summaryrefslogtreecommitdiff
path: root/Engineering_Basics_by_T_Thyagarajan
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Basics_by_T_Thyagarajan')
-rw-r--r--Engineering_Basics_by_T_Thyagarajan/1-concept_of_electric_current_and_laws.ipynb378
-rw-r--r--Engineering_Basics_by_T_Thyagarajan/2-Magnetic_Current.ipynb378
-rw-r--r--Engineering_Basics_by_T_Thyagarajan/3-Electromagnetism.ipynb310
-rw-r--r--Engineering_Basics_by_T_Thyagarajan/4-Ac_circuit.ipynb1004
-rw-r--r--Engineering_Basics_by_T_Thyagarajan/5-Electrical_Machine.ipynb583
5 files changed, 2653 insertions, 0 deletions
diff --git a/Engineering_Basics_by_T_Thyagarajan/1-concept_of_electric_current_and_laws.ipynb b/Engineering_Basics_by_T_Thyagarajan/1-concept_of_electric_current_and_laws.ipynb
new file mode 100644
index 0000000..aac1bf1
--- /dev/null
+++ b/Engineering_Basics_by_T_Thyagarajan/1-concept_of_electric_current_and_laws.ipynb
@@ -0,0 +1,378 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: concept of electric current and laws"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.10: resistance_of_coil.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//what is the resistance of each coil\n",
+"V=200\n",
+"I=25\n",
+"P1=1500\n",
+"R1=(V*V)/P1\n",
+"R=V/I //total resistance\n",
+"R2=R*R1/(R1-R)\n",
+"disp('R2='+string(R2)+' ohms' )"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.11: power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//what is the resistance of each coil\n",
+"V=100\n",
+"P=1500\n",
+"R=(V^2/P)/2\n",
+"Ra=R\n",
+"Rb=R\n",
+"Rc=R\n",
+"R1=((Ra*Rc)/(Ra+Rc))+Rb\n",
+"I=V/R1\n",
+"I1=(I*Ra)/(Ra+Rc)\n",
+"I2=(I*Ra)/(Ra+Rc)\n",
+"Pa=I*I*Ra\n",
+"Pb=I1*I1*Rb\n",
+"Pc=I2*I2*Rc\n",
+"disp( 'Pc='+string(Pc)+' watts' , 'Pb='+string(Pb)+' watts' , 'Pa='+string(Pa)+' watts')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.12: Bill_amount.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the energy consume in a house in the month \n",
+"L=3600//six lamp 1000 watt each for six days\n",
+"H=3000//one haeter\n",
+"M=735.5//single phase motor\n",
+"F=2400//four fans 75W\n",
+"T=L+H+M+F//total energy consumed in watt \n",
+"TE=T*30/1000\n",
+"C=0.9//cost of energy\n",
+"B=TE*0.9//Bil amount\n",
+"disp('B= '+string(B)+' ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.18: resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//convert the delta circuit\n",
+"Rry=4\n",
+"Ryb=1\n",
+"Rbr=5\n",
+"Rr=(Rbr*Rry)/(Rry+Rbr+Ryb)\n",
+"Ry=(Rry*Ryb)/(Rry+Rbr+Ryb)\n",
+"Rb=(Rbr*Ryb)/(Rry+Rbr+Ryb)\n",
+"disp('Rb='+string(Rb)+ 'ohms' , 'Ry='+string(Ry)+ ' ohms' , 'Rr='+string(Rr)+' ohms')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.19: resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//convert star circuit\n",
+"Rr=2\n",
+"Ry=0.67\n",
+"Rb=1\n",
+"Rry=(Rr*Ry)+(Ry*Rb)+(Rb*Rr)/Rb\n",
+"Ryb=(Rr*Ry)+(Ry*Rb)+(Rb*Rr)/Rr\n",
+"Rbr=(Rr*Ry)+(Ry*Rb)+(Rb*Rr)/Ry\n",
+"disp('Rbr='+string(Rbr)+'ohms' , 'Ryb='+string(Ryb)+'ohms' , 'Rry='+string(Rry)+ 'ohms')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: specific_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+" //find the specific resistance of the material\n",
+"L =12 //meter\n",
+"A=0.01*10^-4 //m^2\n",
+"R=0.2 //ohm\n",
+"p=R*A/L //specific resistance\n",
+"disp('value of specific resistance='+string(p)+' ohm -meter')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//resistance at 40 degree\n",
+"a0=0.0043\n",
+"t1=27\n",
+"t2=40\n",
+"R1=1.5\n",
+"R2=R1*(1+a0*t2)/(1+a0*t1)\n",
+"disp('value of resistance='+string(R2)+ ' ohm')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: resistance_and_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//find the total R.I.V \n",
+"R1=5\n",
+"R2=10\n",
+"R3=15\n",
+"V=120\n",
+"R=R1+R2+R3\n",
+"I=V/R\n",
+"V1=I*R1\n",
+"V2=I*R2\n",
+"V3=I*R3\n",
+"disp('Voltage V3='+string(V3)+'volts' , 'Voltage V2='+string(V2)+'volt' , 'Voltage V1='+string(V1)+'volts')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//find the eqvivalent rasistance of series parallel combination\n",
+"Rab=(2*4)/(2+4)\n",
+"Rbc=(6*8)/(6+8)\n",
+"Rac=Rab+Rbc\n",
+"disp('rasistance across AC='+string(Rac)+'ohms')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//find the eqvivalent resistance of series parallel combination\n",
+"Rab=4\n",
+"Rbc=(12*8)/(12+8)\n",
+"Rcd=(3*6)/(3+6)\n",
+"Rad=Rab+Rbc+Rcd\n",
+"disp('resistance across AC='+string(Rad)+' ohms')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//what resistance must be connected in parallel\n",
+"R1=8\n",
+"R2=48/2//R1*R2/R1+R2\n",
+"disp('R2='+string(R2)+'ohms')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the current I1.I2\n",
+"I=12\n",
+"R1=6\n",
+"R2=8\n",
+"I1=I*R2/(R1+R2)\n",
+"I2=I*R1/(R1+R2)\n",
+"disp('I1='+string(I1)+'amps' , 'I2 ='+string(I2)+'amps')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.9: current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//find how current divide in circuit\n",
+"R1=0.02\n",
+"R2=0.03\n",
+"I1=(10*R2)/(R1+R2)\n",
+"I2=(10*R1)/(R1+R2)\n",
+"disp('I2='+string(I2)+ 'amps' , 'I1= '+string(I1)+ 'amps')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Basics_by_T_Thyagarajan/2-Magnetic_Current.ipynb b/Engineering_Basics_by_T_Thyagarajan/2-Magnetic_Current.ipynb
new file mode 100644
index 0000000..889f082
--- /dev/null
+++ b/Engineering_Basics_by_T_Thyagarajan/2-Magnetic_Current.ipynb
@@ -0,0 +1,378 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Magnetic Current"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.10: exciting_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the total amprers turns\n",
+"u=1//for air gap\n",
+"F=1.2e-3//flux\n",
+"A=10e-4 //area \n",
+"B=F/A\n",
+"H=B/(4*3.14*10^-7*u)\n",
+"l=0.2e-3//air gap\n",
+"S=H*l//amps turns in air gap\n",
+"l1=15e-2//air gap\n",
+"A1=8e-4\n",
+"H1=450\n",
+"S1=H1*l1\n",
+"F1=0.6e-3\n",
+"B1=F1/A1\n",
+"H2=140\n",
+"S2=H2*30e-2\n",
+"TN=500\n",
+"TAN=S+S1+S2\n",
+"EI=TAN/TN\n",
+"disp('exciting current =' +string(EI)+'amps' )"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.11: hysteris_loop.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the hysteris loss\n",
+"A=50//area of hysterisis\n",
+"H=200\n",
+"B=0.2\n",
+"f=50\n",
+"D=10// density\n",
+"M=1000// mass\n",
+"V=M/D// velocity is mass /density\n",
+"HL=A*H*B//.....j/m^2/cycle\n",
+"HL1=A*H*B*10^-4//....j/cycle\n",
+"HL2=A*H*B*50*1e-4//....j/s\n",
+"\n",
+"disp('Hysteresis loop = '+string(HL2)+' j/s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: flux_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the fukux density\n",
+"F=0.5e-3;//webers\n",
+"A=4*10^-4;//meter^2\n",
+"B=F/A;\n",
+"disp('flux density is = '+string(B)+' Wb/m^2');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: Magnetic_field_strength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the magnetic field strenght at the centre of solinoid\n",
+"I=2;//amp\n",
+"L=50e-2;//meter\n",
+"N=100;//turns\n",
+"H=(N*I)/L;\n",
+"disp('magnetic field strenght='+string(H)+'AT/m');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: reluctance_current_and.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the reluctance and current\n",
+"A=5e-4\n",
+"N=250\n",
+"l=50e-2\n",
+"F=700e-6\n",
+"u=380\n",
+"S=l/(4*%pi*10^-7*A*u)\n",
+"I=F*S/N\n",
+"disp('current='+string(I)+'amps' , 'reluctance ='+string(S)+'AT/Wb')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: relative_permeability.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the value of relative permeability of iron\n",
+"D=15e-2\n",
+"l=%pi*15e-2\n",
+"N=450\n",
+"I=2\n",
+"B=1.2\n",
+"u=B/(4*%pi*10^-7*N*I*l)\n",
+"disp('value of relative permeability='+string(u)+' ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: mmf.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the mmf\n",
+"l=1.5\n",
+"u=1600\n",
+"B=1.2\n",
+"H1=B*l/(4*%pi*10^-7*u)\n",
+"la=1e-3\n",
+"ua=1\n",
+"H2=B*la/(4*%pi*10^-7*ua)\n",
+"H=H1+H2\n",
+"disp('total amprs turns ='+string(H)+' AT' , 'amprs turns='+string(H2)+' AT', 'amprs turns='+string(H1)+' AT')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: magnetising_force_relative_permeability_magnetic_flux_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the magnetising force relative permeability\n",
+"A=5e-4\n",
+"l=25e-2\n",
+"N=100\n",
+"I=2\n",
+"F=0.3e-3\n",
+"H=(N*I)/l\n",
+"u=(F*l)/(N*I*A*4*3.14*10^-7)\n",
+"B=(u*H*4*3.14*10^-7)\n",
+"I1=5\n",
+"F1=0.58e-3\n",
+"H1=(N*I1)/l\n",
+"u1=(F1*l)/(N*I*A*4*3.14*10^-7)\n",
+"B1=(u1*H*4*3.14*10^-7)\n",
+"disp('flux density B1=' +string(B1)+ 'Wb/m^2' ,'flux density B =' +string(B)+ 'Wb/m^2' )"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: Magnetising_Current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the magnitising current\n",
+"A=0.01\n",
+"l=2e-3\n",
+"u=1\n",
+"F=800e-6\n",
+"B=F/A//flux\n",
+"H=B/(4*3.14*10^-7*u)\n",
+"N=(H*l)\n",
+"L=150e-2\n",
+"v=600\n",
+"f=9.6e-4\n",
+"N1=(f*L)/(v*A*4*%pi*10^-7)\n",
+"N2=N1+N\n",
+"n=200\n",
+"M=N2/n\n",
+"disp( 'Magnetising current = '+string(M)+' A' , 'Total amps turns= '+string(N2)+' AT' , 'amps turn iron= '+string(N1)+' AT' , 'amps turn for air= '+string(N)+' AT' )"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8: number_of_amperes_turns.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//find the number of amprs turns required\n",
+"A=25e-4\n",
+"F=1.2e-3\n",
+"u=1 //air path\n",
+"l=0.25e-2\n",
+"N=(F*l/(4*%pi*10^-7*A*u))*2 // for two air gaps\n",
+"v=2000 // iron path\n",
+"L=50e-2\n",
+"N1=(F*L)/(v*A*4*%pi*10^-7)\n",
+"N2=N+N1\n",
+"disp( 'total amps turns = '+string(N2)+' AT' , 'amps turn for air= '+string(N1)+' AT' , 'amps turn for air= '+string(N)+' AT' )"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9: ampere_turns.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the circuit current\n",
+"u=1//for air gap\n",
+"F=1.5e-3//flux\n",
+"A=9e-4 //area \n",
+"B=F/A\n",
+"H=B/(4*3.14*10^-7*u)\n",
+"l=4e-3//air gap\n",
+"S=H*l//amps turns in air gap\n",
+"l=4e-3//air gap\n",
+"u1=800// for iron gap\n",
+"A1=750e-6\n",
+"B1=F/A1\n",
+"H1=B1/(4*3.14*10^-7*u1)\n",
+"l1=270e-3\n",
+"S1=H1*l1\n",
+"u2=1000//for P,Q,R\n",
+"H2=B/(4*3.14*10^-7*u2)\n",
+"Ip=135e-3\n",
+"Iq=270e-3\n",
+"Ir=135e-3\n",
+"S2=H2*(Ip+Iq+Ir)//amps turns\n",
+"TNn=S+S1+S2\n",
+"TN=4000\n",
+"EI=TNn/TN\n",
+"disp('exciting current= '+string(EI)+' amps' )"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Basics_by_T_Thyagarajan/3-Electromagnetism.ipynb b/Engineering_Basics_by_T_Thyagarajan/3-Electromagnetism.ipynb
new file mode 100644
index 0000000..2a75b94
--- /dev/null
+++ b/Engineering_Basics_by_T_Thyagarajan/3-Electromagnetism.ipynb
@@ -0,0 +1,310 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Electromagnetism"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10: force.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the pull between poles and keeper\n",
+"A=15e-4\n",
+"B=1.2\n",
+"U=1\n",
+"F=2*B*B*A/(2*4*3.14*10^-7)\n",
+"disp('Total force='+string(F)+' N')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: emf_induced.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the emf induced in the coil\n",
+"N=200\n",
+"F1=1e-3\n",
+"F2=3e-3\n",
+"F3=F2-F1\n",
+"t=0.1\n",
+"e=N*F3/t //neglecting negative sign\n",
+"disp('induced emf= ' +string(e)+' volts')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: emf_induced.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the emf inducedin a long wire\n",
+"B=1.2;//weber/meter^2...flux density\n",
+"V=4;//meter/second..velocity of conductor\n",
+"l=2;//meter...lenght of \n",
+"e=(B*V*l*1)//sin90=1\n",
+"disp('emf induced in the conductor='+string(e)+'volt');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: inductance_of_the_coil.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//find the inductance of the coil\n",
+"N=1500;// number of turns\n",
+"I=10;//amp...current in coil\n",
+"F=.5*10^-3;//weber...flux \n",
+"L=N*F/I;\n",
+"disp('inductance of coil='+string(L)+'henry');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: self_inductance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//P3.4 calculate its self induction \n",
+"\n",
+"Ur=1;\n",
+"N=400;\n",
+"l=30e-2;\n",
+"A=5e-4;\n",
+"U0=4e-7*%pi;\n",
+"S=l/(U0*Ur*A);\n",
+"L=N^2/S;\n",
+"disp('Self inductance is = '+string(L)+' henry','S = '+string(S));\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: inductance_and_emf_induced.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculat the inductance and emf induced in the coil\n",
+"u=1 //air core torroidal ring\n",
+"D=25e-2\n",
+"l=3.14*D\n",
+"N=500\n",
+"d=4e-2 //cross sectional diameter\n",
+"A=(3.14*d*d)/4 //cross sectional area\n",
+"s=l/(4*3.14*10^-7*u*A)\n",
+"L=N^2/s // self inductance\n",
+"dI=10\n",
+"dt=50e-3\n",
+"e=(L*dI)/dt\n",
+"disp('Induced emf=' +string(e)+' volts' , 'Inductance = '+string(L)+' henry' )"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6: inductance_and_emf_induced.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the induced emf in the coil\n",
+"A=4e-4 //cross sectional is a squar side\n",
+"u=1 //air core torroidal ring\n",
+"D=25e-2\n",
+"l=3.14*D\n",
+"N=500\n",
+"d=4e-2 //cross sectional diameter\n",
+"s=l/(4*3.14*10^-7*u*A)\n",
+"L=N^2/s // self inductance\n",
+"dI=10\n",
+"dt=50e-3\n",
+"e=(L*dI)/dt\n",
+"disp('Induced emf=' +string(e)+' volts' , 'Inductance = '+string(L)+' henry' )"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.7: inductance_and_emf_induced.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the induced emf in coil\n",
+"di=5\n",
+"dt=0.05\n",
+"L=5.029e-4\n",
+"di1=400\n",
+"dt1=1\n",
+"e=L*di/dt\n",
+"e1=L*di1/dt1\n",
+"disp('Induced emf= ' +string(e1)+' volts' , 'Induced emf= ' +string(e)+' volts')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8: mutual_inductance_and_emf_induced.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"////calculate the mutual inductance between the two coil\n",
+"N1=50\n",
+"N2=400\n",
+"A=150e-4\n",
+"l=200e-2\n",
+"u=2500\n",
+"s=l/(4*3.14*10^-7*A*u)\n",
+"M=(N1*N2)/s\n",
+"dI1=24\n",
+"dt=0.03\n",
+"eM2=M*dI1/dt\n",
+"disp('induced emf= '+string(eM2)+' volts' , 'Mutual inductance= '+string(M)+' henry' , 's='+string(s)+' AT/Wb')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.9: energy_stored.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//find the energy stored in it\n",
+"L=0.5\n",
+"I=2\n",
+"E=0.5*L*I*I\n",
+"disp('Energy stored= '+string(E)+' joule')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Basics_by_T_Thyagarajan/4-Ac_circuit.ipynb b/Engineering_Basics_by_T_Thyagarajan/4-Ac_circuit.ipynb
new file mode 100644
index 0000000..013ed63
--- /dev/null
+++ b/Engineering_Basics_by_T_Thyagarajan/4-Ac_circuit.ipynb
@@ -0,0 +1,1004 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Ac circuit"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.12: power_dissipated.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the power dissipiated in resistance\n",
+"//v=200 sind 314t\n",
+"Vm=200;\n",
+"o=314; //@=omega\n",
+"//i=50 sind 314t\n",
+"Im=50\n",
+"o=314\n",
+"R=Vm/Im\n",
+"I=Im/1.414\n",
+"P=(I*I*R)\n",
+"disp( 'power dissipiated in resistance='+string(P)+' watts')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.13: inductive_reactance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the inductive reactance of the coil\n",
+"L=0.25;//henry....inductance\n",
+"f=50;//hertz...frequency\n",
+"X=2*3.14*f*L\n",
+"disp('value of inductive reactance='+string(X)+'ohms');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15: current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the current flowing through the coil\n",
+"L=0.05\n",
+"V=230\n",
+"f=60\n",
+"X=(2*%pi*f*L)\n",
+"I=V/X\n",
+"disp(' the current flowing through the coil='+string(I)+'amps')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.16: inductance_and_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//detrmine the value of inductance\n",
+"I=5;//amp\n",
+"V=200;//volt\n",
+"f=50;//hertz\n",
+"X=V/I;\n",
+"L=40/(2*%pi*50);\n",
+"disp('the value of inductive.reactance='+string (X)+'ohms' , 'value of inductors='+string(L)+'henry');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.17: voltage_and_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//write the time equation for voltage and current\n",
+"Vrms=150\n",
+"Vm=2*1.414*Vrms\n",
+"f=50\n",
+"L=0.2\n",
+"X=2*3.14*f*L\n",
+"Im=Vm/X\n",
+"disp('current equation i=212.132sin(314)t' , 'voltage equation v=3.376sin(314t-90)' , ' Im= '+string(Im)+ ' ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.18: current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the current\n",
+"C=25e-6;\n",
+"V=200\n",
+"f=60 //frequency half\n",
+"f2=120 //frequency doubled\n",
+"Xc=1/(2*%pi*f*C)\n",
+"Xc=1/(2*%pi*f2*C)\n",
+"I=V/Xc\n",
+"disp('frequency half='+string(f)+'hz' , 'frequency douled='+string(f2)+'hz')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.19: capacitance_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the value of capacitance nd current\n",
+"Xc=25\n",
+"V=200\n",
+"f=50\n",
+"C=1/(2*%pi*f*Xc)\n",
+"I=V/Xc\n",
+"disp('the value of capacitance ='+string(C)+'farad', 'the value of current='+string(I)+'amps')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: voltage_and_current_factors.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//\n",
+"//i=40sin 314t \n",
+"//i=Imsin wt\n",
+"Im=40\n",
+"w=314\n",
+"Iav=Im/1.414\n",
+"Irms=Im*2/3.14\n",
+"f=w/(2*3.14)\n",
+"Ff=Irms/Iav\n",
+"Pf=Im/Irms\n",
+"disp('peak factor='+string(Pf)+ ' ' , 'form factor='+string(Ff)+ ' ' , 'frequency ='+string(f)+ ' ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.20: frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//find the frquency\n",
+"Vrms=110\n",
+"c=15e-6\n",
+"I=0.518\n",
+"Xc=Vrms/I\n",
+"f=1/(2*%pi*Xc*c)\n",
+"disp('value of frequency='+string(f)+'hz')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.21: phase_angle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the value of current\n",
+"R=10;//ohms\n",
+"L=0.02;//henry\n",
+"V=250;//volt\n",
+"f=50;//hertz\n",
+"X=(2*%pi*f*L)\n",
+"Z=sqrt(R^2+X^2)\n",
+"I=V/Z\n",
+"coso=R/Z\n",
+"o=acosd(coso)\n",
+"disp('phase angle='+string(o)+'degree', 'current flowing through coil='+string(I)+'amp')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.22: voltage_and_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//find the inductance impd,curent,power factr,voltage.power\n",
+"R=50;//ohms\n",
+"L=0.5;//henry\n",
+"V=200;//volt\n",
+"f=50;//hertz\n",
+"X=(2*%pi*f*L)\n",
+"Z=sqrt(R^2+X^2)\n",
+"I=V/Z\n",
+"coso=R/Z\n",
+"sino=R/Z\n",
+"o=acosd(coso)\n",
+"o1=asind(sino)\n",
+"Vr=I*R\n",
+"Vl=I*X\n",
+"AP=V*I*coso\n",
+"RP=V*I*sino\n",
+"APP=V*I;\n",
+"//disp('Apprent power='+string(AP)+'degree''phase angle='+string(o)+'degree', 'crnt flowing through coil='+string(I)+'amp')\n",
+"disp('The time equation of current = 1.711sin(314t-72.34)')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.23: voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the supply voltage \n",
+"R=15;//ohms \n",
+"L=0.15;//henry\n",
+"I=20;//ampss\n",
+"f=50;//hertz\n",
+"X=2*%pi*50*0.15\n",
+"Z=sqrt(R^2+X^2)\n",
+"V=I*Z\n",
+"disp('supply voltage = '+string(V)+'volts');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.24: resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the supply voltage \n",
+"V=200;//ohms \n",
+"L=0.4;//henry\n",
+"I=0.5;//ampss\n",
+"f=50;//hertz\n",
+"Z=V/I\n",
+"X=2*%pi*f*L\n",
+"R=sqrt(Z^2+X^2)\n",
+"disp('Resistance = '+string(R)+'ohms')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.25: inductance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the inductance of the coil\n",
+"R=6\n",
+"V=250;//volts\n",
+"I=1.5;//amps\n",
+"Z=V/I;//impedance\n",
+"f=60;//hetrz\n",
+"X=sqrt(Z^2-R^2)\n",
+"L=X/(2*%pi*f)\n",
+"disp('inductance of coil='+string(L)+ 'henry')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.27: voltage_across_choking_coil.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the inductance of the coil and voltage across each element\n",
+"I=7\n",
+"V=200\n",
+"f=50\n",
+"R=10\n",
+"r=1.5 //rasistance choke coil\n",
+"V1=I*R\n",
+"V3=I*r\n",
+"V2=sqrt(V^2-(V1+V3)^2)\n",
+"X=V2/I //inductive reactance\n",
+"L=X/(2*%pi*f)\n",
+"V4=sqrt(V2^2+V3^2) ///voltage across choking coil\n",
+"disp('voltage across choking coil='+string(V4)+'volts' , 'inductor='+string(L)+'henry')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.28: time_equation_for_v_and_i.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"4.28//voltage across R$C \n",
+"C=15e-6;//farad..\n",
+"R=100;//ohms\n",
+"V=100;//volts\n",
+"f=50;//hertz\n",
+"Xc=1/(2*%pi*f*C);\n",
+"Z=sqrt(R^2+(Xc^2));\n",
+"I=V/Z;\n",
+"coso=R/Z;\n",
+"sino=R/Z\n",
+"o=acosd(coso);\n",
+"o=asind(sino)\n",
+"Vr=I*R;\n",
+"Vc=I*Xc;\n",
+"AP=V*I*coso\n",
+"RP=V*I*sino\n",
+"APP=V*I;\n",
+"disp('The time equation of current i = (0.426)1.414sin(314t-64.34)' , 'Apparent power ='+string(APP)+'vars ' , 'ACTIVE POWER ='+string(AP)+ ' watts' )\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.29: current_and_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the frequency\n",
+"R=30;//ohms\n",
+"L=0.5;//henry\n",
+"f=50;//hertz\n",
+"X=(2*%pi*f*L)\n",
+"Z=R+%i*X\n",
+"V=86.6+%i*50\n",
+"I=V/Z\n",
+"disp('current = '+string(I)+ 'A')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2: voltage_equatio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the voltage sin wave\n",
+"f=50\n",
+"V=50\n",
+"Vm=V*1.414\n",
+"w=2*3.14*f\n",
+"t=(0:0.1:5*%pi)';\n",
+"plot2d1('onn',t,[5*sin(t)])\n",
+"disp('voltage equation v=70.7sin(314)t')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.30: voltage_across_R_and_C.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//find the equation of voltage and current \n",
+"C=10e-6;//farad..\n",
+"R=300;//ohms\n",
+"//i=2 sin 314t\n",
+"V=100;//volts\n",
+"f=50;//hertz\n",
+"Xc=1/(2*%pi*f*C);\n",
+"Z=sqrt(R^2+(Xc^2));\n",
+"Im=2\n",
+"Vm=2*Z\n",
+"coso=R/Z;\n",
+"o=acosd(coso);\n",
+"disp('The time equation of voltage Vr = 600sin(314t)' , 'The time equation of voltage Vc = 636sin(wt-90)')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.31: resistance_and_capacitance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the value of RESISTANCE AND CAPACITANCE \n",
+"I=2.5;//amps\n",
+"V=150;//volts\n",
+"f=50;//hetz\n",
+"Z=V/I;\n",
+"P=100;//watt..power\n",
+"R=P/(I*I)\n",
+"Xc=sqrt(Z^2-R^2)\n",
+"C=1/(2*3.14*f*Xc);// capacitance\n",
+"disp('find tha value of capacitance='+string(C)+'farad');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.32: capacitance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the value of capacitance\n",
+"V1=100;//volts\n",
+"V=250;//volts\n",
+"f=50;//hertz\n",
+"P=500;//watt\n",
+"I=P/V;\n",
+"V2=sqrt(V^2-V1^2);//volts\n",
+"Xc=V2/I;\n",
+"C=1/(2*%pi*f*Xc);\n",
+"disp('determine the value of capacitance='+string(C)+'farad');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.33: voltage_across_RLC.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the ind.reactance nd capacitance nd voltage across R L C\n",
+"R=25\n",
+"C=20e-6\n",
+"L=0.15\n",
+"V=250\n",
+"f=50\n",
+"X=2*%pi*f*L\n",
+"Xc=1/(2*%pi*f*C)\n",
+"Z=sqrt(R^2+(X-Xc)^2)\n",
+"I=V/Z\n",
+"coso=R/Z\n",
+"o=acosd(coso)\n",
+"Vr=I*R\n",
+"Vl=I*X\n",
+"Vc=I*Xc\n",
+"disp('Vr='+string(Vr)+'volts' , 'Vl='+string(Vl)+'volts' , 'Vc='+string(Vc)+'volts' , 'phase angle='+string(o)+'degree' , 'current='+string(I)+'amps' , 'impedence='+string(Z)+'ohms' , 'ind.reactance='+string(X)+'ohms' , 'ind capacitance='+string(Xc)+'ohms')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.34: current_and_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the current also V1 nd V2\n",
+"V=250\n",
+"f=50\n",
+"R1=10\n",
+"L1=0.15\n",
+"C1=10e-6\n",
+"X1=2*%pi*f*L1\n",
+"Xc1=1/(2*%pi*f*C1)\n",
+"R2=8\n",
+"L2=0.25\n",
+"X2=2*%pi*f*L2\n",
+"Z=sqrt((R1+R2)^2+[(X1+X2)-Xc1]^2)\n",
+"I=V/Z\n",
+"Z1=sqrt(R1^2+(X1-Xc1)^2)\n",
+"V1=I*Z1\n",
+"Z2=sqrt(R2^2+X2^2)\n",
+"V2=I*Z2\n",
+"disp('value of current='+string(I)+'amps' , 'v1='+string(V1)+'volts', 'V2='+string(V2)+'volts')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.35: maximum_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the value of max. current\n",
+"C=30e-6;//farad\n",
+"R=12;//ohms\n",
+"L=0.2;//henry\n",
+"V=200;//volt\n",
+"I=V/R\n",
+"f=1/(2*%pi*sqrt (L*C))\n",
+"disp('frequency='+string(f)+'hertz','maximum crnt='+string(I)+'amp')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.36: frequency_response.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate freq at resonance\n",
+"C=30*10^-6\n",
+"L=0.2\n",
+"R=12\n",
+"F= sqrt(1/(L*C)-R^2/(L*L))\n",
+"f=1/(2*3.14)*F\n",
+"disp(('freq at resonance='+string(f)+'hz'))"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.37: current_voltage_and_power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the current also power nd power factor\n",
+"V=200+%i*0\n",
+"f=50\n",
+"R1=30\n",
+"L1=0.2\n",
+"C1=10e-6\n",
+"X1=2*%pi*f*L1\n",
+"Z1=R1+%i*X1\n",
+"R2=40\n",
+"L2=0.12\n",
+"X2=2*%pi*f*L2\n",
+"Z2=R2+%i*X2\n",
+"Z=(Z1*Z2)/(Z1+Z2)\n",
+"I=V/Z\n",
+"R=18.858//calculatimg Z and I we get R and Z,I\n",
+"Z=31.06\n",
+"coso=R/Z\n",
+"I=6.44\n",
+"P=I^2*R\n",
+"I1=(I*Z1)/(Z1+Z2)\n",
+"I2=(I*Z1)/(Z1+Z2)\n",
+"coso1=R1/Z1\n",
+"P1=I1^2*R1\n",
+"coso2=R2/Z2\n",
+"P2=(I2)^2*R2\n",
+"disp('P2 ='+string(P2)+ 'watt' ,'P1 ='+string(P1)+ 'watt ' , 'Total power factr='+string(coso)+'' , 'Total power='+string(P)+'watt' , 'total current ='+string(I)+'amps' , 'total impedance='+string(Z)+'ohms' )"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.38: current_and_power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the current also power nd power factor\n",
+"V=200+%i*0\n",
+"f=50\n",
+"R1=10\n",
+"X1=12\n",
+"Z1=R1+%i*X1\n",
+"R2=15\n",
+"Xc2=20\n",
+"Z2=R2-%i*Xc2\n",
+"Z=(Z1*Z2)/(Z1+Z2)\n",
+"I=V/Z//calculatimg Z and I we get R and Z,I\n",
+"R=14.36\n",
+"I=13.46\n",
+"coso=R/Z\n",
+"P=I*I*R\n",
+"I1=(I*Z2)/(Z1+Z2)\n",
+"I2=(I*Z1)/(Z1+Z2)\n",
+"coso1=R1/Z1\n",
+"P1=I1*I1*R1\n",
+"coso2=R2/Z2\n",
+"P2=I2*I2*R2\n",
+"disp('P2 ='+string(P2)+ 'watt' ,'P1 ='+string(P1)+ 'watt ' , 'Total power factr='+string(coso)+'' , 'Total power='+string(P)+'watt' , 'total current ='+string(I)+'amps' , 'total impedance Z ='+string(Z)+'ohms' )"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3: volatage_and_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the time taken to reach the intantaneous of 150\n",
+"f=50\n",
+"Vr=200\n",
+"Vm=Vr*1.414\n",
+"t=2.5e-3\n",
+"w=2*3.14*f*t\n",
+"v=Vm*sind(w*180/%pi)\n",
+"v1=150 //v1=Vmsimwt\n",
+"t=1/18000*asind(150/282.8)\n",
+"disp( 'voltage equation='+string(v)+' volts ' , 'time='+string(t)+' seconds ')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.40: voltage_and_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the line currnt nd voltage\n",
+"R=200\n",
+"Vl=440\n",
+"f=50\n",
+"V=Vl/1.732//star connection\n",
+"I=V/R\n",
+"Il=I\n",
+"coso=1\n",
+"P=3*V*I*coso\n",
+"Vp=440//delta connection\n",
+"Vl=440\n",
+"I1=1.732*I\n",
+"P1=3*Vp*I*coso\n",
+"disp('active power='+string(P)+'watt' , 'active power='+string(P1)+'watt' )"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.41: power_absorbed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate total power absrbed\n",
+"R=15\n",
+"L=0.25\n",
+"f=50\n",
+"X=2*%pi*f*L\n",
+"Z=sqrt(R^2+X^2)\n",
+"Vl=400\n",
+"V=Vl/1.732 //in star connection\n",
+"I=V/Z\n",
+"Il=I\n",
+"coso=R/Z\n",
+"P=3*V*Il*coso\n",
+"disp('total power absorbed='+string(P)+'watt')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.42: power_absorbed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate resistance nd reactance of circuit\n",
+"P=15000; //power\n",
+"Vl=400;//line voltage\n",
+"V=Vl/1.732\n",
+"I=35;//line current equal to phase current\n",
+"Z=V/I\n",
+"coso=15e3/(1.732*400*35)\n",
+"R=Z*coso\n",
+"X=sqrt(Z^2-R^2)\n",
+"disp('reactance='+string(X)+'ohms' ,'resistance='+string(R)+'ohms')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.43: power_factor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate power factor\n",
+"W1=5000//W1=V*L*cos(30+o)\n",
+"W2=3000//W2=V*L*cos(30-o)\n",
+"o=atand (1.732*(W1-W2)/(W1+W2))\n",
+"disp('power factor='+string(o)+' ')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Basics_by_T_Thyagarajan/5-Electrical_Machine.ipynb b/Engineering_Basics_by_T_Thyagarajan/5-Electrical_Machine.ipynb
new file mode 100644
index 0000000..4432818
--- /dev/null
+++ b/Engineering_Basics_by_T_Thyagarajan/5-Electrical_Machine.ipynb
@@ -0,0 +1,583 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Electrical Machine"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.10: speed_of_rotor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//dtermine its speed when its take crnt 25 amps\n",
+"Vl=250\n",
+"Ra=0.05\n",
+"R=0.02\n",
+"Ia=30\n",
+"I1=30 //Il=Ia\n",
+"N1=400\n",
+"E1=Vl-(Ia*Ra)-(Ia*R) \n",
+"//E1=E2\n",
+"I2=25\n",
+"N2=(N1*E1*I1)/(E1*I2)\n",
+"disp('speed of motor='+string(N2)+'rpm')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.11: torque.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//find the torque whn its take scurnt 60amprs\n",
+"Vl=200\n",
+"Il=60 //amprs\n",
+"R=50\n",
+"I=Vl/R // amprs\n",
+"Ia=Il-I //amprs\n",
+"f=0.03 // flux \n",
+"Z=700\n",
+"P=4\n",
+"A=2\n",
+"T=(0.159*f*Z*Ia*P)/A\n",
+"disp('Torque='+string(T)+'N-m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.12: number_of_turns_and_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calcute the num of prim turns and prim $sec current\n",
+"KVA=50\n",
+"E1=6000\n",
+"E2=250\n",
+"N2=52\n",
+"N1=N2*E1/E2\n",
+"I2=KVA*1000/E2\n",
+"I1=KVA*1000/E1\n",
+"disp('prim current I1 = '+string(I1)+' amps' , 'sec current I2 = '+string(I2)+' amps' , 'prim num of turns N1 = '+string(N1)+' turns' )"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13: flux_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the emf induced in the secondry max value of flux density\n",
+"f=50\n",
+"N1=350\n",
+"N2=800\n",
+"E1=400\n",
+"E2=(N2*E1)/N1\n",
+"A=75e-4\n",
+"Bm=E1/(4.44*f*A*N1)\n",
+"disp('flux density='+string(Bm)+'wb/m^2')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.14: current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//find the magnetic nd iron loss component of current\n",
+"E1=440\n",
+"E2=200\n",
+"I=0.2\n",
+"coso=0.18\n",
+"sino=sqrt(1-coso^2)\n",
+"Iw=I*coso\n",
+"Iu=I*sino\n",
+"disp('Iw='+string(Iw)+'amps' , 'Iu='+string(Iu)+'amprs')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.15: efficiency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate teh efficiency at loads\n",
+"KVA=20\n",
+"Il=350\n",
+"Cl=400\n",
+"x=1\n",
+"pf=0.8//at full load\n",
+"pf1=0.4 //at half load\n",
+"x1=0.5\n",
+"op=KVA*1000*x\n",
+"op1=KVA*1000*x1*pf1\n",
+"Tl=Il+(Cl*x*x)\n",
+"Tl1=Il+(Cl*x1*x1)\n",
+"ip=op+Tl\n",
+"ip1=op1+Tl1\n",
+"%n=op/ip*100\n",
+"%n1=op1/ip1*100\n",
+"disp('efficiency at half load n = '+string(%n1)+' ' , 'efficiency at full load n1 = '+string(%n)+' ' )"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.16: speed_and_emf.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the synchronous speed ,slip,frequncy induced emf\n",
+"f=50\n",
+"p=4\n",
+"Ns=120*f/p\n",
+"N=1460\n",
+"s=(Ns-N)/Ns\n",
+"f1=(s*f)\n",
+"disp( 'f1='+string(f1)+'hz' , 's='+string(s)+' ' , 'Ns='+string(Ns)+'rpm' )"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.17: speed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the value of slip nd speed of motor\n",
+"P=6\n",
+"f=50\n",
+"Ns=120*f/P\n",
+"f1=1.5\n",
+"s=f1/f\n",
+"N=Ns*(1-s)\n",
+"disp('speed of motor='+string(N)+'RPM')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.18: poles_speed_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the numbers of poles ,slip at full load,frequncy rotor,speed of motor\n",
+"Ns=1000\n",
+"N=960\n",
+"f=50\n",
+"P=120*f/Ns// synchronous speed\n",
+"s=(Ns-N)/Ns\n",
+"f1=s*f\n",
+"N=Ns*(1-0.08)//speed of motor at 8% slip\n",
+"disp('speed of rotor='+string(N)+'RPM')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.19: induced_emf.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the induced emf per phase\n",
+"f=50\n",
+"P=16\n",
+"N=160\n",
+"S=6\n",
+"n=N*S\n",
+"Z=n/3\n",
+"F=0.025\n",
+"e=2.22*F*f*Z\n",
+"disp('e='+string(e)+'volts')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: determine_the_emf_induced_in_the_coil.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//P5.1 determine the induced emf in the armature\n",
+"P=4;//poles\n",
+"A=2;//wave wound\n",
+"N=50;//number of slots\n",
+"SperCondctr=24;//slots/conductor\n",
+"Z=SperCondctr*N;//total conductor\n",
+"N=600;//rpm....speed of armature\n",
+"F=10e-3;//webers....flux/poles\n",
+"E=F*Z*N*P/(60*A);//emf induced\n",
+"disp('e.m.f induced is = '+string(E)+' volts');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: emf_induced_in_coil.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//P5.2 determine the induced emf in the armature\n",
+"P=4;//poles\n",
+"A=4;//wave wound\n",
+"N=50;//number of slots\n",
+"SperCondctr=24;//slots/conductor\n",
+"Z=SperCondctr*N;//total conductor\n",
+"N=600;//rpm....speed of armature\n",
+"F=10e-3;//webers....flux/poles\n",
+"E=F*Z*N*P/(60*A);//emf induced\n",
+"disp('e.m.f induced is = '+string(E)+' volts');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: speed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the speed\n",
+"P=6;//poles\n",
+"A=2;//wave wound\n",
+"Z=780;//armature conductors\n",
+"F=12*10^-3;//webers..flux/poles\n",
+"E=400;//volt\n",
+"N=(E*60*2)/(F*Z*P);\n",
+"N2=(E*60*6)/(F*Z*P);\n",
+"disp('determine the speed='+string(N)+'rpm', 'determine the speed (A=P=6)='+string(N2)+'rpm');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: induced_emf.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//determine the emf induced\n",
+"R=0.05;\n",
+"Rs=100;\n",
+"V=250;\n",
+"P=10000;\n",
+"I=P/V;\n",
+"Is=V/Rs;\n",
+"Ia=I+Is;\n",
+"Eg=V+(R*Ia);\n",
+"disp('emf induced='+string(Eg)+'volts');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: emf_induced.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the emf induced in the armature\n",
+"Il=200\n",
+"Vl=500\n",
+"Ra=0.03\n",
+"Rs=0.015\n",
+"R=150\n",
+"BCD=2 //one volt per brush\n",
+"I=Vl/R\n",
+"Ia=Il+I\n",
+"Eg=Vl+(Ia*Ra)+(Ia*Rs)+BCD\n",
+"disp('emf induced= '+string(Eg)+' volts');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6: emf_induced.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the emf induced in the armature\n",
+"Il=200\n",
+"Vl=500\n",
+"Ra=0.03\n",
+"Rs=0.015\n",
+"Is=200 //for a short shunt generator Il=Ise\n",
+"R=150\n",
+"BCD=2 //one volt per brush\n",
+"I=(Vl+(Is*Rs))/R\n",
+"Ia=Il+I\n",
+"Eg=Vl+(Ia*Ra)+(Ia*Rs)+BCD\n",
+"disp('emf induced= '+string(Eg)+' volts' );"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.7: back_emf.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the back emf induced on full load\n",
+"Ra=0.5 //armature resistance\n",
+"Rs=250 //shunt resistance\n",
+"Vl=250 //line volt\n",
+"Il=40\n",
+"Is=Vl/Rs \n",
+"Ia=Il-Is\n",
+"Eb=Vl-(Ia*Ra)\n",
+"disp('emf induced= '+string(Eb)+' volts' );"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.8: power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//find the power developed in circiut\n",
+"Pl=20e3\n",
+"Vl=200\n",
+"Ra=0.05\n",
+"R=150\n",
+"I=Vl/R\n",
+"Il=Pl/Vl\n",
+"Ia=Il+I\n",
+"Eg=Vl+(Ia*Ra)\n",
+"P=Eg*Ia\n",
+"disp('power developed='+string(P)+'watt')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.9: speed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//calculate the speed of the machine when running\n",
+"N1=1000 //speed of generator\n",
+"E1=205.06 //emf generator\n",
+"E2=195.06 //emf of motor\n",
+"N2=(E2*N1)/E1 //speed of generator\n",
+"disp('speed of motor='+string(N2)+'rpm')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}