//Temperature of fluid in pipe in degree C\n", +"Thot = 200;\n", +"//Temperature of outside in degree C\n", +"Tcold = 30;\n", +"//External convection heat transfer coefficient in W/m2K\n", +"hc0 = 10;\n", +"\n", +"disp('Overall heat transfer coefficient in W/m2K is')\n", +"//Overall heat transfer coefficient in W/m2K\n", +"U0 = 1/(ro/(ri*hc1)+(ro*log(ro/ri))/k+1/hc0)\n", +"\n", +"disp('The heat loss per unit length in W/m is')\n", +"//The heat loss per unit length in W/m\n", +"q = (((U0*2)*%pi)*ro)*(Thot-Tcold)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: Boiling_Off_Of_Nitrogen.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Display mode\n", +"mode(0);\n", +"\n", +"// Display warning for floating point exception\n", +"ieee(1);\n", +"\n", +"clc;\n", +"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.4 ')\n", +"\n", +"//Temperature of liquid nitrogen in degree K\n", +"Tnitrogen = 77;\n", +"//Radius of container in m\n", +"ri = 0.25;\n", +"//Temperature of surrounding air in degree K\n", +"Tinfinity = 300;\n", +"//Thermal conductivity of insulating silica powder in W/mK\n", +"k = 0.0017;\n", +"//Outer radius of container with insulation in m\n", +"ro = 0.275;\n", +"//Latent heat of vaporization of liquid nitrogen in J/kg\n", +"hgf = 200000;\n", +"//convection coefficient at outer surface in W/m2K\n", +"hco = 20;\n", +"\n", +"//Calcaulting heat transfer to nitrogen\n", +"q = (Tinfinity-Tnitrogen)/(1/((((4*%pi)*ro)*ro)*hco)+(ro-ri)/((((4*%pi)*k)*ro)*ri));\n", +"\n", +"disp(' rate of liquid boil-off of nitrogen per hour is')\n", +"//rate of liquid boil-off of nitrogen per hour\n", +"m = (3600*q)/hgf" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5: Analysis_of_Nuclear_Reactor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Display mode\n", +"mode(0);\n", +"\n", +"// Display warning for floating point exception\n", +"ieee(1);\n", +"\n", +"clc;\n", +"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.5 ')\n", +"\n", +"//Heat generation rate in W/m3\n", +"qg = 75000000;\n", +"//Outer radius of rods in m\n", +"ro = 0.025;\n", +"//Temperature of water in degree C\n", +"Twater = 120;\n", +"//Thermal cinductivity in W/mk\n", +"k = 29.5\n", +"//Heat transfer coefficient in W/m2K\n", +"hco = 55000;\n", +"\n", +"//Since rate of flow through the surface of the rod equals the rate of internal heat generation\n", +"//and\n", +"//The rate of heat flow by conduction at the outer surface equals the rate\n", +"//of heat flow by convection from the surface to the water\n", +"\n", +"//Surface Temperature in degree C\n", +"T0 = (qg*ro)/(2*hco)+Twater;\n", +"\n", +"disp('Maximum temperature in degree C')\n", +"//Maximum temperature in degree C\n", +"Tmax = T0+((qg*ro)*ro)/(4*k)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6: Analysis_of_Copper_Pin_Fin.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Display mode\n", +"mode(0);\n", +"\n", +"// Display warning for floating point exception\n", +"ieee(1);\n", +"\n", +"clc;\n", +"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.6 ')\n", +"\n", +"//diameter of fin in m\n", +"d = 0.0025;\n", +"//Perimeter in m\n", +"P = %pi*d;\n", +"//Area in m2\n", +"A = ((%pi*d)*d)/4;\n", +"//Surface temperature in degree C\n", +"Ts = 95;\n", +"//Ambient temperature in degree c\n", +"Tinfinity = 25;\n", +"//Heat transfer coefficient in W/m2K\n", +"hc = 10;\n", +"//From table 12, value of thermal conductivity in W/mK\n", +"k = 396;\n", +"\n", +"disp('Case of an infinitely long fin')\n", +"disp('Heat loss for the “infintely long” fin in W is')\n", +"//Heat loss for the “infintely long” fin in W\n", +"qfin = ((((hc*P)*k)*A)^0.5)*(Ts-Tinfinity)\n", +"\n", +"disp('Case 2: Fin length of 2.5cm')\n", +"//Length in cm\n", +"L = 2.5/100;\n", +"//Parameter m\n", +"m = ((hc*P)/(k*A))^0.5;\n", +"disp('Heat loss in this case in W is')\n", +"//Heat loss in this case in W\n", +"qfin = qfin*((sinh(m*L)+(hc/(m*k))*cosh(m*L))/(cosh(m*L)+(hc/(m*k))*sinh(m*L)))\n", +"\n", +"disp('For the two solutions to be within 5%')\n", +"//((sinh(m*L)+(hc/(m*k))*cosh(m*L))/(cosh(m*L)+(hc/(m*k))*sinh(m*L))) must\n", +"//be less than 0.95\n", +"disp('L must be greater than 28.3cm')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7: Heat_Loss_From_Circumferential_Fin.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Display mode\n", +"mode(0);\n", +"\n", +"// Display warning for floating point exception\n", +"ieee(1);\n", +"\n", +"clc;\n", +"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.7 ')\n", +"\n", +"//Thermal conductivity of alumunium in W/mK\n", +"k = 200;\n", +"//Outer radius of system in m\n", +"ro = 5.5/200;\n", +"//Inner radius of system in m\n", +"ri = 2.5/200;\n", +"//Thickness of fin in m\n", +"t = 0.1/100;\n", +"\n", +"//Temperature of pipe in degree C\n", +"Ts = 100;\n", +"//Temperature of surrounding in degree C\n", +"Tinfinity = 25;\n", +"//Heat transfer coefficient in W/m2K\n", +"h = 65;\n", +"\n", +"//calculating fin efficiency\n", +"//From Fig. 2.22 on page 103, the fin efficiency is found to be 91%.\n", +"\n", +"//Area of fin\n", +"A = (2*%pi)*((ro+t/2)^2-ri*ri);\n", +"\n", +"disp('The rate of heat loss from a single fin in W is')\n", +"//The rate of heat loss from a single fin in W\n", +"q = ((0.91*h)*A)*(Ts-Tinfinity)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.8: Heat_Loss_From_Buried_Pipe.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Display mode\n", +"mode(0);\n", +"\n", +"// Display warning for floating point exception\n", +"ieee(1);\n", +"\n", +"clc;\n", +"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.8 ')\n", +"\n", +"//Diameter of pipe in m\n", +"D = 0.1;\n", +"//Depth under which it is sunk in m\n", +"z = 0.6;\n", +"//Temperature of pipe in degree C\n", +"Tpipe = 100;\n", +"//Temperature of soil in degree C\n", +"Tsoil = 20;\n", +"//Thermal conductivity in W/mK\n", +"k = 0.4;\n", +"\n", +"\n", +"//From table 2.2 on page 112, calculating shape factor\n", +"//Shape factor\n", +"S = (2*%pi)/acosh((2*z)/D);\n", +"disp(' rate of heat loss per meter length in W/m is')\n", +"//rate of heat loss per meter length in W/m\n", +"q = (k*S)*(Tpipe-Tsoil)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.9: Heat_Loss_From_Cubic_Furnace.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Display mode\n", +"mode(0);\n", +"\n", +"// Display warning for floating point exception\n", +"ieee(1);\n", +"\n", +"clc;\n", +"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.9 ')\n", +"\n", +"//Thermal conductivity in W/mC\n", +"k = 1.04;\n", +"//For square length and breadth are equal and are in m\n", +"D = 0.5;\n", +"//Area in m2\n", +"A = D*D;\n", +"//Thickness in m\n", +"L = 0.1;\n", +"//Inside temperature in degree C\n", +"Ti = 500;\n", +"\n", +"//Outside temperature in degree C\n", +"To = 50;\n", +"//Shape factor for walls\n", +"Sw = A/L;\n", +"//Shape factor for corners\n", +"Sc = 0.15*L;\n", +"//Shape factor for edges\n", +"Se = 0.54*D;\n", +"\n", +"//There are 6 wall sections, 12 edges, and 8 corners, so that the total\n", +"//shape factor is\n", +"S = 6*Sw+12*Se+8*Sc;\n", +"\n", +"disp('Heat flow in W is')\n", +"//Heat flow in W \n", +"q = (k*S)*(Ti-To)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |