diff options
Diffstat (limited to 'Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe')
16 files changed, 4483 insertions, 0 deletions
diff --git a/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/1-Physics_and_Engineering.ipynb b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/1-Physics_and_Engineering.ipynb new file mode 100644 index 0000000..fdd9634 --- /dev/null +++ b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/1-Physics_and_Engineering.ipynb @@ -0,0 +1,184 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Physics and Engineering" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1: Error_Estimatio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc();\n", +"//Given:\n", +"l=9.3; // length in cm\n", +"b=8.5;// breadth in cm\n", +"h=5.4;// height in cm\n", +"V= l*b*h; // Volume in cm^3\n", +"delta_l = 0.1; delta_b = 0.1; delta_h = 0.1; // scale has a least count = 0.1 cm\n", +"// absolute error \n", +"delta_V = (b*h*delta_l + l*h*delta_b +l*b*delta_h); // in cm^3\n", +"//relative error \n", +"re = delta_V/V;\n", +"p= re*100; // Evaluating percentage error\n", +"printf('Percentage Error = %d percentage.',p);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: Error_Estimatio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc();\n", +"//Given :\n", +"M= 10.0; //weight in g\n", +"V= 5.80;//volume in cm^3\n", +"Rho = M/V; // Density in g/cm^3\n", +"delta_M= 0.2 // apparatus has a least count of 0.2 g\n", +"delta_V= 0.05// apparatus has a least count of 0.05 cm^3\n", +"delta_Rho = (delta_M/V) +((M*delta_V)/V^2);// absolute error in g/cm^3\n", +"re = delta_Rho/Rho ; //Evaluating Relative Error\n", +"p = re*100;// Evaluating Percentage Error\n", +"printf('Percentage error = %.1f percentage.',p);\n", +"//Result obtained differs from that in textbook, because delta_M walue is taken 0.1 g , instead of 0.2 g as mentioned in the problem statement." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3: Refinement_in_experiment.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given:\n", +"//(a) \n", +"lc = 0.1// least count in cm\n", +"c = 6.9 //Circumference c in cm\n", +"r= 1.1 // radius of circle in cm\n", +"val =2*%pi;\n", +"// Circumference,c= 2*pi*r or c/r = 2*pi\n", +"// Error in c/r is , delta(c/r)= [(c/r^2)+(1/r)](LC/2) , LC is Least Count .\n", +"E= ((c/r^2)+(1/r))*(lc/2);//Error in c/r is delta(c/r)\n", +"ob = c/r; // Observed Value\n", +"//Actual Value of c/r ranges between\n", +"ac1 = ob-E;// Evaluating Minimum value for c/r \n", +"ac2 = ob+E;// Evaluating Maximum value for c/r\n", +"p = (E/ob)*100; //Evaluating percentage error\n", +"printf('(a)Actual Value of c/r ranges between %.2f - %.2f and Percentage error = %.2f percentage.\n ',ac1,ac2,p);\n", +"//(b)\n", +"lc1 = 0.001;//Now the least count is 0.001 cm\n", +"c1 = 6.316;//Circumference in cm\n", +"r1=1.005;//Circle radius in cm \n", +"E1 =((c1/r1^2) + (1/r1))*(lc1/2); // Error in c/r is delta(c/r)\n", +"ob1= c1/r1; //Observed Value\n", +"p1=(E1/ob1)*100;//Evaluating percentage error\n", +"//Actual Value of c/r ranges between\n", +"a1= ob1-E1;//Evaluating Minimum value for c/r\n", +"a2= ob1+E1;//Evaluating Maximum value for c/r\n", +"printf('(b)Actual Value of c/r ranges between %.3f - %.3f and Percentage error = %.2f percentage.\n',a1,a2,p1);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4: Refinement_in_theory.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given\n", +"// (a) Newton's Theory\n", +"// v= (P/rho)^2 , P= Pressure , rho = density\n", +"P = 76; // 76 cm of Hg pressure\n", +"V= 330 ; // velocity of sound in m/s\n", +"rho = 0.001293; // density for dry air at 0 degrees celsius in g/cm^3\n", +"g = 980;//gravitational acceleration in cm/s^2\n", +"//Density of mercury at room temperature is 13.6 g/cm^3 \n", +"// 1 cm^2 = 1.0*10^-4 m^2\n", +"v = sqrt(((P*13.6*g)/rho)*10^-4); // velocity of sound in m/s\n", +"p= ((V-v)/V)*100; // % lower than the experimental value\n", +"printf('(a) It is is %d percentage lower than the experimental value.\n\n',p);\n", +"\n", +"// (b) Laplace's Theory \n", +"// v= ((gama*P)/rho)^2., gamma = adiabatic index Thus,\n", +"//Given :\n", +"gama = 1.41 // Adiabatic index\n", +"//Density of mercury at room temperature is 13.6 g/cm^3 \n", +"// 1 cm^2 = 1.0*10^-4 m^2\n", +"v1 = sqrt(((gama*P*13.6*g)/rho)*10^-4);// velocity of sound in m/s\n", +"p1 = ((V-round(v1))/V)*100;// % higher than the eperimental value\n", +"printf('(b) It is %.1f percantage higher than the experimental value.\n',abs(p1));\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/10-Dielectric_and_Magnetic_Materials.ipynb b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/10-Dielectric_and_Magnetic_Materials.ipynb new file mode 100644 index 0000000..f72811e --- /dev/null +++ b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/10-Dielectric_and_Magnetic_Materials.ipynb @@ -0,0 +1,331 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: Dielectric and Magnetic Materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.10: Electronic_and_Ionic_polarisability.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"er = 6.75 ; // relative dielectric constant for glass\n", +"f = 10^9 ;// frequency in Hz\n", +"n = 1.5;// refractive index of glass\n", +"e0 = 8.85*10^-12; // dielectric constant in farad/m\n", +"//Pe = e0*(n^2 - 1)*E , Pi = e0*(er - n^2)*E , P = Pi + Pe = e0*(er - 1)*E\n", +"//Percentage = [(e0*(er - n^2)*E)/(e0*(er -1)*E)]*100 , both the E's cancel each other\n", +"per = [(e0*(er - n^2))/(e0*(er -1))]*100;// percentage\n", +"printf('Percentage = %.1f',per);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.1: Electronic_polarisation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given:\n", +"er = 1.0000684; // relative dielectric constant\n", +"N = 2.7*10^25; // atoms/m^3\n", +"//We know, er - 1 = 4*pi*N*R^3\n", +"R = ((er-1)/(4*%pi*N))^(1/3) ; // in m\n", +"printf('R : %.1f x 10^-10 m',R*10^10);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.2: Diamagnetism.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"R = 1; // radius in A\n", +"N = 5*10^28 ; // atoms/m^3\n", +"mu_0 = 4*%pi*10^-7; // permiability of free space in H/m\n", +"mu_r = 1;//relative permiability\n", +"m = 9.1*10^-31 // electron mass in kg\n", +"e = 1.6*10^-19 ; // charge of an electron in C\n", +"// R = 1*10^-10 m because 1 A = 1.0*10^-10 m\n", +"chi = -(N*e^2*(R*10^-10)^2*mu_0*mu_r)/(4*m); //Susceptibility of diamagnetic material\n", +"printf('Susceptibility of diamagnetic materials is %.2f x 10^-5',chi*10^5);\n", +"//Result obtained differs from that in textbook, because in textbook only the order of 10 is considered . " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.3: Dipole_moment_and_polarisability.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"e0 = 8.85*10^-12 ; // dielectric constant in farad/m\n", +"er1 = 1.006715 ; //relative dielectric constant\n", +"er2 = 1.005970;// relative dielectric constant\n", +"T1 = 300 ; // Temperature in K (273+27 = 300 K)\n", +"T2 = 450; // Temperature in K (273 + 177 = 450 K)\n", +"k = 1.38*10^-23; // in J/K\n", +"N = 2.44*10^25 ; // molecules/m^3\n", +"//e0*(er1 - er2)= ((N*mu_p^2)/(3*k))*((1/T1)- (1/T2))\n", +"mu_p = sqrt((e0*(er1 - er2)*3*k)/(((1/T1)-(1/T2))* N)); //dipole moment in C m\n", +"D = 3.3*10^-30; // dipole of 1 Debye is equal to 3.33 x 10^-30 C m \n", +"printf('Dipole moment = %.2f debye \n',mu_p/D);\n", +"//e0*(er1 - 1) = N*(alpha_e + alpha_i + (mu_p^2/3*k*T1))\n", +"Sum = ((e0*(er1 - 1))/N) - ((mu_p)^2/(3*k*T1)); // alpha_e + alpha_i in farad m^2\n", +"printf('Sum = %.1f x 10^-39 farad m^2',Sum*10^39);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.4: Orientational_polarisation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"mu_p = 1.2 ;// dipole moment in debye units\n", +"T = 300 ; // Temperature in Kelvin ( 273+27 = 300 K)\n", +"k = 1.38*10^-23 ; // in J/K\n", +"per = 0.5/100 ; // percentage of saturated polarisation\n", +"// 0.05*N*mu_p = (N*(mu_p)^2*E/(3*k*T))\n", +"E = (3*k*T*per)/(mu_p*3.33*10^-30); // External field in V/m\n", +"printf(' E = %.2f x 10^7 V/m',E*10^-7);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.5: Susceptibility_of_paramagnetic_materials.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"N = 5*10^28 ;// number of dipoles per m^3\n", +"betaa = 1;// Bohr magneton\n", +"T = 300 ; // Room temperature in k\n", +"k = 1.38*10^-23 ; // in J/K\n", +"mu_0 = 4*%pi*10^-7 ; //Magnetic permeability in H/m\n", +"//1 Bohr magneton = 9.27 × 10^-24 Am^2.\n", +"chi = (N*mu_0*betaa*(1*9.27*10^-24)^2)/(k*T);\n", +"printf('Susceptibility = %.2f x 10^-3',chi*10^3);\n", +"//Result obtained differs from that in textbook, because in textbook only the order is considered." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.6: Relative_dielectric_constant.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"M = 32; // Atomic weight in kg/kmole\n", +"Na =6.023*10^26 ; // Avogadro constant in atoms/kmole\n", +"alpha_e = 3.28*10^-40; // electronic polarisability in farad/m^2\n", +"rho = 2.08; //density in gm/cm^3\n", +"e0 = 8.85*10^-12 ; // dielectric constant in farad/m\n", +"// (er - 1)/(er + 2) = (N*alpha_e/3*e0)\n", +"//1 gm = 1.0*10^-3 kg , 1 cm^3 = 1.0*10^-6 m^3\n", +"N = (Na*(rho*10^3))/M; // atoms/m^3\n", +"er =( 2*((N*alpha_e)/(3*e0)) + 1 )/(1 - ((N*alpha_e)/(3*e0)));\n", +"printf('Relative dielectric constant = %.2f ',er);\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.7: Power_loss_due_to_hysteresis.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"area = 50000; // area of hysteresis on a graph\n", +"axis1 = 10^-4 ; // units of scale in Wb/m^2\n", +"axis2 = 10^2; // units of scale in A/m\n", +"vol = 0.01; // volume in m^3\n", +"F = 50; //frequency in Hz\n", +"E1 = area*axis1*axis2; // Energy lost per cycle in J/m^3\n", +"E2 = E1*vol ; // Energy lost in core per cycle in J\n", +"P = E2*F; // Power loss in W\n", +"printf('Power loss = %d W ',P);\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.8: Classical_model_of_internal_field.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"mu_d = 9.27*10^-24; // Bhor magneton in Am^2\n", +"mu_0 = 4*%pi*10^-7; // Magnetic permiability in H/m\n", +"r = 2; // dipoles distance in A\n", +"//U = mu_d*B = -( mu_0*mu_d^2)/(2*pi*r)\n", +"//r = 2*10^-10 m , 1 A = 1.0*10^-10 m\n", +"U = ( mu_0*mu_d^2)/(2*%pi*(r*10^-10)^3); // Energy \n", +"printf('U = %.1f x 10^-25 ',U*10^25);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.9: Saturation_Magnetisation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"a = 2.87; // lattice constant in A\n", +"mu = 4; // 4 Bohr magnetons/atom\n", +"// BCC = 2 atoms/unit cell , 1 A = 1.0*10^-10 m\n", +"N = 2/(2.87*10^-10)^3; // atoms/m^3\n", +"//1 Bohr magneton = 9.27*10^-24 Am^2\n", +"Msat = N*mu*9.27*10^-24;// Saturation in magnetisation in A/m\n", +"printf(' Saturation Magnetisation = %.2f x 10^6 A/m',Msat*10^-6);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/11-Conductors_Semiconductors_and_Superconductors.ipynb b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/11-Conductors_Semiconductors_and_Superconductors.ipynb new file mode 100644 index 0000000..ce9dafe --- /dev/null +++ b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/11-Conductors_Semiconductors_and_Superconductors.ipynb @@ -0,0 +1,385 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11: Conductors Semiconductors and Superconductors" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.10: Si_doped_with_phosphorus.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"Ecd = 0.045; // Ec-Ed in eV\n", +"Ecf = 0.035; // Ec-Ef in eV\n", +"Efd = 0.01;// Ef-Ed in eV\n", +"Ev = 0; // in eV\n", +"Ef = 1.065; // in eV\n", +"me = 9.1*10^-31;// electron mass in kg\n", +"m_e = 0.31*me; // free electron mass\n", +"m_h = 0.38*me;// hole mass\n", +"kT = 0.026; // kT value at room temperature\n", +"h = 6.625*10^-34; // planck's constant in Js\n", +"Nc = 2*((2*%pi*m_e*kT*1.6*10^-19)/(h^2))^(3/2); // per m^3\n", +"Nv = 2*((2*%pi*m_h*kT*1.6*10^-19)/(h^2))^(3/2); // per m^3\n", +"//(a)\n", +"// Nc*exp[-(Ec-Ef)/kT] = Nd*[1 - 1/(1+ exp[(Ed-Ef)/kT])]\n", +"//Ed - Ef = -(Ef-Ed) = - Efd\n", +"Nd = (Nc*exp(-Ecf/kT))/(1 - (1/(1+exp(-Efd/kT)))); // per m^3\n", +"//(b)\n", +"Nd_plus = Nd*(1 - (1/(1 + exp(-Efd/kT)))); // per m^3\n", +"//(c)\n", +"n = Nc*exp(-Ecf/kT); // per m^3\n", +"//(d)\n", +"p = Nv*exp((Ev-Ef)/kT);// per m^3\n", +"printf('Nd = %.1f x 10^24 / m^3 \n',Nd*10^-24);\n", +"printf('Nd_plus = %.2f x 10^24 / m^3 \n',Nd_plus*10^-24);\n", +"printf('n = %.2f x 10^24 / m^3\n',n*10^-24);\n", +"printf('p = %.1f x 10^6 / m^3',p*10^-6);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.11: Silicon_wafer_doped_with_phosphorus.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"ni = 1.5*10^16; // ni for Si in m^-3\n", +"mue = 0.135; // mobility of free electrons in m^2/Vs\n", +"muh = 0.048; // mobility of holes in m^2/Vs\n", +"Nd = 10^21; // phosphorus atoms/m^3\n", +"e = 1.6*10^-19;// charge of an electron in C\n", +"//(a) \n", +"n = Nd; // electrons/m^3\n", +"//(b)\n", +"p = ni^2/Nd; // holes/m^3\n", +"//(c)\n", +"sigma = e*(n*mue + p*muh); // conductivity in mho m^-1\n", +"rho = 1/sigma; // resistivity in ohm m\n", +"\n", +"printf('Major carrier concentration = %.1f x 10^21 electrons/m^3 \n',n*10^-21);\n", +"printf('Minor carrier concentration = %.2f x 10^11 holes/m^3\n',p*10^-11);\n", +"printf('Resistivity = %.3f ohm m',rho);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.12: Increase_in_conductivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"Eg = 1.1;// Energy gap in eV\n", +"T1 = 300 ;// Temperature in K\n", +"T2 = 473; // Temperature in K (273+ 200 = 473 K)\n", +"k = 8.62*10^-5 ; // in eV\n", +"// sigma = A*exp(-Eg/(2*k*T))\n", +"//Ratio = sigma_473/sigma_300\n", +"Ratio = exp((-Eg/(2*k))*((1/T2)-(1/T1)));\n", +"printf('Thus, sigma_473 is %d times sigma_300',Ratio);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.13: Photon_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"Eg1 = 0.72; // Energy gap for Ge in eV\n", +"Eg2 = 1.1; // Energy gap for Si in eV\n", +"Eg3 = 1.32; // Energy gap for GaAs in eV\n", +"// lambda = c/v = (c*h)/Eg or lambda(A) = 12422/Eg (eV)\n", +"lambda1 = 12422/Eg1; // wavelength in A (Ge)\n", +"lambda2 = 12422/Eg2; // wavelength in A (Si)\n", +"lambda3 = 12422/Eg3; // wavelength in A (GaAs)\n", +"printf('Wavelength for Ge = %.1f A \n',lambda1);\n", +"printf('Wavelength for Si = %.1f A \n',lambda2);\n", +"printf('Wavelength for GaAs = %.2f A',lambda3);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.14: Increase_in_conductivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"sigma = 4*10^-4; // conductivity at room temperature in ohm^-1 m^-1\n", +"M = 28.1; // atomic weight in kg/kmole\n", +"d = 2330; // density in kg/m^3\n", +"dop = 10^8 ;// doping per 10^8 silicon atoms\n", +"e = 1.6*10^-19; // charge of an electron in C\n", +"mue = 0.135; // mobility of free electrons for silicon in m^2/Vs\n", +"Na = 6.023*10^26 ; // Avagadro's constant in atoms/kmole\n", +"N = (d*Na)/M; //atoms/m^3\n", +"Nd = N/dop; // per m^3\n", +"n = Nd; // electron concentration / m^3\n", +"sigma1 = n*e*mue; // conductivity in ohm^-1 m^-1\n", +"t = sigma1/sigma; // number of times the conductivity increased\n", +"printf('Conductivity increased %d times .',t);\n", +"//Result obtained differs from that in textbook, because approximate value for sigma1 was considered." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.3: Fermi_energy_in_metals.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"n =8.48*10^28; // number of conduction electrons / m^3\n", +"Ef = 3.65*10^-19*(n^0.6667);//Fermi energy in eV\n", +"printf('Fermi energy : %.2f eV ',Ef);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.4: Fraction_of_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"Ef = 7.04 ; // Ef for copper in eV\n", +"kT = 0.026; // kT value at room temperature in eV\n", +"F = (3/2)*(0.026/7.04); // Fraction of electrons \n", +"printf('Fraction of electrons which are excited are %.4f or %.2f percentage.',F, F*100);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.6: Intrinsic_resistivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"ni1 = 2.5*10^19; // per m^3 for Ge\n", +"ni2 = 1.5*10^16; // per m^3 for Si\n", +"mu_e1 = 0.38; // mobility of free electrons for Ge in m^2/Vs\n", +"mu_h1 = 0.18; //mobility of holes for Ge in m^2/Vs\n", +"mu_e2 = 0.13;//mobility of free electrons for Si in m^2/Vs\n", +"mu_h2 = 0.05;//mobility of holes for Si in m^2/Vs\n", +"e = 1.6*10^-19; // charge of an electron in C\n", +"sigma1 = ni1*e*(mu_e1 + mu_h1); // intrinsic conductivity in mho m^-1 for Ge\n", +"sigma2 = ni2*e*(mu_e2 + mu_h2);// intrinsic conductivity in mho m^-1 for Si\n", +"rho1 = 1/sigma1; //intrinsic resistivity in ohm m for Ge\n", +"rho2 = 1/sigma2;//intrinsic resistivity in ohm m for Si\n", +"printf('Resistivity of Ge %.3f ohm m \n',rho1);\n", +"printf('Resistivity of Si %.3f x 10^3 ohm m',rho2*10^-3);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.7: Variation_of_n_by_N.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"//Fraction F = n/N\n", +"Eg = 0.72; // Energy gap in eV\n", +"k = 0.026/300;// kT value at 300 K , so k = kT/T\n", +"T1 = 30; // Temperature in K\n", +"T2 = 300; //Temperature in K\n", +"T3 = 1210;//Temperature in K\n", +"//Fraction of electrons : n/N = exp(-Eg/2*k*T)\n", +"F1 = exp(-Eg/(2*k*T1));\n", +"F2 = exp(-Eg/(2*k*T2));\n", +"F3 = exp(-Eg/(2*k*T3));\n", +"printf(' For 30 K , n/N = %.1f x 10^-61\n',F1*10^61);\n", +"printf(' For 300 K , n/N = %.1f x 10^-7\n',F2*10^7);\n", +"printf(' For 1210 K , n/N = %.3f \n',F3);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.8: Variation_of_n_by_N.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"Eg1= 0.72; //Energy gap for Germanium in eV\n", +"Eg2= 1.10; //Energy gap for Silicon in eV\n", +"Eg3= 5.6; //Energy gap for diamond in eV\n", +"//Fraction of electron : n/N = exp(-Eg/(2*k*T)) , k*T = 0.026 eV\n", +"F1 = exp(-Eg1/(2*0.026)); // For Germanium\n", +"F2 = exp(-Eg2/(2*0.026)); // For Silicon\n", +"F3 = exp(-Eg3/(2*0.026)); // For diamond\n", +"printf('For Germanium , n/N = %.1f x 10^-7\n',F1*10^7);\n", +"printf('For Silicon , n/N = %.1f x 10^-10\n',F2*10^10);\n", +"printf('For diamond, n/N = %.1f x 10^-47',F3*10^47);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.9: Ef_equals_to_Ec.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"D = 5*10^28; // density of atoms in silicon per m^3\n", +"C = 2.0*10^8; //donor concentration\n", +"ND = D/C; // donor atoms density per m^3\n", +"// ND = 4.82*10^21*T^(3/2)\n", +"T = (ND/(4.82*10^21))^(2/3);\n", +"printf('Temperature = %.2f K',T);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/12-Diodes_and_Transistors.ipynb b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/12-Diodes_and_Transistors.ipynb new file mode 100644 index 0000000..c55ebe2 --- /dev/null +++ b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/12-Diodes_and_Transistors.ipynb @@ -0,0 +1,194 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: Diodes and Transistors" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.1: Determination_of_V0.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given:\n", +"sigma_n = 10^4; //conductivity in mho/m\n", +"sigma_p = 10^2; // conductivity in mho/m\n", +"e = 1.6*10^-19;// charge of an electron in C\n", +"kT = 0.026 ;// k*T value at room temperature in eV\n", +"ni = 2.5*10^19; // per m^3\n", +"mue = 0.38; // mobility of free electrons in m^2/Vs\n", +"muh = 0.18;// mobility of free electrons in m^2/Vs\n", +"// sigma_n = e*n*mue and sigma_p = e*p*muh\n", +"nn0 = sigma_n/(e*mue); // per m^3\n", +"pp0 = sigma_p/(e*muh);// per m^3\n", +"np0 =( ni^2)/pp0; // in m^-3\n", +"// V0 = (kT/e)*log(nn0/np0) , but we consider only kT because kT/e = 0.026 eV/e , both the e's cancel each other.Finally we obtain the answer in Volts\n", +"V0 = (kT)*log(nn0/np0); // in V\n", +"printf('V0 = %.2f V',V0);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.2: Carrier_concentration.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"//(a)Forward bias of 0.1 V\n", +"// np = np0*exp[eV/kT] , here we dont have np0 value, so we will calculate the remaining part.\n", +"kT = 0.026; // in eV\n", +"np = exp(0.1/kT); \n", +"printf('(a) np = %.0f x np0 \n',np);\n", +"//(b)Reverse bias of 1 V\n", +"// np = np0*exp[-eV/kT] , here we dont have np0 value, so we will calculate the remaining part.\n", +"np1 = exp(-1/kT);\n", +"printf('(b) np = %.2f x 10^-17 x np0 \n',np1*10^17);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.3: Current_through_pn_junction_diode.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"I0 = 0.1; // muA\n", +"kT = 0.026; // kT value at room temperature\n", +"//Forward bias of 0.1 V\n", +"// I = I0[exp(eV/kT) - 1]\n", +"// since I = I0*(exp(0.1 eV/kT (eV))), both the eV's cancel each other , so it is only I = I0*(exp(0.1/kT) - 1) while evaluating.\n", +"I = I0*(exp(0.1/kT) - 1) // in muA\n", +"printf('Current = %.2f muA ',I);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.4: Voltage_regulation_using_Zener_diode.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"Vin = 36; // Input Voltage in V\n", +"Vb = 6; // Zerner Breakdown Voltage in V\n", +"Vr = Vin-Vb; // Volatge drop across resistor\n", +"R = 5*10^3; // resistance in ohm\n", +"Rl = 2*10^3; // load resistance in ohm\n", +"I = Vr/R; // current in A\n", +"Il = Vb/Rl; // current in A\n", +"Iz = I - Il ;// current in A\n", +"//(a)\n", +"Vin1 = 41; // Input Voltage in V\n", +"I1 = (Vin1-Vb)/R; // current in A\n", +"Iz1 = I1-Iz; // current in A\n", +"//(b)\n", +"Rl1 = 4*10^3; //load resistance in ohm\n", +"Il1 = Vb/Rl1; // current in A\n", +"Iz2 = I - Il1; // current in A\n", +"printf('Input volatge = 41 V , Iz = %.0f mA\n',Iz1*10^3);\n", +"printf('Load resistance = 4k ohm , Iz = %.1f mA',Iz2*10^3);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.5: Voltage_gai.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"deltaIE = 2; // in mA\n", +"deltaIB = 5; // in mA\n", +"Rl = 200*10^3; // load resistance in ohm\n", +"ri = 200; // input resistance in ohm\n", +"// IE= IB + IC , 1 muA = 1.0*10^-3 mA\n", +"deltaIC = deltaIE - deltaIB*10^-3 ;// in mA\n", +"alpha = deltaIC/deltaIE; \n", +"A = alpha*(Rl/ri);\n", +"printf('Voltage gain = %.1f ',A);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/13-Charged_Particles_in_Electric_and_Magnetic_Fields.ipynb b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/13-Charged_Particles_in_Electric_and_Magnetic_Fields.ipynb new file mode 100644 index 0000000..82b2577 --- /dev/null +++ b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/13-Charged_Particles_in_Electric_and_Magnetic_Fields.ipynb @@ -0,0 +1,267 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: Charged Particles in Electric and Magnetic Fields" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.11: Angle_of_refraction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"V1 = 250; // potential in V\n", +"V2 = 500;// potential in V\n", +"theta1 = 45;// angle in degrees\n", +"//Law of electron refraction = sin(theta1)/sin(theta2) = (V2/V1)^0.5\n", +"theta2 = asind(((V1/V2)^(1/2))*sind(45));\n", +"printf('theta2 = %d degrees',theta2);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.12: Bainbridge_mass_spectograph.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"M1 = 20; // neon isotope mass in amu\n", +"M2 = 22;//neon isotope mass in amu\n", +"E = 7*10^4; // Electric field in V/m\n", +"e = 1.6*10^-19;// electron charge in C\n", +"B = 0.5;// Magnetic field in Wb/m^2\n", +"B1 = 0.75; // Magnetic field in Wb/m^2\n", +"// Linear seperation = S2 - S1 = (2*E*(M2-M1))/(B*B1*e) \n", +"// 1 amu = 1.66*10^-27 kg\n", +"S2_S1 = (2*E*(M2-M1)*1.66*10^-27)/(B*B1*e) ; // linear seperation in m\n", +"printf('S2-S1 = %.0f mm',S2_S1*10^3);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.13: Deuteron_motion_in_a_cyclotron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given:\n", +"m = 2.01*1.66*10^-27; // deuteron mass in kg\n", +"q = 1.6*10^-19; // deuteron charge in C\n", +"//We know , 1/2(m*v^2) = q*V\n", +"//for a 5 MeV deuteron \n", +"// 1 MeV = 10^6*1.6*10^-19 J\n", +"v =((2*5*10^6*1.6*10^-19)/m)^(1/2) ; // velocity in m/s\n", +"//(a)\n", +"R = 15; // inches \n", +"//1 inch = 2.54*10^-2 m\n", +"B = (m*v)/(q*R*2.54*10^-2);// magnetic field intensity in Wb/m^2\n", +"//(b)\n", +"f = (q*B)/(2*%pi*m); // frequency in Hz\n", +"//(c)\n", +"t = 50/f; // time in s\n", +"printf('B = %.1f Wb/m^2 \n',B);\n", +"printf('f = %.2f MHz \n',f*10^-6);\n", +"printf('t = %.2f mu s ',t*10^6);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1: Electron_in_an_electric_field.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"// E = 2*10^9*t V/m\n", +"// a_x = e*E/m , where e = 1.6*10^-19 C , m = 9.12 × 10^-31 kg\n", +"// a_x = 3.52*10^20*t m/s^2\n", +"// v_x = integral of a_x dt\n", +"//(a)\n", +"function a_x = f(t),a_x = 3.530*10^20*t,endfunction\n", +"v_x = intg(0,50*10^-9,f); // electron speed in m/s at time = 50 ns\n", +"printf('v_x = %.1f x 10^5 m/s\n',v_x*10^-5);\n", +"//(b)\n", +"//v_x = 1.76*10^20*t^2 m/s\n", +"function vx = v(t),vx = 1.76*10^20*t^2 ,endfunction\n", +"x = intg(0,50*10^-9,v);// distance covered in m in 50 ns\n", +"printf('x = %.2f mm\n',x*10^3);\n", +"//(c)\n", +"//x = 5.87*10^19*t^3 m\n", +"X = 5*10^-2; //distance between plates in m\n", +"t = (X/(5.87*10^19))^(1/3); // time required in s\n", +"printf('t = %.2f x 10^-7 s',t*10^7);\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.5: Projected_electro.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"u = 5*10^5; //horizontal velocity in m/s\n", +"alpha = 35; // in degrees\n", +"E = 200 ;// Electric field in V/m\n", +"e = 1.6*10^-19; // electron charge in C\n", +"m = 9.12*10^-31; // electron mass in kg\n", +"a = (-e*E)/m; // horizontal range in m/s^2\n", +"//(a);\n", +"z_max = (-(u^2)*(sind(alpha))^2)/(2*a); // maximum penetration in m\n", +"//(b)\n", +"T = (-2*u*sind(alpha))/a; // Time of flight in s\n", +"//(c)\n", +"H = (-(u^2)*(sind(2*alpha)))/a; // horizontal range in m\n", +"printf('z_max = %.1f mm \n',z_max*10^3);\n", +"printf('T = %.2f x 10^-8 s \n',T*10^8);\n", +"printf('H = %.1f mm',H*10^3);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.7: Helical_path_of_an_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"m = 9.12*10^-31;// electron mass in kg\n", +"e = 1.6*10^-19;// electron charge in C\n", +"u = 5*10^7; // electron speed in m/s\n", +"alpha = 30; // angle in degrees\n", +"d = 0.5; // diameter in m\n", +"//(a)\n", +"//helix radius = (m*u*sin(alpha))/B*e \n", +"r = d/2; // radius in m\n", +"B = (m*u*sind(alpha))/(r*e); // magnetic flux density in Wb/m^2\n", +"//(b)\n", +"T = (2*%pi*m)/(B*e);// time in s\n", +"//(c)\n", +"p = T*u*cosd(alpha); // pitch in m\n", +"printf('B = %.2f x 10^-3 Wb/m^2 \n',B*10^3);\n", +"printf('T = %.2f x 10^-8 s \n',T*10^8);\n", +"printf('p = %.2f m',p);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.9: Electrons_orbit_in_magnetic_field.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"m = 9.109*10^-31;// eletcron mass in kg\n", +"e = 1.6*10^-19; // electron charge in C\n", +"//T = (2*pi*m)/(B*e) , here B is not given\n", +"T = (2*%pi*m)/e;// time in s\n", +"printf('T = %.2f x 10^-11 / B ',T*10^11);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/14-Lasers.ipynb b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/14-Lasers.ipynb new file mode 100644 index 0000000..34f25dd --- /dev/null +++ b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/14-Lasers.ipynb @@ -0,0 +1,197 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 14: Lasers" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.2: Thermal_pumping.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"lambda = 6000; //wavelength in A\n", +"E2_E1 = 12422/lambda; // energy in eV\n", +"k = 8.62*10^-5; // in eV/K\n", +"T = 300; // Temperature in K\n", +"//Equilibrium ratio = N2/N1 = exp[-(E2-E1)/k*T]\n", +"//(a)\n", +"Ratio = exp(-E2_E1/(k*T));\n", +"//(b)\n", +"T1 = (E2_E1)/(k*log(2)); // Temperature in K\n", +"printf('Ratio = %.2f x 10^-35 \n',Ratio*10^35);\n", +"printf('T = %d K',T1);\n", +"//Resuts obtained differ from those in texbook, because approximate value of k*T was considered" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.3: Calculating_wavelength_difference.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"L =8;// in cm\n", +"lambda = 5330; //wavelength in A\n", +"// lambda = 2*L/n\n", +"// 1 A = 1.0*10^-8 cm\n", +"n= (2*L)/(lambda*10^-8); // allowed modes\n", +"//adjacent mode \n", +"n1 = round(n+1);\n", +"// 1 cm = 1.0*10^8 A\n", +"lambda1 = ((2*L)/n1)*10^8;// wavelength in A\n", +"D = lambda-lambda1; // difference in wavelengths in A\n", +"printf('Difference = %.3f A',D);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.5: deltalambda_by_lambda.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"tau_c = 10^-5; // lifetime of lasing energy in s\n", +"tau_c1 = 10^-8; // coherence time in s\n", +"lambda = 5000; // wavelength in A\n", +"c = 3*10^8;// light speed in m/s\n", +"// Ratio = delta_lambda/lambda = lambda/(c*tau_c)\n", +"// 1 A = 1.0*10^-10 m\n", +"//(a)Laser source\n", +"Ratio = (lambda*10^-10)/(c*tau_c);\n", +"//(b)Ordinary source\n", +"Ratio1 = (lambda*10^-10)/(c*tau_c1);\n", +"printf('Laser source = %.2f x 10^-10 \n',Ratio*10^10);\n", +"printf('Ordinary source = %.2f x 10^-7 \n',Ratio1*10^7);\n", +"//Results obtained differ from those in textbook, beacuse only order of 10 was considered in the result." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.6: Intensity_of_a_laser_beam.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"P = 10; // Power in W\n", +"lambda =5000; // wavelength in A\n", +"SI = 7*10^3; // Sun's radiation intensity in W/cm^2\n", +"// 1 A = 1.0*10^-8 cm\n", +"I = P/(lambda*10^-8)^2; //Intensity in W/cm^2\n", +"Ratio = (I)/SI; \n", +"printf('Intensity = %.0f x 10^6 kW/cm^2 \n',I*10^-9);\n", +"printf('Intensity of this laser source is %.1f x 10^6 times the intensity of Sun radiation',Ratio*10^-6);\n", +"//Textbook : Only order of 10 is considered in the result" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.7: Information_capacity_of_laser.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"c = 3*10^8;// light speed in m/s\n", +"//Visible range = 4000 A - 7000 A\n", +"lambda1 = 4000; // wavelength in A\n", +"lambda2 = 7000;// wavelength in A\n", +"// 1 A = 1.0*10^-10 m\n", +"nu1 = c/(lambda1*10^-10); // frequency in Hz\n", +"nu2 = c/(lambda2*10^-10);// frequency in Hz\n", +"deltanu = nu1-nu2; // in Hz\n", +"//(a)Telephone conversations\n", +"f1 = 10^3; // frequency in Hz\n", +"n1 = deltanu/f1;\n", +"//(b)Television programmes\n", +"f2 = 10^7; // frequency in Hz\n", +"n2 = deltanu/f2;\n", +"printf(' Number of Telephone conversations = %.1f x 10^11 \n',n1*10^-11);\n", +"printf(' Number of Television programmes = %.1f x 10^7 \n',n2*10^-7);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/15-Fibre_Optics.ipynb b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/15-Fibre_Optics.ipynb new file mode 100644 index 0000000..52b8378 --- /dev/null +++ b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/15-Fibre_Optics.ipynb @@ -0,0 +1,183 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 15: Fibre Optics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.1: Importance_of_cladding_material.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"n0 = 1;//refractive index of outer medium\n", +"n1 = 1.5025; // refractive index of core\n", +"n2 = 1.4975; // refractive index of cladding\n", +"NA = sqrt(n1^2 - n2^2); // Numerical aperture with cladding\n", +"alpha_c = asind(NA/n0); // acceptance angle in degrees\n", +"NA1 = sqrt(n1^2 - n0^2);// Numerical aperture without cladding\n", +"printf('With cladding , NA and Acceptance angle = %.4f and %.3f degrees \n ',NA,alpha_c);\n", +"printf('Without cladding , NA = %.4f ',NA1);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.2: Number_of_reflections.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"n1 = 1.5025;// refractive index of core\n", +"delta = 0.0033; // \n", +"a = 50; // core radius in mu_m\n", +"Ls = a*sqrt(2/delta);// skip distance in mu_m\n", +"// 1 mu_m = 1.0*10^-6 m\n", +"R = 1/(Ls*10^-6);// reflections per m\n", +"printf('Ls = %.1f mu_m \n',Ls);\n", +"printf('Reflections per m = %d',R);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.3: Determining_Limiting_Diameter.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"lambda = 1.25; // wavelength in mu_m\n", +"n1 = 1.462; // refractive index of core\n", +"n2 = 1.457; // refractive index of cladding\n", +"// Single mode propogation : (2*pi*a*sqrt(n1^2 - n2^2))/lambda < 2.405\n", +"a = (2.405*lambda)/(2*%pi*sqrt(n1^2 - n2^2)); // radius in mu_m\n", +"d = a*2; // diameter in mu_m\n", +"printf('Limiting diameter = %.2f mu_m',d);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.4: Calculation_of_attenuation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"n1 = 1.525; // refractive index of core\n", +"n2 = 1.500; // refractive index of cladding\n", +"d = 30; // core diameter in mu_m\n", +"a = d/2; // core radius in mu_m\n", +"ab = 0.00001/100; // percentage absorbed\n", +"delta = (n1-n2)/n1;\n", +"Ls = a*sqrt(2/delta);// skip distance in mu_m\n", +"//1 mu_m = 1.0*10^-6 m\n", +"R = 1000/(Ls*10^-6); // reflections per km (1000 m)\n", +"red_p = 1 - ab; // reduced power for each reflection\n", +"//Power P1km = P0*red_p^(6*10^6)\n", +"// A = 10*log10[P0/P1km] , P0 in the numerator and denominator will cancel each other\n", +"A = 10*log10(1/(red_p)^(R));\n", +"printf('Attenuation = %.1f dB/km',A);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.5: Calculation_of_maximum_delay.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"n1 = 1.5025; // refractive index of core\n", +"n2 = 1.4975; // refractive index of cladding\n", +"L = 1; // length in m\n", +"F = 2*10^6; // frequency in Hz\n", +"c = 3*10^8;// light speed in m/s\n", +"delta_t = (n1*L/c)*((n1/n2)-1);// maximum delay in s;\n", +"f = 1/(2*delta_t); // bandwidth for 1 m propogation\n", +"L1 = 1/(2*F*delta_t); // distance for 2MHz bandwidth\n", +"printf('Maximum delay = %.1f ps \n',delta_t*10^12);\n", +"printf('Bandwidth of 2MHz can propogate a distance of %.1f km ',L1*10^-3);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/16-Acoustics.ipynb b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/16-Acoustics.ipynb new file mode 100644 index 0000000..3e9357b --- /dev/null +++ b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/16-Acoustics.ipynb @@ -0,0 +1,354 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 16: Acoustics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.10: Determination_of_sea_depth.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"v = 1500; // velocity of ultrasound in m/s\n", +"rt = 0.8; // recorded time in s\n", +"t = rt/2; // time in s\n", +"//Ultrasound velocity = D/t\n", +"D = v*t; // sea depth in m\n", +"printf('Depth = %d m',D);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.1: Increase_in_Sound_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"delta_t = 1; // temperature in degrees\n", +"t1 = 27; // temperature in degrees\n", +"//Ratio = v2/v1 = 1+ (delta_t/(t1+273))\n", +"Ratio = 1 + (delta_t /(2*(t1+273)));\n", +"v1 = 343;// speed of sound at room temperature in m/s\n", +"v2 = v1*Ratio; // speed of sound in air in m/s\n", +"delta_v = v2-v1; // speed in m/s\n", +"printf('Ratio = %.4f \n',Ratio);\n", +"printf('delta_v = %.1f m/s',delta_v);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.2: Limits_of_displacement_amplitudes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"p_rms = 0.0002; // in microbar\n", +"p_rms1 = 20; // in pascal\n", +"v = 343; // speed of sound in m/s\n", +"rho_0 = 1.21; // density of air in kg/m^3\n", +"f = 1000; // frequency in Hz\n", +"// p_rms = pm_min/(2)^0.5\n", +"//1 microbar = 0.1 N/m^2\n", +"pm_min = sqrt(2)*p_rms*0.1; //in N/m^2\n", +"// 1 pascal = 1 N/m^2\n", +"pm_max =sqrt(2)*p_rms1*1; // in N/m^2\n", +"// sm = pm/(v*rho_0*omega);\n", +"//omega = 2*pi*f\n", +"sm_min = pm_min/(v*rho_0*2*%pi*f); // displacement amplitude in m\n", +"sm_max = pm_max/(v*rho_0*2*%pi*f);// displacement amplitude in m\n", +"printf('Minimum displacement amplitude = %.2f pm \n',sm_min*10^12);\n", +"printf('Maximum displacement amplitude = %.0f mu m',sm_max*10^6);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.3: Imax_by_Imi.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"sm_min = 11*10^-12;// Minimum displacement amplitude in m\n", +"sm_max = 11*10^-6;// Maximum displacement amplitude in m\n", +"v = 343;// speed of sound in m/s\n", +"f = 1000; // frequency in Hz\n", +"rho_0 = 1.21; // density of air in kg/m^3\n", +"// Sound intensity = (rho_0*v*omega^2*sm^2)/2\n", +"//omega = 2*pi*f\n", +"I_max = (rho_0*v*((2*%pi*f)^2)*(sm_max^2))/2; // Maximum Intensity\n", +"I_min = (rho_0*v*((2*%pi*f)^2)*(sm_min^2))/2; // Minimum Intensity\n", +"Ratio = I_max/I_min ;\n", +"printf('I_max/I_min = %.1f x 10^12 ', Ratio*10^-12);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.4: Sound_intensities.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"I0 = 10^-12; // in W/m^2\n", +"beta1 = 0; // in dB\n", +"beta2 = 60;// in dB\n", +"beta3 = 120; // in dB\n", +"// Intensity level = beta = 10*log10(I/I0)\n", +"I1 = 10^(beta1/10)*I0; // Intensity in W/m^2\n", +"I2 = 10^(beta2/10)*I0; // Intensity in W/m^2\n", +"I3 = 10^(beta3/10)*I0; // Intensity in W/m^2\n", +"printf('Hearing Threshold : %.1f x 10^-12 W/m^2 \n',I1*10^12);\n", +"printf('Speech Activity : %.1f x 10^-6 W/m^2 \n',I2*10^6);\n", +"printf('Pain Threshold : %.1f W/m^2',I3);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.5: Determination_of_reverberation_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"l = 200; // in ft\n", +"b = 50; // in ft\n", +"h = 30;// in ft\n", +"alpha = 0.25; //average absorption coefficient\n", +"V = l*b*h; // Volume in ft^3\n", +"S = 2*((l*b)+(l*h)+(b*h)); //total surface area in ft^2\n", +"a = alpha*S;// in sabins\n", +"T = (0.049*V)/a; // reverberation time in s\n", +"//400 people present in the auditorium, 1 person is equivalent to 4.5 sabins\n", +"a1 = a+ 400*4.5; // in sabins\n", +"T1 = (0.049*V)/a1;// reverberation time in s\n", +"printf('For auditorium : %.2f s \n',T);\n", +"printf('When people are present %.2f s',T1);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.6: Determination_of_unknown_absorption_coefficient.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"V = 9*10*11; // Volume in ft^3\n", +"T = 4; // reverberation time in s\n", +"S = 2*((9*10)+(10*11)+(11*9));// total surface area in ft^2\n", +"//T = (0.049*V)/(alpha*S)\n", +"alpha = (0.049*V)/(S*T);//average absorption coefficient \n", +"T1 = 1.3; // reverberation time in s\n", +"S1 = 50; // total surface area in ft^2\n", +"alpha_e =(((0.049*V)/S1)*((1/T1)-(1/T))) + alpha ; // effective absorption coefficient \n", +"printf('alpha = %.2f \n',alpha);\n", +"printf('alpha_e = %.2f ',alpha_e);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.7: Use_of_ultrasound_by_bats.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"v = 343; // velocity of sound in m/s\n", +"lambda = 1; // wavelength in cm\n", +"// 1 cm = 1.0*10^-2 m\n", +"f = v/(lambda*10^-2); //frequency in Hz\n", +"printf('Frequency is %.1f kHz',f*10^-3);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.8: Ultrasonic_generators.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"E1 = 8.55*10^10; //Modulus of elasticity in N/m^2\n", +"E2 = 21*10^10; // Modulus of elasticity in N/m^2\n", +"rho1 = 2650; // density of Quartz in kg/m^3\n", +"rho2 = 8800;// density of Nickel in kg/m^3\n", +"t = 2; // thickness of crystal in mm\n", +"l = 50; // rod length in mm\n", +"//Piezoelectric generator\n", +"printf('Piezoelectric generator \n\n');\n", +"for n = 1:3\n", +" // 1 mm = 1.0*10^-3 m\n", +" nu1 = (n/(2*t*10^-3))*sqrt(E1/rho1);// frequency in Hz \n", +" printf('For n = %d , Frequency = %.2f MHz\n',n,nu1*10^-6);\n", +"end\n", +"//Magnetostriction generator\n", +"printf('Magnetostriction generator\n\n');\n", +"for n1 = 1:3\n", +" // 1 mm = 1.0*10^-3 m\n", +" nu2 = (n1/(2*l*10^-3))*sqrt(E2/rho2);// frequency in Hz \n", +" printf('For n = %d , Frequency = %.1f kHz\n',n1,nu2*10^-3);\n", +"end\n", +"//Results differ from those in textbook, because in the formulae (n/(2*t))*sqrt(E/rho) and (n/(2*l))*sqrt(E/rho) , 2 is not multiplied with either t or l." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.9: Noise_pollutio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"I0 = 10^-12; // in W/m^2\n", +"beta1 = 110; // in dB\n", +"beta2 = 150;// in dB\n", +"beta3 = 180; // in dB\n", +"// Intensity level = beta = 10*log10(I/I0)\n", +"I1 = 10^(beta1/10)*I0; // Intensity in W/m^2\n", +"I2 = 10^(beta2/10)*I0; // Intensity in W/m^2\n", +"I3 = 10^(beta3/10)*I0; // Intensity in W/m^2\n", +"printf('Amplified Rock Music : %.2f W/m^2 \n',I1);\n", +"printf('Jet plane : %.1f x 10^3 W/m^2 \n',I2*10^-3);\n", +"printf('Rocket engine : %.1f x 10^6 W/m^2',I3*10^-6);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/2-What_is_Light.ipynb b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/2-What_is_Light.ipynb new file mode 100644 index 0000000..3eefa9a --- /dev/null +++ b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/2-What_is_Light.ipynb @@ -0,0 +1,170 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: What is Light" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: Space_and_Time_profile.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"// wave y= 2*sin(10*pi*t - (pi*x)/40 + pi/4)\n", +"// (a) Plot the space profile at t= T/4\n", +"// Comapring the given Equation with y= A*sin(omega*t - k*x + phi)\n", +"omega = 10*%pi ; //Angular frequency in rad/s\n", +"k= %pi/40 ; // Wave number in rad/m\n", +"T= 1/5 ; // 2*pi/T = 10*pi , so Time period is 1/5 s\n", +"lambda = 80; // Wavelength in m , 2*pi/lambda = pi/40 , so lambda = 80\n", +"t1= T/4; //time period in s\n", +"x1= 0;// in m\n", +"printf('The Space profile of a wave y= 2*sin(10*pi*t - (pi*x)/40 + pi/4) when t= T/4\n\n')\n", +"printf('\tx (in m) \t y1(x) (in m)\n');\n", +"while x1<180\n", +"y1= 2*sin((omega*t1)-(k*x1)+ (%pi/4));\n", +"printf('\t%d\t\t%.3f\n',x1,y1);\n", +"x1 = x1+10;\n", +"end\n", +"//Now, we will plot the space profile from the values obtained for y1 for each value of x1\n", +"x_1 = [0,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160,170];\n", +"y_1 = [1.414214,2.000000,1.414214,0.000000,-1.414214,-2.000000,-1.414214,-0.000000,1.414214,2.000000,1.414214,0.000000,-1.414214,-2.000000,-1.414214,-0.000000,1.414214,2.000000];\n", +"// axis centered at (0,0)\n", +"axis=gca(); // Handle on axes entity\n", +"axis.x_location = 'origin'; \n", +"axis.y_location = 'origin'; \n", +"plot(x_1,y_1,style=5);\n", +"xtitle('Space Profile at t = T/4 for the wave y= 2*sin(10*pi*t - (pi*x)/40 + pi/4)','x (in m)','y1(x) (in m)');\n", +"xpause(10000000);\n", +"//(b)\n", +"x2= lambda/8; //in m\n", +"t2=0; // time period in s\n", +"printf('The time profile of a wave y= 2*sin(10*pi*t - (pi*x)/40 + pi/4) when x= lambda/8\n\n')\n", +"printf('\t t(in s) \t y2(t) (in m)\n\n');\n", +"while t2<0.4\n", +" y2=2*sin((omega*t2)-(k*x2)+ (%pi/4));\n", +" printf('\t%.3f\t\t%.3f\n',t2,y2);\n", +" t2=t2+0.025;\n", +"end\n", +"//Now,we will plot the time profile from the values obtained for y2 ,for each value of t2\n", +"x_2=[0,0.025,0.05,0.075,0.1,0.125,0.15,0.175,0.2,0.22500,0.250000,0.27500,0.30000,0.325000,0.350000,0.37500];\n", +"y_2=[0.000000,1.414214,2.000000,1.414214,0.000000,-1.414214,-2.000000,-1.414214,-0.000000,1.414214,2.000000,1.414214,0.000000,-1.414214,-2.000000,-1.414214];\n", +"// axis centered at (0,0)\n", +"axis1=gca(); // Handle on axes entity\n", +"axis1.x_location = 'origin'; \n", +"axis1.y_location = 'origin'; \n", +"plot(x_2,y_2,style= 4);\n", +"xtitle('Time Profile at x = lambda/8 for the wave y= 2*sin(10*pi*t - (pi*x)/40 + pi/4)','t (in s)','y2(t) (in m)');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: Wave_Parameters.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Let us consider, wave function y = A*sin(omega*t - K*x + phi)\n", +"A= 0.02;// Amplitude in m\n", +"lambda = 6; // Wavelength (lambda) = Crest Distance = 6 m\n", +"T= 2;// Time period is s\n", +"nu = 1/T; // Frequency in Hz\n", +"omega = 2*%pi*nu ; //Angular Frequency in rad/s\n", +"k = 2*%pi/lambda; //wave number in rad/m\n", +"//from Space profile, when x=1.5 m, t= 0\n", +"y = 0.02; //in m\n", +"x=1.5;//in m\n", +"t= 0; // in s\n", +"phi = (asin(y/A) +(k*x) - (omega*t)); // Initial phase in radians\n", +"printf(' Wave parameters from the space profile and time profile\n')\n", +"printf(' (1)Amplitude is %.2f m \n (2)Wavelength is %d m \n (3)Time period is %d s \n (4)Frequency is %.1f Hz \n (5)Angular Frequency is %.3f rad/s\n (6)Wave number is %.3f rad/m \n (7)Initial phase is %.3f radians\n',A,lambda,T,nu,omega,k,phi);\n", +"// y(x,t=0) : -0.02 = 0.02*sin(0-(pi*x)/3 + pi)\n", +"//Thus (-pi*x)/3 + pi = -pi/2,-5*pi/2, giving x= 9/2 m,21/2m\n", +"V= omega/k; // Velocity of wave in m/s\n", +"// I is proportional to A^2\n", +"I = A^2; // Intensity in m^2 (Proportional)\n", +"printf(' (8)The velocity of wave is %d m/s \n (9)Intensity is proportional to : %.1f x 10^-4 m^2.',V,I*10^4);\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6: Sound_and_Light_waves.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//(a)Tunning fork \n", +"nu= 440; // Frequency in Hz\n", +"V=340; // velocity of sound in air in m/s\n", +"lambda= V/nu ;// Wavelength of sound wave in m\n", +"k= 2*%pi/lambda; // Wave number in m\n", +"//(b) Red Light \n", +"nu1 = 5*10^14;// Frequency of Red light in Hz\n", +"V1 = 3*10^8;//Velocity of light in m/s\n", +"lambda1= V1/nu1; //Wavelength of light wave in m\n", +"k1= 2*%pi/lambda1; // Wave number in m\n", +"printf('For Sound wave : \n\n Frequency: %d Hz \n Velocity: %d m/s \n Wavelegth: %.3f m\n Wave number : %.2f m \n Wave Equation for Sound wave: y = A*sin((%.2f*x)-(%.3f*t)) \n\n',nu,V,lambda,k,k,(2*%pi*nu));\n", +"printf('For Light wave : \n\n Frequency: %.0f x 10^14 Hz \n Velocity: %d x 10^8 m/s \n Wavelegth: %.1f x 10^-7 m\n Wave number : %.2f x 10^7 m \n Wave Equation for Sound wave: y = A*sin((%.2f*10^7*x)-(%.1f*10^15*t)) \n\n',nu1*10^-14,V1*10^-8,lambda1*10^7,k1*10^-7,k1*10^-7,(2*%pi*nu1*10^-15));" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/3-Interference.ipynb b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/3-Interference.ipynb new file mode 100644 index 0000000..40ba8c0 --- /dev/null +++ b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/3-Interference.ipynb @@ -0,0 +1,529 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Interference" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10: Wedge_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given:\n", +"lambda = 6000; // wavelength in A\n", +"mu = 1; //refractive index for air\n", +"// Fringe pattern having 100 fringes per cm\n", +"betaa = 0.01; // fringe width in cm\n", +"// And,We know betaa = lambda/(2*mu*alpha) , so\n", +" // 1 A = 1.0*10^-8 cm\n", +" alpha = lambda*10^-8/(2*mu*betaa); // wedge angle in rad\n", +" printf('Wedge angle = %.3f rad',alpha);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.13: Interference_for_different_waves.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"angle = 4*10^-2 ; // angle in rad\n", +"//1 radian = 57.2957795 degrees\n", +"theta = angle*57.2957795 ;// in degrees \n", +"// d*sin(theta) = lambda , so d = lambda/(sin(theta)) :\n", +"//(a)For Sound waves \n", +"lambda1 = 0.75; // Wavelength in m\n", +"d1 = lambda1/sind(theta); // distance in m \n", +"//(b)For Ultrasonic waves\n", +"lambda2 = 0.1; // Wwavelength in m\n", +"d2 = lambda2/sind(theta); // distance in m\n", +"//(c)For microwaves \n", +"lambda3 = 2.9 ; // Wavelength in cm\n", +"//1cm = 1.0*10^-2 m\n", +"d3 = lambda3*10^-2/sind(theta); // distance in m\n", +"//(d)For IR waves\n", +"lambda4 = 10; // Wavelength in mu_m\n", +"// 1 mu_m = 1.0*10^-6 m\n", +"d4 = lambda4*10^-6/sind(theta);// distance in m\n", +"//(e)For light waves \n", +"lambda5 = 5890;// in angstroms\n", +"//1 A = 1.0*10^-10 m\n", +"d5 = lambda5*10^-10/sind(theta); // distance in m\n", +"printf(' (a)For Sound waves : %.2f m \n',d1);\n", +"printf(' (b)For Ultrasonic waves : %.2f m \n',d2);\n", +"printf(' (c)For Microwaves : %.2f m \n',d3);\n", +"printf(' (d)For IR waves : %.1f mu m \n',d4*10^6);\n", +"printf(' (e)For Light waves : %.2f mu m \n',d5*10^6);\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.14: Intensity_distribution.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"// Now, the intensity distribution is given by :\n", +"// I = I_1 + I_2 + 2*(I_1*I_2)^0.5 *cos(alpha1- alpha2) , Using alpha = alpha1 - alpha2 and I_1 = I_2 = I_0 \n", +"// I = 2*I_0*(1+ cos(alpha)) \n", +"nu = 1.2 * 10^6 ; // frequency in Hz\n", +"c = 3*10^8 ; // velocity of light in m/s\n", +"lambda = c/nu ; // wavelength in m\n", +"d = 500; // two identical vertical dipole antenna spaced 500 m apart\n", +"// Directions along which the intensity is maximum :\n", +"printf('Maximum Intensity \n\n');\n", +"for n= 0 :2\n", +"theta = asind((n*lambda)/d);// in degrees\n", +"printf('---> theta = %d degrees\n',theta);\n", +"end\n", +"// Directions for which intensity is minimum :\n", +"n1 =0;\n", +"theta1 = asind(((n1 + (1/2))*lambda)/d);//in degrees\n", +"printf('Minimum Intensity \n\n');\n", +"printf('--> theta = %.1f degrees\n',theta1);\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.15: Linear_expansivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"lambda = 5900 ; //Wavelength in A\n", +"delta_T = 150; // Temperature of the metal cylinder is now raised by 150 K\n", +"p = 20 ; // p is the number of rings shifted due to increase in t_n (t_n is the thickness of the air film)\n", +"l = 5 ; // length of the metal cyclinder in mm\n", +"mu = 1; //refractive index for air\n", +"//Increase in length = (p*lambda)/2*mu\n", +"// 1 A = 1.0*10^-7 mm\n", +"delta_l = (p*lambda*10^-7)/2*mu; // increase in length in mm\n", +"//Linear expansivity of the metal of the cyclinder \n", +"alpha = (delta_l)/(l*delta_T); // in 1/K\n", +"printf('The linear expansivity of the metal of the cylinder using Newtons rings apparatus is : %.1f x 10^-6/K ', alpha*10^6);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.16: Michelsons_interferometer.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"d = 0.065; //distance in mm\n", +"p = 200 ;// 200 fringes cross the field of view\n", +"//Michelson's interferometer arrangement : 2*d = p*lambda\n", +"lambda = 2*d/p;// wavelength in mm\n", +"\n", +"printf(' Wavelength : %.1f x 10^-4 mm ',lambda*10^4);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17: Newtons_ring_apparatus.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"D10_air = 1.75 ;//diameter of the 10th bright ring in Newton's ring apparatus in cm\n", +"D10_liquid = 1.59 ; // diameter of the 10th bright ring in Newton's ring apparatus in cm\n", +"// The diameter of the nth bright ring in Newton's ring apparatus : D_n = 2*(R*(n + 1/2)*(lambda/mu))^0.5\n", +"mu = (D10_air/D10_liquid)^2;\n", +"printf('The refractive index of the liquid is %.3f',mu);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.18: Anti_Reflection_Coating.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"lambda = 5500; // Wavelength in A\n", +"mu_f = 1.38; // refractive index for MgF2\n", +"mu_f1 = 1.48; // refractive index for lucite\n", +"//The minimum thickness \n", +"t = lambda/(4*mu_f) ; // thickness in A\n", +"printf('The minimum thickness = %.1f A\n\n',t);\n", +"// Resultant reflected intensity = I = 2*I_0*(1 + cos(alpha)) \n", +"// alpha = (2*pi/lambda)*(path difference) \n", +"alpha1 = (2*%pi/lambda)*(2*mu_f*t); // angle in radians\n", +"alpha2 = (2*%pi/lambda)*(2*mu_f1*t); // angle in radians\n", +"printf(' alpha = %.3f for MgF2 and %.3f for lucite\n\n',alpha1,alpha2);\n", +"printf(' For MgF2 : I = (%f)*I_0\n\n',2*(1+cos(alpha1)));\n", +"printf(' For lucite : I = (%.3f)*I_0\n\n',2*(1+cos(alpha2)));\n", +"printf('For Lucite : (%.3f)*I_0 , indicates %.1f percentage of the incident light is reflected ,so it is less suitable for coating.',2*(1+cos(alpha2)), 100*2*(1+cos(alpha2)));\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: Incoherence.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"lambda1 = 5890 ; // Wavelength in angstroms\n", +"lambda2 = 5896 ; // Wavelength in angstroms\n", +"//For sodium doublet\n", +"nu1 = 5.0934*10^14; //Frequency in Hz\n", +"nu2 = 5.0882*10^14; //Frequency in Hz\n", +"\n", +"deltanu = nu1-nu2; // Differnece in Frequencies in Hz \n", +"Tc = 1/deltanu ; // Coherence time in s\n", +"\n", +"n1 = Tc*nu1; // Number of Cycles of wavelength 5890 angstroms\n", +"n2 = Tc*nu2;// Number of cycles of wavelegth 5896 angstrom\n", +"//in this coherence time , we have:\n", +"printf('Cycles : %d , Wavelength %d A \n',round(n1),lambda1);\n", +"printf('Cycles : %d , Wavelength %d A',round(n2),lambda2);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: Ordinary_and_Laser_source.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given:\n", +"deltalambda1 = 0.01; // The line width of the orange line of krypton,Kr^86 in A\n", +"lambda = 6058; // Wavelength in angstroms = 6058*10^-10 m\n", +"deltalambda2 = 0.00015; // The line width of a laser source in A\n", +"c = 3*10^8 ;// Velocity of light in vacuum in m/s \n", +"nu0 = c/(lambda*10^-10);// lambda in m , 1 A = 1.0 × 10^-10 m\n", +"//1 A = 1.0 × 10^-10 m\n", +"//For orange line of Krypton\n", +"Lc1= (lambda^2/deltalambda1)*10^-10; // coherence length in m \n", +"deltanu1 = c/Lc1 ;// bandwidth in Hz\n", +"Tc1 = (Lc1/c);// Coherence time in s \n", +"//Xi = deltanu/nu0 , where nu0 = c/lambda which equals to (deltanu*lambda)/c, lambda in A\n", +"Xi1 = deltanu1/nu0 ; //degree of monochromaticity \n", +"//For Laser Source\n", +"Lc2= (lambda^2/deltalambda2)*10^-10;// coherence length in m\n", +"deltanu2 = c/Lc2 ;// in Hz\n", +"Tc2 = (Lc2/c);//Calculating Coherence time in s\n", +"//Xi = deltanu/nu0 , where nu0 = c/lambda which equals to (deltanu*lambda)/c, lambda in A\n", +"Xi2 = deltanu2/nu0 ;// degree of monochromaticity \n", +"printf('For Orange line of Krypton : \n\n Coherence Length : \t %.4f m \n Bandwidth : \t\t %.2f x 10^8 Hz \n Coherence : \t\t %.2f x 10^-8 s \n Degree of Monochromaticity : %.2f x 10^-6 \n\n',Lc1,deltanu1*10^-8,Tc1*10^8,Xi1*10^6);\n", +"printf('For Laser Source : \n\n Coherence Length : \t %.2f m \n Bandwidth : \t\t %.2f x 10^7 Hz \n Coherence : \t\t %.2f x 10^-8 s \n Degree of Monochromaticity : %.2f x 10^-8 \n\n',Lc2,deltanu2*10^-7,Tc2*10^8,Xi2*10^8);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: Optical_path.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//(a) \n", +"//Given:\n", +"lambda = 5890;// Wavelength in A\n", +"l = 5.89; //thickness of the film in mu m\n", +"mu = 1.35; //refractive index\n", +"delta = mu*l;// optical path in the medium in m\n", +"//(b) (i)Number of waves in the medium\n", +"//1 angstrom = 1.0*10^-10 m and 1 mu m = 1*10^-6 m\n", +"N= (l*10^-6)/(lambda*10^-10/mu); \n", +"//the distance in vaccum for those waves :\n", +"delta1 =N*lambda*10^-10; // optical path in m\n", +"//(b) (ii)Phase difference in the medium \n", +"//1 angstrom = 1.0*10^-10 m and 1 mu m = 1*10^-6 m\n", +"phi = ((2*%pi)/(lambda*10^-10/mu))*(l*10^-6) ;\n", +"printf('Optical path = %.4f mu m\n',delta);\n", +"printf('Number of waves : %.1f\n',N);\n", +"printf('The distance in vaccum for those waves is : %.4f mu m \n',delta1*10^6);\n", +"printf('Phase difference = %.3f\n',phi);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6: Total_optical_path.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given:\n", +"lambda = 5890; // Wavelength of a beam of sodium light in A\n", +"l = 100 ; // thickness in cm\n", +"mu1 = 1.00;//refractive index of air\n", +"mu2 = 1.33;// refractive index of water\n", +"mu3 = 1.39; // refractive index of oil\n", +"mu4 = 1.64; // refractive index of glass\n", +"c = 3*10^8 ;// Velocity of light in vacuum in m/s\n", +"//For Air :\n", +"lambda1 = lambda/mu1; // wavelength of light in A\n", +"v1 = c/mu1;// Velocity of light in air in m/s\n", +"// 1cm = 1*10^-2 m\n", +"t1 = (l*10^-2/v1); //time of travel in s\n", +"// 1 A = 1*10^-10 m\n", +"N1 = (l*10^-2)/(lambda1*10^-10);// Number of waves \n", +"delta1 = mu1*l; //Optical path in cm\n", +"//For Water :\n", +"lambda2 = lambda/mu2; // wavelength of light in A\n", +"v2 = c/mu2;// Velocity of light in water in m/s\n", +"//1cm = 1*10^-2 m\n", +"t2 = (l*10^-2/v2); //time of travel in s \n", +"//1 A = 1*10^-10 m\n", +"N2 = (l*10^-2)/(lambda2*10^-10);// Number of waves \n", +"delta2 = mu2*l; //Optical path in cm\n", +"//For Oil :\n", +"lambda3 = lambda/mu3; // wavelength of light in A\n", +"v3 = c/mu3;// Velocity of light in Oil in m/s\n", +"//1cm = 1*10^-2 m\n", +"t3 = (l*10^-2/v3); //time of travel in s\n", +"//1 A = 1*10^-10 m\n", +"N3 = (l*10^-2)/(lambda3*10^-10);// Number of waves \n", +"delta3 = mu3*l; //Optical path in cm\n", +"//For Glass: \n", +"lambda4 = lambda/mu4; // wavelength of light in A\n", +"v4 = c/mu4;// Velocity of light in Glass in m/s\n", +"// 1cm = 1*10^-2 m\n", +"t4 = (l*10^-2/v4); //time of travel in s\n", +"//1 A = 1*10^-10 m\n", +"N4 = (l*10^-2)/(lambda4*10^-10);// Number of waves \n", +"delta4 = mu4*l; //Optical path in cm\n", +"delta = delta1+delta2+delta3+delta4; // total optical path in cm\n", +"printf('Parameters \t\t\t Air \t\t\t Water \t\t\t Oil \t\t\tGlass \n\n');\n", +"printf('Wavelength : \t\t %.0f A \t\t %.1f A \t\t %.1f A \t\t %.1f A \n',lambda1,lambda2,lambda3,lambda4);\n", +"printf('Velocity : \t\t %.0f x 10^8 m/s \t\t %.2f x 10^8m/s \t %.2f x 10^8 m/s \t %.2f x 10^8 m/s \n',v1*10^-8,v2*10^-8,v3*10^-8,v4*10^-8);\n", +"printf('Time of travel : \t %2.1f x 10^-10 s\t %2.1f x 10^-10 s\t %2.1f x 10^-10 s\t %2.1f x 10^-10 s \n',t1*10^10,t2*10^10,t3*10^10,t4*10^10);\n", +"printf('Number of waves: \t %.1f x 10^6 \t\t %.1f x 10^6 \t\t %.1f x 10^6 \t\t %.1f x10^6 \n',N1*10^-6,N2*10^-6,N3*10^-6,N4*10^-6);\n", +"printf('Optical path : \t\t %d cm \t\t %d cm \t\t %d cm \t\t %d cm \n\n',delta1,delta2,delta3,delta4);\n", +"printf(' The total optical path = %d cm\n\n',delta);\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.8: Maximum_observable_fringes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"lambda = 6058;// Wavelength of light in A\n", +"deltalambda1 = 0.01; // line width for a krypton source in A\n", +"deltalambda2 = 0.00015; // line width for a laser source in A\n", +"// The maximum number of fringes is given by n_max = lambda/deltalambda\n", +"// (a) For a krypton source :\n", +"n_max1 = lambda/deltalambda1 ;\n", +"// (b) For a laser source :\n", +"n_max2 = lambda/deltalambda2;\n", +"printf('The maximum number of fringes observable are :\n\n');\n", +"printf('(a) For a krypton source : %d \n\n',n_max1);\n", +"printf('(b) For a laser source : %d \n\n',n_max2);\n", +"\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.9: Interference_pattern.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"mu = 1.4;// refractive index of a thin film\n", +"lambda = 5890; // Wavelength of sodium light in A\n", +"deltalambda = 20; //line width in A\n", +"// For observing interference pattern, t < lambda^2/(2*mu*deltalambda)\n", +"t_max = lambda^2/(2*mu*deltalambda); //thickness of the film in A\n", +"printf(' t_max : %1.3f x 10^5 A \n\n',t_max*10^-5);\n", +"\n", +"\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/4-Diffraction.ipynb b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/4-Diffraction.ipynb new file mode 100644 index 0000000..3c8c0a3 --- /dev/null +++ b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/4-Diffraction.ipynb @@ -0,0 +1,273 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Diffraction" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.10: Diffraction_of_Xrays.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given:\n", +"N = 15000;//Number of lines per inch\n", +"a_plus_b = (2.54/N)*10^8 ;//Grating period in A\n", +"lambda = 1 ; //Wavelength in A\n", +"//Grating equation :(a+b)*sin(theta_n) = n*lambda\n", +"//First order maximum \n", +"theta1 = asind(lambda/a_plus_b); // angle in degrees\n", +"printf('The first order maximum will be obtained at : %.4f degrees .\n\n',theta1);\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.11: Resolution_of_human_eye.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given:\n", +"lambda = 6000; //Wwavelength in A\n", +"mu = 1.33; //Refractive index for cornea\n", +"D = 2; //Diameter of pupil in mm\n", +"//Yellow light wavelength in eye:\n", +"lambda1 = lambda/mu ; //Wavelength in A\n", +"//The angular resolution \n", +"//1 A = 1.0*10^-7 mm\n", +"theta_c = (1.22*lambda1*10^-7)/D; // angle in rad\n", +"//Maximum value for L\n", +"L = 1/tan(theta_c); // in mm\n", +"printf('Maximum value for L should be : %.1f mm',L);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: Interference_minima.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"d = 8.8*10^-2 ; // slit width in mm\n", +"b = 0.7;// seperation between slits in mm\n", +"lambda = 6328 ; //Wavelength in A\n", +"//First diffraction minima is possible, when d*sin(theta) = lambda\n", +"// 1 A = 1.0*10^-7 mm\n", +"theta = asind((lambda*10^-7)/d); // angle in degrees\n", +"printf('theta = %.3f degrees .\n\n',theta);\n", +"//interference minima is possible , when sin(theta) = ((p + 1/2)*lambda)/b\n", +"for p = 0 : 10\n", +" //1 A = 1.0*10^-7 mm\n", +" theta1 = asind((p + 1/2)*(lambda*10^-7/b)); // angle in degrees \n", +" printf('When p = %d \n',p);\n", +" printf('theta = %.3f degrees . \n\n',theta1);\n", +" if(theta1 > theta)\n", +" printf(' When p >= %d , theta > %.3f degrees .\n\nBetween the first two diffraction minima , %d interference minima are possible.',p,theta,2*p);\n", +" break;\n", +" end\n", +"end" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6: Angles_of_Diffraction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"// a+b = (2.54/N)cm\n", +"N = 15000;//grating has 15000 lines\n", +"a_plus_b = 2.54/N ; // grating element in cm\n", +"//Grating equation, (a+b)*sin(theta_n) = n*lambda, we get : theta_n = asind((n*lamba)/(a+b))\n", +"printf('For line D1 and Wavelength 5890 A:\n\n');\n", +"printf(' Angles at which first order and second order maxima will be observed are :\n');\n", +"lambda1 = 5890; //Wavelength in A\n", +"for n = 1:2 // First and second order maxima\n", +"// 1 A = 1.0*10^-7 mm\n", +"theta1_n = asind((n*lambda1*10^-8)/a_plus_b);// angle in degrees\n", +"printf(' Order :%d ,%.3f degrees \n',n,theta1_n);\n", +"end\n", +"printf('For line D2 and Wavelength 5895.9 A :\n\n');\n", +"printf(' Angles at which first order and second order maxima will be observed are :\n');\n", +"lambda2 = 5895.9 ; //Wavelength in A\n", +"for n1 = 1:2 //First and second order maxima\n", +"// 1 A = 1.0*10^-7 mm\n", +" theta2_n = asind((n1*lambda2*10^-8)/a_plus_b);// angle in degrees\n", +" printf('Order : %d, %.3f degrees \n',n1,theta2_n); \n", +"end\n", +"printf(' When n = 3, sin(theta)= ((n*lambda*10^-8)/a_plus_b)>1 , which falls outside the sine range, hence third order maximum is not visible');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.8: Dispersion_and_resolving_power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"// Given :\n", +"//(a) 15000 lines per inch \n", +"N1 = 15000; //15000 lines per inch\n", +"a1_plus_b1 = (2.54/N1)*10^8 ; //grating element in A\n", +"lambda1 = 5890; //Wavelength in A\n", +"lambda2 = 5895.9 ; // Wavelength in A\n", +"deltalambda1 = lambda2-lambda1; //in A\n", +"//For first order\n", +"n =1;\n", +"theta1 = 20.355; // in degrees\n", +"deltatheta1 = ((n*deltalambda1)/((a1_plus_b1)*cosd(theta1)));// dispersion in degrees/A\n", +"rp1 = n*N1; // resolving power\n", +"\n", +"\n", +"//(b)15000 lines per cm\n", +"// 1 cm = 0.393701 inches, so We have 15000 lines per 0.393701 inches. \n", +"//Therefore, For 1 inch we have 15000/0.393701 = 38099.979 or 38100 lines\n", +"N2 = 38100 ; //38100 lines per inch\n", +"a2_plus_b2 = (2.54/N2)*10^8 ; //grating element in A\n", +"//For first order\n", +"theta_1 = asind((n*lambda1)/(a2_plus_b2));// in degrees\n", +"deltatheta_1 = ((n*deltalambda1)/((a2_plus_b2)*cosd(theta_1)));// dispersion in degrees/A\n", +"rp2 = n*15000; // resolving power\n", +"\n", +"\n", +"//(c)5906 lines per cm\n", +"// 1 cm = 0.393701 inches, so We have 5906 lines per 0.393701 inches. \n", +"//Therefore, For 1 inch we have 5906/0.393701 = 15001.232 or 15001 lines\n", +"N3 = 15001; //15001 lines per inch\n", +"a3_plus_b3 = (2.54/N3)*10^8; //grating element in A\n", +"//For first order\n", +"theta__1 = asind((n*lambda1)/(a3_plus_b3)); // in degrees\n", +"deltatheta__1 = ((n*deltalambda1)/((a3_plus_b3)*cosd(theta__1))); // dispersion in degrees/A\n", +"rp3 = n*5906; // resolving power\n", +"\n", +"printf(' Number of lines \tGrating element (in A)\t Angle of diffraction(degrees)\t Dispersion (degrees/A) \t Resolving Power\n');\n", +"printf('%d /inch\t\t\t %.0f\t\t %.2f \t\t\t\t %.2f x 10^-3\t\t\t %d\n',N1,a1_plus_b1,theta1,deltatheta1*10^3,rp1);\n", +"printf('%d /cm\t\t\t %.0f\t\t %.2f \t\t\t\t %.2f x 10^-3\t\t\t %d\n',15000,a2_plus_b2,theta_1,deltatheta_1*10^3,rp2);\n", +"printf('%d /cm\t\t\t %.0f\t\t %.2f \t\t\t\t %.2f x 10^-3\t\t\t %d\n',5906,a3_plus_b3,theta__1,deltatheta__1*10^3,rp3);\n", +"// Error in textbook for dispersion values . Error in decimal point placement ." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.9: Determination_of_separation_of_lines.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given:\n", +"//Wavelength\n", +"n=1; // first order diffraction\n", +"lambda1 = 4680 ;// Wavelength in A\n", +"lambda2 = 4800; //Wavelength in A\n", +"lambda3 = 5770 ; // Wave;ength in A\n", +"// First order diffraction angle\n", +"theta1 = 28.0; // angle in degrees\n", +"theta2 = 28.7; // angle in degrees\n", +"theta3 = 35.5; //angle in degrees\n", +"//Grating equation : (a+b) = n*lambda/sin(theta) \n", +"a1_plus_b1 = (n*lambda1)/sind(theta1); //spacing in A\n", +"a2_plus_b2 = (n*lambda2)/sind(theta2); //spacing in A\n", +"a3_plus_b3 = (n*lambda3)/sind(theta3); //spacing in A\n", +"mean_spacing = (a1_plus_b1 + a2_plus_b2 + a3_plus_b3)/3; // mean spacing in A \n", +"printf('(a)Wavelength :%d A \n Angle of 1st order Diffraction : %.1f degrees \n Spacing = %.1f A\n\n',lambda1,theta1,a1_plus_b1);\n", +"printf('(b)Wavelength :%d A \n Angle of 1st order Diffraction : %.1f degrees \n Spacing = %.1f A\n\n',lambda2,theta2,a2_plus_b2);\n", +"printf('(c)Wavelength :%d A \n Angle of 1st order Diffraction : %.1f degrees \n Spacing = %.1f A\n\n',lambda3,theta3,a3_plus_b3);\n", +"printf('Mean Spacing = %.1f A',mean_spacing);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/5-Polarisation.ipynb b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/5-Polarisation.ipynb new file mode 100644 index 0000000..aa6c25a --- /dev/null +++ b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/5-Polarisation.ipynb @@ -0,0 +1,189 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Polarisation" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.4: Brewster_Law.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given:\n", +"mu = 1.33; //Refractive index of water\n", +"//Brewster's angle, theta_p = atand(mu) ;\n", +"theta_p = atand(mu); // in degrees\n", +"theta_s = 90-theta_p ; // in degrees\n", +"printf('Angle = %.1f degrees',theta_s);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.5: Critical_angle_for_TIR.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given:\n", +"r = 90; // in degrees\n", +"mu_o= 1.658 ;// Refractive index for ordinary array\n", +"mu =1.55; // Refractive index for a canada balsam material\n", +"//Snell's Law,mu1*sin(i) = mu2*sin(r), we have :\n", +"i = asind((mu*sind(90))/mu_o); // angle in degrees\n", +"printf('Critical angle = %d degrees',i);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.6: Minimum_thickness_of_wave_plate.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"mu_o = 1.544; //Refractive index for ordinary ray\n", +"mu_e = 1.553;//Refractive index for extraordinary ray\n", +"lambda = 5890;//Wavelength in A\n", +"//(a)Plane polarised light :\n", +"//lambda is converted from A to cm , 1 A = 1.0*10^-8 cm\n", +"t1 = (lambda*10^-8)/(2*(mu_e-mu_o));//Minimum thickness in cm\n", +"//(b)Circularly polarised light :\n", +"t2 = (lambda*10^-8)/(4*(mu_e-mu_o));// Minimum thickness in cm\n", +"printf('Minimum thickness :\n\n');\n", +"printf('(a)Plane polarised light : %.2f x 10^-3 cm \n\n',t1*10^3);\n", +"printf('(b)Circularly polarised light : %.2f x 10^-3 cm ',t2*10^3);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.7: Birefringent_crystal.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"lambda = 5890; //Wavelength in A\n", +"//(a)Calcite crystal\n", +"mu1_o = 1.658;//refractive index for ordinary ray\n", +"mu1_e = 1.486;//refractive index for extraordinary ray\n", +"t1 = 0.0052 ; //thickness in mm\n", +"// 1 A = 1.0*10^-7 mm\n", +"alpha1 = ((2*%pi*(mu1_o-mu1_e)*t1)/(lambda*10^-7)); // phase difference in radians\n", +"//(b) Quartz crystal\n", +"mu2_o = 1.544; //refractive index for ordinary ray\n", +"mu2_e = 1.553; //refractive index for extraordinary ray\n", +"t2 = 0.0234;//thickness in mm\n", +"alpha2 = ((2*%pi*(mu2_e-mu2_o)*t2)/(lambda*10^-7)); // phase difference in radians\n", +"printf('(a)Calcite crystal : \n Phase difference is %.3f radians \n',alpha1);\n", +"printf('(a)Quartz crystal : \n Phase difference is %.3f radians',alpha2);\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.9: Application_of_Optical_Activity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"rho = 6.6; // Specific rotation of sugar in degrees g^-1 cm^2\n", +"l = 20; //length in cm\n", +"deltad = 1*10^-3;//difference in sugar concentration in g/cm^3\n", +"lc = 0.1; // least count in degrees\n", +"//Rotation due to optical activity = rho*l*d\n", +"deltatheta = rho*l*deltad; // in degrees\n", +"printf('Change in theta :%1.3f degrees.\n\n',deltatheta);\n", +"\n", +"if(deltatheta > lc)\n", +" printf('The concentration of 1 mg/cm^3 will be detected by the given urinalysis tube.');\n", +" else\n", +" printf('The concentration of 1 mg/cm^3 will not be detected.');\n", +"end " + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/6-Quantum_Physics.ipynb b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/6-Quantum_Physics.ipynb new file mode 100644 index 0000000..28c6b70 --- /dev/null +++ b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/6-Quantum_Physics.ipynb @@ -0,0 +1,533 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Quantum Physics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.10: de_Broglie_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"//(a)Rock\n", +"h = 6.625*10^-34; //planck's constant in Js\n", +"m = 50 ; // mass in g\n", +"v = 40; // Speed in m/s\n", +"// m = 50*10^-3 kg , 1g = 1.0*10^-3 kg\n", +"lambda1 = h/(m*10^-3*v); // Wavelength in m\n", +"//(b)For an electron\n", +"V = 50; // in volts\n", +"lambda2 = 12.28/sqrt(V); // Wavelength in A\n", +"printf('De Broglie wavelength \n\n (a)Rock : %.2f x 10^-34 m \n (b)For an electron : %.2f A',lambda1*10^34,lambda2);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.14: Application_of_uncertainty_principle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given:\n", +"//(a) Ball\n", +"h = 6.625*10^-34; //planck's constant in Js\n", +"m1 = 45; //mass in g\n", +"v1 = 40; //Speed in m/s\n", +"prec1 = 1.5/100 ;//precision\n", +"// m1 = 45*10^-3 kg , 1 g = 1.0*10^-3 kg\n", +"p1 =m1*10^-3*v1 ; // momentum in kg m/s\n", +"//(deltap/p)*100 = 1.5\n", +"deltap1 = prec1*p1 ;\n", +"deltax1 = h/deltap1; // uncertainty in position in m\n", +"printf('Uncertainty in position for a ball : %.2f x 10^-32 m \n',deltax1*10^32);\n", +"//(b) Electron\n", +"m2 = 9.1*10^-31; //electron mass in kg\n", +"v2 = 2*10^6 ; // Speed in m/s\n", +"prec2 = 1.5/100 ; // precision\n", +"p2 = m2*v2; // momentum in kg m/s\n", +"//(deltap/p)*100 = 1.5\n", +"deltap2 = prec2*p2 ;\n", +"deltax2 = h/deltap2; // uncertainty in position in m\n", +"// 1 A = 1.0*10^-10 m\n", +"printf('Uncertainty in position for an electron : %.0f A \n',deltax2/(1.0*10^-10));" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.17: Application_of_Schrodinger_equation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given:\n", +"//(a) Marble\n", +"h = 6.625*10^-34; //planck's constant in Js\n", +"m1 = 10; // mass in g\n", +"L1 = 10; // width in cm\n", +"// m1 = 10*10^-3 kg , 1 g = 1.0*10^-3 kg and L1 = 10*10^-2 m , 1 cm = 1.0*10^-2 m\n", +"printf('(a)Marble \n\n');\n", +"for n1 = 1:3\n", +" En1 = (n1^2*h^2)/(8*m1*10^-3*(L1*10^-2)^2); // Energry in J\n", +" printf('E_%d : %.1f x 10^-64 J\n',n1,En1*10^64);\n", +"end\n", +"//(b) For an electron\n", +"m2 = 9.1*10^-31; //electron mass in kg\n", +"L2 = 1 ; // width in A\n", +"//L2 = 1*10^-10 m , 1 A = 1.0*10^-10 m\n", +"printf('(b)For an electron \n\n');\n", +"for n2 = 1:3\n", +" En2 = (n2^2*h^2)/(8*m2*(L2*10^-10)^2); // Energry in J\n", +" printf('E_%d : %.1f eV\n',n2,(En2*6.24150934*10^18)); // 1J = 6.24150934*10^18 eV\n", +"end\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: Quantised_energy_levels.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Quantised energy levels for microscopic and macroscopic systems\n", +"clc();\n", +"clear;\n", +"//Given :\n", +"// (a) For a 1s simple pendulum :\n", +"T = 1; // time period in s\n", +"nu = 1/T; //Frequency in Hz\n", +"//Planck's quantisation princple : E_n = n*h*nu\n", +"h = 6.625*10^-34 ; //Planck's constant in Js\n", +"printf('Energy at First three levels for a 1s simple pendulum :\n\n');\n", +"for n1 = 1:3\n", +" E1 = n1*h*nu ; // Energry in J\n", +" printf('E_%d : %1.3f x 10^-34 J\n',n1,E1*10^34);\n", +"end\n", +"// (b) For a hydrogen electron \n", +"// E_n = (-13.6/n^2)eV\n", +" printf('Energy at First three levels for a hydrogen electron :\n\n');\n", +"for n2 = 1:3\n", +" E2 = (-13.6/n2^2);//Energy in eV\n", +" printf('E_%d : %.2f J\n',n2,E2);\n", +"end\n", +"\n", +"//Now, for a simple pendulum\n", +"m = 10; // mass in g\n", +"a = 1; // amplitude in cm\n", +"omega = 2*%pi*nu; // angular frequency in rad/s\n", +"// 1 g = 1.0*10^-3 Kg and 1 cm = 1.0*10^-2 m\n", +"E = 1/2*((m*10^-3)*(omega^2)*(a*10^-2)^2); // Energy in J\n", +"//Thus,quantum number n = E/h*nu\n", +"n = E/(h*nu);\n", +"printf('Quantum number n is : %.2f x 10^28 \n\n',n*10^-28);\n", +"//(i)Pendulum :\n", +"//percentage change in energy = (E_n+1 - E_n)*100/E_n which is equal to [(n+1)*h*nu - n*h*nu]*100/(n*h*nu )\n", +"//Therefore , it is (1/n) * 100\n", +"pc = (1/n)*100; //percentage change in energy\n", +"printf('Percentage change in energy ( pendulum ) is %1.3f x 10^-27 \n\n',pc*10^27);\n", +"//(ii)Hyderogen electron :\n", +"n_1 = 1; //ground state\n", +"n_2 = 2; // next quantum state\n", +"E_1 = (-13.6/n_1^2); // Energy in eV\n", +"E_2 = (-13.6/n_2^2);//Energy in eV\n", +"//percentage change : |((E_2-E_1)*100)|/ |E_1|\n", +"pc1 =((E_2-E_1)*100)/(-E_1);//percentage change\n", +"printf('Percentage change in energy (hydrogen electron) is %.1f',abs(pc1));" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: Finding_Photon_Energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"h = 6.625*10^-34;//Planck's constant in Js\n", +"c = 3*10^8 ; //velocity of light in m/s\n", +"// 1A = 1.0*10^-10 m\n", +"//(a)Energy of a photon : \n", +"// E = h*nu or E = h*c/lambda\n", +"printf('Energy of a photon is %2.4f x 10^-16 /lambda(in A) J\n',((h*c)*10^10)*10^16);\n", +"//1eV = 1.6*10^-19 J\n", +"printf('Energy of a photon is %.0f/lambda(in A) eV\n\n',round(((h*c)/(1.6*10^-19))*10^10));\n", +"//(b)Visible light Range is 4000-7000 A\n", +"lambda1 = 4000;//Wavelength in A\n", +"lambda2 = 7000;//Wavelength in A\n", +"// 1eV = 1.6*10^-19 J , \n", +"E1 = (h*c)/(lambda1*10^-10*1.6*10^-19); //Energy in eV\n", +"E2 = (h*c)/(lambda2*10^-10*1.6*10^-19);//Energy in eV\n", +"printf('Hence the range of energies for visible photos is %.1f eV to %.1f eV',E2,E1);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: Failure_of_wave_theory.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"//Power of the source = 10^-5 W = 10^-5 J/s\n", +"P = 10^-5 ; //Power in J/s\n", +"r = 10^-9; //radius in m\n", +"r1 = 5; // metal plate 5 m away from the source\n", +"WF = 5;//Work function in eV\n", +"area = %pi*(10^-9)^2 ; //area in m^2\n", +"area1 = 4*%pi*r1^2; // area in m^2\n", +"P1 = P*(area/area1); // in J/s\n", +"// 1eV = 1.6*10^-19 J\n", +"t = (WF*1.6*10^-19)/P1 ;// in s\n", +"//1 day = 24 hours * 60 minutes * 60 seconds\n", +"N = t/(24*60*60); //in days\n", +"printf(' It will take %.0f days \n',round(N));\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4: Determination_of_h_and_phi.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"nu1 = 10*10^14;// Frequency in Hz\n", +"nu2 = 6*10^14;// Frequency in Hz\n", +"V_01 = 2.37; //Stopping potential in volts\n", +"V_02 = 0.72; //Stopping potential in volts\n", +"//Einstein's photoeletric equation : h*nu = phi + e*V_0 \n", +"e = 1.6*10^-19 ;// Charge of an electron in C\n", +"h = (e*(V_02 - V_01))/(nu2 - nu1);//Planck's constant in Js\n", +"phi = ((h*nu1)-(e*V_01))/e ; // work function in eV\n", +"printf('Plancks constant h is %.1f x 10^-34 Js and Work function phi is %.2f eV ',h*10^34,phi);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5: Incident_wavelength_in_Compton_Scattering.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"ME = 35*10^3 ; //Maximum energy in eV\n", +"theta = %pi; // photon is backscattered\n", +"h = 6.625*10^-34; //planck's constant in Js\n", +"m0 = 9.1*10^-31; //electron mass in Kg\n", +"c = 3*10^8; //Speed of light in m/s\n", +"deltalambda = (h*(1-cos(theta)))/(m0*c); // in A\n", +"// (h*c/lambda) - (h*c/lambda') = 35 KeV or (deltalambda/lambda*lambda1) = (35 KeV/h*c)\n", +"//Simplifying the above Equation , we will obtain : lambda^2 + 0.048 lambda - 0.017\n", +"//Roots of the quadratic equation are :\n", +"values = [-0.017,0.048,1]; // a,b,c values of the quadratic equation\n", +"equation = poly(values,'lamb','coeff'); //quadratic equation \n", +"r = roots(equation); //Roots of the final equation\n", +"printf('Incident photon wavelength in Compton scattering is %.2f A',r(2));\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.6: Observability_of_Compton_effect.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"theta = 90; //angle in degrees\n", +"m0 = 9.1*10^-31; //electron mass in kg\n", +"c = 3*10^8; //Speed of light in m/s\n", +"h = 6.625*10^-34; //planck's constant in Js\n", +"deltalambda = ((h*(1-cosd(theta)))/(m0*c))*10^10; // in A\n", +"//(a) Microwave range\n", +"lambda1 = 3.0 ;// wavelength in cm\n", +"//lambda1 = 3.0*10^8 A , 1 cm = 1*10^8 A\n", +"pc1 = ((deltalambda)*100)/((lambda1*10^8) + deltalambda) ;//percent change in photon energy\n", +"printf('Percentage change in energy for radiation in microwave range is : %.0f x 10^-9 \n',pc1*10^9);\n", +"//(b) Visible range\n", +"lambda2 = 5000 ;// wavelength in A\n", +"pc2 = ((deltalambda)/(lambda2 + deltalambda))*100 ;//percent change in photon energy\n", +"printf('Percentage change in energy for radiation in visible range is : %.0f x 10^-4 \n',pc2*10^4);\n", +"//(c) X-ray range\n", +"lambda3 = 1 ; //wavelength in A\n", +"pc3 = ((deltalambda)/(lambda3 + deltalambda))*100 ;//percent change in photon energy\n", +"printf('Percentage change in energy for radiation in X-ray range is : %.1f\n',pc3);\n", +"//(d)Gamma ray range\n", +"lambda4 = 0.012 ;// wavelength in A\n", +"pc4 = ((deltalambda)/(lambda4 + deltalambda))*100 ;//percent change in photon energy\n", +"printf('Percentage change in energy for radiation in Gamma range is : %.1f\n',pc4);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.7: Finding_pe_by_pp_ratio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given:\n", +"//Photoelectric effect\n", +"lambda1 = 2000; //wavelength in A\n", +"phi1 = 2.3;// Work function in eV\n", +"m = 9.1*10^-31; //electron mass in kg\n", +"E1 = 12422/lambda1; // Energy of photon in eV\n", +"c = 3*10^8; //Speed of light in m/s\n", +"Ee1 = (12422/lambda1)- phi1; // energy of an electron in eV\n", +"pe1 = sqrt(2*m*Ee1*1.6*10^-19); //electron momentum in kg m/s\n", +"pp1 = (E1*1.6*10^-19)/c ; // Momentum of incident photon in kg m/s\n", +"ratio1 = pe1/pp1 ; // (pe/pp)\n", +"//Compton effect\n", +"lambda2 = 1; // wavelength in A\n", +"deltalambda = 0.048; // Compton shift in A\n", +"E2 = 12422/lambda2; // Energy of photon in eV\n", +"Ee2 = (12422/lambda2)- (12422/(lambda2+deltalambda));//energy of an electron in eV\n", +"pe2 = sqrt(2*m*Ee2*1.6*10^-19); //electron momentum in kg m/s\n", +"pp2 = (E2*1.6*10^-19)/c ; // Momentum of incident photon in kg m/s\n", +"ratio2 = pe2/pp2 ; // (pe/pp)\n", +"printf('Photoelectric effect :\n\n');\n", +"printf('Electron energy : %.1f eV \n Electron momentum : %.2f x 10^-24 kg m/s \n Momentum of incident photon : %.2f x 10^-27 kg m/s \n pe/pp : %.0f \n\n',Ee1,pe1*10^24,pp1*10^27,ratio1);\n", +"printf('Compton effect :\n\n');\n", +"printf('Electron energy : %.1f eV \n Electron momentum : %.1f x 10^-23 kg m/s \n Momentum of incident photon : %.2f x 10^-24 kg m/s \n pe/pp : %.2f \n\n',Ee2,pe2*10^23,pp2*10^24,ratio2);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.8: Wave_particle_characteristics.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given:\n", +"//Gamma-rays,X-rays\n", +"lambda1 = 0.01;//Wavelength in A\n", +"c = 3*10^8; //Speed of light in m/s\n", +"E1 = 12422/lambda1; // Energy in A\n", +"p1 = (E1*1.6*10^-19)/c ; //Momentum in kg m/s\n", +"//UV\n", +"lambda2 = 100;//Wavelength in A\n", +"c = 3*10^8; //Speed of light in m/s\n", +"E2 = 12422/lambda2; // Energy in A\n", +"p2 = (E2*1.6*10^-19)/c ; //Momentum in kg m/s\n", +"//IR\n", +"lambda3 = 1*10^-4;//Wavelength in m\n", +"c = 3*10^8; //Speed of light in m/s\n", +"//lambda3 = 1*10^-4*10^10 A , 1 m = 1*10^10 A\n", +"E3 = 12422/(lambda3*10^10); // Energy in A\n", +"p3 = (E3*1.6*10^-19)/c ; //Momentum in kg m/s\n", +"//Microwave\n", +"lambda4 = 1;//Wavelength in m\n", +"c = 3*10^8; //Speed of light in m/s\n", +"//lambda4 = 1*10^10 A , 1 m = 1*10^10 A\n", +"E4 = 12422/(lambda4*10^10); // Energy in A\n", +"p4 = (E4*1.6*10^-19)/c ; //Momentum in kg m/s\n", +"//Radio waves\n", +"lambda5 = 100;//Wavelength in m\n", +"c = 3*10^8; //Speed of light in m/s\n", +"//lambda5 = 100*10^10 A , 1 m = 1*10^10 A\n", +"E5 = 12422/(lambda5*10^10); // Energy in A\n", +"p5 = (E5*1.6*10^-19)/c ; //Momentum in kg m/s\n", +"printf('Gamma-rays,X-rays : \n Energy : %.2f x 10^6 eV \n Momentum : %.1f x 10^-22 kg m/s \n\n',E1*10^-6,p1*10^22);\n", +"printf(' UV : \n Energy : %.2f eV \n Momentum : %.1f x 10^-26 kg m/s\n\n',E2,p2*10^26);\n", +"printf(' IR : \n Energy : %.4f eV \n Momentum : %.1f x 10^-30 kg m/s\n\n',E3,p3*10^30);\n", +"printf(' Microwave : \n Energy : %.2f x 10^-6 eV \n Momentum : %.1f x 10^-34 kg m/s\n\n',E4*10^6,p4*10^34);\n", +"printf(' Radio waves : \n Energy : %.2f x 10^-8 eV \n Momentum : %.1f x 10^-36 kg m/s',E5*10^8,p5*10^36);\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.9: deBroglie_wavelength_of_an_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"h = 6.625*10^-34; //planck's constant in Js\n", +"m = 9.109*10^-31;// electron mass in kg\n", +"e = 1.6*10^-19; // charge of an electron in C\n", +"//Lambda = h/sqrt(2*m*eV) here we dont have V , so let us caluclate the remaining part.\n", +"lambda = h/sqrt(2*m*e);// wavelength in A\n", +"// 1 A = 1.0*10^-10 m\n", +"printf('Lambda(A) = %.2f/sqrt(V) ',lambda/(1.0*10^-10));" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/7-Atomic_Physics.ipynb b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/7-Atomic_Physics.ipynb new file mode 100644 index 0000000..67db644 --- /dev/null +++ b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/7-Atomic_Physics.ipynb @@ -0,0 +1,152 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Atomic Physics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1: Hydrogen_atom.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"n =1 ; // ground state\n", +"m = 9.109382*10^-31; //electron mass in kg\n", +"h = 6.625*10^-34; //planck's constant in Js\n", +"e = 1.602176*10^-19; // Charge of an electron in C\n", +"e0 = 8.854188*10^-12; // Vacuum permittivity in F/m\n", +"r1 = (n^2*h^2*e0)/(%pi*m*e^2);// Radius in A\n", +"v1 = e^2/(2*h*e0*n); // Velocity in m/s\n", +"E1 = -((m*e^4)/(8*n^2*h^2*e0^2)); // Energy of an electron in eV\n", +"// 1 A = 1.0*10^-10 m , 1 eV = 1.6*10^-19 J\n", +"printf('For hydrogen atom : \n Radius = %.2f A \n Velocity = %.1f x 10^6 m/s \n Energy of an electron = %.1f eV',r1*10^10,v1*10^-6,E1/(1.6*10^-19));" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: Bohr_Theory.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"//(a)\n", +"m = 9.109382*10^-31; //electron mass in kg\n", +"c = 2.997925*10^8; //Speed of light in m/s\n", +"h = 6.626069*10^-34; //planck's constant in Js\n", +"e = 1.602176*10^-19; // Charge of an electron in C\n", +"e0 = 8.854188*10^-12; // Vacuum permittivity in F/m\n", +"R = (m*e^4)/(8*h^3*e0^2*c);// Rydberg constant in m^-1\n", +"printf('Rydberg constant for hydrogen : %.2f cm^-1\n\n',R*10^-2);\n", +"//(b)\n", +"M = 1.672622*10^-27; // proton mass in kg\n", +"R1 = ((m*e^4)/(8*h^3*e0^2*c))*(1/(1 + (m/M))); // Rydberg Constant in m^-1\n", +"//1 m^-1 = 1.0*10^-2 cm^-1\n", +"printf('Rydberg Constant is %.2f cm^-1',R1*10^-2);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3: Bohrs_theory_for_helium.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"RH= 109677.58; //Rydberg constant for Hydrogen in cm^-1\n", +"RHe = 109722.269; //Rydberg constant for Helium in cm^-1\n", +"//Ratio = M/m\n", +"Ratio = ((4*RH)- (RHe))/(4*(RHe-RH));\n", +"printf('M/m value is : %.1f ',Ratio);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.4: Bohrs_radius.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given\n", +"h = 6.625*10^-34; //planck's constant in Js\n", +"m = 9.1*10^-31; //electron mass in kg\n", +"E1 = 13.6; //Energy of electron in eV\n", +"//1 eV = 1.6*10^-19 J\n", +"p = sqrt(2*m*E1*1.6*10^-19); //momentum in kg m/s\n", +"deltax = h/(2*%pi*p);\n", +"// 1 A = 1.0*10^-10 m\n", +"printf('Uncertainty in position : %.2f A',deltax/(1.0*10^-10));\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/8-Nuclear_Physics.ipynb b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/8-Nuclear_Physics.ipynb new file mode 100644 index 0000000..f9242fb --- /dev/null +++ b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/8-Nuclear_Physics.ipynb @@ -0,0 +1,407 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Nuclear Physics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.10: Power_output.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"Na = 6.023*10^23 ; // Avogadro constant atoms/mole\n", +"LE = 200 ; // liberated energy in MeV\n", +"mm = 235*10^-3; // molar mass of U 235 in gm/mole\n", +"p = 30/100 ; // conversion efficiency\n", +"// 1 eV = 1.6*10^-19 J , 1 MeV = 1.0*10^6 eV\n", +"RE = (Na*LE*1.6*10^-19*10^6)/mm ; //released energy in J per day\n", +"// 1 day = 24 hrs * 60 mins * 60 sec\n", +"P = RE/(24*60*60); // Power output in W per day\n", +"// 1 cal = 4.187 J \n", +"EC = RE/4.187 ; // energy in cal\n", +"//Burning 1 kg of coal releases 7000 K cal of energy \n", +"Q1 = EC/(7000*10^3); // Quantity of Coal in Kg per day\n", +"EP = p*P ; // electric power in W\n", +"printf(' %.0f tonnes of Coal\n',Q1*10^-3);\n", +"printf(' Electric power for 30 percent conversion efficiency : %.1f kW',EP*10^-3);\n", +"// Results obtained differ from those in textbook , because approximate values were considered in textbook.\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.11: Radioactive_dating_of_a_tree.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"T_half = 5730; // carbon 14 half life in years\n", +"Na = 6.023*10^23; // Avogadro constant in nuclei/mole\n", +"M = 25;// charcoal mass in gm\n", +"mm = 12;// molar mass of carbon 12 in gm/mole\n", +"a = 250 ; // disinitegrations per minute (Carbon 14 activity)\n", +"// 1 year = 525949 minutes\n", +"lambda = 0.693/(T_half*525949);// disinitegrations per minute per nucleus\n", +"N0_1 = (Na/mm)*M ; // Number of nuclei (Carbon 12)\n", +"// Carbon 14 to Carbon 12 ratio = 1.3*10^-12 \n", +"N0_2 = 1.3*10^-12*N0_1 ; // Number of nuclei (Carbon 14)\n", +"R0 = N0_2*lambda ; // disinitegrations per minute per nucleus\n", +"a0 = R0 ; // initial activity\n", +"t = log(a0/a)/lambda ;\n", +"// 1 year = 525949 minutes\n", +"printf('The tree died %d years ago',t/525949 );\n", +"// Result obtained differs from the textbook, because R0 value obtained here is 375.1025, where as in textbook it is 374. " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.12: Radioactivity_of_iodine_131.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"T_half = 8 ; // iodine 131 haf life in days\n", +"lambda = 0.693/T_half ; // decay constant in decays/day\n", +"N0 = 20 ; // mass in mg\n", +"t = 48; // time in days\n", +"N = N0*exp(-lambda*t); // in mg\n", +"printf('Original amount : %d mg \n',N0);\n", +"printf('Remaining amount after 48 days : %.3f mg',N);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.13: Co_60_gamma_rays.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"RBE = 0.7 ; //RBE factor for cobalt 60 gamma rays\n", +"dose = 1000 ; // dose in rad\n", +"e = RBE*dose; // equivalent dose in rem \n", +"printf('Equivalent dose is %d rem',e);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1: Nuclear_and_atomic_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given:\n", +"mp = 1.67*10^-27 ; // proton mass in kg\n", +"r0 = 1.2*10^-15; // constant in m\n", +"a0 = 0.5*10^-10; // atomic dimensions in m\n", +"//rho_nucleus = nuclear mass/ nuclear volume\n", +"rho_nucleus = (3*mp)/(4*%pi*r0^3); // nuclear density in kg/m^3\n", +"//ratio = rho_nucleus/rho_atom = (a0/r0)^3\n", +"ratio = a0^3/r0^3;\n", +"printf('Nuclear density is %.1f x 10^17 kg/m^3 \n',rho_nucleus*10^-17);\n", +"printf('Nuclear density is %.1f x 10^13 times Atomic density.',ratio*10^-13);\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2: Rest_mass_of_a_pio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"h = 1.05*10^-34; //planck's constant in Js\n", +"m = 9.1*10^-31; //electron rest mass in kg\n", +"c = 3*10^8; //Speed of light in m/s\n", +"b = 1.7*10^-15; // range of nuclear force in m\n", +"m_pi = h/(b*c); // rest mass of a pion in kg\n", +"t = m_pi/m; // times the rest mass of an electron\n", +"printf('Rest mass of a pion is %d times the rest mass of an electron',t);\n", +"// textbook answer is 220 , because approximate value for m_pi was considered." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: Nuclear_and_Electronic_Binding_Energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"mp = 1.007276470 ; // proton mass in u \n", +"mn = 1.008665012; // neutron mass in u\n", +"md = 2.013553215; // deuteron mass in u\n", +"//E = ( mp + mn - md)*c^2\n", +"// 1 u * c^2 = 931.5 MeV , where 1 u = 1.66*10^-27 kg and c = 3*10^8 m/s\n", +"E = (mp + mn - md)*931.5; // Binding energy in MeV\n", +"printf('Binding energy : %.3f MeV',E);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: Average_Binding_Energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"m_alpha = 4.001506106; // mass of an alpha particle in u\n", +"mp = 1.007276470 ; // proton mass in u \n", +"mn = 1.008665012; // neutron mass in u\n", +"//E = ( 2*mp + 2*mn - m_alpha)*c^2\n", +"// 1 u * c^2 = 931.5 MeV , where 1 u = 1.66*10^-27 kg and c = 3*10^8 m/s\n", +"E = (2*mp + 2*mn - m_alpha)*931.5; // Binding energy in MeV\n", +"printf('Average binding energy per nucleon : %.3f MeV',E/4);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5: Q_value_of_a_nuclear_reaction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"Mn = 14.00753; //mass of Nitrogen 14 in u\n", +"Mo = 17.0045; // mass of Oxygen 17 in u\n", +"m_alpha = 4.00387; // mass of alpha particle in u\n", +"mp = 1.00184; // mass of proton in u\n", +"//Q = (m_alpha + Mn - Mo - mp)*c^2\n", +"//// 1 u * c^2 = 931.5 MeV , where 1 u = 1.66*10^-27 kg and c = 3*10^8 m/s\n", +"Q = (m_alpha + Mn - Mo - mp)*931.5 ;// Q value in MeV\n", +"printf('Q value is %.1f MeV',Q);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.7: Angle_of_ejection.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"Q = 4 ;// in MeV\n", +"Ex = 2; // in MeV\n", +"Ey = 5 ; // in MeV\n", +"mx = 4; // in u\n", +"my = 1 ; // in u\n", +"My =13; // in u\n", +"theta = acosd(( (Ey*(1 + (my/My))) - (Ex*(1 - (mx/My))) - Q )/((2/My)*sqrt(mx*Ex*my*Ey))); // angle of ejection in degrees \n", +"printf('Angle of ejection is %.0f degrees',theta);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.8: Electronic_and_nuclear_energy_levels.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"h = 6.625*10^-34 ; //planck's constant in Js\n", +"me = 9.1*10^-31 ; //electron mass in kg\n", +"mn = 1.67*10^-27;// a nucleon mass in kg\n", +"//(a)For electron\n", +"L1 = 1; // in A\n", +"//E = (n^2*h^2)/(8*m*L^2) , here n value is not given , so let us calculate the remaining part (neglecting n^2 in the formula)\n", +"//L1 = 1*10^-10 m , 1A = 1.0*10^-10 m\n", +"E1 = h^2/(8*me*(L1*10^-10)^2); // energy in J\n", +"//(b)For nucleon\n", +"L2 = 1; // in fm\n", +"//E = (n^2*h^2)/(8*m*L^2) , here n value is not given , so let us calculate the remaining part (neglecting n^2 in the formula)\n", +"//L2 = 1*10^-15 m , 1 fm = 1.0*10^-15 m\n", +"E2 = h^2/(8*mn*(L2*10^-15)^2);//energy in J\n", +"printf('Energy for an electron : %.1f x 10^-17 x n^2 J \n',E1*10^17);\n", +"printf('Energy for a nucleon : %.2f x 10^-11 x n^2 J',E2*10^11);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.9: Energy_released_in_Fission.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"Na = 6.023*10^23 ; // Avogadro constant in atoms/mole\n", +"LE = 200 ; // liberated energy in MeV\n", +"mm = 235; // molar mass of U 235 in gm/mole\n", +"// 1 eV = 1.6*10^-19 J , 1 MeV = 1.0*10^6 eV\n", +"RE = (Na*LE*1.6*10^-19*10^6)/mm ; //released energy in J\n", +"// 1 cal = 4.187 J \n", +"EC = RE/4.187 ; // energy in cal\n", +"//Burning 1 kg of coal releases 7000 K cal of energy \n", +"Q1 = EC/(7000*10^3); // Quantity of Coal in Kg\n", +"//Exploding 1 kg of TNT releases 1000 cal of energy\n", +"Q2 = EC/1000; // Quantity of TNT in kg\n", +"printf('Energy released : %.0f x 10^10 cal \n',EC*10^-10);\n", +"printf(' %.1f tonnes of Coal\n',Q1*10^-3);\n", +"printf(' %.0f tonnes of TNT\n',Q2*10^-3);\n", +"// Results obtained differ from those in textbook , because approximate values were considered in textbook." + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/9-Structure_and_Properties_of_Matter.ipynb b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/9-Structure_and_Properties_of_Matter.ipynb new file mode 100644 index 0000000..f76a59a --- /dev/null +++ b/Engineering_Physics_by_S_D_Jain_and_G_G_Sahasrabudhe/9-Structure_and_Properties_of_Matter.ipynb @@ -0,0 +1,135 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: Structure and Properties of Matter" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.3: Miller_indices_of_planes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given :\n", +"//Intercepts\n", +"ix = 1/3 ; //along x-axis\n", +"iy = 2/3; // along y-axis\n", +"iz =1; // along z-axis\n", +"//Reciprocals\n", +"rx = 1/ix;\n", +"ry = 1/iy;\n", +"rz = 1/iz;\n", +"//Conversion\n", +"x = rx*2;\n", +"y = ry*2;\n", +"z = rz*2;\n", +"printf('Miller indices of the plane are : ( %d %d %d )',x,y,z);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.7: Determination_of_crystal_structure.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given:\n", +"n = 1;\n", +"theta = 30; // angle in degrees\n", +"lambda = 1.67; // wavelength in A\n", +"r = 1.25; // atomic radius in A\n", +"//Bragg's Law : 2*d*sin(theta) = n*lambda , d= d111\n", +"d111 = (n*lambda)/(2*sind(theta));\n", +"//plane (111)\n", +"h =1;k=1;l=1;\n", +"//dhkl = a/sqrt(h^2 + k^2 + l^2)\n", +"a = d111*sqrt(h^2 + k^2 + l^2); // in A\n", +"ratio = r/a;\n", +"printf(' Since, r/a = %.4f and r = %f*a Crystal Structure : BCC',ratio,ratio);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.8: Determination_of_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc();\n", +"clear;\n", +"//Given:\n", +"n = 1;\n", +"theta = 30; //angle in degrees\n", +"lambda = 2.88 ; // wavelength in A\n", +"M = 108; // atomic weight in kg\n", +"Z = 4; // unit cell of silver is FCC\n", +"Na = 6.023*10^26 ;// Avogadro constant in kmole\n", +"//Bragg's Law : 2*d*sin(theta) = n*lambda , d = d110\n", +"d110 = (n*lambda)/(2*sind(theta)); // in A\n", +"//plane (110)\n", +"h =1;k=1;l=0;\n", +"//dhkl = a/sqrt(h^2 + k^2 + l^2)\n", +"a = d110*sqrt(h^2 + k^2 + l^2); // in A\n", +"//1 A = 1.0*10^-10 m\n", +"rho = (Z*M)/(Na*(a*10^-10)^3); // density in kg/m^3\n", +"printf(' Density of silver : %.1f kg/m^3',rho);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |