summaryrefslogtreecommitdiff
path: root/Principles_Of_Heat_Transfer_by_F_Kreith/5-Natural_Convection.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Principles_Of_Heat_Transfer_by_F_Kreith/5-Natural_Convection.ipynb')
-rw-r--r--Principles_Of_Heat_Transfer_by_F_Kreith/5-Natural_Convection.ipynb479
1 files changed, 479 insertions, 0 deletions
diff --git a/Principles_Of_Heat_Transfer_by_F_Kreith/5-Natural_Convection.ipynb b/Principles_Of_Heat_Transfer_by_F_Kreith/5-Natural_Convection.ipynb
new file mode 100644
index 0000000..0d55739
--- /dev/null
+++ b/Principles_Of_Heat_Transfer_by_F_Kreith/5-Natural_Convection.ipynb
@@ -0,0 +1,479 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Natural Convection"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: Convection_Heat_Loss_From_Room_Heater.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 5 Example # 5.1 ');\n",
+"\n",
+"// ''Body temp in degree C''\n",
+"Tb = 127;\n",
+"//''Body temp in degree K''\n",
+"TbK = Tb+273;\n",
+"//''Ambient temp in degree C''\n",
+"Ta = 27;\n",
+"//''Ambient temp in degree K''\n",
+"TaK = Ta+273;\n",
+"//''Film temperature = (Body Temperature + Ambient Temperature)/2''\n",
+"//''Film temp in degree K''\n",
+"TfK = (TbK+TaK)/2;\n",
+"//''Value of coefficient of expansion at this film temp in degree K inverse''\n",
+"B = 1/TfK;\n",
+"//''Value of Prandtl number at this film temp''\n",
+"Pr = 0.71;\n",
+"//''Value of kinematic viscosity at this film temp in m2/s''\n",
+"v = 0.0000212;\n",
+"//''Value of thermal conductivity at this film temp in W/m-K''\n",
+"k = 0.0291;\n",
+"//''acceleration due to gravity in m/s2''\n",
+"g = 9.81;\n",
+"//''temperature diff. between body and ambient in degree K''\n",
+"deltaT = TbK-TaK;\n",
+"//''diameter of heater wire in m''\n",
+"d = 0.001;\n",
+"//''Therefore using Rayleigh number = ((Pr*g*B*deltaT*d^3)/v^2)''\n",
+"Ra = ((((Pr*g)*B)*deltaT)*(d^3))/(v^2);\n",
+"\n",
+"//''From Fig. 5.3 on Page 303, we get''\n",
+"//''log(Nu) = 0.12, where Nu is nusselt number, therefore''\n",
+"Nu = 1.32;\n",
+"//''Using Nu = hc*d/k, we get heat transfer coefficient in W/m2-K''\n",
+"hc = (Nu*k)/d;\n",
+"disp('The rate of heat loss per meter length in air in W/m is given by hc*(A/l)*deltaT')\n",
+"//heat loss per meter length in air in W/m\n",
+"q = ((hc*deltaT)*%pi)*d\n",
+"\n",
+"//''For Co2, we evaluate the properties at film temperature''\n",
+"//''Following are the values of dimensionless numbers so obtained''\n",
+"//''Rayleigh number, Ra=16.90''\n",
+"//''Nusselt number, Nu=1.62''\n",
+"//''Using Nu = hc*d/k, we get''\n",
+"//''hc = 33.2 W/m2-K''\n",
+"disp('The rate of heat loss per meter length in CO2 is given by hc*(A/l)*deltaT')\n",
+"disp('q = 10.4 W/m')\n",
+"\n",
+"disp(' Discussion - For same area and temperature difference: ')\n",
+"disp(' Heat transfer by convection will be more, if heat transfer coeff. is high')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: Power_Requirement_of_Heater.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 5 Example # 5.2 ');\n",
+"\n",
+"//''Surface temp in degree C''\n",
+"TsC = 130;\n",
+"//''Body temp in degree K''\n",
+"Ts = TsC+273;\n",
+"//''Ambient temp in degree C''\n",
+"TinfinityC = 20;\n",
+"//''Ambient temp in degree K''\n",
+"Tinfinity = TinfinityC+273;\n",
+"//''Film temperature = (Surface Temperature + Ambient Temperature)/2''\n",
+"//''Film temp in degree K''\n",
+"Tf = (Ts+Tinfinity)/2;\n",
+"//''Height of plate in cms''\n",
+"L = 15;\n",
+"//''Width of plate in cms''\n",
+"b = 10;\n",
+"//''Value of Grashof number at this film temp is given by\n",
+"//65(L^3)(Ts-Tinfinity)''\n",
+"//Grashof number\n",
+"Gr = (65*(L^3))*(Ts-Tinfinity);\n",
+"//''Since the grashof number is less than 10^9, therefore flow is laminar''\n",
+"//''For air at film temp = 75C (348K), Prandtl number is''\n",
+"Pr = 0.71;\n",
+"//''And the product Gr*Pr is''\n",
+"//Prodect of Gr and Pr\n",
+"GrPr = Gr*Pr;\n",
+"//''From Fig 5.5 on page 305, at this value of GrPr, Nusselt number is''\n",
+"Nu = 35.7;\n",
+"//''Value of thermal conductivity at this film temp in W/m-K''\n",
+"k = 0.029;\n",
+"\n",
+"//''Using Nu = hc*L/k, we get ''\n",
+"//Heat transfer coefficient for convection in W/m2-K\n",
+"hc = (Nu*k)/(L/100);\n",
+"\n",
+"//''Heat transfer coefficient for radiation, hr in W/m2-K''\n",
+"hr = 8.5;\n",
+"\n",
+"//''Total area in m2 is given by 2*(b/100)*(L/100)''\n",
+"A = (2*(b/100))*(L/100);\n",
+"\n",
+"\n",
+"disp('Therefore total heat transfer in W is given by A*(hc+hr)*(Ts-Tinfinity)')\n",
+"//total heat transfer in W\n",
+"q = (A*(hc+hr))*(Ts-Tinfinity)\n",
+"\n",
+"//''For plate to be 450cm in height, Rayleigh number becomes 4.62*10^11''\n",
+"//''which implies that the flow is turbulent''\n",
+"//''From Fig 5.5 on page 305, at this value of GrPr, Nusselt number is 973''\n",
+"//''Using Nu = hc*d/k, we get in W/m2-K, hc_bar=6.3''\n",
+"//''New Total area in m2, A_bar=2*(0.1)*(4.5)''\n",
+"\n",
+"disp('Therefore in new case, total heat transfer in W is given by A_bar*(hc_bar+hr)*(Ts-Tinfinity)')\n",
+"disp('we get q=1465W')\n",
+"\n",
+"\n",
+"disp(' Discussion - For same temperature difference: ')\n",
+"disp(' Heat transfer will be more, if area exposed for convection and radiation is more')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: Heat_Loss_From_Grill.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 5 Example # 5.3 ')\n",
+"\n",
+"//''Surface temp in degree C''\n",
+"TsC = 227;\n",
+"//''Body temp in degree K'')\n",
+"Ts = TsC+273;\n",
+"//''Ambient temp in degree C''\n",
+"TinfinityC = 27;\n",
+"//''Ambient temp in degree K''\n",
+"Tinfinity = TinfinityC+273;\n",
+"//''Film temperature = (Surface Temperature + Ambient Temperature)/2''\n",
+"//''Film temp in degree K'')\n",
+"Tf = (Ts+Tinfinity)/2;\n",
+"//''For a square plate, Height and width of plate in m''\n",
+"L = 1;\n",
+"b = 1;\n",
+"//''For a square plate, characteristic length = surface area/parameter in m''\n",
+"L_bar = (L*L)/(4*L);\n",
+"//''Value of coefficient of expansion at this film temp in degree K inverse''\n",
+"B = 1/Tf;\n",
+"//''Value of Prandtl number at this film temp''\n",
+"Pr = 0.71;\n",
+"//''Value of thermal conductivity at this film temp in W/m-K''\n",
+"k = 0.032;\n",
+"//''Value of kinematic viscosity at this film temp in m2/s''\n",
+"v = 0.000027;\n",
+"//''acceleration due to gravity in m/s2''\n",
+"g = 9.81;\n",
+"//''temperature diff. between body and ambient in degree K''\n",
+"deltaT = Ts-Tinfinity;\n",
+"//''Therefore using Rayleigh number = ((Pr*g*B*deltaT*(L_bar)^3)/v^2)''\n",
+"//Rayleigh number\n",
+"Ra = ((((Pr*g)*B)*deltaT)*(L_bar^3))/(v^2);\n",
+"\n",
+"\n",
+"//''From eq. 5.17 on page 311, we have nusselt number for bottom plate as 0.27*Pr^0.25''\n",
+"NuBottom = 25.2;\n",
+"//''From eq. 5.16 on page 311, we have nusselt number for top plate as 0.27*Pr^0.25''\n",
+"NuTop = 63.4;\n",
+"//''And therefore corresponding heat transfer coeeficients are in W/m2-K''\n",
+"hcBottom = (NuBottom*k)/L_bar; //heat transfer coeeficients are in W/m2-K at bottom \n",
+"hcTop = (NuTop*k)/L_bar; //heat transfer coeeficients are in W/m2-K at top\n",
+"\n",
+"\n",
+"disp('Therefore total heat transfer in W is given by A*(hcTop+hcBottom)*(deltaT)')\n",
+"//heat transfer in W\n",
+"q = ((L*b)*(hcTop+hcBottom))*deltaT"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: Transition_to_Turbulent_Flow_in_Pipe.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 5 Example # 5.4 ');\n",
+"\n",
+"//''Ambient temp in degree C''\n",
+"TinfinityC = 27;\n",
+"//''Ambient temp in degree K''\n",
+"Tinfinity = TinfinityC+273;\n",
+"//''The criterion for transition is rayleigh number to be 10^9''\n",
+"\n",
+"\n",
+"//''Value of coefficient of expansion at this temp in degree K inverse''\n",
+"B = 1/Tinfinity;\n",
+"//''Value of Prandtl number at this ambient temp''\n",
+"Pr = 0.71;\n",
+"//''Diameter of pipe in m''\n",
+"D = 1;\n",
+"//''Value of kinematic viscosity at this temp in m2/s''\n",
+"v = 0.0000164;\n",
+"//''acceleration due to gravity in m/s2''\n",
+"g = 9.81;\n",
+"\n",
+"//''Therefore using Rayleigh number = ((Pr*g*B*deltaT*(D)^3)/v^2) = 10^9''\n",
+"//''we get the temperature difference in centrigrade to be''\n",
+"deltaT = 12;\n",
+"disp('therefore the temperature of pipe in C is')\n",
+"// temperature of pipe in C\n",
+"Tpipe = TinfinityC+deltaT\n",
+"\n",
+"\n",
+"//''From table 13 in Appendix 2, for the case of water and using the same procedure we get''\n",
+"// temperature difference in C\n",
+"deltaTw = 0.05;\n",
+"disp('therefore the temperature of pipe in C is')\n",
+"// temperature of pipe in C\n",
+"Tpipew = TinfinityC+deltaTw\n",
+"\n",
+"disp(' Discussion - For air and water: ')\n",
+"disp(' Temperature required to induce turbulence is higher in air')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: Rate_of_Heat_Transfer_From_Burner.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 5 Example # 5.5 ');\n",
+"\n",
+"//''Top surface temp in degree C''\n",
+"Tt = 20;\n",
+"//''Body temp in degree K''\n",
+"TtK = Tt+273;\n",
+"//''Bottom temp in degree C''\n",
+"Tb = 100;\n",
+"//''Ambient temp in degree K''\n",
+"TbK = Tb+273;\n",
+"//''Average temp = (Bottom Temperature + top Temperature)/2''\n",
+"//''average temp in degree K''\n",
+"T = (TbK+TtK)/2;\n",
+"//''Value of coefficient of expansion at this temp in degree K inverse''\n",
+"B = 0.000518;\n",
+"//''Value of Prandtl number at this temp''\n",
+"Pr = 3.02;\n",
+"//''Value of kinematic viscosity at this temp in m2/s''\n",
+"v = 0.000000478;\n",
+"//''acceleration due to gravity in m/s2''\n",
+"g = 9.8;\n",
+"//''temperature diff. between body and ambient in degree K''\n",
+"deltaT = TbK-TtK;\n",
+"//''depth of water in m''\n",
+"h = 0.08;\n",
+"//''Therefore using Rayleigh number = ((Pr*g*B*deltaT*h^3)/v^2)''\n",
+"Ra = ((((Pr*g)*B)*deltaT)*(h^3))/(v^2);\n",
+"\n",
+"//''From Eq. (5.30b) on page 318, we find''\n",
+"//Nusselt number\n",
+"Nu = 79.3;\n",
+"//''Value of thermal conductivity at this film temp in W/m-K''\n",
+"k = 0.657;\n",
+"//''Using Nu = hc*d/k, we get heat transfer coefficient in W/m2-K''\n",
+"hc = (Nu*k)/h;\n",
+"//''diameter of pan in m''\n",
+"d = 0.15;\n",
+"//''area = pi*d*d/4''\n",
+"a = ((%pi*d)*d)/4;\n",
+"disp('The rate of heat loss in W is given by hc*(A)*deltaT')\n",
+"//heat loss in W\n",
+"q = (hc*deltaT)*a"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6: Convection_Heat_Transfer_From_Shaft.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 5 Example # 5.6 ');\n",
+"\n",
+"//''RPM of shaft''\n",
+"N = 3;\n",
+"//''Angular velocity, omega=2*pi*N/60 in rad/s''\n",
+"omega = 0.31;\n",
+"//''Ambient temp in degree C''\n",
+"Ta = 20;\n",
+"//''Ambient temp in degree K''\n",
+"TaK = Ta+273;\n",
+"//''Shaft temp in degree C''\n",
+"Ts = 100;\n",
+"//''Shaft temp in degree K''\n",
+"TsK = Ts+273;\n",
+"//''Film temperature = (Shaft Temperature + Ambient Temperature)/2''\n",
+"//''Film temp in degree K''\n",
+"TfK = (TsK+TaK)/2;\n",
+"//''diameter of shaft in m''\n",
+"d = 0.2;\n",
+"//''Value of kinematic viscosity at this film temp in m2/s''\n",
+"v = 0.0000194;\n",
+"//''Value of reynolds number''\n",
+"Re = (((%pi*d)*d)*omega)/v;\n",
+"\n",
+"\n",
+"//''acceleration due to gravity in m/s2''\n",
+"g = 9.81;\n",
+"//''temperature diff. between body and ambient in degree K''\n",
+"deltaT = TsK-TaK;\n",
+"//''Value of Prandtl number at this film temp''\n",
+"Pr = 0.71;\n",
+"//''Value of coefficient of expansion at this film temp in degree K inverse''\n",
+"B = 1/TfK;\n",
+"//''Therefore using Rayleigh number = ((Pr*g*B*deltaT*d^3)/v^2)''\n",
+"//Rayleigh number\n",
+"Ra = ((((Pr*g)*B)*deltaT)*(d^3))/(v^2);\n",
+"\n",
+"//''From Eq. 5.35 on Page 322, we get''\n",
+"//Nusselt number\n",
+"Nu = 49.2;\n",
+"//''Value of thermal conductivity at this film temp in W/m-K''\n",
+"k = 0.0279;\n",
+"//''Using Nu = hc*d/k, we get in W/m2-K''\n",
+"hc = (Nu*k)/d;\n",
+"//''let the length exposed to heat transfer is l=1m''\n",
+"//''then area in m2 = pi*d*l''\n",
+"a = %pi*d;\n",
+"disp('The rate of heat loss in air in W is given by hc*(a)*deltaT')\n",
+"//heat loss in air in W\n",
+"q = (hc*deltaT)*a"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}